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Compressible Large Eddy-Simulations (LES) combining high-order methods with a wall
model have been developed in order to compute wall-bounded flows at high Reynolds
numbers. The high-order methods consist of low-dissipation and low-dispersion implicit
finite-volume schemes. In a first part, the procedure used to apply these schemes in near-
wall regions is presented. This procedure is based on a ghost cell reconstruction. Its
validity is assessed by performing the LES of a bi-periodic turbulent channel flow at a
Mach number of M = 0.2 and a friction Reynolds number of Reτ = 395. In a second
part, to consider flows at higher Reynolds numbers, a LES approach using a wall model is
proposed. The coupling between the wall model and the high-order schemes is described.
The performance of the approach is evaluated by simulating a bi-periodic turbulent channel
flow at M = 0.2 and Reτ = 2000, and an isothermal subsonic round jet at M = 0.6 and
ReD = 5.7 × 105. The results are in agreement with Direct Numerical Simulation (DNS)
data and experimental results. In particular, the turbulent intensities obtained in the
logarithmic region of the boundary layers of the channel flow and the jet far-field noise are
successfully predicted.

I. Introduction

In computational aeroacoustics, the direct calculation of the acoustic field from the governing equations
requires accurate numerical methods to capture noise sources in turbulent flows and to propagate sound
waves. Among various approaches available in the literature,1 Large Eddy Simulations (LES) using high-
order, low-dissipation and low-dispersion implicit schemes is an attractive way. In the LES approach, the
large structures of the flows are computed whereas the effects of the smallest turbulent scales are taken into
account by a subgrid-scale model. Using high-order implicit schemes offers the advantage to resolve the flow
over a wide range of length scales using a reduced number of grid points. Currently, LES receives increasing
attention for the study of complex turbulent flows. However, for wall-bounded flows at high Reynolds
numbers, typically higher than 106, LES requires very fine grids to capture the small but dynamically
important turbulent structures developing in the near-wall regions. These constraints on the grid resolution
lead to LES computational costs which increase as a power of the Reynolds number.2 In these conditions,
the simulations are out of reach considering the current numerical resources.
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This severely limits the applications of LES, especially for flows in the presence of walls with realistic
geometries. This is particularly true for turbofan jet flows for which the nozzle geometry plays a fundamental
role. Indeed, the jet flow is strongly influenced by the shear layers developing from the nozzle lips. Recent
studies have also shown that the initial conditions of the jet at the nozzle exit significantly affect the acoustic
results.3,4 In particular, the values of the boundary-layer momentum thickness and the turbulence intensity
at the nozzle exit must correspond to the experimental conditions. Consequently, taking into account the jet
nozzle geometry and ensuring a good resolution of the boundary layers are recommended to obtain reliable
predictions of the noise radiated from the jet.

In order to perform LES of wall-bounded flows at high Reynolds numbers without resolving the boundary
layers, one solution is to use a wall model. Wall modeling aims to reproduce the variations of the mean
flow in the inner part of boundary layers, as illustrated in figure 1 where the inner and the outer regions
of a boundary layer are represented. Keeping in mind that to ensure the resolution of a boundary layer at
Re = 106, around 99% of the grid points are located in the inner region,5 wall modeling drastically reduces
the size of the computational grids. Therefore, LES is performed on coarse grids which do not resolve the
near-wall fluctuations, and approximate boundary conditions are provided by the model close to the walls.

Figure 1. Sketch of the computation of a boundary layer with a wall model.

Wall-Modeled LES (WMLES) and more generally hybrid RANS-LES methods, currently know a great
success among the scientific community.6 Wall modeling for LES appeared in the seventies thanks to
Deardorff’s7(1970) and Schumann’s8(1975) works. Since, wall models have been applied to different flow
configurations and implemented using several numerical approaches. The quality of LES combining wall
models and high-order methods have been examined by many authors. For instance, very promising results
have been obtained using finite difference approaches9 and spectral difference methods.10

In the present study, a wall model is combined with 6th-order finite-volume compact schemes in order
to perform the LES of wall-bounded flows at high Reynolds numbers. In a previous study, the high-order
schemes were validated for an isothermal subsonic jet without studying the flow inside the nozzle.11 In a first
part of the present paper, a procedure is proposed to allow the application of the compact schemes at walls.
This procedure is validated for a turbulent channel flow at low Reynolds number. In a second part, to deal
with flows at higher Reynolds numbers, the analytical compressible wall model developed by Bocquet12 for
LES using finite volume low-order schemes is considered. The combination of this model with the high-order
schemes is presented. Its validity is examined for a turbulent channel flow and for an isothermal subsonic
jet including a nozzle.

II. Wall-Resolved LES (WRLES)

A. WRLES approach

1. Governing equations

In the present work, the full compressible three-dimensional Navier-Stokes equations are solved using the
elsA software,13 which is a Finite-Volume (FV) multi-block structured solver. In Cartesian coordinates,
they can be written as:

∂U
∂t

+
∂Ec
∂x

+
∂Fc
∂y

+
∂Gc

∂z
− ∂Ed

∂x
− ∂Fd

∂y
− ∂Gd

∂z
= 0 (1)
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where U = (ρ, ρu, ρv, ρw, ρe)t is the variable vector, (u, v, w) are the velocity components, ρ is the density,
ρe represents the total energy, Ec, Fc and Gc are the convective fluxes, and Ed, Fd and Gd are the diffusive
fluxes.

The total energy ρe for a perfect gas is defined by:

ρe =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (2)

where γ is the specific heat ratio and p is the static pressure. The convective fluxes are given by:
Ec = (ρu, ρu2 + p, ρuv, ρuw, (ρe+ p)u)t

Fc = (ρv, ρuv, ρv2 + p, ρvw, (ρe+ p)v)t

Gc = (ρw, ρuw, ρvw, ρw2 + p, (ρe+ p)w)t
(3)

and the diffusive fluxes by: 
Ed = (0, τ11, τ12, τ13, τ11u+ τ12v + τ13w + Φ1)t

Fd = (0, τ21, τ22, τ23, τ21u+ τ22v + τ23w + Φ2)t

Gd = (0, τ31, τ32, τ33, τ31u+ τ32v + τ33w + Φ3)t
(4)

where τi,j is the viscous stress tensor, and Φ = (Φ1,Φ2,Φ3)t is the heat flux vector. The viscous stress tensor
τi,j is defined by τi,j = 2µSi,j , where µ is the dynamic molecular viscosity and Si,j is the deformation stress
tensor:

Si,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

)
(5)

The heat flux vector Φ is computed using Fourier’s law, yielding:

Φ = −λ∇T (6)

where ∇T is the temperature gradient, λ = Cpµ/Pr is the thermal conductivity, Cp is the specific heat at
constant pressure, and Pr is the Prandtl number.

