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In this study, a technique of flux reconstruction is proposed to perform aeroacoustic com-
putations using high-order methods on multiblock structured meshes with non-conforming
grid interfaces. The use of such grids facilitates zonal mesh refinements, and flows at high
Reynolds numbers can thus be simulated at a reasonable cost. The high-order methods con-
sists of low-dissipation and low-dispersion implicit finite-volume numerical schemes. Using
a flux reconstruction method, they can be applied on non-conforming grids. In a first part,
the method is described. It is based on the application of non-centered spatial schemes
and the use of ghost cells. The flow variables in the ghost cells are computed from the
flow field in the grid cells using local meshless interpolations with radial basis functions.
Then, the performance of the method is evaluated by carrying out two-dimensional sim-
ulations of vortex convection and of a mixing layer. The results show that no significant
spurious acoustic waves are produced at the grid interfaces. Finally, the flux reconstruction
approach is applied to the computation of a three-dimensional jet at a Mach number of
0.6 and a Reynolds number based on the jet diameter of 5.7 × 105. In particular, non-
conforming grids are used to obtain 384 points in the azimuthal discretization in the jet
shear layers, while using less points at the center of the jet. Preliminary results regarding
the jet development are shown and compared with experimental data.

I. Introduction

The direct computation of sound from the governing Navier-Stokes equations is an attractive way to
study the noise generation mechanisms in turbulent flows and to design noise reduction devices. For flows at
high Reynolds numbers, one of the main difficulties of such simulations is to deal with the large disparities
between the fine-scale turbulent motions and the large wavelengths of the radiated noise. Consequently,
local mesh refinements are needed to capture the small eddies generating noise, yielding severe numerical
constraints. This is particularly true for turbofan jet flows at Reynolds numbers ReD > 106, where D is the
jet diameter. For such flows, the nozzle geometry is generally included in the simulations in order to obtain jet
initial conditions as close as possible to those encountered in experiments. At high Reynolds numbers, very
fine grids are therefore needed to compute a part of the boundary layer inside the nozzle and the jet shear
layers. Usually, multiblock structured solvers are used, considering conforming grids with point-matched
block interfaces as represented in Fig. 1(a). In this case, the zonal mesh refinements result in unnecessary
very small mesh cells in certain flow regions, in particular at the center of the jet. Using explicit temporal
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integration schemes, the presence of such mesh cells deteriorates the computational efficiency by imposing
very small time steps verifying the CFL restriction. In addition, the prolongation of useless grid refinements
increases the number of mesh points leading to extra costs. In this context, aeroacoustic simulations of
jet flows at high Reynolds numbers is overly expensive. For complex geometries, the limitations mentioned
above are so restrictive that in most cases the mesh cannot be built for structured conforming grids.

(a) (b)

Fig. 1: Representation of a two-dimensional mesh with (a) conforming grid interfaces and (b) non-
conforming grid interfaces in red.

In order to simulate flows at high Reynolds numbers, one solution is to use non-conforming grids which do
not overlap each other. For such grids, the mesh lines can be discontinuous at the block interfaces. Figure 1(b)
shows a typical non-conforming grid where the mesh spacing changes by a factor 2 in the azimuthal direction
across the block interface colored in red. In this way, useless mesh refinements can be avoided. The size
of the smallest cells and thus the time step can also be chosen such that the simulation is performed at a
reasonable restitution time. In addition, the use of non-conforming grids offers some advantages in terms of
grid generation. The meshes for the different elements or zones of the computational domain can be created
independently and then easily assembled.

In aeroacoustic simulations, accurate numerical methods are required to capture the sound sources due to
turbulent fluctuations and to propagate the generated acoustic waves in the far-field. In particular, the use
of high-order low-dissipation and low-dispersion schemes ensures the resolution of the flows over a wide range
of length scales in time and space. In the present study, a flux reconstruction technique is therefore proposed
to properly use such schemes on non-conforming grids. The technique is implemented for 6th-order finite-
volume compact schemes. It is based on the combination of non-centered schemes with local interpolations
in order to reconstruct ghost cells and flux values at the grid interfaces. The interpolation method relies on a
meshless approach involving radial basis functions.1,2 Such interpolations are particularly interesting when
using non-conforming grids in order to alleviate the difficulties caused by the loss of the mesh topology at
the interfaces. Indeed, they are performed from arbitrarily scattered spatial data without any geometrical
information, avoiding the computational overheads due to topology reconstructions. In this paper, in a first
part, the flow solver and the flux reconstruction method are presented. In a second part, the performance
of the reconstruction is examined by performing two-dimensional simulations of vortex convection and of a
mixing layer. An application to a 3-D turbulent jet flow is also presented.

II. Numerical methods

A. Flow solver

1. Governing equations

The three-dimensional compressible Navier-Stokes equations are solved. Using Cartesian coordinates, they
can be written in the following way:

∂U
∂t

+
∂Ec

∂x
+
∂Fc

∂y
+
∂Gc

∂z
− ∂Ed

∂x
− ∂Fd

∂y
− ∂Gd

∂z
= 0 (1)

where U = (ρ, ρu, ρv, ρw, ρe)t is the vector of the conservative variables, ρ is the density, (u, v, w) are the
velocity components, and ρe is the total energy. The terms Ec, Fc and Gc are the convective fluxes, and
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the terms Ed, Fd and Gd are the diffusive fluxes. For a perfect gas, the total energy ρe is given by:

ρe =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (2)

where p is the static pressure and γ is the specific heat ratio. The convective fluxes are defined by:
Ec = (ρu, ρu2 + p, ρuv, ρuw, (ρe+ p)u)t

Fc = (ρv, ρuv, ρv2 + p, ρvw, (ρe+ p)v)t

Gc = (ρw, ρuw, ρvw, ρw2 + p, (ρe+ p)w)t
(3)

and the diffusive fluxes by: 
Ed = (0, τ11, τ12, τ13, τ11u+ τ12v + τ13w + Φ1)t

Fd = (0, τ21, τ22, τ23, τ21u+ τ22v + τ23w + Φ2)t

Gd = (0, τ31, τ32, τ33, τ31u+ τ32v + τ33w + Φ3)t
(4)

where τij is the viscous stress tensor, and Φ = (Φ1,Φ2,Φ3)t is the heat flux vector. The viscous stress tensor
τij is defined by τij = 2µSij , where µ is the dynamic molecular viscosity computed from Sutherland’s law
and Sij is the deformation stress tensor:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

)
(5)

The heat flux vector Φ is computed from Fourier’s law, yielding:

Φ = −λ∇T (6)

where ∇T is the temperature gradient, λ = Cpµ/Pr is the thermal conductivity, Cp is the specific heat at
constant pressure, and Pr is the Prandtl number.

