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In the present study, two-dimensional spatial correlations are calculated in the flow and

the near pressure fields of two isothermal round jets at a Mach number of 0.9, computed by

highly-resolved simulations using cylindrical coordinates (r , θ, z). The two jets have diameter-

based Reynolds numbers of 3, 125 and 100, 000, and they are initially weakly and strongly

disturbed, respectively. For both jets, correlations are evaluated between signals at a given

point, namely flow fluctuations on the jet axis at the end of the potential core and pressure

fluctuations in the jet near field, and 2-D fields acquired in sections (z , r). The full signals

but also the axisymmetric and first azimuthal modes are considered. Overall, despite the

significant differences in Reynolds number and nozzle-exit conditions, the results for the two

jets are very similar. Strong levels of correlations are obtained over large spatial regions and

long time periods, providing information on noise generation mechanisms. In particular, the

2-D correlation fields reveal the presence of a wavepacket-like structure growing in the jet

mixing layers, centered on a correlation spot in the potential core, and peaking in amplitude

around the end of the jet core, which leads to the emission of sound waves in the downstream

direction.

I. Introduction
Since more than sixty years [1, 2], a large amount of studies have been performed to investigate subsonic jet

noise. Some questions, however, remain about the low-frequency acoustic component dominating in the downstream

direction [3]. This component, typically centered around a Strouhal number of StD = f D/u j = 0.15, can be measured

over a wide range of Mach numbers [4], typically from M = u j/ca = 0.5 up to M = 2, where f is the frequency,

D and u j are the jet diameter and velocity, and ca is the speed of sound in the ambient medium. It is mainly

axisymmetric [5, 6], and has properties which are quite distinct from those of the omnidirectional, broadband noise

component prevailing in the upstream and sideline directions, generated by fine-scale turbulence [7]. Therefore, it

seems to be produced by large-scale structures and/or instability waves. Furthermore, it appears to be emitted around

the end of the potential core [8, 9], by a mechanism which is still not clearly understood, but does not depend much on

the Reynolds number [10, 11]. Recently, this mechanism has been assumed to be similar to that predicted in theoretical

work on noise generation by hydrodynamic wavepackets [7, 12, 13].

In order to shed light on that mechanism, different methods have been proposed. One method consists in computing

cross-correlations between flow quantities and acoustic signals outside the jet. It has been employed since the early

seventies in several experimental and numerical investigations [9, 11, 14–20], and very recently for temporally-

developing jets [21]. It has been found that the noise radiated in the downstream direction correlates with the

fluctuations near the end of the potential core for high-subsonic and supersonic jets, suggesting a link between the

breakdown of shear-layer turbulent structures and the generation of that noise. The spatial structure and characteristics

of the sound field have also been investigated from pressure auto-correlations. The downstream noise component is

coherent over large spatial areas, as expected for noise from large-scale structures [7].

In the present work, cross- and auto-correlations are calculated in the flow and the near pressure fields of two

isothermal round jets at a Mach number of 0.9 and at Reynolds numbers of 3,125 and 100,000. They are computed

from data obtained in highly-resolved simulations in 2-D sections (z,r) of the jets, for the full flow and pressure signals

and for the azimuthal modes nθ = 0 and 1 alone. Two-dimensional spatial correlations and their time evolutions

are thus presented, with the aim of accessing key information on noise generation. Particular attention is paid to the

correlations with the fluctuations at the end of the jet potential core, and with the sound pressure fluctuations radiated
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in the downstream direction, in order to further clarify the mechanism underlying the emission of acoustic waves in

that direction.

The paper is organized as follows. The characteristics of the jets and of the simulations, including jet initial condi-

tions, numerical methods and computational parameters, are documented, and the two-dimensional cross-correlations

are defined in section II. The main properties of the jet flow and near pressure fields, and the correlations are shown in

section III. Finally, concluding remarks are given in section IV.

II. Parameters

A. Jet flow conditions

Two isothermal round jets at a Mach number M = u j/c0 of 0.9 and Reynolds numbers ReD = u jD/ν of 100,000

and 3,125 are simulated, where c0, D and ν are the speed of sound in the ambient medium, the jet diameter and

the kinematic molecular viscosity, as reported in table 1. The first one has been considered in previous numerical

studies [22–24]. The jets originate from a pipe nozzle of radius r0 = D/2 and length 2r0 into a medium at ambient

temperature and pressure T0 = 293 K and p0 = 105 Pa. The pipe exit is at z = 0, and the pipe wall thickness is 0.053r0.