2. Numerical methods

In the FV approach, the computational domain is partitioned into non-overlapping control volumes Ωi,j,k,
where i, j, and k are the volume indexes. For clarity reason, the FV method is presented for the linear
convection equation:

∂U
∂t

+∇ · f(U) = 0 (7)

where f is a linear vectorial function of the variable vectorU. The equation (7) is integrated on the elementary
volumes Ωi,j,k, using the divergence theorem:

d

dt

∫
Ωi,j,k

UdV +

∫
∂Ωi,j,k

f(U) · n dS = 0 (8)

where ∂Ωi,j,k represents the faces of Ωi,j,k, and n is the outgoing unitary normal of Ωi,j,k. Supposing that
Ωi,j,k is an hexahedra and using the linearity of f, equation (8) is equivalent to:

d

dt

∫
Ωi,j,k

UdV + f(
∫
∂Ωi,j,k

UdS) · n = 0 (9)

Therefore, the computation of the derivatives of the convective fluxes corresponds to the calculation of the
fluxes from the averaged value of U at the cell interfaces. In order to approximate the interface-averaged
value of U, an interpolation is performed using the primitive variables (u, v, w, p, T ). In the following, the
quantity q is employed to designate a primitive variable. In addition, the averaged value of q at the interface
of the volume Ωi,j,k is defined as:

q̃ =
1

∂Ωi,j,k

∫
∂Ωi,j,k

qdS (10)
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and the averaged value of q in the volume Ωi,j,k as:

q̄ =
1

Ωi,j,k

∫
Ωi,j,k

qdV (11)

In order to obtain a high-order calculation of the convective fluxes derivatives, a high-order interpola-
tion of the values q̃ is performed. Considering the one-dimensional computational domain of figure 2, the
interpolated value of q̃ at the interface i+ 1/2 is obtained by solving the implicit relation:

αi+1/2q̃i−1/2 + q̃i+1/2 + βi+1/2q̃i+3/2 =

2∑
l=−1

alq̄i+l (12)

where αi+1/2, βi+1/2 and al are the interpolation coefficients which are determined using 6th-order Taylor
series. For a simulation using an uniform Cartesian mesh, Fosso et al.14 demonstrated that the formulation
given by equation (12) is equivalent to Lele’s 6th-order implicit compact finite-difference scheme.15 The
effective order of the scheme is between 5 and 6.

Figure 2. Representation of a one-dimensional computational domain.

As the numerical scheme is based on a centered formulation, the stability of the computations is ensured
using the 6th-order compact filter of Visbal & Gaitonde.16 The filter is applied to the primitive variables to
remove grid-to-grid oscillations. It is also used as an implicit subgrid-scale model for LES, relaxing turbulent
energy at high frequencies. The filtering operator applies to cell-averaged values, and allows to the filtered
values denoted q̂ to be estimated from the unfiltered cell-averaged quantities q̄ in the following way:

αf q̂i−1 + q̂i + αf q̂i+1 =

3∑
l=−3

βlq̄i+l (13)

where αf is a constant equal to 0.47, and βl are the filter coefficients.16
The diffusive fluxes in equation (4) are computed using a 2nd-order method.17 In this method, the values

of the velocity and the temperature gradients are evaluated at the cell interfaces to compute the deformation
stress Si,j and the heat flux vector Φ.

Time discretization is performed using a low-storage 6-stage Runge Kutta algorithm of 2nd-order.18
Radiation boundary conditions and Navier-Stokes characteristic boundary conditions are implemented.19 A
full description of the numerical algorithm and its application to a single jet are available in Fosso et al.20

3. Wall treatment for WRLES

The computation of the convective fluxes is performed using high-order schemes, based on a centered seven-
point stencil. Close to the computational boundaries, these schemes cannot be applied. Considering the
one-dimensional domain represented in figure 3, the use of the interpolation relation given by equation (12)
is not possible to compute the flow variables q̃ at the interfaces 1/2 and 3/2. The stencil available is not
large enough.

Therefore, a specific methodology is proposed close to the boundaries. This methodology must not affect
the stability and the accuracy of the implicit schemes. Such near-wall discretizations have been largely studied
for finite-difference schemes.21,22 However, to our knowledge, no formulation is available in FV. Therefore,
a new FV boundary discretization is presented here. A simple way to procede is to directly impose the
boundary condition q̃1/2 at the wall, and to apply a non-centered scheme to compute the interface 3/2:
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Figure 3. One-dimensional computational domain close to a boundary. The computational cells are numbered
1, 2, 3 and 4, and the interfaces 1/2, 3/2 and 5/2. The interface 1/2 represents the boundary interface.

α′3/2q̃1/2 + q̃3/2 + β′3/2q̃5/2 =

4∑
l=1

a′lq̄l (14)

where α′3/2, β
′
3/2 and a′l are the scheme coefficients. Unfortunately, when applied near the walls, this

discretization leads to numerical oscillations. It might be due to the fact that for a wall, various boundary
conditions are imposed to the different flow variables. Indeed, it is not always possible to explicitly impose
a value for q̃1/2 at the wall interface. More precisely, the velocity satisfies a Dirichlet condition at the wall,
leading to a velocity equal to zero. In this case, the value q̃1/2 = 0 can be imposed at the wall. However,
the pressure follows a Neumann condition, yielding a zero wall-normal pressure gradient. The temperature
is characterized by a Neumann condition in the case of an adiabatic wall, whereas a Dirichlet condition is
considered for an isothermal wall. In order to obtain a value of q̃1/2 from a Neumann condition dq/dn, an
additional discretization scheme is needed, which can deteriorate the stability of the scheme in equation
(12). To bypass this issue, the wall boundary conditions are not explicitly imposed. Instead, the primitive
variables at the wall interface are reconstructed to impose an adiabatic or an isothermal condition at the wall.
For this purpose, the size of the computational domain is extended introducing ghost cells, as illustrated in
figure 4 where the ghost cells are numbered 0, -1 and -2.

Figure 4. Extended one-dimensional computational domain close to a wall. The cells numbered -2, -1 and 0
are ghost cells. The cells 1, 2, 3 are "real" cells. The interface 1/2 is the boundary interface of the domain.