2. High-order discretization in a finite-volume approach

The computations are carried out using the elsA software,3 which is a finite-volume multiblock structured
solver. Direct Numerical Simulatons (DNS) or Large-Eddy Simulations (LES) can be performed. In DNS, all
the turbulent scales are calculated. In LES, only the large turbulent flow scales are computed, whereas the
effects of the small structures are taken into account by a subgrid-scale model. In a finite-volume approach,
the Navier-Stokes equations are integrated over the control volumes of the mesh. For brevity and clarity,
the method is presented for the linear convection equation:

∂U
∂t

+∇ · f(U) = 0 (7)

where f is a vectorial function of U. Equation (7) is integrated on the computational volume Ωi using the
divergence theorem:

d

dt

∫
Ωi

UdV +

∫
∂Ωi

f(U) · n dS = 0 (8)

where ∂Ωi corresponds to the faces of Ωi, and n is the outgoing unitary normal of Ωi. Using the linearity
of f and supposing that the cells are hexahedrons, Eq. (8) is equivalent to:

d

dt

∫
Ωi

UdV + f
(∫

∂Ωi

UdS
)
· n = 0 (9)

The calculation of the derivatives of f is replaced in Eq. (9) by the computation of f from the mean values of
U at the cell interfaces. For this purpose, a monodimensional scheme is used. In the following, considering
the one-dimensional domain of Fig.2, the mean value of U at the interface Ii+1/2 is given by:

Ũi+1/2 =
1

|Ii+1/2|

∫
Ii+1/2

UdS (10)
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and the mean value of U in the volume Ωi by:

Ui =
1

|Ωi|

∫
Ωi

UdV (11)

For the computation of the convective fluxes, the vector Ũi+1/2 is obtained using the 6th-order implicit
scheme of Fosso et al.:4

αi+1/2Ũi−1/2 + Ũi+1/2 + βi+1/2Ũi+3/2 =

2∑
l=−1

alUi+l (12)

where αi+1/2, βi+1/2 and al are the scheme coefficients.

Fig. 2: Representation of a one-dimensional computational domain.

In order to ensure the stability of the centered scheme (12), the 6th-order compact filter of Visbal and
Gaitonde5 is applied to the flow variables in order to remove grid-to-grid oscillations. The filter is also
used as a LES subgrid-scale model, dissipating turbulent energy at high frequencies.6–8 It is employed on a
uniformly spaced grid thanks to a coordinate transform. The filtered values, denoted Û, are estimated from
the mean values U as:

αfÛi−1 + Ûi + αfÛi+1 =

3∑
l=0

γl
2

(
Ui+l + Ui−l

)
(13)

where αf = 0.47, and γl are the filter coefficients.5 The diffusive fluxes in Eq. (4) are calculated from
the gradient ∇U estimated at the cell interfaces using a 2nd-order method.9 For time discretization, a
low-storage 6-stage Runge Kutta algorithm10 is used. Radiation boundary conditions, Navier-Stokes char-
acteristic boundary conditions as well as sponge zones are implemented in order to avoid significant acoustic
reflections at the computational boundaries. A full description of the numerical algorithm is given in Fosso
et al.11

B. Spatial discretization at the block interfaces

1. Conforming grid interfaces

At the interfaces between the mesh blocks, the 4-point scheme (12) cannot be applied. Therefore, for
conforming grids, Fosso et al.4 proposed a flux reconstruction at the interfaces. It consists in using a non-
centered scheme to determine the values of Ũ at the interfaces, and thus compute the convective fluxes.
The flux reconstruction technique is described for a two-dimensional computational domain composed of
two blocks L and R separated by an interface as illustrated in Fig. 3. The procedure consists in two steps:

1. In the first step, in the block L, the variable vector ŨN+1/2,j at the interface IL represented in red in
Fig. 3(a) is computed using an upwind scheme. The scheme needs two cells (squares) and an interface
(cross) in the block L, and two ghost cells (stars) in the block R as:

α′N+1/2ŨN−1/2,j + ŨN+1/2,j = a′0Ui=N−l,j + a′1Ui=N,j︸ ︷︷ ︸
cells of block L

+ a′2Ui′=0,j + a′3Ui′=1,j︸ ︷︷ ︸
cells of block R

(14)

where α′N+1/2 and a′i are the upwind scheme coefficients which are determined using Taylor series.
Data exchanges between the blocks at each time step during the simulation allow the values of Ui′=0,j
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and Ui′=1,j to be known in the block L. In the block R, the vector Ũ−1/2,j at the interface IR in blue
in Fig. 3(b) is computed similarly:

Ũ−1/2,j + β′′−1/2Ũ1/2,j = a′′0Ui=N−1,j + a′′1Ui=N,j︸ ︷︷ ︸
cells of block L

+ a′′2Ui′=0,j + a′′3Ui′=1,j︸ ︷︷ ︸
cells of block R

(15)

where β′′−1/2 and a′′i are the scheme coefficients.

2. The values of Ũ obtained at the interfaces IL and IR usually differ from each other since they are
estimated from the upwind schemes (14) and (15). Therefore, in the second step, the unicity of the
flux at the block interface is ensured by the resolution of the Riemann problem.12

(a) (b)

Fig. 3: Flux reconstruction for conforming grids: (a) step 1: computation of the flow field variables
at the block interface IL using a non-centered scheme involving two cells (squares) and an interface
(cross) in the block L and two ghost cells (stars) in the block R, (b) step 2: computation of the flux
from the flow variables at the interfaces IL (red) and IR (blue), using a Riemann solver.

