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The context of this study is the development of innovative stator concepts to reduce noise
from rotor/stator interaction in future high by-pass engines. Leading edge serrations are
examined using a hybrid CFD/CAA method. A stochastic approach is considered for the
turbulence generation based on a Fourier modes decomposition. A methodology to obtain a
fully 3D turbulence field, while taking into account periodic and wall boundary conditions is
developed and a formulation is finally provided to obtain a perfectly incompressible stochastic
field. The influence of the turbulence structure on far-field acoustic spectra is first discussed for
the baseline computation case. In a second step, numerically assessed noise reductions from
the serrated design are favorably compared with an analytical solution and a semi-empirical
law. An overall sound power level reduction around 4 to 6 dB is obtained at three acoustics
certification points. Finally, the aerodynamic performances of the serrated airfoil are evaluated
through RANS computations and an improved variant of the initial design is proposed, allowing
for acceptable penalties at the aerodynamic design point.

Nomenclature

〈〉 = Set average operation
𝑖 / 1,2 ,3 = Indices/subscripts denoting a direction (𝑖 = 1, mean flow direction)
𝛼 = A random angle in [0, 2𝜋]
𝛽𝑐 = Entrance flow angle (with respect to 𝑥 axis)
𝑐 = Chord of the airfoil
𝐸 = Energy spectrum of turbulence
𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 = Respectively minimal and maximal considered frequencies
Δ 𝑓 = Frequency spacing
𝑓𝑤 = Window function
𝑔𝑤 = Correction function
ℎ𝑠 = Amplitude of the serrations
𝒌 = Wavevector
𝑘 = Norm of the wavevector 𝒌
𝒌⊥ = Wavevector component in the plane perpendicular to the 𝑧 axis
(𝑘1, 𝑘2, 𝑘3) = Coordinates along three orthogonal directions (1, 2, 3) of the wavenumber space
(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) = Coordinates of the wavevector 𝒌 in the basis (𝒙, 𝒚, 𝒛)
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(𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) = Coordinates of the wavevector 𝒌 in the basis (𝝃, 𝜼, 𝒛)
(𝒌𝒂, 𝒌𝒃 , 𝒌𝒄) = A specific orthonormal basis in the wavector space
Δ𝑘 = Wavenumber discretization step (for each respective direction)
𝐿𝑡 = Turbulence length scale
𝐿𝑦 = Length in the CAA set-up between the two sides of the periodic boundary condition
𝐿𝑧 = Span of the airfoil
𝐿𝑤 = Input parameter defining the shape of the window function 𝑓𝑤
𝜆𝑠 = Serration wavelength
M = Mach number
𝑛𝑣 = Number of vanes in the CAA domain
𝜔 = Angular frequency
𝜔′ = Vorticity of fluctuating velocity
𝑝, 𝑝0, 𝑝

′ = Fluid static, mean, fluctuating pressure
𝜑3𝐷
𝑖𝑖
, 𝜑2𝐷
𝑖𝑖
, 𝜑1𝐷
𝑖𝑖

= 3D, 2D (planar), 1D autocorrelation velocity spectra along 𝑖 direction
𝜓 = Random phase in [0, 2𝜋]
𝜌, 𝜌0, 𝜌

′ = Fluid, mean, fluctuating density
𝑅𝑤 = Ratio between the length 𝐿𝑤 (parameter of the window function 𝑓𝑤 ) and the span 𝐿𝑧
𝑠 = Inter-vane spacing
𝑆𝑡 = Strouhal number of the serrations (𝑆𝑡 = Frequency × ℎ𝑠/𝑈)
𝝈 = Unit vector defining the direction of a given velocity fluctuation
𝑡 = Time
𝑡1 = An arbitrary time interval
𝒖, 𝒖′ = Velocity vector, fluctuating velocity vector
𝑼 = Mean velocity vector
𝑿 = Position vector in the physical space
(𝒙, 𝒚, 𝒛) = Orthonormal basis in the CAA set-up frame (𝒚 aligned with the the cascade and 𝒛 with the span)
(𝝃, 𝜼, 𝒛) = Orthonormal basis in the inflow frame (𝝃 aligned with the the upstream flow and 𝒛 with the span)
𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 = Respectively, coordinates of the bottom and top walls in the numerical set-up