Three rows of ghost cells allow the scheme of Fosso et al. and the filter to be applied down to the wall.
To prescribe the desired conditions at the wall, the values in the ghost cells are specified using first order
relations:

q̄0 = f(q̄1)

q̄−1 = f(q̄2)

q̄−2 = f(q̄3)

(15)

where the function f depends on the variable q and on the wall conditions. In particular, f is defined as
f = −Id for the velocity components, where Id is the identity function. The function f is equal to Id for
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the temperature for an adiabatic wall and for the pressure. Moreover, f corresponds to 2Tw − Id for the
temperature in the case of an isothermal wall, where Tw is the wall temperature. Then, equation (12) is
solved to interpolate the flow variables at the interfaces 3/2 and 1/2. For this purpose, a ghost interface,
numbered −1/2 in figure 4, is introduced using the function f :

q̃−1/2 = f(q̃3/2) (16)

For the filter, a similar technique is employed. In addition, a ghost filtered value is introduced to apply
the equation (13) at the point 1 above the wall:

q̂0 = f(q̂1) (17)

The stability and the accuracy of the numerical algorithm is now evaluated for a turbulent channel flow.

B. Turbulent channel flow

A three-dimensional turbulent channel flow has been computed using the wall discretization described above.
The flow is characterized by Mach number of M = Ub/c = 0.2 and a friction Reynolds number of Reτ =
uτh/νw = 391, where c is the sound speed, uτ is the friction velocity at the wall, h is the channel half height,
νw is the kinematic molecular viscosity at the wall, and Ub is the bulk velocity defined as:

Ub =
1

h

∫ h

0

u(y)dy (18)

Similar channel flows have been simulated at Reτ = 395 by Abe et al.23 and Moser et al.,24 using Direct
Numerical Simulation (DNS). In the following, the streamwise, the wall-normal and the spanwise spatial
coordinates are denoted x, y and z. The channel lengths are equal to Lx = 2πh, Ly = 2h and Lz = πh, as in
the DNS.25 At the top and the bottom channel walls, adiabatic boundary conditions are imposed. Periodic
boundary conditions are applied in the streamwise and spanwise directions. In order to compensate the
effects of the viscous dissipation and thus impose the flow regime, a source term, in the form of a pressure
gradient, is introduced in the streamwise momentum equation.26 For the simulation, the mesh has been
designed to satisfy the constraints generally prescribed for LES. The grid parameters, namely the numbers
of mesh points in each direction nx, ny and nz as well as the streamwise, normal and spanwise grid spacings
∆+
x , ∆+

y and ∆+
z , are given in table 1.

nx × ny × nz ∆x+ ∆z+ ∆y+
w ∆y+

max

Wall-resolved LES 161× 181× 121 15 10 1 8
Table 1. Grid parameters used for the WRLES of the channel flow at Reτ = 395.

The grid contains 3.5 million points. The mesh spacings ∆+ are scaled by the viscous length yτ = νw/uτ .
The streamwise and the spanwise grid spacings ∆x+ and ∆z+ are uniform, and the minimum and the
maximum wall-normal mesh spacings are respectively equal to ∆y+

w = 1 at the wall and ∆y+
max = 8 at the

center of the channel. The time step ∆t for the simulation is chosen so that CFL = c∆t/∆yw ' 0.7 to
ensure the stability of the time integration. At the initial time t = 0, an analytical turbulent velocity profile
is imposed in the channel. The transition towards turbulence is accelerated by adding perturbations in the
form of spanwise vortices27 to the initial flow field at t = 0. The transient period of the simulation lasts
during the non-dimensional time period t? = tUb/h = 102 which is equivalent to 15 flow passings through
the channel. The statistics are then collected during a time period t? = 102. The results are averaged in
time and in space in the homogeneous directions x and z, and compared to the DNS data.23,24

The main flow parameters, including the Mach number M , the friction Reynolds number Reτ and the
friction coefficient Cf = 2τw/(ρbU

2
b ) are provided in table 2, where ρb is the bulk density and τw is the wall

shear stress. The value of Cf is estimated with a difference lower than 6%, compared to the DNS friction
coefficient Cf = 6.23× 10−3.

The mean longitudinal velocity profile in wall units u+ =< u > /uτ is depicted as a function of the wall
distance y+ in figure 5. The agreement with the DNS is satisfactory in the inner boundary layer between the
wall and y+ = 20. From y+ = 20 to y+ = 100, a small discrepancy for the LES is observed. The rms profiles
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M Reτ Cf

0.2 391 5.86× 10−3

Table 2. Mach number Mc, friction Reynolds number Reτ and friction coefficient Cf in the channel.

0

5

10

15

20

25

0.1 1 10 100 1000

u
+

y+

Figure 5. Representation of the mean streamwise velocity in the channel as a function of the wall distance
using wall units, from the WRLES and from the DNS of Abe et al .23

for the velocity components u′+ =< u′u′ >1/2 /uτ , v′+ =< v′v′ >1/2 /uτ , w′+ =< w′w′ >1/2 /uτ and for
the pressure p′+ =< p′p′ >1/2 /(ρwu

2
τ ) are represented in wall units in figure 6, where ρw is the density at

the wall. For v′+, w′+ and p′+, the results are close to the DNS data. For the streamwise fluctuating velocity
u′+, the position of the peak is well-captured but its intensity is slightly overestimated.

0

1

2

3

0 100 200 300 400

y+

u′+

v′+

w′+

(a)

0.5

1

1.5

2

2.5

1 10 100 1000

p
′+

y+

(b)

Figure 6. Representation of the root mean square profiles in the channel: (a) the streamwise, the wall-normal
and the spanwise velocity components, (b) the pressure, and DNS results of Abe et al ,23 as a function of
the wall distance using wall units.

The total shear stress, which is the sum of the mean viscous stress < µ >< du/dy > and the mean
Reynolds stress − < ρ >< uv′ >, is displayed in figure 7. The LES results show a good agreement with the
DNS. Near the wall, the viscous constraints predominate. For y/h > 0.04, corresponding to y+ > 15, the
Reynolds stress is higher than the viscous stress, and is nearly equal to the total shear stress for y/h > 0.2.
Finally, Q-criterion isosurfaces colored by the streamwise velocity magnitude from green to red are presented
in figure 8. Two kinds of boundary layer structures appear in the channel. In the near-wall regions, elongated
structures named streaks are found. They are represented in green in figure 8, indicating that they are
convected at a low velocity. Further from the walls, larger structures, colored in red and thus more rapidly
convected, dominate.

These results demonstrate the capability of the present numerical algorithm to deal with wall-bounded
flows at low Reynolds numbers.
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y/h

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y/h

(b)

Figure 7. Representation of the shear stress profiles in the channel normalized by the wall shear stress τw:
from the LES for the total shear stress τ =< µ >< du/dy > − < ρ >< uv′ >, (a) ◦ ◦ ◦ the viscous shear
< µ >< du/dy >, (b) ◦ ◦ ◦ the Reynolds shear stress − < ρ >< uv′ >, and from the DNS results of
Moser et al.,24 as a function of the wall distance y normalized by the channel half height h.