At the pipe inlet, at z = −2r0, Blasius laminar boundary-layer profiles of thickness δBL = 0.15r0 for ReD = 100,000

and δBL = 0.42r0 for ReD = 3,125 are imposed for the axial velocity [25]. The boundary layer is thinner at a higher

Reynolds number, in agreement with experimental trends [26, 27]. In addition, radial and azimuthal velocities are set

to zero, pressure is equal to p0, and temperature is determined by a Crocco-Busemann relation.

Table 1 Jet parameters: Mach and Reynolds numbers M and ReD, thickness of the Blasius laminar boundary-

layer profile imposed at the pipe nozzle inlet δBL , peak turbulence intensity at the nozzle exit u′
e/u j .

M ReD δBL u′
e/u j

0.9 100,000 0.15r0 9%

0.9 3,125 0.42r0 1%

The mean and rms axial velocity profiles obtained at the nozzle-exit section for the two jets are presented in

figure 1. The mean velocity profiles are very similar to the laminar profiles imposed at the nozzle inlet, while the

rms velocity profiles show peak axial turbulence intensities u′
e/u j of 9.14% for ReD = 100,000 and of 0.99% for

ReD = 3,125. These turbulence intensities are obtained by adding random low-level vortical disturbances uncorrelated

in the azimuthal direction at z = −0.95r0 in the boundary layers inside the pipe [22]. This forcing procedure allows

us to generate disturbed flow conditions at the nozzle exit, which would otherwise be fully laminar. Thus, the present

jets are, respectively, initially highly and weakly disturbed. The nozzle-exit conditions for the jet at ReD = 100,000

correspond to those measured in a tripped jet by Zaman [26]. They have been discussed in previous papers [22, 28].

Finally, note that despite the difference in Reynolds number and initial conditions, the two present jets are most likely

to radiate noise in a similar manner in the downstream direction [10, 11, 29–31]. For ReD = 3,125, however, only

large turbulent scales, hence low-frequency sound waves, are expected in the jet flow and acoustic fields which could

help us to extract the main features of the noise generation mechanisms associated with the development of coherent

structures in a subsonic jet.

B. Numerical methods

The numerical framework is identical to that used in a number of other jet simulations [22–25, 28, 32, 33]. The

simulations are carried out using an in-house solver of the three-dimensional compressible Navier-Stokes equations in

cylindrical coordinates (r, θ, z) based on low-dissipation and low-dispersion explicit schemes. The axis singularity is

taken into account by the method of Mohseni & Colonius [34]. In order to alleviate the time-step restriction near the

cylindrical origin, the derivatives in the azimuthal direction around the axis are calculated at coarser resolutions than

permitted by the grid [35]. For the points closest to the jet axis, they are evaluated using 16 points, yielding an effective

resolution of 2π/16. Fourth-order eleven-point centered finite differences are used for spatial discretization, and a

second-order six-stage Runge-Kutta algorithm is implemented for time integration [36]. A sixth-order eleven-point

centered filter [37] is applied explicitly to the flow variables every time step. Non-centered finite differences and filters

are also used near the pipe walls and the grid boundaries [25, 38]. At the boundaries, the radiation conditions of Tam
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Fig. 1 Nozzle-exit radial profiles of (a) the mean axial velocity 〈uz〉 and (b) the rms values of axial velocity

fluctuations u′
z for the jets at ReD = 100, 000 and ReD = 3, 125.

& Dong [39] are applied„ with the addition at the outflow of a sponge zone combining grid stretching and Laplacian

filtering [40], to avoid significant acoustic reflections. Small adjustment terms are also added to prevent that mean

density and pressure deviate significantly from ambient density and pressure, and no co-flow is imposed.