I. Introduction
In order to lower the turbofan engine noise emission, much effort is put on damping the rotor/stator interaction

noise sources which are the dominant contributions for both tonal and broadband noise components particularly at
approach (APP) condition. With this perspective, research projects have been set up such as InnoSTAT in the framework
of the H2020 European programs. The goal is to study promising passive and active technologies which might be
implemented in future innovative stators. ONERA is involved in the design of a successful passive concept based on
leading edge serrations [1, 2]. A set of these serrated low-noise vanes will be evaluated during the first test campaign of
the InnoSTAT project which will take place at Ecole Centrale de Lyon (ECL). Two numerical approaches are actually
affordable for simulating turbulence-cascade interactions including serrated airfoils. The first one is relying on the
Lattice-Boltzmann Method (LBM), as proposed for example in [3], and that is also under study at ONERA [4]. The
second one discussed in the present paper, is based on a hybrid CFD/CAA method, involving a synthetic turbulence
model. First calculations already performed on the InnoSTAT rectilinear cascade have been reported in [5]. They
mainly focused on the determination of the best-suited numerical set-up in particular depending on the number of vanes
taken into account for the CAA. Numerical simulations using one-dimensional and planar turbulence structures as
inflow condition, have also been realized and first noise reduction evaluations have been performed. The generation of a
fully 3D turbulence structure represents still a challenging issue. Several methods have emerged to tackle this issue such
as Synthetic Eddy Method (SEM) [6, 7], extended to anisotropic flows and serrated airfoils [8, 9], and Random Particle
Mesh (RPM) methodology [10] with recent developments to generate 3D turbulence fields [11, 12]. In this paper, the
focus is put on the synthetic turbulence modeling with a particular interest on the development and implementation
of a fully three-dimensional vector field (with the complete 3-wavenumbers spectrum and 3-velocity components).
The method proposed here to generate synthetic turbulence structures is based on Fourier modes decomposition of
the velocity introduced in [13] and [14, 15]. Until now, it has been implemented at ONERA to correctly reproduce
the upwash velocity component to the airfoil. That is the dominant component behind turbulence interaction noise
mechanism, as shown for example analytically in [16] or through numerical simulations in [8] for serrated airfoils. The
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upwash velocity is represented via its autocorrelation spectrum and through planar turbulent structures. However, as
shown in the present work, the latter approach is not directly expandable to 3D turbulence structures. Consequently, the
framework used for homogeneous isotopic turbulence (HIT) generation and currently relying on the energy spectrum
definition such as proposed in [14] and in [17] is considered. An equivalent mathematical formalism is originally
proposed to still link the energy spectrum with wavenumber distribution over a spherical volume to the velocity
autocorrelation spectra using a Cartesian writing over a rectangular volume. This equivalence is drawn for both 2D
and 3D turbulence structures. This paper follows on previous work at ONERA on CAA with synthetic turbulence
based on Fourier modes decomposition [1, 2, 18]. Turbulence generation processes able to tackle some of the issues
arising in simulations of practical configurations are implemented, such as wall and periodic boundary conditions
(BC), while keeping the CPU time as low as possible. The new methodology is first validated and then applied on
both baseline (untreated) and serrated (treated) geometries in the context of the InnoSTAT project. A comparison is
performed with previous results and with semi-empirical and analytical solutions. A semi empirical law proposed by
Paruchuri et al. [19] is considered to link the power noise reduction to the Strouhal number 𝑆𝑡 of single-wavelength
serrations. Moreover, an analytical formulation to assess noise reductions provided by wavy leading edges has also been
implemented as detailed in [2]. It was initially developed at University of Cambridge [20], by means of the Wiener-Hopf
(WH) technique, and slightly extended and validated by ONERA [2].
The structure of the paper is as follows. Sec. II describes the experimental set-up at ECL. In Sec. III, the aeroacoustic

numerical methodology used in this study is detailed. The development and implementation of synthetic turbulence
generation routines are summarized in Sec. IV. Issues raised by three-dimensional structures and associated with the
boundary conditions of the CAA are highlighted. Sec. V presents CAA computations to assess noise emission on both
baseline and serrated geometries. Finally, the aerodynamic performances evaluated by means of RANS computations
are discussed in Sec. VI.

