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An original analytical mode-matching technique is proposed to formulate the problem

of the broadband trailing-edge noise produced by outlet guide vanes in an axial-flow fan

architecture. The trailing-edge noise sources are not vane-to-vane correlated but their

radiation is determined by a cascade effect that must be accounted for. This is achieved

here in the frequency domain and in two dimensions for a preliminary assessment of the

method. In a first step the trailing-edge noise sources of a single vane are shown to be

equivalent to the onset of a so-called edge dipole, the direct field of which is expanded

in a series of plane-wave modes. In a second step the diffraction of each mode is derived

considering the cascade as an array of bifurcated waveguides and using a mode-matching

technique. The cascade response is finally synthesized by summing the diffracted fields of

all modes. The interest of the approach is that it can be extended to a three-dimensional

annular configuration. As such it is a promising and versatile alternative to previously

published methods.

Nomenclature

āj , aj pressure and potential coefficients for plane waves
Aj

m, Bj
s transmitted and reflected mode amplitudes, single interface

c chord length
c0 sound speed
D0

m, U0
m downstream and upstream mode amplitudes in the channels

E, F Fresnel integral and related function
h inter-vane channel height
k = ω/c0 acoustic wavenumber
K = k/β scaled wavenumber
K(j) axial wavenumber in the channels
Km incident axial wavenumber
K̄j

s effective axial wavenumbers of reflected/transmitted waves
M0 axial Mach number
p, p0 acoustic pressure
rc radius of the unwrapped cut of the stator
(r0, θ0), (r, θ) source and observer cylindrical coordinates around an edge
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(r̄0, θ̄0), (r̄, θ̄) same coordinates corrected for convection
R̄ corrected source-to-observer distance
Rs, Ts reflected and transmitted mode amplitudes, double interface
V vane number
vx acoustic axial velocity
v
h
K hydrodynamic velocity associated to the Kutta condition

(x, y) axial and transverse Cartesian coordinates
X = x/β scaled coordinate
αj
s scattered transverse wavenumbers of transmitted/reflected waves

β =
√

1−M2
0 compressibility parameter

Γ pressure and axial-velocity vector
φ acoustic potential
ρ0 fluid density
ΩK, ΩK , Ω0 vorticity generated by the Kutta condition

Subscripts and superscripts
(−)0 source-point coordinate
(−)0 reference channel
(−)j incident wave index
(−)m channel mode index
(−)K Kutta-condition associated quantity
(−)s reflected or transmitted wave index
(−)i,r,t,u,d incident, reflected, transmitted, upstream and downstream potentials
(−)± for downstream/upstream wavenumbers
e−iω t time dependance of monochromatic waves

I. Introduction

The design of many axial-flow fans involves a rotor and a downstream row of stationary outlet guide
vanes called stator. The aerodynamic noise of the rotor-stator system is caused by various aerodynamic
interactions. According to the acoustic analogy and for subsonic Mach numbers, sound mainly originates
from fluctuating lift forces on the blades and the vanes, all acting as equivalent dipoles. The lift fluctuations
are induced by time variations of the velocity relative to the blades/vanes. The main declination of this
mechanism is the wake-interaction noise produced as the wakes of the rotor blades impinge on the stator
vanes. The mean velocity deficit and the turbulence in the wakes generate tonal noise and broadband noise,
respectively, the sources of which are distributed on the vanes. Independently the turbulent boundary layers
developing on the blades and the vanes are scattered as sound at the trailing edges, also contributing to
the broadband noise. That trailing-edge noise is not blade-to-blade or vane-to-vane correlated, which means
that the sound generation takes places in the same way as for an isolated airfoil. But the sound radiation
away from the trailing-edge area is more or less dramatically restructured by multiple scattering on ajacent
blades/vanes. This restructuration referred to as the cascade effect is the main motivation of the present
work. The emphasis is on the trailing-edge noise of the stator, though the same approach could be transposed
to a rotor.

In most architectures the outlet guide vanes are moderately cambered and staggered at leading edge,
and nearly parallel to the axis at trailing edge. As a result they have a large overlap and can be viewed
from downstream as an array of parallel and zero-stagger plates. When trying to reproduce aeroacoustic
phenomena using analytical approaches, the cascade effect of the stator appears as a key feature to deal
with. The cascade effect is not only involved in the sound generation process but also when the sound
generated by the rotor blades is transmitted downstream in the exhaust duct, especially for stators with
a large number of vanes and quite large hub-to-tip ratios. Many works contributed to the development
of analytical or semi-analytical cascade response functions for sound generation or transmission in blade
rows, amongst others the approach by Glegg5 and Possonet al14 selected here for the discussion. But only
wake-interaction noise or turbulence-impingement noise is generally considered. The cascade effect on the
trailing-edge noise mechanism is more difficult to formulate even though an attractive and elegant approach
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has been proposed by Glegg & Jochault.6 The issue is that trailing-edge noise sources are localized and
poorly correlated, which makes them difficult to describe in a cascade context. Though only outlet guide
vanes are considered in the present work, the same would hold for the blades of a rotor except that most
often the overlap is smaller, at least in the tip region of the blades, and that the number of blades is also
smaller. Furthermore the stagger angle of the blades is quite large. The case of the stator is chosen here
because the equivalent cascade will be assumed with zero stagger for simplicity. This simplification could be
released in a future work.