As for the scheme of Fosso et al.,4 a specific procedure has also been developed13 to apply the 7-point
filter of Visbal and Gaitonde5 near conforming grid interfaces. It consists in using the centered filter (13) and
five ghost cells indexed by i′ = 0, 1, 2, 3, 4 in Fig. 3. Previous studies13 demonstrated that the application
of the filter in ghost cells is particularly interesting in order to avoid a significant decrease of the spectral
accuracy of the 6th-order filter of Visbal and Gaitonde5 near the block interfaces. In Fig. 3, close to the
interface in block L, relation (13) is applied until the ghost cell (i′ = 1, j) as:

αfÛi′=0,j + Ûi′=1,j + αfÛi′=2,j =

3∑
k=2

γk
2
Ui=N−k+2,j +

γ1

2
Ui′=0,j + γ0Ui′=1,j +

3∑
k=1

γk
2
Ui′=k+1,j (16)

Note that in Eq. (16), the filtered value Ûi′=2,j is needed. It obtained assuming the flow field in the ghost
cell (i′ = 2, j) is unfiltered, yielding:

Ûi′=2,j = Ui′=2,j (17)

2. Non-conforming grid interfaces

For non-conforming grids, as shown in Fig. 4, the flux reconstruction technique presented above cannot be
applied. Indeed, the upwind scheme (14) cannot be implemented since the ghost cells represented by stars in
Fig. 3(a) are not defined when the mesh lines are discontinuous at the block interface. In this work, a new flux
reconstruction is thus proposed at the non-conforming grid interfaces. Inspired by the technique previously
presented for conforming grids, the method consists in defining ghost cells in order to apply scheme (14)
and then compute the fluxes at the block interfaces. The approach, composed of four steps, is illustrated in
Fig. 4 for the computation of the flux in the block L at the interface IL represented in red.

1. First, in order to compute the flow variables ŨN+1/2,j at the interface IL using scheme (14), two ghost
cells indicated by stars in Fig. 4(a) are defined. The ghost cells are located in the planes i′ = 0 and
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i′ = 1. They are found at the intersection between the plane i′ = 0 or 1 and the straight line defined
by the center of the cells (i = N − 1, j) and (i = N, j). In the case of the conforming grid of Fig. 3(a),
the ghost cell positions correspond to the centers of the cells (i′ = 0, j) and (i′ = 1, j) in the block
R. The value of U in the ghost cells is then calculated using the interpolation technique described in
section II.C.1.

2. In a second step, as shown in Fig. 4(b), the upwind scheme (14) is used to compute the vector ŨN+1/2,j

at the interface IL.

3. Using the same methodology, in the block R, the vectors (..., Ũ−1/2,j′ , Ũ−1/2,j′+1, ...) are computed
at the interfaces (..., I−1/2,j′ , I−1/2,j′+1, ... ) in blue in Fig. 4(c).

4. The values of Ũ obtained in step 3 are finally employed to interpolate an equivalent variable vector
Ũ−1/2,j at the interface denoted IR in Fig. 4(d). The interface IR is geometrically identical to IL.
This second interpolation technique is presented in section II.C.2. Finally, the convective flux at the
block interface is determined from the values of ŨN+1/2,j and Ũ−1/2,j by resolving a Riemann flux
problem.12

(a) (b)

(c) (d)

Fig. 4: Flux reconstruction for non-conforming grids at the interface IL in block L: (a) step 1: definition
of two ghost cells (stars), (b) step 2: computation of the flow variables at the interface IL using a
non-centered scheme, (c) step 3: computation of the flow variables at the interfaces in blue using a
non-centered scheme, (d) step 4: interpolation of the flow variables at the interface IR using the data
computed in step 3, and computation of the resulting flux at the block interface using a Riemann
solver.

Concerning the 6th-order filter of Visbal and Gaitonde,5 five ghost cells are necessary to apply the
relation (16) proposed for conforming grids. For such grids, the flow variables in the ghost cells are obtained
thanks to data exchanges between blocks. However, for non-conforming grids, they are computed using
interpolations. Consequently, the use of five ghost cells leads to an extra cost compared to conforming grids.
Therefore, the number of ghost cells is limited to two. Using the notations of Fig. 4, in the block L, using
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two ghost cells, it is possible to implement the 7-point filter (13) until the point (i = N − 1, j). At the cell
(i = N, j) adjacent to the block interface, the filtered field Ûi=N,j is computed from the upwind formulation:

αfÛi=N−1,j + Ûi=N,j + αfÛi′=0,j =

4∑
k=0

γ′kUN−4+k,j + γ′5Ui′=0,j + γ′6Ui′=1,j (18)

The flow variables in the ghost cells (i′ = 0, j) and (i′ = 1, j) are also filtered using the non-centered relations:
αfÛi=N,j + Ûi′=0,j + αfÛi′=1,j =

4∑
k=0

γ′′kUN−4+k,j + γ′′5Ui′=0,j + γ′′6Ui′=1,j

αfÛi′=0,j + Ûi′=1,j =
4∑

k=0

γ′′′k UN−4+k,j + γ′′′5 Ui′=0,j + γ′′′6 Ui′=1,j

(19)

where αf = 0.47, and γ′k, γ
′′
k and γ′′′k are the non-centered filters coefficients.14

C. Interpolation technique

In this section, the interpolation techniques used to compute the flow variables in the ghost cells and at the
grid interfaces are described. Radial Basis Function (RBF) interpolations1 are employed.

1. Definition of the flow variables in the ghost cells

The interpolation method used to reconstruct the flow variables U in the ghost cell (i′ = 0, j) represented
by a star in Fig. 5(a) is presented. The interpolation is performed from the values of U in cells of the block
R located in a area around the ghost cell. This area, represented in grey in Fig. 5, contains cell centers
at i′ = 0. More precisely, in Fig. 5(b), its size is defined by a radius Rv = nvrmin, where nv is a positive
integer and rmin is the minimal distance between the ghost cell center and the points of the area. In the
following, the position of the ghost cell is denoted x = (x, y, z) in Cartesian coordinates, the integer np is
the number of points contained in the area, and the quantity u corresponds to a variable of vector U. The
RBF interpolation consists in determining an approximation function u(x) using the values of u known at
the np points in the grey area.