II. Description of the experimental set-up
The experimental facility (used for the first test campaign of the InnoSTAT project) consists in a rectilinear cascade,

depicted in Figs. 1a and 1b, impinged by a roughly isotropic and homogeneous turbulence flow generated by an
adequately shaped turbulence grid placed upstream of the airfoils inside the convergent. Table 1 summarizes the main
parameters expected to be representative of the approach condition point at M=0.34. Some of the pre-test conditions
are being adjusted regarding the definitive cascade set-up specifications. Target values in parenthesizes indicate initial
pre-test values used for the present aeroacoustic calculations.

a) b)

Fig. 1 Test facility for InnoSTAT at Ecole Centrale de Lyon (left) [21] . (𝑥, 𝑦) cut of the geometry and coordinate
systems (right).
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Parameter Value

Airfoil

shape NACA7310
chord 𝑐 12 cm
span 𝐿𝑧 20 cm
inter-vane space 𝑠 8.5 cm

Upstream flow
Mach number (𝑼 direction) 0.34 (0.3)
Entrance angle 𝛽𝑐 34◦ (30◦)

Turbulence
Turbulence Intensity (TI) 4.5 % (5 %)
Turbulent Length Scale (𝐿𝑡 ) 9 mm (8 mm)

Table 1 Main parameters of the rectilinear cascade configuration at approach condition, in parenthesis, initial
pre-test values.

III. Quick overview of the hybrid computational methodology
A hybrid method has been implemented at ONERA to conduct aeroacoustic studies, a diagram block is provided in

Fig. 2. The main step is the CAA simulation, achieved using an in-house code sAbrinA solving the linearized Euler
equations (LEE) for perturbated variables, which are detailed in [22, 23]. The unsteady flow field is classically split in
two parts, namely the mean flow (𝑼, 𝑝0, 𝜌0) which has to be provided as an input, and the fluctuating part (𝒖′, 𝑝′, 𝜌′)
which solution is computed by the code. Regarding numerical schemes, sAbrinA uses a 6th order finite difference
scheme for the spatial derivatives and a 3rd order compact explicit Runge-Kutta scheme for the temporal discretization.
Specific treatments and boundary conditions (BC) are implemented, such as a 10th order filter in order to remove
high-frequency oscillations and Tam boundary conditions [24], which are used both to allow the exit and entrance of the
fluctuations in the domain without generating spurious noise sources nor numerical reflections. The mean flow which
advects the fluctuating variables is an input parameter of the CAA computations. A RANS computation is usually
performed to this end. However, in order to comply with the non viscous assumption of the CAA code, boundary layers
have to be removed. To avoid this correction step, the mean flow has been obtained here by means of an open source
CFD code solving the Euler equations [25]. Turbulence inflow generated through a stochastic process is injected at
the entrance of the CAA domain using Tam’s non-reflective boundary condition. The procedure developed to obtain
the synthetic turbulence is detailed in the next section. The third step is devoted to computation of sound radiation
from an integral formulation. The fluctuating pressure 𝑝′

𝑤𝑎𝑙𝑙
is extracted at the vane skin throughout simulation time

and radiated in the far-field using a Ffwocs-Williams and Hawkings (FWH) analogy with a Green function valid for a
free-space medium with a uniform mean flow. The latter integral method is completed using an in-house code MIA.
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Fig. 2 Main components of the CFD/CAA computation chain.