The aforementioned approach by Glegg,5 Glegg & Jochault6 and Posson et al14 relies on an extensive
use of the Wiener-Hopf technique formulated in a Cartesian reference frame for a rectilinear cascade. This
means that the investigated annular cascade must be split into a series of thin annuli that are unwrapped
and treated separately. Arbitrary stagger angle, sweep and lean can be accounted for by changing the
parameters in each strip. In contrast no simple equivalent in cylindrical coordinates is available and as a
result adjacent blades or vanes are artificially considered as parallel plates. The present approach is proposed
as an alternative. It is based on a mode-matching technique, considering a blade/vane row as a periodic
array of bifurcated waveguides. It can be transposed easily in a three-dimensional context in cylindrical
coordinates for the analysis of annular cascades. A previous, still incomplete attempt dealing with sound
transmission at the inlet of a centrifugal compressor is described by Ingenito & Roger.11 Another application
to the outer part of the compressor and to the associated radial vaned diffuser has been considered by Roger
et al18 in polar coordinates, based on the use of spiral waves in a spiral base flow. This versatility is an
attractive advantage since the splitting of a machine into strips is avoided, but it is balanced by the limitation
that blade/vane twist or other design features cannot be simply considered. The two-dimensional extension
to staggered vanes is straightforward as suggested by similar works in electromagnetic wave theory.20 Finally
the Wiener-Hopf technique and the mode-matching technique are mathematically equivalent when addressing
rigid-plate cascade problems in two dimensions. One or the other is presumably better suited depending on
the design features when three-dimensional blade/vane rows are modeled.
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Figure 1: (a): typical axial-flow stator architecture. (b): unwrapped represen-
tation showing the rotor blades (left) and the equivalent rectilinear cascade of
plates mimicking the stator (right).

The present investigation remains two-dimensional but it must be understood as the first step of a
methodology that will be progressively generalized and implemented in a unified three-dimensional model
of axial-flow turbomachine. The stator vanes are assumed parallel, axially aligned and zero-stagger plates
(Fig.1). They are equivalent to a periodic array of channels with rigid walls. As a principle, it is stated that
the trailing-edge noise sources of an isolated vane can be reproduced by introducing an equivalent lift dipole
approached very close to the trailing edge from downstream and diffracted by the edge. This intuition is a
key step of the approach; its validity is confirmed in section A. It is guided by the fact that trailing-edge
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noise physics develops in the very vicinity of the trailing edge and radiates waves of opposite phases on
both sides of the plate. The equivalent excitation of the trailing-edge interface of the stator in terms of
acoustic plane-wave modes is next derived in section B. The response of the stator as a waveguide system
is addressed for isolated incident modes and for the complete field of the trailing-edge dipole in section III,
where fundamental scattering properties are discussed. Finally the application of the methodology to predict
broadband trailing-edge noise is introduced in section IV.

II. Edge-Dipole Formulation

A. Tuning of the Equivalent Dipole

The mode-matching procedure is based on the idea that the trailing-edge noise sources of an isolated
vane can be described with an equivalent point dipole approached at a very close distance to the edge from
downstream. A key point of the model for future use is to determine the strength of this dipole. This
is achieved by comparing the exact field the dipole would generate close to the edge of a rigid half-plane
to Amiet’s solution currently used to model trailing-edge noise of isolated thin airfoils. More precisely the
comparison is made on the wall-pressure distribution that is the trace of the sound field, rather than on the
sound field itself.

The field of the dipole in the presence of the half-plane is derived from the exact two-dimensional half-
plane Green’s function in the presence of flow, introduced by Jones12 and re-addressed by Rienstra.15 Only
the transverse component of the first gradient of the Green’s function with respect to source coordinates
is needed because the dipole of interest is oriented normal to the flow direction. If no additional Kutta
condition is imposed at the edge the Green’s function reads, for a flow of Mach number M0 in the positive
x direction

GM (x, y, k) =
1

β
e−i KM (X−X0) G(1/2)(X, y,K)

with

G(1/2)(X, y,K) =

∫ s1

−∞
ei K r̄1

√
1+u2 du√

1 + u2
+

∫ s2

−∞
ei K r̄2

√
1+u2 du√

1 + u2
. (1)

In this expression r̄21,2 = r̄2 + r̄20 − 2 r̄r̄0 cos(θ̄∓ θ̄0), r̄ =
√

X2 + y2 being the corrected observer distance to

the edge involving the stretched coordinate X = x/β, with β =
√

1−M2
0 , and K = k/β. The angles θ̄ and

θ̄0 are defined as the corrected angles from the wake direction x > 0, and

s1 =
2
√
r̄0 r̄

r̄1
cos

θ̄ − θ̄0
2

s2 = − 2
√
r̄0 r̄

r̄2
cos

θ̄ + θ̄0
2

Though it admits a simplified expression for a point source approaching the edge in such a way that k r̄0
takes arbitrary small values, the exact implementation has been used here. The field of the dipole is known
to exhibit the typical cardioid pattern in this case, with phase opposition on both sides of the half-plane,
zero sound in the wake and maximum sound upstream.17 This feature is imposed by the asymptotics of the
Green’s function itself and would hold for various positions of the source, though the equivalent dipole is
chosen here at zero θ0 angle. Only the trace of the pressure field at the wall is needed in the present study. It
is plotted as the thick red dashed line in Fig. 2. It is worth noting that Jones12 and Rienstra15 also consider
an optional Kutta condition in the form of the additional term

GK(x, y, k) =
AK

2

eiπ/4√
π

e−iK r̄

[

F

(√
2Kr̄ sin

θ̄ − θ̄1
2

)

+ F

(√
2Kr̄ sin

θ̄ + θ̄1
2

)]

− AK

2
2 e−iKX/M0 cosh

(

β K

M0
y

)

H(−y) (2)

where the factor AK is given by Jones as

AK

2
= sign(y0)

√

2 π

K r̄0

√

1− X0

r̄0

√

M0

1 +M0
e−iK r̄0 −iπ/4
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and where θ̄1 is an imaginary angle such that cos θ̄1 = 1/M0. H is the Heaviside function and F is the
complex function of complex argument defined by

F(z) = ei z
2

∫ ∞

z

e−i t2 dt =

√
π

2
e−iπ/4 ei z

2

erfc
(

eiπ/4 z
)

This term is known to cause amplification of the radiated field for small values of k r̄0 and significant values
of the Mach number.17 The complete result including it is plotted for completeness as the thin red dashed
line in Fig. 2, where a phase shift is also noticed.