(a) (b)
Fig. 5: Representation of the area (in grey) considered for the interpolation of the flow variables in
the ghost cell (i′ = 0, j) indicated by a star: (a) in the plane (i, j) (b) in the plane i′ = 0: rl is
the distance between the center of the ghost cell (star) and the center of the lth cell of the area,
Rv = nvrmin is the radius of the grey area where rmin = min(rl) and nv is a positive integer.

The function u(x) is defined as a linear combinaison of radial basis functions Φl(x) and polynomials
Pq(x):2

u(x) =

np∑
l=1

λlΦl(x) +

m∑
q=1

βqPq(x) (20)

where λl and βq are the unknown interpolation coefficients and m is the number of polynomial functions. In
this study, Wendland’s basis functions2,15 with compact support are used:

Φl(x) = Φ(rl) = (1− rl)4
+(4rl + 1) 1 ≤ l ≤ np (21)
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where rl denotes the Euclidian distance between the point x and the node xl in Fig. 5(b), and (1 − rl)+

corresponds to:

(1− rl)+ =

{
(1− rl) if 0 ≤ rl ≤ Rv

0 if rl > Rv

(22)

The polynomial term in Eq. (20) is given by:

PT (x) = (1, x, y, z, x2, xy, y2, ...) (23)

This term ensures that approximation (20) has a unique solution1,16 by imposing the orthogonality con-
straints:

np∑
l=1

Pq(xl)λl = 0 for 1 ≤ q ≤ m (24)

The coefficients λl and βq are chosen so that the approximation u(x) is exact for the np points contained in
the grey area. Therefore, the interpolation formulation (20) satisfies the following relations:

u(xk) = uk =

np∑
l=1

λlΦl(xk) +

m∑
q=1

βqPq(xk) for 1 ≤ k ≤ np (25)

where uk corresponds to the value of u at the kth point of the grey area. This value is supposed to be known.
The values of λl and βq are obtained by resolving the system:(

Φ P
PT 0

)(
λ

β

)
=

(
uset

0

)
(26)

where λ = (λ1, ..., λnp
)T and β = (β1, ..., βm)T are the vectors of the interpolation coefficients to be deter-

mined, uset = (u1, ..., unp
)T , and Φ ∈ Rnp×np and P ∈ Rnp×m are matrices defined from the basis functions

by:
Φkl = Φl(xk) 1 ≤ k, l ≤ np
Pkq = Pq(xk) 1 ≤ k ≤ np and 1 ≤ q ≤ m

(27)

For the conforming grid interface of Fig. 3, the interpolated value u(x) corresponds to the quantity u
in the cell of block R located at i′ = 0 and j. Indeed, in this case, the ghost cell is a grid cell of the grey
area. Consequently, the interpolation is by definition exact from relation (25). Concerning the choice of
the polynomial term (23), imposing PT (x) = 1 allows to preserve a uniform flow. For example, if uk is
equal to a constant C regardless of the value of k, u(x) = β0 = C is the trivial solution to the interpolation
problem (26). In the following, the interpolations will be performed using PT (x) = 1 or PT (x)=(1, x, y, z).
Finally, the value of U in the second ghost cell in Fig. 4(a) is reconstructed similarly, using np points in the
plane i′ = 1.

2. Definition of the flow variables at the block interface

As mentioned in section II.B.2, a second interpolation is performed to determine the vector Ũ−1/2,j at
the interface IR shown in Fig. 4(d). The technique is similar to the one proposed for the flow defini-
tion in the ghost cells. However, the objective of this interpolation is to calculate a value of Ũ at the
block interface instead of a discrete value of U. Therefore, the interpolation is performed from np vectors
(Ũ−1/2,1, ..., Ũ−1/2,j′ , ..., Ũ−1/2,np

) at the interfaces (I−1/2,1, ..., I−1/2,j′ , ..., I−1/2,np
) represented in blue in

Fig. 4(c). As previously, the size of the area containing the np interfaces is set by the value of Rv. Once
again, a reconstruction of u by a RBF interpolation is used:

u(x) =

np∑
l=1

λ′lΦl(x) +

m∑
q=1

β′qPq(x) (28)
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where λ′l et β′q are the unknown coefficients. The variable ũ−1/2,j of the field Ũ−1/2,j results from the
integration of u on the interface IR. Integrating relation (28) yields:

ũ−1/2,j =
1

|IR|

∫
IR

udS

=

np∑
l=1

λ′l

(
1

|IR|

∫
IR

Φ(rjl)dS

)
+

m∑
q=1

β′q

(
1

|IR|

∫
IR

PqdS

) (29)

where rjl is the Euclidian distance between the center of the interface I−1/2,l and the current point of the
interface IR where the integral is estimated. The coefficients λ′l et β′q are determined by integrating the
interpolation fonction (28) on the np interfaces (I−1/2,1, ..., I−1/2,j′ , ..., I−1/2,np

), and by imposing that the
integrals obtained correspond to the vectors (Ũ−1/2,1, ..., Ũ−1/2,j′ , ..., Ũ−1/2,nP

). It yields for the interface
I−1/2,k:

ũ−1/2,k =

np∑
l=1

λ′l

(
1

|I−1/2,k|

∫
I−1/2,k

Φ(rkl)dS

)
+

m∑
q=1

β′q

(
1

|I−1/2,k|

∫
I−1/2,k

PqdS

)
for 1 ≤ k ≤ np (30)

where ũ−1/2,k is a component of the averaged field Ũ−1/2,k at the interface I−1/2,k. In practice, the coefficients
λ′l and β

′
q are computed by the resolution of the system:(

Φ′ P′

P′T 0

)(
λ′

β′

)
=

(
ũset

0

)
(31)

where λ′ = (λ′1, ..., λ
′
np

)T and β′ = (β′1, ..., β
′
m)T are the vectors of the interpolation coefficients, ũset =

(ũ−1/2,1, ..., ũ−1/2,np
)T , and Φ′ ∈ Rnp×np and P′ ∈ Rnp×m are matrices defined from the basis functions by:

Φ′kl =
1

|I−1/2,k|

∫
I−1/2,k

Φ(rkl)dS 1 ≤ k, l ≤ np

P′kq =
1

|I−1/2,k|

∫
I−1/2,k

PqdS 1 ≤ k ≤ np and 1 ≤ q ≤ m
(32)

III. Numerical simulations

The performance of the flux reconstruction on non-conforming grids is evaluated by performing 2-D
simulations of vortex convection and of a mixing layer on Cartesian meshes. The flux reconstruction is also
applied in 3-D for a turbulent jet flow.