In the present simulation, the explicit filtering is employed to remove grid-to-grid oscillations, but also, when the

mesh grid is not fine enough to compute the smallest turbulent structures, as a subgrid-scale high-order dissipation

model in order to relax turbulent energy from scales at wave numbers close to the grid cut-off wave number while leaving

larger scales mostly unaffected. The performance of this large-eddy simulation (LES) approach has been assessed in

past studies for subsonic jets, Taylor-Green vortices and turbulent channel flows [22, 41–44], from comparisons with

solutions of direct numerical simulations and from the examination of the magnitude and the properties of the filtering

dissipation in the wavenumber space.

C. Simulation parameters

The simulation of the jet at ReD = 100,000 is a well-resolved LES. Its parameters are detailed in a recent

paper [24] reporting the results of a grid-sensitivity study on the jet flow and acoustic fields. The mesh grid contains

nr × nθ × nz = 2085 × 1024 × 512 points, and its physical extents are Lz = 40r0 and Lr = 15r0. The variations of

the radial and axial mesh spacings ∆r and ∆z are represented in figure 2. The minimum mesh spacings are equal to

∆r = 0.0036r0 at r = r0 and ∆z = 0.0072r0 at z = 0. The maximal mesh spacing in the jet near field is equal to

∆r = 0.075r0, leading to a Strouhal number of StD = f D/u j = 5.9 for an acoustic wave discretized by five points per

wavelength, where f is the frequency.

The simulation of the jet at ReD = 3,125 is a direct numerical simulation. The mesh grid here is made of

nr ×nθ ×nz = 2458×512×427 points. It extends, excluding the sponge zone, up to Lz = 75r0 in the axial direction and

out to Lr = 25r0 in the radial direction. As shown in figure 2, the minimum mesh spacings are equal to ∆r = 0.0072r0

at r = r0 and ∆z = 0.014r0 at z = 0, that are twice as large as those for the jet at ReD = 100,000. In the jet near field,

the maximal mesh spacing is also doubled compared to the higher-Reynolds-number case, with ∆r = 0.15r0 yielding

StD = 3 for an acoustic wave with five points per wavelength.

The simulations have been performed with an OpenMP-based in-house solver, using a time step ∆t of 0.7×∆r(r =

r0)/c0 for ReD = 100,000 and of 0.6 × ∆r(r = r0)/c0 for ReD = 3,125, to ensure numerical stability. The simulation

time T after the transient period is equal to 1,000r0/u j for the jet at ReD = 100,000 and to 2,000r0/u j for the jet at

ReD = 3,125, corresponding to 438,000 and 511,000 iterations, respectively. A total number of approximately 2.5

billion CPU hours has thus been consumed, for 200 GB of memory required for the higher-Reynolds-number case.

During time T , density, velocity components and pressure along the jet axis at r = 0, and on the surfaces located

at r = r0 and r = Lr , are recorded at a sampling frequency allowing spectra to be computed up to StD = 12.8.

Density, velocities and pressure obtained at the azimuthal angles θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2 and 7π/4

for ReD = 100,000 and θ = 0, π/2, π and 3π/2 for ReD = 3,125 are also stored at a halved frequency. Their

Fourier coefficients in the azimuthal directions, estimated over the full section (r, z), are also saved for the first nine

azimuthal modes. The statistics are averaged in the azimuthal direction, when possible. The time spectra are evaluated

from overlapping samples of duration 45r0/u j on the jet axis, and 90r0/u j otherwise. In the azimuthal direction, the
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post-processing is performed up to the mode nθ = 128 for ReD = 100,000 and nθ = 64 for ReD = 3,125, where nθ is

the dimensionless azimuthal wave number such that nθ = kθr .
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Fig. 2 Variations of (a) the radial mesh spacing ∆r/r0 and (b) the axial mesh spacing ∆z/r0 for the jets at

ReD = 100, 000 and ReD = 3, 125.

D. Definition of the correlations

In the present work, two-dimensional spatial correlations are computed in the flow and near pressure fields of the

two jets. In practice, a signal f1 at a point r = r1, θ = θ1 and z = z1 at time t is correlated with a signal f2 in the 2-D

section (r, z) at θ = θ1 at time t + δt, giving

C(r, z, δt) = 〈 f1(r1, z1, t) × g2(r, z, t + δt)〉

where δt is the time delay between the two signals, and 〈.〉 denotes time averaging. Dimensionless correlations

R(r, z, δt) =
C(r, z, δt)

〈 f 2
1
(r1, z1, t)〉1/2 × 〈 f 2

2
(r, z, t)〉1/2

are then evaluated. The signals f1 and f2 can be the time series of flow and pressure fluctuations issued from the

simulations, but also of their Fourier coefficients in the azimuthal direction. The correlations obtained for the different

azimuthal angles are averaged, when justified.