Amiet’s formulation of trailing-edge noise in the frequency domain2, 16 provides directly an expression for
the radiating wall-pressure produced by the primary scattering of boundary-layer vorticity into sound at the
edge. This pressure field must be distinguished from the incident hydrodynamic pressure associated with
the convected turbulence in the boundary layers. The latter is the origin of the former but does not enter
the problem statement explicitly. Assuming an infinite chord, that pressure is distributed according to the
expression

P1(x) = A eiαK1X [(1− i) E (− [αK1 + (1 +M0)µ] X)− 1] (3)

if the same convention e−iω t is chosen everywhere for monochromatic waves. Equation (3) refers to the
two-dimensional response for a single gust or Fourier component of the incident hydrodynamic pressure, of
amplitude A. α, estimated here around 1.25, is the flow-speed to convection-speed ratio, K1 = ω/(βU0) is
the aerodynamic wavenumber and µ = K1M0/β. E is the Fresnel integral defined as

E(ξ) =

∫ ξ

0

ei t√
2 π t

dt

A is used together with a phase-quadrature factor eiπ/4 as a tuning parameter to make the expression of
Eq. (3) coincide at best with the field produced by Eq. (1) and the tuned Amiet’s solution is plotted as the
blue line in Fig. 2. It is found in a good agreement with the trace of the equivalent point dipole. In a statistical
declination of Amiet’s trailing-edge noise model the gust amplitude A would be related to the hydrodynamic
wall-pressure spectrum taken closely upstream of the trailing-edge and to its spanwise correlation length.16

Another tuning could produce a similar fit with the solution including the Kutta correction. The figure
confirms that a point dipole can be used to describe the sources of trailing-edge noise with a reasonable
accuracy.
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Figure 2: Real and Imaginary parts of the radiating wall pressure. Amiet’s
solution (blue), edge scattering of a point dipole with and without Kutta con-
dition (thick and thin dashed red lines, resp.).

5 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

N
ov

em
be

r 
11

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
41

 



B. Expression of the Excitation

The direct sound field radiated from a point lift-dipole is also given by the scalar product of the dipole
strength with the first gradient of the free-space Green’s function with respect to the source coordinates. In
the two-dimensional space of the study, the Green’s function is expressed with the Hankel function. For a
unit dipole strength the field reads

∂G

∂y0
=

i k (y0 − y)

4 β R̄
e−iKM0 X H

(1)′
0

(

K R̄
)

=
iK (y − y0)

4 R̄
e−iKM0 X H

(1)
1

(

K R̄
)

where (x0, y0) and (x, y) stand for source and observer coordinates, respectively. R = [(x−x0)
2 +(y−y0)

2]1/2

is the source to observer distance and R̄ its expression with X instead of x. In the present case the trailing
edge of a reference vane is located at the origin of coordinates. Because the unwrapped representation of the
annular stator at radius rc must be periodic of period V h where V is the number of vanes and h = 2 π rc/V
is the channel width, the same point source must be repeated every V channels. This leads to the periodized
field

p0 =
iK

4
e−iKM0 X

∞
∑

n=−∞

y + nV h

[X2 + (y + nV h)2]
1/2

H
(1)
1

(

K
[

X2 + (y + nV h)2
]1/2

)

(4)

This two-dimensional field can be expanded as an infinite discrete set of oblique plane-wave modes in the
form

p0 = e−iKM0 X
∞
∑

j=−∞
ā±j ei (Kx,jX+Ky,jy) (5)

with

Ky,j =
j 2 π

V h
, Kx,j = ±

[

K2 −
(

j 2 π

V h

)2
]1/2

.

Indeed each plane wave must also be periodic in the y direction with the period V h. The + sign holds for
propagation in the downstream direction (x > 0), the − sign for the upstream direction (x > 0). A true plane
wave is obtained only if Kx,j is real and positive, which corresponds to the cut-on condition K > j 2 π/(V h).
Otherwise the mode is said cut-off and the necessary condition of exponential decay is ensured by putting

Kx,j = ± i

[

(

j 2 π

V h

)2

−K2

]1/2

.

Downstream propagation is considered first. Identifying both expressions of p0 and making use of the
orthogonality integrals of exponential modes leads to the expression of ā+j as

a+j =
iK

4V h
e− i [K2−(j 2π/(V h))2]

1/2
X

×
∞
∑

n=−∞

∫ V h

0

y + nV h

[X2 + (y + nV h)2]
1/2

H
(1)
1

(

K
[

X2 + (y + nV h)2
]1/2

)

e−i j 2 π y/(V h) dy

=
iK

4V h
e− i [K2−(j 2 π/(V h))2]

1/2
X

∫ ∞

−∞

tH
(1)
1

(

K
√
X2 + t2

)

√
X2 + t2

e−i j 2 π t/(V h) dt

The antisymmetric part of the integrand can be ignored since it integrates to zero. Integrating by parts
then leads, after a further change of variable, to the simplified form

ā+j =
j π X

(V h)2
e− i [K2−(j 2π/(V h))2]1/2X

∫ ∞

0

H
(1)
0

(

KX
√

1 + u2
)

cos

(

j
2 πX

V h
u

)

du

The integral is readily calculated by using the connection between H
(1)
0 and the modified Bessel function K0

such that1

K0(−i ξ) =
iπ

2
H

(1)
0 (ξ)
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and the result10
∫ ∞

0

K0

(

α
√

ξ2 + β2
)

cos γξ dξ =
π

2
√

α2 + γ2
e−β

√
α2+γ2

(6)

valid for complex numbers α and β of positive real parts and for any real number γ. Finally the coefficient
is found as

ā+j =
j π

(V h)2

[

K2 −
(

j 2 π

V h

)2
]−1/2

. (7)

As expected the expression does not depend on the coordinate x, which is ensured by a proper choice of
the square root in Eq.(6). For the coefficient a−j the developments are the same except that x is negative
and that now the − sign is taken for Kxj. Since X can be replaced by |X | in the integrals the same
expression is found in the end, so that ā−j = ā+j = āj . This is also expected from the upstream/downstream
symmetry of the sources in the absence of flow. Equation (7) for the upstream-propagating waves allows
defining a relevant excitation of the trailing-edge interface of a stator. Because they are plane waves, the
classical matching procedure for two-dimensional bifurcated waveguides13 applies, whatever the cut-on or
cut-off conditions might be.
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Figure 3: (a): simulated instantaneous sound pressure produced by a series of
point dipoles; (b): pressure profiles predicted with the sum of Hankel functions
(plain) and with the sum of plane waves (dashed). Helmholtz number kV h =
17.4, U0 = 100 m/s.