A. Convection of a vortex

1. Parameters

A round vortex is convected in a mean flow characterized by a Mach number M of 0.5, a pressure of 105 Pa
and a temperature of 300 K. The bidimensional computational domain considered for the simulations extends
from x = 0 down to x = 3L in the streamwise direction, and from y = 0 up to y = L in the transverse
direction, where L = 0.1 m. It is divided in two blocks separated by a vertical non-conforming interface
located at x = L. The vortex is defined by the velocity and pressure fluctuations:

u′ = − Γ

R2
(y − yc) exp

(
− ln 2

(x− xc)2 + (y − yc)2

2b2

)
v′ =

Γ

R2
(x− xc) exp

(
− ln 2

(x− xc)2 + (y − yc)2

2b2

)
p′ = − ρΓ2

2R2
exp

(
− ln 2

(x− xc)2 + (y − yc)2

b2

) (33)
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where (xc = 0.5L, yc = 0.5L) is the position of the vortex center at the initial time t = 0, b = (
√

ln 2/20)L '
0.04L is the vortex half-width, R = b/

√
ln 2, and Γ represents its intensity given by:

ρΓ2

2R2
= 103 Pa (34)

The velocity and pressure fluctuations are superimposed onto the mean flow at t = 0. The performance
of the flux reconstruction at the interface is examined by performing four simulations using different meshes
(see Fig. 6), with and without RBF interpolations. The grid parameters, namely the mesh spacings in the
streamwise direction ∆x, and in the transverse direction on the left and the right sides of the interface ∆yL

and ∆yR, as well as the flux reconstruction technique at the block interface, are provided in Tab. 1.

simulation ∆x ∆yL ∆yR flux reconstruction technique
Vo-RBF-Coarsegrid ∆ ∆ 2.0 ∆ RBF interpolations
Vo-RBF-Mediumgrid ∆ ∆ 1.5 ∆ RBF interpolations
Vo-RBF-Finegrid ∆ ∆ 1.3 ∆ RBF interpolations

Vo-noRBF-Mediumgrid ∆ ∆ 1.5 ∆ 2nd-order interpolations

Table 1: Parameters of the simulations of the vortex convection: ∆x is the mesh spacing in the
streamwise direction,∆yL and ∆yR are the mesh spacings in the transverse direction at the left and
the right sides of the non-conforming grid interface, ∆ = L/127.

The influence of the spatial resolution on the flux reconstruction is evaluated by performing three sim-
ulations using different mesh spacings on the right side of the block interface. The simulations are denoted
Vo-RBF-Coarsegrid, Vo-RBF-Mediumgrid, Vo-RBF-Finegrid. The three meshes close to the block interface
are represented in Fig. 6. In all cases, in the streamwise direction, there is no discontinuity of the mesh lines
at the block interface, and a constant grid spacing of ∆x = ∆ = L/127 is applied. The vortex half-width b
is thus discretized by 5 points (b = 5.29∆). In the transverse direction, on the left side of the interface, the
grid spacing ∆yL is constant and also equal to ∆. On the right side of the interface, in order to obtain a
non-conforming grid, a poorer mesh resolution is chosen in the y-direction. More precisely, the grid spacing
∆yR is respectively equal to 2∆, 1.5∆ and 1.3∆ for the coarse, the medium and the fine grids, corresponding
to a discretization of the vortex half-width by 2.6, 3.5 and 4 points. Concerning the flux reconstruction at
the block interface, in Vo-RBF-Coarsegrid, Vo-RBF-Mediumgrid and Vo-RBF-Finegrid, RBF interpolations
are carried out using points contained in an area defined by nv = 5 and the polynomial function PT (x) = 1.

(a) (b) (c)

Fig. 6: Representation of the meshes close to the block interface: (a) Vo-RBF-Coarsegrid, (b) Vo-
RBF-Mediumgrid and Vo-noRBF-Mediumgrid and (c) Vo-RBF-Finegrid.

The performance of the RBF interpolation technique is examined by performing a fourth simulation
without RBF interpolation. The simulation is denoted Vo-noRBF-Mediumgrid. Its parameters are identical
to those in Vo-RBF-Mediumgrid, except for the ghost cell definition and the flux reconstruction at the
interface which are computed using 2nd-order interpolations. In this case, as shown in Fig. 7, the variable
vector U in the ghost cell (i′ = 0, j) delimited in red is defined as the weighted sum of U in the cells of
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block R (i′ = 0, j′) and (i′ = 0, j′ + 1):

Ui′=0,j =
|LM |
|LN |Ui′=0,j′ +

|MN |
|LN | Ui′=0,j′+1 (35)

The flow field in the ghost cell (i′ = 1, j) and the flux at the block interface are computed in a similar way.

Fig. 7: Representation of a non-conforming grid where the interface LN is divided in two parts LM
and MN. The flow variables in the ghost cell represented in red dashed line are calculated from the
flow field in the computational cells (i′ = 0, j′) and (i′ = 0, j′ + 1).

The time step ∆t in the computations is chosen in order to impose a CFL number (1 +M)c∆t/∆ of 0.2,
where c is the sound speed. When the vortex crosses the block interface, numerical waves may be generated
due to the difference in grid resolution as well as to the new spatial discretization at the interface. The
objective is to ensure that the amplitude of these spurious waves is very low with respect to the pressure
deficit in the vortex. Therefore, we propose to compare the pressure field pinterface obtained in the multiblock
simulations with the field pno-interface computed from simulations without block interface. In particular, four
monoblock simulations are carried out using a mesh spacing ∆y respectively equal to ∆, 1.3∆, 1.5∆ and 2∆
in all the computational domain. The other parameters are similar to those in the simulations in Tab. 1.
Comparing the pressure pinterface with pno-interface instead of with the analytical vortex definition (33) is
proposed in order to take into account the vortex discretization on the meshes.