Figure 8. Q-criterion isosurfaces in the channel colored by the streamwise velocity magnitude between 0 and
Ub.

III. Wall-Modeled LES (WMLES)

A. WMLES approach

1. Description

When a wall model is used to compute a wall-bounded flow, the inner part of the boundary layers close
to the wall is simulated without resolving numerically the turbulent structures developing in this region, as
represented in figure 9. A coarser mesh is used near the wall, compared to a simulation where this region is
resolved. As mentioned above, in the FV approach, the convective and the diffusive fluxes must be evaluated
at the wall interface. The convective fluxes at the wall are determined by imposing an adherence condition
and a wall-normal pressure gradient equal to zero. For the computation of the diffusive fluxes, the values
of velocity and temperature gradients at the wall are needed. For a simulation using a coarse mesh in the
near-wall region, these gradients are not computed accurately by the numerical schemes. Consequently, they
must be obtained using a wall model. In practice, the model allows the wall shear stress τw and the wall
heat flux Φw to be estimated. These two quantities are then directly used to calculate the diffusive fluxes at
the wall.

The wall model12 used here relies on Reichardt’s28 and Kader’s29 analytical laws. The first one allows
the mean velocity U to be estimated as a function of the height y above the wall. In wall units, one gets:

u+ =
U

uτ
=

1

κ
ln(1 + κy+) +

(
B − 1

κ
lnκ

)(
1− exp(−y

+

11
)− y+

11
exp(−0.33y+)

)
(19)

where y+ = ρwuτy/µw, µw is the dynamic molecular viscosity at the wall, κ is the Von Karman constant
equal to 0.41 and B is a constant equal to 5.25. The Kader law approximates the variations of the temperature
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Figure 9. Sketch of the computational grids and the turbulence resolution for WRLES and WMLES.

T as, in wall units:

T+ = − (T − Tw)ρwCpuτ
Φw

= Pr y+ exp(Γ) +
(

2.12 ln(1 + y+) + (3.85Pr1/3 − 1.3)2 + 2.12 lnPr
)

exp (
1

Γ
)

(20)
where Γ is defined as:

Γ = −10−2(Pr y+)4

1 + 5Pr3y+
(21)

Equations (19) and (20) have been established for incompressible flows, assuming weak pressure gradients
in the streamwise direction. The validity of these wall laws can be extended to compressible flows thanks to
the Van Driest’s transformation.30

Figure 10. Wall model application. The grid cell centers are numbered from 1 to 4, y represents the distance
from the wall. The wall shear stress τw and the wall heat flux Φw are computed by the model using the
instantaneous LES data at the matching point M located at y = yM . The point P3 is the matching point in
this case.

The procedure used to compute (τw, Φw) from Kader’s and Reichardt’s laws is now presented. In order
to apply these laws, according to equations (19) and (20), the values of the velocity U and the temperature
T , as well as the wall components Tw, µw and ρw are needed. In order to determine these quantities, the
instantaneous LES variables uLES , TLES and pLES , taken at a computational point M located at a distance
yM from the wall, are considered. This point M, also named the matching point,9 is represented in figure
10. The point M must be chosen among the computational points located along the wall-normal direction
in the inner part of the boundary layer, such that the conditions of application of the wall laws are verified.
For example, in figure 10, the point P3 is selected among the potential candidates P1, P2, P3 and P4.
The position of the matching point will be discussed in section III.A.3. The scalar velocity value U is thus
computed by projecting the velocity vector uLES on the wall:

U = uLES · x’ (22)
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where x’ is a unitary vector, orthogonal to the wall-normal direction n and aligned with the flow direction,
defined as:

x’ =
uLES − (uLES · n)n
||uLES − (uLES · n)n|| (23)

where || || is the Euclidean norm.
From this point, the wall modeling procedure differs depending on the isothermal or the adiabatic nature

of the wall. In the case of an isothermal wall, the temperature Tw is known at the wall interface. Therefore,
the dynamic viscosity at the wall µw is computed from Sutherland’s law and Tw. In addition, the wall
density ρw is obtained using the perfect gas equation and assuming a constant pressure along the wall
normal direction:

ρw =
pLES
RTw

(24)

where R is the perfect gas constant. The friction velocity uτ is then estimated from the value of U and
Reichardt’s law, using a Newton algorithm to solve equation (19). Finally, the wall shear stress τw = ρwu

2
τ is

computed and the wall heat flux Φw is obtained from Kader’s law and T = TLES . In the case of an adiabatic
wall, the value of Φw is equal to zero, leading to Tw = TLES . The wall shear stress τw is then computed in
the same way as for an isothermal wall.

2. Implementation with high-order numerical schemes

In the computation of the convective fluxes, in order to apply the seven-point stencil schemes down to the
wall, a new spatial discretization has been developed for WMLES. The variables considered for WMLES
are u, v, w, p and T . As for WRLES, the wall discretization is different depending on the adiabatic or the
isothermal nature of the wall. For an adiabatic wall, the WRLES discretization at the wall is used for the
pressure and the temperature components. For an isothermal wall, only the pressure is computed in this
way. For the other variables, including the velocity components u, v, w as well as T for an isothermal wall,
the wall discretization for WMLES is different. More precisely, for the scheme of Fosso et al.,14 the objective
remains to compute the flow variables q̃ at the interfaces 1/2 and 3/2, according to figure 4. With this aim
in view, a no-slip condition leading to a velocity equal to zero, and the wall temperature Tw are directly
imposed at the wall interface. In addition, the interface i = 3/2 is computed using a 2nd-order centered
scheme:

q̃3/2 = α′′3/2q̄1 + β′′3/2q̄2 (25)

where α′′3/2 and β′′3/2 are the interpolation coefficients, determined using 2nd-order Taylor series. No ghost
cell is needed in this case.