In this paper, three types of correlations are examined, depending on the signals f1 and f2 chosen, as depicted in

table 2. In case 1, the fluctuations of axial velocity, vorticity norm and pressure recorded on the jet centerline at z = zc ,

where zc is defined as the position of the end of the potential core, are correlated with the 2-D fluctuating pressure field.

In cases 2 and 3, the pressure fluctuations obtained at r1 = 15r0, at z1 = 40r0 and z1 = zc , respectively, are correlated

with the 2-D fields of velocity, vorticity and pressure fluctuations. Therefore, in case 1, the reference 1-D signal is

taken in a flow region where the strongest noise sources have been localized experimentally in subsonic jets [8, 45, 46],

and where the disturbances have been found to significantly correlate with the downstream noise [9, 11, 16]. In

cases 2 and 3, the selected 1-D pressure signals are in the jet near field at r = 15r0, where acoustic components are

stronger than aerodynamic components according to measurements [47, 48]. In case 2, in particular, the low-frequency

strong acoustic waves radiated by the jets in the downstream direction [7] are expected to dominate at the point (r1, z1)

considered [48].

Table 2 Types of two-dimensional spatial correlations.

signals case 1 case 2 case 3

f1(r1, z1) u′
z, |ω|

′, p′ at r1 = 0 and z1 = zc p′(r1 = 15r0, z1 = 40r0) p′(r1 = 15r0, z1 = zc)

f2(r, z) p′ u′
z, |ω|

′, p′ u′
z, |ω|

′, p′
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III. Results

A. Jet flow and near pressure field

1. Vorticity and pressure snapshots

Snapshots of the vorticity norm and pressure fluctuations obtained for the two jets are represented in figure 3.

Unsurprisingly, the jet flow develops differently depending on the nozzle-exit conditions and Reynolds number. In

the initially highly disturbed jet at ReD = 100,000, in figure 3(a), the mixing layers contain turbulent structures

immediately downstream of the nozzle exit, and very fine scales are visible in the flow. On the contrary, in the initially

weakly disturbed jet at ReD = 3,125, in figure 3(b), the laminar shear layers roll up around z = 10r0, which leads to

the formation and pairings of coherent vortical structures. Moreover, only large turbulent scales can be seen due to the

effects of viscosity at such a low Reynolds number.

In the same way, the pressure field of the jet at ReD = 100,000 exhibits more high-frequency acoustic waves

than the jet at ReD = 3,125, in particular in the sideline and upstream directions. In both cases, however, large-scale

pressure fluctuations, classically attributed to the flow coherent structures [47, 49], emerge in the close vicinity of the

jets. In addition, strong low-frequency acoustic waves, typical of the downstream jet noise component [3, 7], propagate

in the flow direction for both jets. As in a previous numerical study [31], lowering the jet Reynolds number makes

them appear more clearly.

Fig. 3 Representation of vorticity norm inside the flow and of pressure fluctuations outside, for the jets at

(a) ReD = 100, 000 and (b) ReD = 3, 125. The color scales range between ±6u j/r0 and ±70 Pa, from blue to red.

2. Flow features

The variations of the shear-layer momentum thickness δθ and of the mean axial velocity 〈uz〉 on the centerline for

the two jets are presented in figure 4. Experimental data for isothermal jets at M = 0.9 and ReD ≃ 106 are also shown

for comparison. In figure 4(a), the mixing layer of the jet at ReD = 100,000 is found to spread at a nearly constant

rate, similarly to the measurements. On the contrary, the mixing layer of the jet at ReD = 3,125 grows slowly from

z = 0 down to z ≃ 10r0, but then very rapidly due to the formation and pairings of coherent structures during the

laminar-turbulent transition [50]. These shear-layer developments, caused by two different initial jet flow conditions,

are consistent with experimental [51, 52] and numerical [23] results.