Instantaneous pressure fields as calculated from Eq. (4) with the infinite sum of Hankel functions and
from the sum of plane-wave modes with the coefficients of Eq. (7) are compared in Fig. 3. The pressure
pattern, identical for both, is illustrated in Fig. 3-a, where the dipoles corresponding to a single trailing-edge
source are indicated by the white circles. The flow is from left to right and the flat plates mimicking the
vanes are not shown since the figure only deals with the direct field of the dipoles. The periodicity V h is that
of the unwrapped circular cut of the stator. Away from the near-field region surrounding the line of dipoles
and not paying attention to the interference fringes, the sound field is of overall uniform amplitude in both
directions. In contrast higher pressure fluctuations are seen in the vicinity of the sources. This is expected
since the field is made of cut-off modes discernable close to the sources and cut-on modes which propagate
without attenuation. A typical pressure profile along the line y = 0.08 is plotted in Fig. 3-b, where the
continuous line stands for the sum of Hankel functions and the dashed line for the sum of plane-wave modes.
The agreement confirms that the plane-wave expansion is relevant and can be used for the mode-matching
technique. Moreover a large number of Hankel terms is needed to converge in Eq. (4) (300 in the present
example) whereas a much smaller number of plane-wave modes is sufficient to reach the same convergence
(with few differences between 10 and 30 terms). Yet residual discrepancies attributed to sum truncations,
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not prejudicial for the present application, are seen in the figure. The limited number of required plane
waves is in favor of the present model.

III. Plane-Wave Scattering at Trailing Edge

A. Mode-Matching Procedure

Once the trailing-edge dipole is defined and the expansion in plane-wave modes performed, the scattering of
each upstream-propagating plane wave by the trailing-edge interface of the stator is calculated using a mode-
matching procedure. The theoretical background is inherited from fundamental techniques in bifurcated
waveguide systems.13 It has been simply extended to account for the presence of flow and applied by
Ingenito & Roger11 to address sound transmission problems at the axial inlet of a simplified centrifugal
compressor. A generalization including hydrodynamic disturbances as incident waves and a Kutta condition
at the trailing edges of a cascade of flat plates is also fully presented in a companion paper by Bouley et al3

dealing with wake-interaction noise in axial-flow rotor-stator stages. The principle is described as follows for
the primary scattering by the trailing-edge interface, first ignoring the Kutta condition, later introduced in
sectionC. The incident oblique wave of index j forces transmitted cosine modes in the channels, of amplitudes
Aj

m and shape functions cos(mπy/h), that propagate upstream, with a phase shift between adjacent channels
imposed by the angle of incidence. A series of reflected, downstream-propagating waves of coefficients Bj

s and

transverse phases eiα
j
sy with αj

s = (j + sV ) 2π/(V h) are also generated because the transverse periodicity of
the incident wave is modulated by the periodicity of the cascade. All waves are matched at the interface by
imposing continuity conditions. An infinite linear system of equations is obtained, solved by matrix inversion
after being reduced by modal projection, or by any alternative method.

Though more general conditions could be required in the case of a mean-flow mismatch between both
sides of the interface,18 the continuity of fluctuating pressure and axial velocity is relevant in the present
case of uniform axial flow. The acoustic potential φ is used as the primary variable from which the pressure
and velocity are deduced as (for the convention e−iω t)

p = i ρ0 ω φ− ρ0 U0
∂φ

∂x
, vx =

∂φ

∂x
.

Any incident plane wave from downstream as defined in sectionB has the potential

φi = aj e
i j 2π y/(V h) e−i (K(j)+M0K)X

with

āj = i aj
ρ0c0
β

(

K +M0K
(j)
)

K(j) =

√

K2 −
(

j 2π

V h

)2

The transmitted potentials in the inter-vane channels are expressed as sums of cosine modes. Now
adjacent inter-vane channels have phase-shifted responses driven by the obliqueness of the incident wave, in
such a way that the coefficients in the channel of index ν are those of the reference channel (ν = 0) multiplied
by eiν u with u = j 2π/V . As a result the transmission problem only needs being solved for the reference
channel. In the latter the transmitted potential reads

φt =

∞
∑

m=0

Aj
m cos

(mπy

h

)

e−i (Km +M0K)X with Km =

√

K2 −
(mπ

h

)2

Finally the reflected field is a sum of oblique plane waves written as

φr =

∞
∑

s=−∞
Bj

s e
iαj

s y ei (K̄
j
s −M0K)X with K̄j

s =

√

K2 − αj2
s ; αj

s = (j + sV )
2π

V h

If the trailing-edge interface is placed at x = 0 in a first step the matching equations read

∞
∑

m=0

Aj
m cos

(mπy

h

)

= aj e
i j 2π y/(V h) +

∞
∑

s=−∞
Bj

s e
iαj

s y (8)
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∞
∑

m=0

(Km +M0K)Aj
m cos

(mπy

h

)

= aj (K
(j) +M0K) ei j 2π y/(V h) −

∞
∑

s=−∞
Bj

s (K̄
j
s −M0K) eiα

j
s y (9)

These equations are first reduced by projection on the modes of the inter-vane channels, considering only
the reference channel 0 ≤ y ≤ h and the integrals