Then, for the filter given by equation (13), three rows of ghost cells are introduced to allow the seven-
point stencil formulation to be applied down to the first point from the wall. In this case, the wall model
is used to compute the values of the variables u, v, w, and T for an isothermal wall in the ghost cells. The
ghost cell reconstruction is depicted for the velocity in figure 11, where the point P1 represents the center of
the adjacent cell to the wall. More precisely, this reconstruction is performed in three stages. In a first step,
the positions of the ghost cells are specified. The ghost cells lie between the wall and the point P1. They are
numbered 0, -1 and -2. Their positions yi −2≤i≤0 are defined as yi = h1/di, where h1 is the distance between
the wall and the point P1, and di is respectively equal to 1.3, 1.5 and 2 for the ghost cells 0, -1 and -2.
The influence of the ghost cell locations has not been studied here and the values of di are thus arbitrarily
chosen. In a second step, the wall shear stress τw is determined from Reichardt’s law and the LES data at
the matching point M. This step has been described in the previous section. Note that the matching point
M is not systematically the point P1. In figure 11, it corresponds to a point located further from the wall.
Once the value of τw is obtained, Reichardt’s law provides an analytical profile for the mean velocity U as
a function of the wall distance y, as shown in red line in figure 11. In a third and last step, this profile is
used to interpolate the values of the mean velocity Ui −2≤i≤0 in the ghost cells. A similar reconstruction to
determine the temperature in the ghost cells is performed using Kader’s law. The velocity vectors ui −2≤i≤0

in the ghost cells are assumed to be collinear with the velocity vector u1 at the point P1, and are computed
from the values Ui as:

ui = Ui
u1

||u1||
(26)
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Besides, in order to apply the implicit filter given by equation (13) at the point P1, a filtered ghost cell
value q̂0 is needed. For WMLES, the values in the ghost cells are not filtered, leading to the approximation
q̂0 = q̄0.

Figure 11. Ghost cell reconstruction for the velocity using Reichardt’s law. The ghost cells are represented
by red points and indexed: 0, -1, -2. The ghost cell heights are defined using the distance h1 between the wall
and the first point above the wall P1.

3. Matching point location

In the WMLES approach, data are exchanged between the wall model and the LES solver. On the one
hand, instantaneous LES values are used to determine the wall shear stress τw and the wall heat flux Φw
from the wall laws. On the other hand, the values of τw and Φw are used as boundary conditions in the
LES approach, and the wall model is involved in the computation of the ghost cell values. In this data
exchange, the matching point M, represented in figures 10 and 11, plays a considerable role as it provides
the instantaneous LES data used to estimate the values of τw and Φw. Usually, this point corresponds to the
first computational point P1 above the wall. However, recent works9,31 demonstrated that a matching point
located further from the wall improves the LES results. Two reasons for that can be pointed out. First, the
smallest turbulent structures captured by a mesh are necessarily under-resolved because there are not enough
grid points to discretize them. Since these small structures have a major influence on the development of the
flow in the near-wall region, the LES flow field is not accurately computed at the first computational points
above the wall. Secondly, as presented previously, the high-order spatial discretization used for LES must
generally be adapted when approaching the wall, leading to numerical errors in this region. Consequently,
with a matching point located further from the wall, a better resolution of the turbulent structures at this
point should be obtained, and weaker effects of the wall numerical discretization can be expected. Hence,
the wall conditions (τw, Φw) should be estimated more accurately. This is why in figure 10, the point P3
is chosen to be the matching point. The influence of that choice will be investigated in section III.B. The
performance of the WMLES approach is now examined for a turbulent channel flow.

B. Turbulent channel flows

1. Parameters

The turbulent channel flow at a Mach number of M = 0.2 and a friction Reynolds number of Reτ ' 2000
considered by Hoyas and Jiménez32 using DNS is computed using WMLES. At the walls, adiabatic or
isothermal boundary conditions are used. For an isothermal wall, a temperature gradient is introduced by
imposing Tb/Tw = 1.1, where Tb is the bulk temperature defined as:

Tb =
1

h

∫ h

0

T (y)dy (27)

In order to impose a constant mass flow rate and the bulk temperature in the channel, source terms are
introduced in the streamwise momentum equation and in the energy equation.26 The streamwise, normal
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and spanwise lengths of the channel Lx, Ly and Lz are respectively equal to 2πh, 2h and πh. Two uniform
Cartesian meshes, a coarse one M1 and a refined one M2, are used. The grid parameters, including the
numbers of mesh points nx, ny and nz in each direction as well as the different grid spacings ∆+, are
provided in table 3. The mesh that would be needed to perform a WRLES of the present flow is also given.

nx × ny × nz ∆x+ ∆z+ ∆y+
w ∆y+

max

WMLES M1 49× 41× 41 261 157 100 100
WMLES M2 153× 67× 101 82 62 60 60

Estimated wall-resolved LES 840× 630× 630 15 10 1 8
Table 3. Grid parameters used for the WMLES of the channel flow at Reτ = 2000. The estimations for a
wall-resolved LES (WRLES) are also provided.

The mesh M1 was designed to satisfy the grid recommendations for WMLES.12 The grid cells are chosen
to capture the large turbulent structures in the outer region of the boundary layers, for y+ > 100, which are
elongated in the streamwise direction. Therefore, the grid spacings in the streamwise, normal and spanwise
directions are respectively equal to 260, 100 and 160. Thus, the mesh M1 contains 80,000 points. The mesh
M2 is finer than M1, and was built to obtain grid spacings ∆+ between 60 and 80 in all directions. It
contains 1 million points. Compared to the grid size estimations for WRLES given in table 3, the WMLES
mesh size is 4,000 times smaller using mesh M1 and 300 times smaller using mesh M2.

The performance of WMLES is evaluated by performing eight channel flow simulations depending on the
use of adiabatic or isothermal walls, of the mesh M1 or M2, and of different matching points M located at
a height y+

M from the wall (see in table 4). In order to study the influence of the matching point location,
the value of y+

M varies between 30 and 250. In particular, in the different simulations, the matching point is
either the first point from the wall P1, or the third point P3. Note that the position of the matching point
y+
M depends on the resolution of the mesh. For instance, the point P1 is located at y+

M = 50 for the mesh
M1, whereas its position is at y+

M = 30 for the mesh M2.

simulation wall nature mesh matching point M y+
M

A-M1P1 adiabatic M1 P1 50
A-M1P3 adiabatic M1 P3 250
A-M2P1 adiabatic M2 P1 30
A-M2P3 adiabatic M2 P3 150
I-M1P1 isothermal M1 P1 50
I-M1P3 isothermal M1 P3 250
I-M2P1 isothermal M2 P1 30
I-M2P3 isothermal M2 P3 150

Table 4. Channel flow parameters for WMLES, where y+M represents the matching point position from the
wall normalized in wall units.