In figure 4(b), the velocity profile for the high-Reynolds-number jet is good agreement with the measurements

at ReD ≃ 106. For both jets, coincidentally given the strong discrepancy in shear-layer growth, the velocity on the

jet axis starts to decay around zc = 14.6r0, where zc is defined as the axial position at which the centerline mean

velocity is equal to 0.95u j . Farther downstream, the velocity decay is faster for the jet at ReD = 3,125 than for the

jet at ReD = 100,000. This is most likely due to the combined effects of viscosity [41] and laminar nozzle-exit

conditions [23] in the former case.
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Fig. 4 Variations of (a) the shear-layer momentum thickness δθ and (b) the mean axial velocity 〈uz〉 on the

centerline for the jets at ReD = 100, 000 and ReD = 3, 125; measurements for isothermal jets

at M = 0.9 at ◦, ReD = 106 [53, 54] and ⋄ ReD = 7.7 × 105 [55].

The variations of the rms and skewness values of axial velocity fluctuations u′
z along the jet centerline between

z = 0 and z = 30r0 are plotted in figure 5. In figure 5(a), the rms velocity profile obtained for the jet at ReD = 100,000

compare well with the experimental data of Lau et al. [53] for a jet at at ReD = 106. The peak of turbulence intensities,

located a few radii downstream of z = zc , is reached slightly farther upstream for the jet at ReD = 3,125 than for the

other. Above all, the peak is stronger in the initially laminar jet because of the laminar-turbulent transition occurring

close to the end of the potential core. This result is in line with previous simulations [23].

Regarding the skewness factor of velocity fluctuations, in figure 5(b), negative values lower than−1.5 are found near

z = zc for both jets. As reported in previous studies [56], including one dealing with temporally developing jets [21],

they indicate the intermittent occurrence of velocity deficits on the jet centerline when shear-layer vortical structures

intrude into the potential core. This flow feature appeared to be one of the reasons for the significant correlations

calculated between velocity fluctuations at the end of the jet core and the low-frequency acoustic waves radiated in the

downstream direction [11].
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Fig. 5 Variations of (a) the rms values and (b) the skewness factors of the axial velocity fluctuations u′
z on the

centerline for the jets at ReD = 100, 000 and ReD = 3, 125; measurements for isothermal jets

at M = 0.9 at ◦ ReD = 106 [53] and ⋄ ReD = 7.7 × 105 [55].

3. Near-field pressure spectra

The pressure spectra obtained in the jet near field at r = 15r0 and z = 40r0 are first represented in figure 6(a) as a

function of Strouhal number. The one for the jet at ReD = 100,000 is in very good agreement with the corresponding

measurements [48] for an isothermal jet at M = 0.9 and ReD = 7.9×105. As expected, given the low angle of radiation

relative to the flow direction, of approximately 30 degrees when taking the end of the potential core as origin, the

spectra are both dominated by a low-frequency component centered around StD = 0.15 for the jet at ReD = 100,000

and StD = 0.25 for ReD = 3,125. The peak levels are however stronger by 5 dB for the jet at ReD = 3,125, which is
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consistent with the higher turbulence intensities in that case.

The contributions of azimuthal modes nθ = 0, 1 and 2 to the pressure spectra at r = 15r0 and z = 40r0 are shown

in figure 6(b) for ReD = 100,000 and in figure 6(c) for ReD = 3,125. For the two jets, for StD ≤ 0.3, the contribution

of the axisymmetric mode is greater than that of mode nθ = 1 by between 3 and 6 dB, which is itself approximately

6 dB above that of mode nθ = 2. A similar prevalence of the axisymmetric mode is found in the far pressure field of

jets in the downstream direction [5, 6].
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Fig. 6 Sound pressure levels (SPL) obtained at r = 15r0 and z = 40r0 as a function of StD: (a) SPL for the jets

at ReD = 100, 000 and ReD = 3, 125; (b, c) SPL and contributions of modes

nθ = 0, nθ = 1 and nθ = 2 for (b) ReD = 100, 000 and (c) ReD = 3, 125; ▽ measurements for

an isothermal jet at M = 0.9 and ReD = 7.9 × 105 [48].