IV. Synthetic turbulence modeling and generation

A. Prescribed geometry and main assumptions
The starting idea to synthesize turbulence is based on an ergodic stochastic process. First, a set average 〈〉 can be

applied on the velocity field in order to get a decomposition in a mean part and a fluctuating part,
𝒖 = 𝑼 + 𝒖′

𝑼 = 〈𝒖〉
〈𝒖′〉 = 0

(1)

For the configuration under study here, with almost a uniform mean flow, turbulence can be considered as being
statistically steady. This means that the set average operation is equivalent to a time average. Hence, assumed in
agreement with previous remark,

𝒖′(𝑿, 𝑡) = 𝒖′(𝑿 +𝑼𝑡1, 𝑡 + 𝑡1) , ∀𝑡1

The validity of the frozen turbulence hypothesis depends on characteristic times of turbulence and of the advection by
the mean flow. They must satisfy 𝜏𝑡𝑢𝑟𝑏 � 𝜏𝑐𝑜𝑛𝑣 , that is, 𝑢′/𝑈 � 1. The frozen turbulence assumption implies that the
angular frequency of the velocity fluctuations is directly related to the wavevector thanks to the following dispersion
relation 𝜔 = 𝒌 ·𝑼. In this study, the wavenumber spectra of turbulence are based on the definition given by Liepmann
[26],

𝐸 (𝑘) = 8TI
2𝑈2𝐿𝑡
𝜋

(𝑘𝐿)4(
1 + (𝑘𝐿𝑡 )2

)3 with 𝑘 =

√︃
𝑘21 + 𝑘

2
2 + 𝑘

2
3 . (2)

where the subscript 1 indicates the direction parallel to the mean flow and TI, the turbulence intensity. From Eq. (2), the
link with the autocorrelation velocity spectra can be made through:

𝜑3𝐷𝑖𝑖 (𝑘1, 𝑘2, 𝑘3) =
𝐸 (𝑘)
4𝜋𝑘2

(
1 −

𝑘2
𝑖

𝑘2

)
. (3)

In order to consider simplified cases with planar turbulence and also 1D spectra, an integration is performed over
transverse wavenumber components.
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𝜑2𝐷𝑖𝑖 (𝑘1, 𝑘3) =
∫ +∞

−∞
𝜑3𝐷𝑖𝑖 (𝑘1, 𝑘2, 𝑘3)𝑑𝑘2 (4)

𝜑1𝐷𝑖𝑖 (𝑘1) =
∫ +∞

−∞
𝜑2𝐷𝑖𝑖 (𝑘1, 𝑘3)𝑑𝑘3 (5)

The previous integration in Eqs. (4) and (5) can be analytically performed to obtain explicitly 𝜑11, 𝜑22, and 𝜑33 which
are of major interest for the implementation. They are listed in Table 2.

2D planar spectra 𝜑2𝐷
𝑖𝑖

(𝑘1, 𝑘3) 1D spectra 𝜑1𝐷
𝑖𝑖

(𝑘1)

𝜑2𝐷11 (𝑘1, 𝑘3) =
TI2𝑈2𝐿2𝑡
4𝜋

1 + 𝐿2𝑡 (𝑘21 + 4𝑘
2
3)(

1 + 𝐿2𝑡 (𝑘21 + 𝑘
2
3)

)5/2 𝜑1𝐷11 (𝑘1) =
TI2𝑈2𝐿𝑡

𝜋

1
1 + (𝐿𝑡 𝑘1)2

𝜑2𝐷22 (𝑘1, 𝑘3) =
3TI2𝑈2𝐿4𝑡
4𝜋

𝑘21 + 𝑘
2
3(

1 + 𝐿2𝑡 (𝑘21 + 𝑘
2
3)

)5/2 𝜑1𝐷22 (𝑘1) =
TI2𝑈2𝐿𝑡
2𝜋

1 + 3(𝐿𝑡 𝑘1)2(
1 + (𝐿𝑡 𝑘1)2

)2
𝜑2𝐷33 (𝑘1, 𝑘3) =

TI2𝑈2𝐿2𝑡
4𝜋

1 + 𝐿2𝑡 (4𝑘21 + 𝑘
2
3)(

1 + 𝐿2𝑡 (𝑘21 + 𝑘
2
3)

)5/2 𝜑1𝐷33 (𝑘1) = 𝜑
1𝐷
22 (𝑘1)

Table 2 Integrated autocorrelation spectra obtained from Liepmann spectrum, Eq. (2).