For the simulations, the time step is chosen such that CFL = c∆t/∆y ' 0.7. The simulation transient
period lasts during the non-dimensional time t? = tUb/h = 200, corresponding to 30 flow passings through
the channel. Then, the statistics are sampled over 30 flow passings. The results are averaged in time and in
space, and compared with the values of the DNS of Hoyas and Jiménez.32 In the case of isothermal walls,
the WMLES temperature profiles are compared to the profile given by Kader’s law.29

2. Results for adiabatic walls

The flow parameters for the channels with adiabatic walls, including the Mach number M and the bulk
friction coefficient Cf , are presented in table 5. For all simulations, the Mach number is equal to 0.2. The
friction coefficients are compared to the DNS value of Cf = 4.2× 10−3. The poorest agreement is obtained
for the simulations using the matching point P1. The LES performed using the refined mesh M2 and the
matching point P3 provides the best estimations of Cf . For both meshes, choosing the matching point P3
reduces the difference with the DNS value of Cf , as expected in the previous discussion in section III.A.
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simulation M Cf

A-M1P1 0.20 4.6× 10−3

A-M1P3 0.20 4.3× 10−3

A-M2P1 0.20 4.6× 10−3

A-M2P3 0.20 4.2× 10−3

Table 5. Mach number M , friction Reynolds number Reτ and friction coefficient Cf in the channel for
simulations with adiabatic walls.
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Figure 12. Representation of the mean streamwise velocity obtained from the WMLES for adiabatic walls
using (a) the mesh M1 and (b) the mesh M2, using the matching point P1 and P3; from the
DNS of Hoyas and Jiménez,32 and from the logarithmic law, as a function of the wall distance using wall
units. The symbols represent the positions of the matching point.

The mean longitudinal velocity profiles obtained from the simulations with adiabatic walls are depicted
in figure 12. The matching points are represented using symbols, and are located in the logarithmic region
of the boundary layer between y+ = 30 and y+ = 250. They match with the wall law represented in dashed
line, as expected from the definition of the matching point given in section III.A. The influence of the
matching point position for the LES using the mesh M1 and the mesh M2 is illustrated in figures 12(a) and
12(b) respectively. Defining the matching point as the third off-wall point P3 improves the LES results. One
possible reason is that the flow field is better resolved by LES for the points located far from the wall, as
related in section III.A. The LES using the refined mesh M2 and the matching point P3 provides the best
agreement with the DNS data. Two main reasons may explain this result. First, the turbulent structures
of the outer part of the boundary layer are better captured when the mesh resolution increases, and a
better performance of wall modeling can thus be expected. Secondly, when the mesh is refined, selecting the
matching point P3 allows to impose y+

M = 150 to respect the WMLES recommendations. One can remark
that, in the literature, when the matching point P3 is chosen, the velocity at the points located between the
wall and the point P3 does not always follow the wall law.31 In the present study, the point P1 remains on
the wall law profile. This may be due to the ghost cell reconstruction combined with the seven-point stencil
filter applied at the point P1.

The root mean square velocity fluctuations u′+, v′+, w′+ are represented in wall units for the WMLES
using the mesh M1 and the mesh M2 in figures 13 and 14 respectively. Better results are obtained when the
matching point is the point P3. In particular, higher turbulent levels for all the rms components, especially
in the logarithmic region between y+ = 200 and y+ = 500, are found. For the LES using the mesh M1, the
differences with respect to the DNS are stronger than for the simulations using the mesh M2. This may be
attributed to the low resolution of the grid M1. For the LES using the mesh M2, the results obtained for
the wall-normal velocity v′+ and the spanwise velocity w′+ agree well with DNS when the matching point is
P3. However, the streamwise fluctuating velocity u′+ still falls below the DNS profile for y+ > 300.

Finally, the turbulent kinematic constraints −uv′+ are displayed for the WMLES using the mesh M1 in
figure 15(a) and the mesh M2 in figure 15(b). The computational cell centers are represented using symbols
in the figures. Once again, the best agreement with DNS is obtained when the matching point is the point
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P3. Increasing the mesh resolution also leads to higher turbulent levels. In particular, for the LES using
the refined mesh M2, the turbulent kinematic constraints match with the DNS values from the point P3 in
figure 15(b). This demonstrates that the turbulence is better resolved in this simulation. For the LES using
the coarse mesh M1, some discrepancies with the DNS data are observed, even if the matching point P3 is
used. These results highlight the advantages to consider a matching point relatively far from the wall and
to pay attention to the resolution of the mesh used for WMLES.
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Figure 13. Representation of the rms velocity fluctuations obtained from WMLES for adiabatic walls using
the mesh M1 for (a) the streamwise, (b) the wall-normal and (c) the spanwise components, using the matching
point P1, P3, and from the DNS of Hoyas and Jiménez,32 as a function of the wall distance
using wall units.
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Figure 14. Representation of the rms velocity fluctuations obtained from WMLES for adiabatic walls using
the mesh M2 for (a) the streamwise, (b) the wall-normal and (c) the spanwise components, using the matching
point P1, P3, and from the DNS of Hoyas and Jiménez,32 as a function of the wall distance
using wall units.

3. Results for isothermal walls

For the simulations including isothermal walls, no DNS data are available. Nevertheless, the channel flow is
simulated at a low Mach number and the temperature gradient at the wall is sufficiently weak to consider
the temperature as a passive scalar. The flow regime is said to be quasi-incompressible in this case. As a
consequence, the LES friction coefficient Cf should not be significantly influenced by the small temperature
gradient and can be compared to the DNS coefficient Cf = 4.2 × 10−3 obtained for adiabatic walls. The
friction coefficient estimated from the empirical correlation of Petukhov33 equal to Cf = 4.0 × 10−3 is also
used for comparisons. The Mach number and the friction coefficient Cf obtained from LES are presented
in table 6. The Mach number is close to 0.2 for all simulations. Compared to the LES with adiabatic walls,
slightly higher values of Cf are obtained. The simulation using the refined mesh M2 and the matching point
P3 still provides the best estimations.

The mean velocity profiles obtained from WMLES are depicted in figure 16 as functions of the wall dis-
tance. They are compared with DNS results of Hoyas and Jiménez,32 and to the profile given by Reichardt’s
law computed from the friction coefficient provided by the correlation of Petukhov.33 Note that the velocity
profiles obtained from the DNS and from the wall law are similar, except for the wake region at y+ > 103.
The WMLES results are close to those obtained for the simulations including adiabatic walls in figure 12,

14 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

A
ug

us
t 3

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

31
35

 



0

0.25

0.5

0.75

1

1.25

1 10 100 1000

−
u
v
′+

y+

A-M1P1

A-M1P3

(a)

0

0.25

0.5

0.75

1

1.25

1 10 100 1000

−
u
v
′+

y+

A-M2P1

A-M2P3

(b)

Figure 15. Representation of the turbulent kinematic constraints obtained from WMLES for adiabatic walls,
using (a) the mesh M1, (b) the mesh M2, and using the matching point P1, P3, and from
the DNS of Hoyas and Jiménez,32 as a function of the wall distance using wall units. The symbols represent
the computational cell centers.

simulation M Cf

I-M1P1 0.22 4.7× 10−3

I-M1P3 0.21 4.6× 10−3

I-M2P1 0.21 4.8× 10−3

I-M2P3 0.20 4.5× 10−3

Table 6. Mach number M and friction coefficient Cf in the channel for simulations with isothermal walls.
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Figure 16. Representation of the mean streamwise velocity obtained from the WMLES for isothermal walls
using (a) the mesh M1 and (b) the mesh M2, using the matching point P1 and P3; from the
DNS of Hoyas and Jiménez,32 and from Reichardt’s law, as a function of the wall distance using wall
units. The symbols represent the positions of the matching point.

indicating that the temperature gradient at the wall has not a considerable influence on the velocity for this
flow regime. The matching points, represented using symbols in figure 6, match with Reichardt’s law in
dashed line. Selecting the matching point as the third computational point above the wall P3 improves the
quality of the results. In particular, the LES using the refined mesh M2 and the matching point P3 shows
the best agreement with the DNS and Reichardt’s law.