The pressure spectra obtained at r = 15r0 and z = zc , perpendicularly to the end of the potential core, are then

depicted in figure 7(a). Compared to those of figure 6(a), they exhibit levels lower by typically 8 dB, and they are

broader. The latter remark is particularly true for the jet at ReD = 100,000, whose spectrum has a shape closely

following that of the spectrum acquired experimentally [48] at r = 15r0 and z = 14r0 for a Mach 0.9 jet at a high

Reynolds number over the whole frequency range up to StD = 4.8. On the contrary, the spectrum for the jet at

ReD = 3,125 contains negligible high-frequency components for StD > 1.2, due to the disappearance of fine-scale

turbulence at such a low Reynolds number.

Finally, as previously, the contributions of modes nθ = 0, 1 and 2 to the pressure spectra are displayed in figure 7(b)

for ReD = 100,000 and in figure 7(c) for ReD = 3,125. In both cases, no mode emerges clearly, and modes nθ = 0, 1

and 2 are predominant, respectively, for StD . 0.25, for 0.25 . StD . 1.2 and for higher frequencies. A distribution

of the acoustic energy between the first three azimuthal modes has also been measured in far field in the sideline

direction [5].
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Fig. 7 Sound pressure levels (SPL) obtained at r = 15r0 and z = zc as a function of StD: (a) SPL for the jets

at ReD = 100, 000 and ReD = 3, 125; (b, c) SPL and contributions of modes

nθ = 0, nθ = 1 and nθ = 2 for (b) ReD = 100, 000 and (c) ReD = 3, 125; ▽ measurements at

r = 15r0 and z = 14r0 for an isothermal jet at M = 0.9 and ReD = 7.9 × 105 [48].
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B. Two-dimensional correlations

1. Correlations with fluctuations at the end of the potential core (case 1 in section II.D)

The normalized correlations R evaluated between the fluctuations of axial velocity, vorticity and pressure on the

jet axis at z = zc and the 2-D fluctuating pressure field for the axisymmetric mode for the jet at ReD = 100,000 are

represented in figure 8, from top to bottom. The results obtained for the three time delays of δt = −8r0/c0, 0 and

16r0/c0 are shown, from left to right. Significant levels of correlations, higher than 0.2, are found both in the jet and

the near pressure fields. For δt = −8r0/c0, a wavy structure appears in the flow and its in immediate vicinity, especially

in figures 8(a,g). The axial position of this structure, illustrated by a vertical line, indicates a convection at a velocity

of approximately 0.7u j . The correlation levels increase with time and reach a peak for δt = 0, as expected. At later

times, the structure vanishes rapidly, but elongated spots of correlation propagate downstream in the pressure field,

see right figures for δt = 16r0/c0. These spots are roughly aligned with a circle of radius c0δt centered on r = 0

and z = zc . They display negative values for the axial velocity in figure 8(c) and positive values for the vorticity in

figure 8(i), which is in accordance with previous studies [11, 21]. The present results reveal the connection between

the growth and decay of a large-scale, oscillatory structure in the jet flow and the radiation of a strong acoustic wave

in the downstream direction. This mechanism is similar to that predicted in theoretical work on noise generation by

hydrodynamic wavepackets in high-speed jets [7, 12, 13], but also to that recently identified for temporal jets using

conditional averaging [21].

Fig. 8 Jet at ReD = 100, 000. Correlations R of (top) u′
z , (middle) |ω |′ and (bottom) p′ at r = 0 and z = zc

with p′(r , z) for (left) δ t = −8r0/c0, (center) δ t = 0 and (right) δ t = 16r0/c0, for nθ = 0; positions for

a downstream convection at 0.7u j and a sound propagation at c0. The color scale ranges between ±0.25, from

blue to red.

As in figure 8, the correlations R determined between axial velocity, vorticity and pressure at the end of the potential

core and the 2-D pressure field for mode nθ = 0 for the jet at ReD = 3,125 are provided for δt = −8r0/c0, 0 and

16r0/c0 in figure 9. Compared to the jet at ReD = 100,000, they exhibit higher levels, but bear obvious similarities. In

particular, the wavepacket-like structure developing and convected at ∼ 0.7u j in the flow is clearly visible for negative

time delays. This is also the case for the spots of correlation propagating at a speed of c0 in the pressure field for

positive time delays. These results further relate the generation the axisymmetric noise component dominant in the

downstream direction of jets [5, 6] to a mechanism occurring in the jet core region over a long time and a large spatial

extent. They also supports the weak dependence of that mechanism on the Reynolds number [10, 29, 31].
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Fig. 9 Jet at ReD = 3, 125. Correlations R of (top) u′
z , (middle) |ω |′ and (bottom) p′ at r = 0 and z = zc with

p′(r , z) for (left) δ t = −8r0/c0, (center) δ t = 0 and (right) δ t = 16r0/c0, for nθ = 0; positions for a

downstream convection at 0.7u j and a sound propagation at c0. The color scale ranges between ±0.25, from

blue to red.