For simplified turbulence structures, one may choose not to consider the influence of the 𝑘3 component, with the
subscript 3 referring to the direction aligned with the span of the studied airfoil or flat plate. Indeed, it has shown to
be not significant for flat plates placed along 𝑧 axis, following Amiet theory under certain hypothesis as detailed in
[16, 27]. Spectra are then not explicitly discretized along the latter direction since 𝑘3 = 𝑘𝑧 = 0. To recover the expected
magnitude of turbulence, a correction is required by multiplying the spectrum by a factor Δ𝑘𝑧 = 2𝜋/𝐿𝑧 , as proposed
in [27]. Beyond these reminders of some assumptions commonly used in turbulence and aeroacoustic modeling, the
particular geometrical characteristics and CAA set-up of the rectilinear cascade facility, as depicted in Fig. 3, must be
considered. First of all, in order to limit the CPU cost, the test facility is not fully included in the CAA. Adjacent vanes
are taken into account through periodic boundary conditions applied along the 𝑦 direction. Multi-channel calculations
can be performed, simply considering that 𝐿𝑦 = 𝑛𝑣 𝑠. An example is given in Fig. 3 for 𝑛𝑣=1. The cascade direction that
is tilted from the normal axis to the mean flow, as shown by Fig. 1b, requires to be taken into account in the generation
procedure since the gusts are injected in the coordinate system of the cascade (𝑥, 𝑦, 𝑧) and not the one aligned with the
mean flow (𝜉, 𝜂, 𝑧). Therefore, to ensure periodicity, all wavenumbers 𝑘𝑦 have to be multiples of 2𝜋/𝐿𝑦 . Moreover,
wall boundary conditions are taken into account for the CAA computations at both ends of the airfoil span. These slip
flow boundary conditions considered for the CAA computations represent a major constraint for the generation of a fully
3D turbulence as explained later.

Fig. 3 Boundary conditions for the CAA computation.
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B. Computing planar turbulence structures through velocity autocorrelation spectra

1. (𝑘1, 𝑘3 = 0) turbulence structure

Fig. 4 Coordinate systems with associated wavenumbers and involved turbulent velocities for turbulence
structures lying in the plane (𝑘1, 𝑘3).

First of all, let us consider the simplest turbulence field for 3D geometries, namely parallel gust, for which 𝑘𝑦 = 0.
The divergence free condition leads to the simple condition 𝜕𝑢′𝑥/𝜕𝑥 = 0. Thus, 𝑢′𝑥 is constant (here zero) and the
overall turbulence velocity is driven by the one-component velocity 𝑢′𝑦 . To recover the prescribed normal velocity,
𝑢′𝜂 , we set 𝑢′𝑦 = 𝑢′𝜂/cos(𝛽𝑐). The angular frequency is independent of the considered reference frame, therefore
𝑘𝑥 = 𝑘 𝜉 /cos(𝛽𝑐) = 𝜔/𝑈𝑥 = 𝜔/(𝑈 cos(𝛽𝑐)). The dot product is not associated with the choice of the coordinate
system, that is why, the spatial phase can be written either 𝑘𝑥𝑥 or 𝑘 𝜉 𝜉. The spatial discretization step is given by
Δ𝑘 𝜉 ,𝑙 = cos(𝛽𝑐)Δ𝑘𝑥,𝑙 which can be associated with the angular frequency discretization through 𝜔𝑙 = 2𝜋𝑙Δ 𝑓 . This
equation allows to generate 𝐿 modes equally distributed from 𝑓𝑚𝑖𝑛 = Δ 𝑓 to 𝑓𝑚𝑎𝑥 = 𝐿Δ 𝑓 . For each mode 𝑙, a random
phase 𝜓𝑙 is also introduced. The autocorrelation spectrum of the upwash velocity component is defined by 𝜑2𝐷𝜂𝜂 (𝑘 𝜉 , 0),
refer to 𝜑2𝐷22 (𝑘1, 𝑘3) definition in Table 2. Since, the wavenumber 𝑘𝑧 is not defined, turbulence spectrum has also to be
weighted by Δ𝑘𝑧 = 2𝜋/𝐿𝑧 , in order to obtain the prescribed magnitude of the injected turbulence as mentioned in [27].