2. Influence of the radial basis function interpolations

In this section, the performance of the RBF interpolations is investigated by comparing the results obtained
in the simulations Vo-noRBF-Mediumgrid and Vo-RBF-Mediumgrid. Snapshots of the pressure field ∆p =
pinterface − pno-interface when the vortex is located at x = 1.25L are displayed in Fig. 8. In all cases, a wave
is generated when the vortex goes through the interface. The amplitude of ∆p is of a few Pascal which is
low compared to the pressure variations of 103 Pa at the center of the vortex. Stronger levels are obtained
in Vo-noRBF-Mediumgrid using 2nd-order interpolations for the flux reconstruction at the block interface
than in Vo-RBF-Mediumgrid using RBF interpolations.

(a) (b)

Fig. 8: Representation of the pressure difference ∆p when the vortex is located at x = 1.25L: (a) Vo-
noRBF-Mediumgrid and (b) Vo-RBF-Mediumgrid; levels are given in Pa.

The time evolution of the pressure difference ∆p is recorded at the three mesh points A, B, C indicated by
squares in Fig. 9. They are located upstream the block interface at x = 0.8L and y = 0.75L, at the interface
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at x = L and y = 0.5L, and downstream the interface at x = 1.2L and y = 0.75L, respectively. The signals
at these points in Vo-noRBF-Mediumgrid and Vo-RBF-Mediumgrid are presented in Fig. 10. The maximum
levels are found in Fig. 10(b) at the point B located at the interface. In Vo-noRBF-Mediumgrid, the pressure
difference ∆p at the points A, B and C reaches peaks of 1.5 Pa, -3.1 Pa and 0.8 Pa. In Vo-RBF-Mediumgrid,
the levels are at least 60% lower than in the previous case, with maximum values of 0.3 Pa, 1.1 Pa and
0.2 Pa. These results demonstrate the advantage of using RBF interpolations for the spatial discretization
at the block interface.

Fig. 9: Representation of the mesh points A, B and C (squares) where the pressure field is recorded.
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Fig. 10: Representation of the time evolution of the pressure difference ∆p (a) at point A, (b) at
point B and (c) at point C: Vo-noRBF-Mediumgrid and Vo-RBF-Mediumgrid. The vertical
grey line indicates the moment when the vortex hits the interface.

3. Influence of the mesh resolution at the right side of the block interface

Snapshots of the pressure difference ∆p obtained in Vo-RBF-Coarsegrid, Vo-RBF-Mediumgrid and Vo-RBF-
Finegrid are shown in Fig. 11. Increasing the mesh resolution in the y-direction on the right-hand side of
the interface, using mesh spacings from ∆yR = 2∆ down to 1.3∆, is found to reduce the amplitude of the
spurious waves. This is particularly clear when the results obtained using the coarse and the medium grids
in Fig. 11(a) and 11(b) are compared. Less differences are observed between the simulations performed with
the medium and the refined grids in Fig. 11(b) and 11(c).

More quantitative results are given in Fig. 12 where the time evolution of the pressure difference ∆p is
displayed at the points A and B, located upstream the block interface and at the interface. The strongest
level, obtained at the interface, is smaller than 3 Pa, corresponding to 0.3% of the pressure at the center of the
vortex. In Vo-RBF-Coarsegrid, the pressure difference reaches values of 0.4 Pa and 2.9 Pa in Fig. 12(a) and
Fig. 12(b). For the medium and the refined meshes, the amplitudes of the spurious waves are significantly
lower than those found for the coarse grid. Indeed, in Vo-RBF-Mediumgrid, the maximum levels are close to
only 0.3 Pa and 1.1 Pa. In Vo-RBF-Finegrid, a slight decrease of the pressure difference ∆p is also observed
compared to that in Vo-RBF-Mediumgrid, with peaks of 0.2 Pa and 0.9 Pa.

12 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Ju
ly

 8
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
29

72
 



(a) (b) (c)

Fig. 11: Representation of the pressure difference ∆p when the vortex is located at x = 1.25L:
(a) Vo-RBF-Coarsegrid, (b) Vo-RBF-Mediumgrid, (c) Vo-RBF-Finegrid; levels are given in Pa.
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Fig. 12: Representation of the time evolution of the pressure difference ∆p (a) at the point A and (b)
at the point B: Vo-RBF-Coarsegrid, Vo-RBF-Mediumgrid and Vo-RBF-Finegrid. The
vertical grey line indicates the moment when the vortex hits the interface.

B. Mixing layer

1. Parameters

A two-dimensional mixing layer is simulated using the flux reconstruction technique for non-conforming grids.
The flow parameters and the computational domain are identical to those considered in the simulation of
Bogey and Bailly.17 The mean longitudinal velocity profile u at the inflow at x = 0 is defined by the
hyperbolic tangent profile:

u(y) =
U1 + U2

2
+
U2 − U1

2
tanh

(
2y

δw(0)

)
(36)

where U1 = 40 m/s and U2 = 160 m/s are the low and the high flow speeds, and δw(0) = 1.6 × 10−3 m
is the initial vorticity thickness. The transverse velocity v is initially null. The flow is characterized by a
Reynolds number Rew = δw(0)(U2 − U1)/ν = 1.28× 104, where ν is the kinematic molecular viscosity. The
ambient pressure is equal to 105 Pa. The computational domain extends from 0 down to 280δw(0) in the
streamwise direction x, and from -320δw(0) up to 320δw(0) in the direction y. At the boundaries of the
domain, Tam and Webb radiation conditions18 are imposed. A Cartesian mesh, containing 441 points in
each direction, is used. Upstream, in the shear layer at x = 0 and y = 0, the grid spacings in the directions
x and y are equal to ∆x0 = 0.32δw(0) and ∆y0 = 0.16δw(0). The mesh is then stretched in the y-direction
with a rate of 1.8% to reach ∆ymax = 3δw(0). In the flow direction, the grid spacing is equal to ∆x0 down
to x = 110δw(0), where a 2.8% stretching is applied in order to form a sponge zone and thus dissipate the
aerodynamic fluctuations close to the outflow boundary. The mesh is splitted in two block separated by an
interface located at x = 59.5δw(0), as depicted in Fig. 13(a). On the right side of the interface, the mesh is
moved by ∆y0/2 in the transverse direction in order to create a non-conforming grid. A representation of
the mesh close to the block interface is given in Fig. 13(b). Note that there is no grid discontinuity in the
direction x.