2. Correlations with downstream near-field pressure (case 2 in section II.D)

The normalized correlations R obtained between p′ at r = 15r0 and z = 40r0 and p′ in the 2-D section (z,r) from

the full signal and the modes nθ = 0 and 1 of pressure are represented in figure 10 for the time delay of δt = −12r0/c0,

from left to right. The results for the jets at ReD = 100,000 and 3,125 are provided in the top and bottom figures,

respectively. The correlation levels are greater for ReD = 3,125 than for ReD = 100,000, as expected given the

pressure snapshots of figure 3, but also for the axisymmetric mode than for the mode nθ = 1. In all cases, however,

a front of correlations close to 1, whose origin seems to be roughly at the end of the jet potential core, and whose

minimal distance from the point at r = 15r0 and z = 40r0 is equal to c0δt, is observed. This front extends over a

very wide range of polar angles, and is surrounded by two fronts of negative correlations. These correlation fields

show the high coherence of the jet acoustic components in the downstream direction [7] at both low and high Reynolds

numbers [10, 11].

In order to explore the generation of these noise components, the non-normalized correlations C obtained between

p′ at r = 15r0 and z = 40r0 and the fluctuations of axial velocity in the flow and of pressure outside for the jet at

ReD = 3,125 are represented in figure 11 for δt = −36r0/c0, −28r0/c0 and −15r0/c0, from left to right. For the

axisymmetric mode, in the top figures, a wavepacket-like structure grows in the very near pressure field of the jet. Its

amplitude is maximum around δt = −28r0/c0, when it passes through the end of the potential core, and then becomes

weaker. Simultaneously, an acoustic wave is radiated in the jet direction, and gradually deviates from the flow. This

process is similar to that revealed in figure 8 for the case 1 of correlations. In the present figure, the wavepacket-like

structure is moreover connected to a spot of negative correlations between the downstream near-field pressure and the

velocity fluctuations in the flow. This spot develops on the high-velocity side of the mixing layer, and is strongest on

the jet axis around the time of sound emission. Such a spot was previously found when the potential core of temporally

developing jet closes [21]. It has been attributed to the presence of a velocity deficit when vorticity enters into the jet

core.

For the mode nθ = 1, in the bottom of figure 11, a wavy structure is convected in the near pressure field surrounding

the jet, strengthens down the end of the jet core, and subsequently weakens and radiates sound pressure waves, as for

the mode nθ = 0. This structure is also attached to a spot of negative pressure-velocity correlations in the flow, which
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Fig. 10 Correlations R between p′(r = 15r0, z = 40r0) and p′(r , z) for δ t = −12r0/c0, at (top) ReD = 100, 000

and (bottom) ReD = 3, 125: (left) full field, modes (center) nθ = 0 and (right) nθ = 1; positions for a

propagation at c0. The color scale ranges between ±1, from blue to red.

are nil on the jet axis in this case. These results suggest that the generation process of the acoustic mode nθ = 1 is of

the same nature of that of the axisymmetric component in the jet downstream direction.

Fig. 11 Jet at ReD = 3, 125. Correlations C of p′(r = 15r0, z = 40r0) with u′
z(r ≤ 1.75r0, z) and p′(r >

1.75r0, z) for (left) δ t = −36r0/c0, (center) δ t = −28r0/c0 and (right) δ t = −15r0/c0, for modes (top) nθ = 0 and

(bottom) nθ = 1: positions for a sound propagation at c0. The color scales range between±0.02u j×p′rms

and ±3p′2rms , from blue to red, where p′rms is the rms value of p′(r = 15r0, z = 40r0).