The mean temperature profiles are displayed in figure 17. They are compared to the profile predicted
by Kader’s law, represented in dashed lines and computed from the friction coefficient and the wall heat
flux provided by the empirical correlations of Petukhov33 and Sleicher and Rouse.34 The matching points
are represented by symbols. They are located on the wall law profile, as expected from the definition of
the matching point. The influence of the location of the matching point for the LES using the mesh M1
and the mesh M2 is presented in figures 17(a) and 17(b) respectively. The less satisfactory trends are
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obtained from the simulation using the mesh M2 and the matching P1. In this simulation, the position of
the matching point, at y+

M = 30, corresponds to the beginning of the logarithmic region and is far from the
value of y+

M = 100 generally recommended for WMLES. The matching point may be too close to the wall to
successfully apply WMLES, especially when thermal effects have to be taken into account. The LES using
the matching point P3 and the mesh M2 provides the best agreement with Kader’s law. These results are
comparable to those obtained in the case of an adiabatic wall. In particular, using a relatively well-refined
mesh ensures a better resolution of the outer part of the boundary layers, and selecting the matching point
P3 allows to respect the recommendations for the matching point location, with y+

M = 150. Finally, when
the point P3 is the matching point, the temperature at the first computational point above the wall P1
remains close to Kader’s profile.
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Figure 17. Representation of the mean temperature obtained from the WMLES for isothermal walls using (a)
the mesh M1 and (b) the mesh M2, using the matching point P1 and P3; and from Kader’s law,
as a function of the wall distance using wall units. The symbols represent the positions of the matching point.

TheWMLES approach, successfully applied to turbulent channel flows, is now used to study an isothermal
round jet at high Reynolds number.

C. Isothermal subsonic jet

1. Parameters

A subsonic isothermal jet originated from a pipe nozzle is now simulated by LES using the wall model
presented above. The jet has a Mach number ofM = uj/c = 0.6 and a Reynolds number of ReD = ujD/ν =
5.7× 105, corresponding to the conditions in the experiment of Cavalieri et al.,35 where D and uj represent
the jet diameter and velocity. The ambient pressure P0 and temperature T0 are respectively equal to 105 Pa
and 298 K. The nozzle, illustrated in figure 18, has a length of L = 0.75D. At the nozzle exit, located at
z = 0, the flow is characterized by a boundary-layer thickness of δ = 8.5× 10−2D and a Reynolds number of
Reθ = ujδθ/ν = 4.5× 103, based on the momentum thickness of δθ = 7.9× 10−3D. The nozzle lip thickness,
at z = 0, is equal to dLIP = 0.006D.

Figure 18. Sketch of the jet nozzle, where D and uj are the jet diameter and velocity, L is the nozzle width,
δ is the boundary-layer thickness, and (z0, r0) is the position where the perturbations are injected to trigger
the boundary-layer transition toward turbulence.
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2. Computational set-up and methods

The wall model approach developed for adiabatic walls in section III.A. is applied inside the nozzle. The
third computational point above the wall is chosen to be the matching point. The computational domain
for the simulation is represented in figure 19. It extends axially from z = −0.75D down to z = 33D, and
radially from r = 0D out to r = 12D. At the outlet of the domain, Navier-Stokes characteristic boundary
conditions36 are prescribed. Tam and Webb radiation conditions37 are used at the inlet boundary and at the
lateral sides. Sponge layers are also added to damp the aerodynamic fluctuations and minimize reflections
at the domain boundaries. Therefore, the physical domain of the simulation, delimited by dashed lines in
figure 19, ends at z = 25D in the axial direction, and at r = 6D in the radial direction.

Figure 19. Representation of the computational domain in the (z, r) plane. The physical domain is delimited
by dashed lines.

The axial and the radial mesh spacings of the LES grid, denoted ∆z and ∆r, are respectively shown
in figures 20(b) and 20(a). The minimum grid spacings ∆rmin and ∆zmin are located at the nozzle lip,
with ∆rmin = dLIP /4 yielding ∆rmin = 0.0015D, and ∆zmin = 0.0079D. In the radial direction, the
minimum grid spacing corresponds to a value of ∆r+

min ' 40 in wall units. As a result, the matching point
for the present wall model approach is located at a distance of r+

M ' 100 from the wall. From the pipe
lip, the mesh is progressively stretched with rates which remain lower than 4% in the physical domain to
avoid spurious numerical waves to be generated. In particular, in the radial direction, the boundary-layer
thickness is discretized by about 20 points at the nozzle exit. In addition, the radial and axial maximum
mesh spacings are respectively equal to ∆rmax = 0.086D and ∆zmax = 0.097D in the physical domain. The
maximum mesh size ∆zmax is chosen such that the time frequency f of waves discretized by eight grid points
corresponds to the Strouhal number St = fD/uj = 2. In the azimuthal direction, 272 points are equally
distributed. Therefore, the computational grid contains 83 million points, including 2.4 million points in the
jet pipe.

Initially, the azimuthal and the radial velocity profiles are equal to zero, and the pressure is equal to P0.
In the pipe, the axial velocity obtained from a preliminary RANS computation is imposed. The temperature
is calculated using a Crocco-Busemann relation. In order to seed the laminar-turbulent transition of the flow
in the nozzle, vortex rings are added to the flow field in the boundary layers inside the pipe at each time step
during the computation.38 The small disturbances are introduced close the nozzle exit, at r0 = (D − δ)/2
and z0 = −D/2. They are divergence-free to minimize the production of acoustic waves.