The time step ∆t for the computation is equal to 0.52∆y0/c, where c is the sound speed in the ambient
medium. The mixing layer is excited17 at the frequencies f0 and f0/2, where f0 = 0.132(U1 + U2)/2δw(0).
The excitation is applied at each time step at x = 15∆x0 = 4.8δw(0) and y = 0. It results in the presence
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of vortex pairings close to x = 60δw(0), accompanied by the emission of acoustic waves. The vortex pairing
phenomenon is visible on the vorticity field represented in Fig. 13(a). The position of the block interface
appears to be close to the pairing location. Therefore, the objective is to ensure that the presence of the
non-conforming grid interface does not disturb significantly the mixing layer development and the acoustic
noise generated by the vortex pairings.

(a) (b)

Fig. 13: Representation of (a) the vorticity field in the mixing layer with color levels between 0 and
6.5×104 s−1; the mesh points A and B where the pressure field is recorded in the aerodynamic region
at (x = 59δw(0), y = 0), and in the acoustic region at (x = 29δw(0), y = 70δw(0)) are indicated by
squares, (b) the mesh close to the block interface.

In this study, two simulations, denoted M-noRBF and M-RBF, are carried out. In M-RBF, the flux
reconstruction at the block interface is performed with the technique based on RBF interpolations. For
the interpolations, cells contained in an area defined by nv = 5, and the polynomial function of degree 1
PT (x) = (1, x, y) is used. In M-noRBF, the 2nd-order method previously employed for the vortex convection
is applied. In order to estimate the amplitude of the spurious waves produced at the block interface, the
pressure field pinterface obtained in the multiblock simulations is compared with the pressure field pno-interface
computed from a simulation without block interface. This reference simulation is performed using a grid
coinciding with the left-hand side of the multiblock grid. The solutions of pinterface and pno-interface are
therefore obtained on the same grid upstream of the interface, but on different grids downstream. In the
latter case, the pressure pno-interface is interpolated on the non-conforming grid.

Snapshots of ∆p = pinterface − pno-interface obtained from M-noRBF and M-RBF at t = 40000∆t are
presented in Fig. 14. In the two cases, the presence of the non-conforming grid interface is responsible for
pressure differences of about 10 Pa in the shear layer close to y = 0. Lower levels of 2-3 Pa are observed
in the acoustic region for y > 50δw(0). The lowest levels are obtained in Fig. 14(b) in M-RBF, especially
for y > 0 where the amplitudes of spurious waves are weaker than in M-noRBF. In the following, only the
results obtained in M-RBF are presented.

In order to obtain more quantitative results concerning the mixing layer development in M-RBF, the
pressure fields pinterface and pno-interface are recorded at two points A and B located in the aerodynamic
region close to the block interface at x = 59δw(0) and y = 0, and in the acoustic region at x = 29δw(0) and
y = 70δw(0). The position of these points is indicated by squares in Fig. 13(a).

2. Pressure field in the aerodynamic region

The time variations of the pressure fluctuations p′ = p− p̄ obtained from the simulations with and without
a block interface in the shear layer region at point A are given in Fig. 15(a), where · represents the time-
average value of the signal. The two signals are superimposed. The difference between these signals is plotted
in Fig. 15(b). It reaches peaks of -18 Pa. This level is very low compared to the amplitude of the pressure
fluctuations p′ in Fig. 15(a), demonstrating that the presence of the non-conforming grid does not affect
significantly the mixing layer development in the aerodynamic region.
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(a) (b)

Fig. 14: Representation of the pressure difference ∆p = pinterface −pno-interface at t = 40000∆t: (a) M-
noRBF and (b) M-RBF; levels given in Pa.
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Fig. 15: Representation of (a) the time evolution of the pressure fluctuations p′ = p − p̄ at point
A: simulation without block interface and M-RBF, and (b) the pressure difference ∆p′ =
p′interface − p′no-interface.

3. Pressure field in the acoustic region

The pressure fluctuations p′ recorded for the simulations with and without block interface in the acoustic
region at point B are displayed in Fig. 16(a) . The amplitudes reach about 20 Pa. They are lower than those
obtained in the shear layer. However, the signals from the two simulations are again nearly superimposed, as
in Fig. 15(a). The difference between the pressure fields is plotted in Fig. 16(b). It presents a peak-to-peak
value smaller than 1 Pa, which is low compared to the corresponding value of 37 Pa obtained for the pressure
fluctuations p′ in Fig. 16(a). These results show that the acoustic field is not significantly modified by the
non-conforming grid.
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Fig. 16: Representation of (a) the time evolution of the pressure fluctuations p′ = p − p̄ at point
B: simulation without block interface and M-RBF, and (b) the pressure difference ∆p′ =
p′interface − p′no-interface.

C. Application to 3-D turbulent jet flows

In this section, the feasibility of using the flux reconstruction technique for three dimensional flows is inves-
tigated for a jet flow.