Ijm =

∫ h

0

ei j 2π y/(V h) cos
(mπy

h

)

dy Js,j
m =

∫ h

0

eiα
j
s y cos

(mπy

h

)

dy ,

keeping in mind that j cannot be zero in the present case. The following expressions are found for Ijm:

Ijm = i
j 2π

V h

[

1− (−1)m ei 2π j/V
]

(

2π j

V h

)2

−
(mπ

h

)2
if m 6= ± 2j

V

Ijm =
h

2
if m = ± 2j

V

and similar ones are obtained for Js,j
m when replacing j 2π/(V h) by αj

s, with the value hδ0,m if j + sV = 0.
Equations (8) and (9) lead to

Aj
m

h

2
(1 + δ0,m) = aj I

j
m +

∞
∑

s=−∞
Bj

s J
s,j
m (10)

(Km +M0K)Aj
m

h

2
(1 + δ0,m) = aj (K

(j) +M0K) Ijm −
∞
∑

s=−∞
Bj

s (K̄
j
s −M0K)Js,j

m (11)

Now the trailing-edge interface is also the source of the excitation in the present problem. Therefore,
after the matching equations (10) and (11) are solved, the total field downstream of the interface must be
cleaned of the incident plane wave and added to the complementary downstream-travelling component of
the expansion illustrated in Fig. 3. The complete cascade trailing-edge scattering is obtained by summing
the contributions of all oblique waves defined in section B.

B. Response of a Finite-Chord Stator

Section A only addresses the initial response of the stator trailing edges. The primary upstream-travelling
waves forced in the inter-vane channels by the trailing-edge dipoles are next scattered at the leading-edge
interface of the stator. This is accounted for by formulating there another mode-matching problem with the
same continuity conditions. Part of the sound is radiated upstream and part is reflected back in the channels.
That part experiences another trailing-edge scattering, which produces transmitted waves downstream and
reflected waves in the channels, and so on. Finally four sets of waves are produced, namely open-space waves
upstream and downstream of the stator and internal waves in both directions in the channels. Of course
the phase-shift between adjacent channels imposed by the excitation is preserved in the full sound field so
that again only a single reference channel needs being considered. This multiple scattering must be properly
reproduced to accurately predict the cascade response and the possibly associated resonances.

The matching procedure is summarized as follows (see details in Bouley et al3). The trailing-edge interface
is now located at x = c where c is the chord length of the vanes and the leading-edge interface is located
at x = 0. The four sets of waves are described by their acoustic potentials : the exhaust/reflected and
inlet/transmitted potentials in the unbounded domains, referred to as φr and φt, and those in the inter-vane
channels referred to as φu and φd for upstream and downstream propagation directions, respectively. The
potential φr is written as

φr =

+∞
∑

s=−∞
Rs e

iαsy eiK̄
+
s (X−c/β) , X ≥ c/β (12)
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and the potential φt as

φt =

+∞
∑

s=−∞
Ts e

iαsy eiK̄
−

s X , X ≤ 0, (13)

with K̄±
s = −MK ± K̄j

s .
The potentials φu and φd in the reference inter-vane channel are expressed as

φu =

+∞
∑

m=0

U0
m cos

[mπ

h
y
]

eiK
−

m(X−c/β) , φd =

+∞
∑

m=0

D0
m cos

[mπ

h
y
]

eiK
+
mX , (14)

0 ≤ X ≤ c/β, K±
m = −MK ±Km .

For convenience, a vector Γq is introduced, having the pressure and axial velocity as components, q =
i, r, t, d, u denoting the incident (i), reflected (r), transmitted (t), downstream channel (d) and upstream
channel (u) acoustic waves, respectively:

Γq(x, y) =

(

p(x, y)

vx(x, y)

)

. (15)

The continuity of pressure and axial velocity is imposed at the leading-edge interface (x = 0) and the
trailing-edge interface (x = c). The matching equations result as

Γi(c, y) + Γr(c, y) = Γd(c, y) + Γu(c, y), ∀y (16)

Γd(0, y) + Γu(0, y) = Γt(0, y), ∀y (17)

The system involves four unknown generic variables (R, D0, U0, T) and four matching equations. It
could be solved at once, leading to a large matrix equation, but a sequential method is preferred for the
sake of physical understanding. Two distinct matching problems are thus considered for both interfaces and
solved iteratively. In the first step of the iterative procedure the first equation is solved with Γd = 0 and
Γu and Γr are calculated. In a second step the second equation is solved using Γu as excitation and now Γt

and Γd are calculated. The first equation is solved again with all terms and so on. At every step a single
interface is considered and only two vectors of coefficients (R, U0) or (D0, T) have to be determined, which
makes the solving easier by matrix inversion. Furthermore the relative contributions of successive scattering
orders can be more easily identified if needed. The iterative process is continued until all coefficients are
converged.

C. Implementation of the Kutta Condition

In the presence of a mean flow, the fluctuating motion has to comply with the Kutta condition that imposes
zero pressure jump at the trailing edges of the vanes. This condition significantly redefines the strengths of
the scattered waves produced by the mode-matching technique, especially as the mean-flow Mach number
increases, as pointed out by Bouley et al.3 The same implementation as in the latter is carried out in
the present study, bearing in mind that only the matching equations at the trailing-edge interface must be
modified. In the mode-matching procedure the zero presure jump between both sides of a vane in the very
near wake and farther downstream is automatically ensured by the continuity of the modal expansion in
the unbounded domain. But a new constraint arises when it has to be specified also inside the inter-vane
channels just upstream of the trailing edges, leading to an additional equation involving the vectors of modal
amplitudes in the reference channel, written as

∞
∑

m=0

(K −K−
mM) [1− (−1)me−iu]U0

m = −
∞
∑

m=0

eiK
+
mc/β [1− (−1)me−iu)(K −K+

mM ]D0
m (18)

Without any further modification this would end up with an over-determined linear system. But the Kutta
condition results in the continuous shedding of vorticity in the wake. This is accounted for by distributing