The initialization time is equal to t = 300D/c. It corresponds to 8 acoustic wave passings through the
computational domain in the axial direction. The velocity components and the pressure are recorded during
t = 200D/c. The flow statistics are averaged in the azimuthal direction. The acoustic propagation to the
far-field region is carried out using a Ffowcs-Williams and Hawkings (FW-H) analogy.39 For the far-field
extrapolation, the LES data are collected on a cylindrical surface located at r=2D. These data are then
propagated during a period 50D/c to the distance r = 35D from z = r = 0. The pressure fluctuations are
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Figure 20. Representation of the mesh spacings: (a) axial mesh spacing ∆z/D at r = 0, (b) radial mesh spacing
∆r/D at z = 0.5D.

then collected during 200D/c, at a sampling frequency allowing the spectra to be computed up to a Strouhal
number of 10.

In order to assess the influence of wall modeling in the present LES, the results of a LES of the present jet
flow performed without wall modeling are also presented for comparisons. This LES was carried out using
the computational grid previously described. A slip condition was imposed at the solid boundaries. The
flow statistics have been collected during a period of 150D/c, and the pressure fluctuations from the FW-H
analogy during a period of 200D/c.

3. Results

Nozzle exit conditions In order to characterize the initial conditions of the jet exiting from the pipe,
the mean and rms axial velocity profiles at the nozzle exit are represented in figures 21(a) and 21(b). In
addition, flow parameters at the pipe exit, including the boundary-layer thickness δ, the momentum thickness
δθ, and the maximum value of the rms axial velocity are given in table 7. Mean turbulent velocity profiles
< uz > are in good agreement with the measurements for the simulations with and without wall modeling.
In particular, the boundary-layer thicknesses differ by less than 5% difference from the measurements in
both simulations. The LES with wall modeling yields a momentum thickness of δθ = 0.0081D which is very
close to the experimental value of 0.0079D. The rms axial velocity at the nozzle exit are correctly predicted
when wall modeling is applied inside the pipe. More precisely, their shapes are comparable with the profiles
measured by Cavalieri et al.35 A rms peak around 14% of the jet velocity is obtained, which is comparable
with the experimental value of 11%. When no wall model is applied, however, the intensity of the rms peak
is overestimated compared to the experiment and shows a peak magnitude of < u′2z >1/2= 0.20uj .
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Figure 21. Representation of (a) the mean axial velocity and (b) the rms axial velocity at the nozzle exit of
the jet, from WMLES, from LES without wall modeling, and 2 2 2 from the results of the experiment
of Cavalieri et al.35
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δ/D δθ/D max(< u′zu
′
z >

1/2 /uj)
WMLES 0.082 0.0081 0.14
LES 0.086 0.0084 0.20

EXP (Reference) 0.085 0.0079 0.11
Table 7. Nozzle exit conditions at z = 0, where δ is the boundary-layer thickness, δθ is the momentum
thickness, and max(< u′zu

′
z >

1/2 /uj) is the maximum value of the rms axial velocity.

Jet development The aerodynamical development of the jet is illustrated in figure 22 where the instan-
taneous vorticity field for the wall-modeled LES is represented. Downstream of the nozzle lip at z = 0,
the shear layer thickness increases and the mixing layers merge around z = 6D, indicating the end of the
potential core. Small turbulent structures, colored in red and typical of flows at high Reynolds numbers, are
visible.

Figure 22. Snapshot of the vorticity modulus from WMLES in the (z, r) plane using color levels between 0
and 10uj/D, from blue to red.

More quantitative results concerning the jet development are provided in figures 23 and 24 where the
mean and rms axial velocity are displayed at z = 1D and z = 5D. The development of the jet at z = 1D
and at z = 5D are comparable for the LES with and without wall modeling. In particular, the mean velocity
profiles show a good agreement with the measurements. At z = 1D, the fluctuating velocity profiles are
close to the experimental values and reach a maximum value around 0.175uj . A slight over-estimation of the
width of the rms peak is observed compared to the experimental data. At z = 5D, the rms profiles agree
well with the measurements near the jet centerline, whereas lower turbulent levels are observed for r ≥ 0.3D.
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Figure 23. Representation of (a) the mean axial velocity and (b) the rms axial velocity at z = 1D, from
WMLES, from LES without wall modeling, and 2 2 2 from the results of the experiment of Cavalieri et
al.35

Far-field noise In order to quantify the acoustic levels radiated from the jet in the far-field region, the
pressure spectra computed at r = 35D from the nozzle are presented in figure 25 for the emission angles of
φ = 30◦ and φ = 90◦ relative to the flow direction. A very good agreement with the experimental results
is obtained from the simulation using wall modeling. More precisely, the sound levels predicted by the
wall-modeled LES are close to the measurements up to the Strouhal number of St = 2, corresponding to
the cut-off frequency of the mesh. In particular, both the intensity and the position of the peak around
St = 0.25 are well-captured at both angles. The LES without wall modeling provides stronger sound levels
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Figure 24. Representation of (a) the mean axial velocity and (b) the rms axial velocity at z = 5D, from
WMLES, from LES without wall modeling, and 2 2 2 from the results of the experiment of Cavalieri et
al.35

than WMLES. In particular, noise is over-estimated by 5 dB in the spectra at 90◦. These results demonstrate
the advantage of using LES with wall modeling to predict the noise levels radiated by the jet.
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Figure 25. Representation of the pressure spectra at a distance of 35D from the nozzle for the angles (a)
φ = 30◦ and (b) φ = 90◦ from the jet direction, as a function of the Strouhal number St: WMLES,
LES without wall modeling, and results of the experiment of Cavalieri et al.35

IV. Conclusions

In this paper, a numerical procedure is presented to perform LES of wall-bounded flows using high-order
implicit schemes. A spatial discretization is proposed to apply the 6th-order seven-point stencil schemes
at the walls. This approach is validated by computing a bi-periodic turbulent channel flow at a Reynolds
number of Reτ = 395. In this case, the results agree very well with DNS data, which demonstrates that the
LES algorithm, based on the use of a selective filter as a subgrid-scale model, can be applied to compute
wall-bounded turbulent flows. For flows at high Reynolds numbers, an analytical wall model is coupled
with the high-order schemes to perform LES at an acceptable computational cost. The performance of
the wall-modeled LES approach is first examined for a bi-periodic turbulent channel flow at Reτ = 2000.
The results show a good agreement with DNS data. A subsonic isothermal round jet at Reτ = 5.7 × 105

is then simulated, using wall modeling inside the jet nozzle. The wall-modeled LES approach is found to
significantly improve the results for the jet flow and the noise radiated in the far-field regions, compared to
a LES performed without wall modeling on the nozzle wall. In particular, when using wall modeling, the jet
nozzle exit conditions are closer to the experimental data. For the far-field noise spectra, a better agreement
with the measurements is reported. The results presented in this paper illustrate the capability of the wall
modeled-LES approach to predict the noise radiated from jet flows at high Reynolds numbers.
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