1. Jet parameters

A subsonic isothermal jet exiting from a pipe nozzle is computed by LES using non-conforming grid interfaces.
The jet has a Mach number of M = uj/c = 0.6 and a Reynolds number of ReD = ujD/ν = 5.7 × 105,
corresponding to the conditions of the experiment of Cavalieri et al.,19 where D and uj are the jet diameter
and velocity, c is the sound speed and ν is the kinematic molecular viscosity. The ambient pressure p0 and
temperature T0 are equal to 105 Pa and 298 K. At the nozzle exit at z = 0, the flow is characterized by a
boundary-layer thickness of δ = 8.5× 10−2D as in the experiment.19

2. Numerical parameters

A preliminary computation at a lower cost than the computation of the full jet is carried out using a small
domain. At the boundaries, Tam and Webb radiation conditions18 are implemented. In addition, in order to
weaken the hydrodynamic fluctuations at the outflow boundary, damping terms13 and grid stretchings are
applied downstream to create sponge layers. Therefore, the physical domain of the simulation extends from
z = −0.6D down to z = 2.25D in the axial direction, and up to r = 0.75D in the radial direction. Inside the
nozzle, a wall model8 developed for adiabatic walls is used to compute the boundary layer.

The axial and the radial mesh spacings ∆z and ∆r of the LES grid at z = 0, are presented in Fig. 17(a)
and Fig. 17(b). In the physical domain, the mesh spacing in the axial direction is uniform and equal to
∆zmin = 0.0079D. In the radial direction, a minimum grid spacing of ∆rmin = 0.0015D is imposed at
the nozzle lip. From the lip, the mesh is stretched with rates lower than 8.5% in order to avoid spurious
waves. In sponge zones, stretching rates greater than 10% are applied. In that way, the boundary layer
thickness is discretized by about 20 points at the nozzle exit. In the azimuthal direction, 384 points are
equally distributed in the jet shear layers for r > 0.4D and z < 1.5D. Everywhere else, the number of points
is halved in the azimuthal direction using non-conforming grids. Therefore, the presence of very small cells
at the center of the jet is avoided.

The mesh in the (r − θ) plane at z = 0 is displayed in Fig. 18(a). The non-conforming grid interfaces at
rinterface = 0.4D are indicated by dashed lines. They are also visible at zinterface = 1.5D in the (z − r) plane
in Fig. 18(b). The position of the interface at rinterface is chosen such that D/2− rinterface > δ. For the flux
reconstruction at the non-conforming-grid interfaces, the RBF interpolations are performed using areas of
np points defined by nv = 4, and the polynomial term PT (x) = 1.

Initially, the azimuthal and the radial velocity profiles are equal to zero, and pressure is equal to p0. In
the nozzle, the axial velocity obtained from a preliminary RANS computation is imposed and temperature
is calculated using a Crocco-Busemann relation. In order to trigger the laminar-turbulent flow transition
inside the nozzle, vortex rings20 are injected in the boundary layers at z = −0.5D and r = (D− δ)/2 at each
time step during the computation. The initialization time of the simulation corresponds to t = 15D/c. The
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LES field is then recorded during a period of t = 3D/c. The statistical data thus obtained are averaged in
the azimuthal direction and compared with the results of the experiment Cavalieri et al.19
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0 1 2 3

∆
z/
D

z/D

(a)
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∆
r/
D

r/D

(b)

Fig. 17: Representation of the mesh spacings: (a) axial discretization ∆z/D at r = 0, (b) radial
discretization ∆r/D at z = 0.

(a) (b)

Fig. 18: Representation (a) of the mesh in the (r − θ) plane at z = 0, (b) of the vorticity modulus
in the (z − r) plane, using levels between 0 and 10 uj/D. The non-conforming grid interfaces are
represented in dashed line.

3. Results

The development of the jet close to the nozzle is illustrated in Fig. 18(b) in which a snapshot of the vorticity
modulus is presented. The vortex rings injected at z = −0.5D appear to result in a highly disturbed
boundary layer at the nozzle exit. Downstream of the nozzle, the shear layers progressively thicken as
expected. No spurious oscillations are visible close to the interfaces in dashed lines. Therefore, the presence
of the non-conforming grid interfaces does not seem to affect significantly the aerodynamic development of
the jet.

More quantitative results are provided in Fig. 19 where the mean and the rms axial velocities at the nozzle
exit are displayed, as functions of the radial distance. The mean turbulent profile < uz > /uj obtained from
LES is comparable to the experimental data.19 The rms axial velocity < u′zu

′
z >

1/2 /uj at the nozzle exit
is correctly estimated with a peak around 12% of the jet velocity. No numerical artifact is visible at the
non-conforming interface at r = 0.4D on the mean and the rms profiles.

Finally, the variations of the mean axial velocity along the lipline at r = 0.5D obtained from the LES and
from the experiment of Cavalieri et al.19 are plotted in Fig. 20. The LES profile is in a fairly good agreement
with the measurements. There is no discontinuity at the non-conforming grid interface at z = 1.5D.

These preliminary results show that the flux reconstruction can be applied to 3-D flows. A simulation
on an extended computational domain is under progress in order to evaluate the performance of the flux
reconstruction for the estimation of the aerodynamic jet development in the near-field region and of the
acoustic field radiated by the jet in the far-field.
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Fig. 19: Representation of (a) the mean axial velocity and (b) the rms axial velocity at the nozzle
exit of the jet: LES, 2 experiment of Cavalieri et al.19
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Fig. 20: Representation of the mean axial velocity at r = 0.5D: LES, 2 experiment of Cavalieri
et al.19

IV. Conclusions

In this paper, a flux reconstruction technique for non-conforming grid interfaces is presented in order to
perform aeroacoustic simulations for multiblock structured meshes. This technique extends the application of
6th-order implicit centered schemes to non-conforming grids. It consists in using upwind schemes with ghost
cells to calculate the flow variables and thus to determine the flux at the interfaces. Meshless interpolations,
based on the use of radial basis functions, are carried out in order to compute the flow variables in the
ghost cells. The quality of the flux reconstruction method is examined for 2-D problems, namely vortex
convection and a mixing layer. The results highlight the benefit of performing radial basis interpolations
with respect to the reconstruction accuracy. The amplitude of the spurious waves due to the presence of
the non-conforming interface is low compared to the pressure fluctuations in the flow field. The feasibility
of using the flux reconstruction technique for 3-D flows is then illustrated for a turbulent round jet flow at
ReD = 5.7 × 105. The jet development in the vicinity of the nozzle is successfully predicted. Promising
results are thus expected when simulating more complex flow configurations.
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