10 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

N
ov

em
be

r 
11

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
41

 



lines of concentrated vorticity in the continuation of the vanes. The strength of the vorticity vector in the
direction normal to the unwrapped plane is expressed in the sense of generalized functions and reads

ΩK(x, y) = Ω0e
iKX/M0

+∞
∑

ν=−∞
ei ν u δ(y − νh) , X ≥ c/β (19)

where Ω0 is a magnitude factor introduced as a new unknown. This vortical field is also expanded as a series
of oblique gusts, in the form

ΩK(x, y) =
Ω0

h

+∞
∑

q=−∞
bq e

iKX/M0eiαqy , X ≥ c/β (20)

The associated velocity field v
h
K is obtained from the definition of the vorticity ΩK = ∇× v

h
K and from

its incompressibility (∇ · vh
K = 0). The expression of the axial velocity is given as:

vhx,K(x, y) =
+∞
∑

q=−∞

iΩ0αq

h
(

α2
q + (K/M0)2

) eiKX/M0 eiαqy . (21)

This hydrodynamic contribution is included in the matching equation for the axial velocity at the trailing-
edge interface as an additional term in the Γ vector of Eq. (15). Because the hydrodynamic field is pressure-
free, the matching equation for the pressure remains unchanged when the Kutta condition is imposed.

D. Scattering of Elementary Waves

Prior to full computations of edge-dipole scattering, inspecting the response of the cascade to elementary
incident plane-wave modes from downstream allows highlighting fundamental properties of the cascade. This
is achieved in this section for the unwrapped model stator shown in Fig.1, with a number of flat-plate vanes
V =23 and an axial-flow Mach number of 0.15. The reference radius is rc=0.08m. The selected frequency is 9
kHz, corresponding to Helmholtz numbers based on the channel height and on the vane chord of 3.6 and 7.5,
respectively. At this frequency the channel modes of orders m = 0 and m = 1 are cut-on but higher-order
modes are cut-off. This set of parameters typically corresponds to the small-size fans used in air-conditioning
systems for aircraft. The results for the incident plane-wave modes j = 9 and j = 11 are investigated first
and reported in Figs. 4 and 5. The left-side part of each figure shows an instantaneous pressure pattern
and the right-side part displays the amplitudes of all modal coefficients as bar-graphs. Conventionally the
incident mode has an upward phase speed.

The mode j = 9 (Fig. 4) is scattered into the modes n = 9 ± 23s both in the reflection and in the
transmission, so that the lowest generated order except n = 9 is n = −14, noting that this mode is the
first cut-off one in the present conditions. Therefore the upstream-transmitted wave is made of the mode
9 (or s = 0) only. The field (Fig. 4-a) is typical of the vicinity of the transition between a low-frequency
regime for which only one mode is cut-on and a high-frequency regime for which two modes at least are
cut-on away from the cascade. The reflection is quite strong and the field in the upstream vicinity of the
cascade clearly exhibits an evanescent part. A secondary pattern with 5 periods is also visible around the
cascade. The example of the mode j = 11 (Fig. 5) is featuring a clear transfer from the incident mode into
another dominant mode in the upstream transmission, with inversion of the phase-speed direction. Indeed
the scattered modes n = 11 and n = −12 are both cut-on but the latter (s = 1) is of much larger amplitude
than the former (s = 0) in the upstream domain, as indicated by the diagram in Fig. 5-b. Reminding
that the cascade is an unwrapped representation of a stator, this means that the dominant component of
the transmitted wave is spinning in the opposite direction with respect to the incident wave. Still different
behaviors could be described for other modes, not detailed here.

Because the excitation of the trailing-edge interface is produced by dipoles at vanishing distance from
the edges in the present model, even the evanescent components of the oblique-wave expansion of section B
contribute to the radiated field, as a result of modal scattering. But the same analysis as above in terms of
isolated incident plane-wave modes for evanescent waves would be misleading because they would increase
exponentially away from the cascade downstream. Such excitation modes need being analyzed by combining
the opposite of the −j component with the j component. Furthermore the downstream part of the excitation
must be removed and replaced by the complementary downstream-emitted decaying wave. Such a test is
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Figure 4: Scattering of the incident plane-wave mode j = 9. (a): instantaneous
sound pressure pattern. (b): modal coefficients, red for cut-off and blue for cut-
on. M0 = 0.15, V = 23, 9 kHz.

shown in Fig. 6 for the doublet of modes (j = −17, j = +17), again at the frequency of 9 kHz. Looking
for the periodicity 17, the plot does not exhibit any radiating pattern but only a trace localized in the very
vicinity of the vanes. Yet the scattering produces all modes of orders n = ±17 − 23s and in particular the
modes n = +6 and -6 (s = −1) that are cut-on at this frequency. This is why the latter contribute to the
radiated field both upstream and downstream. For this reason a substantial number of cut-off modes must
be included in the plane-wave expansion of the series of edge dipoles according to Eq.(5).

IV. Stator Broadband Noise Formulation

A. Scattered Field of an Edge Dipole

The complete response of the cascade for an edge-dipole at a single vane is determined by summing all
plane-wave mode contributions according to Eq. (7). An a priori questionable point is that the coefficients
āj of the pressure waves do not tend to zero for arbitrarily increasing values of j. This is not prejudicial
when synthesizing the direct pressure field in Fig. 3 since large values of j correspond to evanescent waves
with increasing damping rates. But incident modes of large orders contribute when calculating the response
of the stator because of the modal scattering. This is why a small but finite distance ε of the edge dipole
to the trailing edge has been introduced and tested, the effect of which is to multiply the expression of āj
by the factor eiKM0 ε ei j π ε/[āj (V h)2]. The small parameter ε must be such that k ε ≪ 1 to ensure a proper
tuning of the edge dipole by invoking the asymptotic behavior of the half-plane Green’s function. Indeed
the latter produces a strong amplification with the factor (k ε)−1/2.17 In contrast the coefficients aj of the
potential waves involved in the calculation of the acoustic powers do vanish for large values of j. It has been
found that the results are not sensitive to the value of ε as long as it remains small (much less than one
percent of chord in the present case), proving the robustness of the proposed approach.