𝑢′𝑦 (𝑿, 𝑡) =
2

cos(𝛽𝑐)

𝐿∑︁
𝑙=1

√︄
𝜑2𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 0)Δ𝑘 𝜉

2𝜋
𝐿𝑧
cos

(
𝑘𝑥,𝑙𝑥 − 𝜔𝑙𝑡 + 𝜓𝑙

)
(6)

Since the synthetic turbulence (defined by Eq. (6)) depends only on the 𝑘𝑥 wavenumber, the numerical results match
exactly the analytical solution as depicted in Fig. 5.

Fig. 5 Liepmann spectrum of the upwash velocity component (black solid line ) and synthetic turbulence
spectrum (red line with circles −©−) obtained with Δ 𝑓 = 1 Hz and averaged over 250 blocks.
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2. (𝑘1, 𝑘3) turbulence structure
For (𝑘 𝜉 , 𝑘𝑧) turbulence, the same geometry and notations are used than previously as illustrated by Fig. 3. The

only difference is that the wavenumber 𝑘𝑧 is no more equal to zero. Instead, the wavenumbers along the 𝑧 direction are
discretized following 𝑘𝑧,𝑛 = 𝑛Δ𝑘𝑧 . Now, 𝐿 × 𝑁 angular phases 𝜓𝑙𝑛 are randomly selected. Fig. 6 validates the good
implementation of this spanwise varying turbulence,

𝑢′𝑦 (𝑿, 𝑡) =
2

cos(𝛽𝑐)

𝐿∑︁
𝑙=1

𝑁∑︁
𝑛=−𝑁

√︃
𝜑2𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 𝑘𝑧,𝑛)Δ𝑘 𝜉Δ𝑘𝑧cos

(
𝑘𝑥,𝑙𝑥 + 𝑘𝑧,𝑛𝑧 − 𝜔𝑙𝑡 + 𝜓𝑙𝑛

)
(7)

even if the 𝑘𝑧 variation gives rise to statistical errors in the Power Spectral Density (PSD) spectrum.

Fig. 6 Liepmann spectrum of the upwash velocity component (black solid line ) and synthetic turbulence
spectrum (red line with circles −©− ) obtained with 𝑁 = 30, Δ𝑘𝑧 = 2𝜋/𝐿𝑧 , Δ 𝑓 = 1 Hz, and averaged over 250
blocks.

3. (𝑘1, 𝑘2, 𝑘3 = 0) turbulence structure

Fig. 7 Coordinate systems with associated wavenumbers and involved turbulent velocities for turbulence
structures lying in the plane (𝑘1, 𝑘2, 𝑘3 = 0).

The purpose of the structure (𝑘 𝜉 , 𝑘𝜂 , 0), is to consider the pitchwise variations that should produce significant
cascade effects in such rectilinear configurations. Fig. 7 is helpful to follow the discussion. There are several ways to
derive the equations for the injected velocities (𝑢′𝑥 , 𝑢′𝑦) or (𝑢′𝜉 , 𝑢′𝜂) depending on the coordinate system. Two of them
are listed below. Contrary to the (𝑘 𝜉 , 𝑘𝑧) turbulence for which the spectrum was integrated over 𝑘𝜂 , the summation is
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explicitly defined here. Consequently, the 𝑢′𝜂 component of the velocity is no more independent of the 𝑘𝜂 wavenumber.
To ensure a divergence free solution, a second velocity component must be considered,

𝜕𝑢′
𝜉

𝜕𝜉
+
𝜕𝑢′𝜂

𝜕𝜂
= 0 (8)

Consequently, 𝑢′
𝜉
is defined by 𝑢′

𝜉
= −𝑘𝜂/𝑘 𝜉𝑢′𝜂 , and furthermore, 𝜑3𝐷𝜉 𝜉 (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0) = 𝜑

3𝐷
𝜂𝜂 (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0)𝑘2𝜂/𝑘2𝜉 .