3. Correlations with sideline near-field pressure (case 3 in section II.D)

The normalized correlations R estimated between p′ at r = 15r0 and z = zc and p′ in section (z,r) from the full

signal and the modes nθ = 0 and 1 of pressure are represented in figure 12 for the time delay of δt = −3r0/c0, from left

to right. As in figure 10, the results obtained for the jets at ReD = 100,000 and 3,125 are given in the top and bottom

figures, respectively. Significant levels of correlation are found, especially for the axisymmetric mode. They are

higher, and extend over a wider region for the lower Reynolds number jet, compare for instance figures 12(a) and 12(d),

indicating that the noise radiated in the sideline direction is more coherent in this case. This results from the fact the

sound waves propagating in this direction are generated by large-scale structures developing in the mixing layers for the

initially laminar jet at ReD = 3,125, whereas they are produced by a broad range of turbulent scales distributed over a
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large axial distance for the initially highly disturbed jet at ReD = 100,000, as suggested by the pressure snapshots of

figure 3.

Fig. 12 Correlations R between p′(r = 15r0, z = zc) and p′(r , z) for t − 3r0/c0 at (top) ReD = 100, 000 and

(bottom) ReD = 3, 125: (left) full field, modes (center) nθ = 0 and (right) nθ = 1; positions for a sound

propagation at c0. The color scale ranges between ±1, from blue to red.

Finally, the non-normalized correlations C calculated between p′ at r = 15r0 and z = zc and the fluctuations of

axial velocity in the flow and of pressure outside for the jet at ReD = 100,000 are shown in figure 13 for δt = −15r0/c0,

−12r0/c0 and −6r0/c0, from left to right. For the axisymmetric mode, on top, the results are roughly similar to

those obtained for the correlations with the pressure fluctuations at r = 15r0 and z = 40r0. Indeed, a wavepacket-like

structure, connected to a spot of negative correlations with velocity fluctuations in the flow, is found to be convected and

to generate sound pressure waves propagating preferentially in the downstream direction. More surprisingly, positive

values of correlation are noted in the jet flow downstream of this spot almost down to z = 40r0. For the mode nθ = 1,

on bottom, a wavepacket-like noise generation mechanism also appears in the correlation fields, albeit less markedly

than above. In figure 13(e), in addition, the correlations are strong over a significant part of the circle of radius c0δt

centered on the observer point at r = 15r0 and z = zc , suggesting that they results from several sources in the jet.

Fig. 13 Jet at ReD = 100, 000. Correlations C of p′(r = 15r0, z = zc) with u′
z(r ≤ 1.75r0, z) and p′(r >

1.75r0, z) for (left) δ t = −15r0/c0, (center) δ t = −12r0/c0 and (right) δ t = −6r0/c0, for modes (top) nθ = 0 and

(bottom) nθ = 1; positions for a sound propagation at c0. The color scales range between±0.02u j× p′rms

and ±3p′2rms , from blue to red, where p′rms is the rms value of p′(r = 15r0, z = zc).
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IV. Conclusion
In this paper, cross- and auto-correlations calculated in the flow and the near pressure fields of subsonic round jets

in sections (z,r) are presented for two jets at a Mach number of 0.9 and at Reynolds numbers of 3,125 and 100,000,

with weakly and highly disturbed nozzle-exit boundary layers, respectively. Their two-dimensional structures and

time evolutions provide information on the noise radiated by high-subsonic jets and its generation in the jet flows.

Concerning the noise emitted in the downstream direction, in particular, strong correlation levels are obtained over

very large spatial areas and long time periods. This is true for the pressure auto-correlations in the acoustic field

showing the coherence of the sound waves propagating in the jet direction, but also for the cross-correlations computed

from aerodynamic disturbances inside and immediately around the flow. In the latter case, a wavepacket-like structure

emerges early on in the mixing layers, grows in amplitude as it is convected down to the end of the jet potential core,

and then weakens gradually. This structure is connected to a spot of negative correlations between sound pressure and

velocity in the flow, but also and especially to the acoustic waves generated in the downstream direction. It can be noted

that similar results are found for the full flow and sound fields but also for the modes nθ = 0 and 1 taken alone, for

both jets. Therefore, the corresponding generation mechanisms appear to be relatively insensitive to the jet Reynolds

number and to the initial state and development of the mixing layers. Their characteristics will be explored by further

analyses of the present correlation fields.
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