A typical result combining all modes of orders j between -20 and 20 is plotted in Fig. 7-a in terms of
instantaneous pressure, again for the same frequency of 9 kHz. The trailing-edge dipole is located on the
center vane in order to emphasize the scattering by neighboring vanes. The two directly excited channels as
well as the next two adjacent ones respond dominantly, whereas the pressure field is of much lower amplitude
in more distant channels. As a result the upstream field exhibits two main oblique lobes that are fed by the
four most excited channels, with secondary interference fringes. The obliqueness corresponds to spinning
patterns in the annular space. The field downstream is substantially different because the dominant direction

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

N
ov

em
be

r 
11

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
41

 



−10 0 10
0

0.5

1

1.5

 s

|R
|

−10 0 10
0

0.5

1

1.5

s

 |
T

|

0 5 10 15
0

0.5

1

1.5

m

|U
0
|

0 5 10 15
0

0.5

1

1.5

m

 |
D

0
|

(a) (b)

Figure 5: Scattering of the incident plane-wave mode j = 11. (a): instanta-
neous sound pressure pattern. (b): modal coefficients, red for cut-off and blue
for cut-on. M0 = 0.15, V = 23, 9 kHz.

of radiation of the edge-dipole is tangent to the trailing-edge interface.

B. Predicted Power Spectra

The same two-dimensional approach is now applied to demonstrate the feasibility of trailing-edge broad-
band noise predictions using the mode-matching technique, provided that the strength of the edge dipole is
determined. For this some similarity is accepted with Amiet’s model of isolated-airfoil trailing-edge noise,
according to which the far-field sound is related to the statistical properties of the hydrodynamic wall-
pressure field closely upstream of the trailing edge. More precisely the sound intensity is found proportional
to the product LΦpp(ω) ℓy(ω) where L is the spanwise extent, Φpp(ω) is the hydrodynamic wall-pressure
spectrum and ℓy(ω) the associated spanwise correlation length.16 The same is assumed here for the in-duct
power at any frequency. Furthermore trailing-edge noise is not vane-to-vane correlated, so that the total
acoustic power is the power from one vane multiplied by the number of vanes. Both Φpp and ℓy are required
as input data. When they are unknown, empirical expressions proposed by many authors can be used, in
terms of either outer or inner boundary-layer variables, accounting or not for the adverse pressure gradients
characteristic of loaded airfoils (for a review see Rozenberg et al19). The present description cannot pro-
duce true quantitative results, precisely because the three-dimensionality is not addressed. Therefore only
relative decibel levels are targeted, with emphasis on the intrinsic efficiency with which the cascade radiates
upstream and downstream as a function of frequency. A corrected form of the expression proposed by Gliebe
et al7 for Φpp(ω) and an empirical fit tuned on data reported by Guédel et al9 for ℓy(ω) are retained here for
simplicity, essentially because they only require an estimate of the displacement thickness δ1 as a minimum
information. The corresponding formulae read

Ψpp(ω) =
Φpp(ω)

ρ20 δ1 U
3
0

=
10−4

(1 + 0.3 ω̄2)
5/2

,
ℓy(ω)

δ1
= e−2 ω̄ +

a
√√

2 π σ ω̄
e−(ln ω̄−ln 0.44)2/(4σ2)

introducing the dimensionless frequency ω̄ = ωδ1/U0, with σ = 0.55, a = 1.5.
It must be kept in mind that only the cut-on modes contribute to the power transmitted through the

duct but that such modes can be generated by cut-off modes of the expansion in section B. The cut-off
frequency of the first oblique wave in the unwrapped perimeter 2π rc is 676 Hz for the mean radius of
80 mm in the present test case. Therefore no trailing-edge noise can be predicted below this frequency
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Figure 6: Scattering of the combined incident modes j = 17 and j = −17
with source at the trailing-edge interface. (a): instantaneous sound pressure
pattern. (b): modal coefficients for j = 17, red for cut-off and blue for cut-on.
M0 = 0.15, V = 23, 9 kHz.

because the edge dipole is oriented normal to the duct axis and cannot excite the axial plane-wave known
to be always cut-on (the absence of any contribution from this wave can be recognized in Fig. 7-a). This
limitation is inherent to the zero-stagger simplification. For staggered outlet guide vanes modeled by inclined
flat plates the edge dipole would be inclined accordingly and would also excite the axial plane-wave mode.
The limitation is not a serious issue because trailing-edge noise sources are weak at low frequencies, for
which other sources would dominate in a real turbomachinery stage. Furthermore the excitation of the axial
plane wave is more expected upstream than downstream where the vanes are actually aligned with the axis.
Accounting for different stagger angles at the trailing edge and at the leading edge is a possible extension
of the iterative mode-matching procedure. The extension would couple the model of sound propagation
through bent ducts of slowly varying cross-section developed by Brambley & Peake4 and Whitehead’s theory
of staggered waveguides.20 In the present preliminary investigation the axial plane-wave mode is considered
to negligibly contribute in the middle-and-high frequency range of major interest.

The classical definition of the acoustic intensity in a uniform base flow8 is used to compute the acoustic
power. For a potential of generic expression

φ =

∞
∑

j=1

Cj e
i j 2π y/(V h) e−i (±K(j)+M0K)X

away from the cascade the expression of the intensity reads

I = ∓ k β2 ρ0 c0

∞
∑

j=1

|Cj |2 K(j)

where the + and the − signs correspond to downstream and upstream propagation, respectively. Predicted
power spectra in a relative decibel scale, again for the same cascade configuration, are shown in Fig. 7-b.
The plotted quantity is the power per unit span, radiated either downstream or upstream. The wall-pressure
statistics is only used here to reproduce a realistic frequency distribution over the range 1 kHz-20 kHz, even
though considering a spanwise correlation length within the scope of a two-dimensional theory is questionable.
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Figure 7: (a): instantaneous sound pressure pattern for the diffraction of a
single edge-dipole at the center vane (ε = 0). Flow from left to right, M0 = 0.15,
V = 23, 9 kHz. (b): downstream and upstream power spectra (per unit span
and per vane). All plane-wave modes up to |j| = 100. Cut-off frequencies of
the first two channel modes indicated as dashed lines.