The spectrum along the 𝜉 axis is also correctly prescribed. Turbulence equations can also be obtained starting from the
energy spectrum 𝐸 (𝑘), as more usually considered in Stochastic Noise Generation and Radiation (SNGR) models [14],

𝒖′(𝑿, 𝑡) = 2
𝐾∑︁
𝑘=1

√︄
𝐸 (𝑘⊥

𝑘
)Δ𝑘⊥ 2𝜋

𝐿𝑧
cos

(
𝒌⊥𝒌 · (X − U𝑡) + 𝜓𝑘

)
𝝈𝒌 (9)

where 𝑘⊥ is defined such as 𝒌⊥ · 𝒌𝒛 = 0 and 𝝈 is a unit vector such as 𝝈 · 𝒌⊥ = 0. Eq. (9) gives the discretized velocity
for 𝐾 modes distributed over a disk. As for (𝑘 𝜉 , 𝑘𝑧 = 0) turbulence, a factor 2𝜋/𝐿𝑧 has to be taken into account to
recover the expected magnitude of the spectra. However, here, to keep a simpler discretization in (𝑘 𝜉 , 𝑘𝜂) or (𝑘𝑥 , 𝑘𝑦),
with loops implemented in the generation routines, the turbulence modes are mapped on a rectangular box in the
wavenumber space.

𝒖′(𝑿, 𝑡) = 2
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

√√√
𝐸

(√︃
𝑘2
𝜉 ,𝑙

+ 𝑘2
𝜂,𝑙𝑚

)
𝜋𝑘

Δ𝑘 𝜉Δ𝑘𝜂
2𝜋
𝐿𝑧
cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝜓𝑙𝑚

)
𝝈𝒍𝒎 (10)

A similar equation is provided by Gea-Aguilera et al. [7]. The wavenumber decomposition along the spatial directions
in Eq. (10) easily ensures the periodic boundary condition along the 𝑦 direction by satisfying 𝒌 · 𝒚 = 𝑚2𝜋/𝐿𝑦 , with
𝑚 an integer. The formulation coming from the autocorrelation velocity spectra can be recovered considering that
𝐸 (𝑘) = 𝜑3𝐷𝜂𝜂 (𝑘 𝜉 , 𝑘𝜂 , 0)4𝜋𝑘4/𝑘2𝜉 , 𝐸 (𝑘) = 𝜑3𝐷

𝜉 𝜉
(𝑘 𝜉 , 𝑘𝜂 , 0)4𝜋𝑘4/𝑘2𝜂 and that 𝜎𝜉 ,𝑙𝑚 = ±𝑘𝜂,𝑙𝑚/𝑘, 𝜎𝜂,𝑙𝑚 = ±𝑘 𝜉 ,𝑙/𝑘 .

The gusts are then generated as follows,

𝑢′𝜉 (𝑿, 𝑡) = −2
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

𝑘𝜂

𝑘 𝜉

√︄
𝜑3𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 0)Δ𝑘 𝜉Δ𝑘𝜂

2𝜋
𝐿𝑧
cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝜓𝑙𝑚

)
𝑢′𝜂 (𝑿, 𝑡) = 2

𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

√︄
𝜑3𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 0)Δ𝑘 𝜉Δ𝑘𝜂

2𝜋
𝐿𝑧
cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡)+𝑘𝜂,𝑙𝑚𝜂 + 𝜓𝑙𝑚

)
(11)

Moreover, the wavenumbers in the upstream mean flow frame can be expressed as 𝑘 𝜉 ,𝑙 = cos(𝛽𝑐)𝑘𝑥,𝑙𝑚 + sin(𝛽𝑐)𝑘𝑦,𝑚
and 𝑘𝜂,𝑙𝑚 = − sin(𝛽𝑐)𝑘𝑥,𝑙𝑚 + cos(𝛽𝑐)𝑘𝑦,𝑚, which can be deduced from Fig. 7. The numerical implementation is
validated for both streamwise and upwash velocity components as plotted in Fig. 8.
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Fig. 8 Liepmann spectra of the upwash velocity component (black solid line ) and the streamwise
component (black dotted line ). Synthetic turbulence spectra (of the upwash component in red line with
circles −©− and streamwise component in blue line with circles −©−) obtained with 𝑀 = 16, 𝐿𝑦 = 𝑠 = 8.5 cm,
Δ 𝑓 = 1 Hz, and averaged over 250 blocks.