The chord length is 45 mm and the displacement thickness at the trailling-edge is arbitrarily taken as 0.8 mm.
The axial flow speed is of 50 m/s. The radiated power first increases with frequency and then decreases,
as a result of the combined increasing acoustic efficiency and high-frequency energy drop in the involved
hydrodynamic excitation. The cut-off frequencies of the first two transverse modes in the inter-vane channels
of height 22 mm are 7730 Hz and 15460 Hz; they are indicated in the figure as vertical dashed lines. As
expected from the analytical expression of the coefficients aj peak responses are found at cut-off frequencies
of the plane-wave modes away from the cascade. The peaks are especially marked downstream. Apart from
these resonances the overall power level is predicted higher upstream than downstream by about 3 dB. This
trend is compatible with the asymptotic cardioid radiation pattern of the trailing edge of isolated airfoils at
high frequencies. Yet it could be questioned by cascade scattering. Furthermore considering staggered vanes
would possibly redistribute the energy differently in the upstream and downstream directions because of the
inclination of both the edge dipoles and the vanes. Indeed different trends are reported in the literature,
based on experimental studies. As an example Woodward’s work21 in the case of a rotor with significantly
staggered blades is cited here, bearing in mind that the experimental results were available for the rotor
self-noise. If the latter is assumed to be essentially trailing-edge noise the same power was found to radiate
upstream and downstream, at least in the low and moderate speed range of interest in view of the present
investigation, whereas the opposite trend was observed at high speeds: much more sound was radiated
downstream. Furthermore stator noise radiating upstream is partially reflected back downstream by the
rotor blades, which is ignored in the present model but is inherent to all experimental results. Finally the
present results are consistent.

Obviously the methodology is only relevant for large numbers of outlet guide vanes and large hub-to-tip
ratios. Otherwise an approach currently used consists in splitting the annular cascade into a series of strips
and unwrapping each strip to describe it as a two-dimensional cascade. Even if the radial extent of each
annulus is defined in such a way that adjacent annuli are not correlated such an approach neglects the
scattering of sources located at a radius by the walls at other radii. This is why the present formulation
is only considered as a preliminary step. The mode-matching procedure can be easily extended to a true
annular cascade in cylindrical coordinates, precisely taking benefit from the fact that the spanwise correlation
length of the sources is generally much smaller than the duct height. Edge dipoles can still be defined and
distributed along the trailing edges with their direct field expanded as a series of duct modes. The scattering
of each mode by the full annular cascade can be determined exactly as long as the inter-vane channels can

15 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

N
ov

em
be

r 
11

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

25
41

 



be considered as three-dimensional bifurcated waveguides. Such an extension is presently in progress. It will
have the advantages of running without any expansion in strips and of avoiding the artificial parallelism of
adjacent vane walls in the azimuthal direction.

V. Concluding Remarks

The new formulation proposed in the paper provides a simple way of solving the trailing-edge noise
problem for a row of outlet guide vanes in an axial-flow fan architecture. The vanes are assimilated to
a rectilinear cascade of zero-stagger plates in an unwrapped two-dimensional representation ensuring the
periodicity of the stator. The first key step is the definition of a so-called edge dipole that is shown to be
equivalent to the trailing-edge noise sources of a single vane at a given frequency. This dipole is approached
at a vanishing distance to the edge from downstream. Its direct field is expanded into a series of plane-wave
modes. In a second step the diffraction of each mode by the cascade is calculated considering the cascade
as a periodic array of bifurcated waveguides and using a mode-matching technique. For this the mean flow
is assumed uniform and a full Kutta condition is applied at the trailing edges. The total field of the dipole
is obtained by summing all diffracted fields of the aforementioned plane-wave modes. It is also expressed
as a series of modes, amongst which only the cut-on modes carry energy away from the cascade. The total
acoustic power emitted by the stator is simply the power from one vane multiplied by the number of vanes.
The finite chord length of the stator is a parameter of the model and the formulation holds for arbitrary
subsonic Mach number and frequency.

Preliminary tests taking empirical wall-pressure statistics as input data have been made in a configuration
of small-scale and low-speed axial fan. The results show that upstream radiation is typically 3 dB higher
than downstream radiation. The practical tuning of the edge dipole is made by comparing the wall-pressure
distributions produced by Amiet’s model and by the half-plane Green’s function for a lift dipole close to the
edge. This means that the actual distance of the dipole to the edge is an important parameter entering the
model. Moreover this distance is not uniquely defined: the smaller it is the smaller is the amplitude of the
edge dipole. It has been verified that the sound power predictions do not significantly change if the edge
dipoles are located at some finite distance ε instead of exactly at the trailing-edge interface, as long as the
Helmholtz number kε remains much smaller than 1. This ensures the robustness of the model. Moreover
the present estimates neglect the stagger angle of the vanes at the leading edge. Including this parameter in
the analysis is identified as a first necessary extension.

The main advantages of the mode-matching technique are its formal simplicity and exactness in the
considered geometry. It has large possibilities of extension that motivated the present effort. The two-
dimensional extension to the case of staggered flat-plates is straightforward as long as adjacent vanes sig-
nificantly overlap. The method can also be generalized in a three-dimensional context to address annular
cascades of vanes in cylindrical coordinates without any need to resort to a strip theory, at least for unswept
and untwisted vanes, which is a reasonable simplification in many designs. The extensions are currently in
progress.

It is worth noting that channel modes or duct modes can also be defined for absorbing walls by replacing
the underlying rigid-wall boundary condition by an impedance condition; this makes the mode-matching
technique even more attractive.
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