C. A framework for generating fully 3D turbulence structures

1. Choice of an adapted energy spectrum description and equivalence with autocorrelation formulations
Let us see now how to obtain a three (non-zero) wavenumber spectrum. This kind of turbulence structure will

allow to investigate the role of all the wavenumbers on the aeroacoustic response for both the impinged baseline and
serrated airfoils in a cascade configuration. In the first instance, wall boundary conditions are not considered. In order
to obtain such a turbulence structure, several formulations could be considered a priori. Inconsistencies of ad-hoc
formulations are clearly pointed out before reaching a suitable expression finally adopted in our method. In particular, it
is demonstrated why a turbulence of the shape (𝑢′

𝜉
(𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧), 𝑢′𝜂 (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧)), defined as follows, is not usable in

practice and why it raises the need for an additional component 𝑢′𝑧 .

𝑢′𝜂 (𝑿, 𝑡) = 2
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

√︃
𝜑3𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 𝑘𝑧,𝑛)Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝑘𝑧,𝑛𝑧 + 𝜓𝑙𝑚𝑛

)
𝑢′𝜉 (𝑿, 𝑡) = −2

𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

𝑘𝜂,𝑙𝑚

𝑘 𝜉 ,𝑙

√︃
𝜑3𝐷𝜂𝜂 (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 𝑘𝑧,𝑛)Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝑘𝑧,𝑛𝑧 + 𝜓𝑙𝑚𝑛

)
(12)

The autocorrelation spectrum of the 𝑢′
𝜉
component where the summation over the 𝑘𝜂 wavenumber has been replaced by

an integral is considered.

𝜑2𝐷𝑝𝑠𝑒𝑢𝑑𝑜, 𝜉 𝜉 (𝑘 𝜉 , 𝑘𝑧) =
TI2𝑈2𝐿2

4𝜋
1
𝑘2
𝜉

(𝑘2
𝜉
+ 𝑘2𝑧)(

1 + 𝐿2 (𝑘2
𝜉
+ 𝑘2𝑧)

)3/2 (13)

After integration, Eq. (13) is providing a so-called "pseudo" 2D autocorrelation spectrum. The 1D spectrum should be
obtained from an integration over 𝑘𝑧 . However, this 𝜑2𝐷𝑝𝑠𝑒𝑢𝑑𝑜, 𝜉 𝜉 (𝑘 𝜉 , 𝑘𝑧) tends asymptotically to 1/|𝑘𝑧 |, which prevents
the convergence of the integral with respect to 𝑘𝑧 . Moreover, close to low frequencies the solution will diverge due to
the 1/𝑘2

𝜉
term. That is why, even if in practice 𝑢′

𝜉
is discretized over finite intervals and not over R2, this formulation

leads to very high values of the velocity component along the 𝜉 axis. For a flat plate impacted by such gusts, there is
no problem due to the fact that 𝑢′

𝜉
plays absolutely any role. However, for a NACA airfoil with a non zero thickness,
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an issue may appear if the magnitude of 𝑢′
𝜉
is much higher in comparison with what it should be if turbulence had

been properly defined. Consequently, the generated gusts have to include a non-zero component 𝑢′𝑧 in order to match
correctly the three components of the autocorrelation spectra.

Each velocity component is now defined through its autocorrelation spectrum following Eq. (3). It is shown why it
leads to an unsuitable form.

𝑢′𝑖 (𝑿, 𝑡) = 2
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

√︃
𝜑3𝐷
𝑖𝑖

(𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 𝑘𝑧,𝑛)Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧cos
(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝑘𝑧,𝑛𝑧 + 𝜓𝑙𝑚𝑛

)
(14)

The divergence free equation, associated with Eq. (14), which has to be satisfied in order to avoid the creation of
spurious sources can be written as:

𝜕𝑢′𝑥
𝜕𝑥

+
𝜕𝑢′𝑦

𝜕𝑦
+
𝜕𝑢′𝑧
𝜕𝑧

= 0⇔
∑︁
𝑖

𝑘𝑖

√︃
𝜑3𝐷
𝑖𝑖

= 0 (15)

When injecting 𝜑3𝐷
𝜉 𝜉
and 𝜑3𝐷𝜂𝜂 in Eq. (15), one can deduce that 𝜑3𝐷𝑧𝑧 is inadequately prescribed.

𝜑3𝐷𝑝𝑠𝑒𝑢𝑑𝑜,𝑧𝑧 (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) =
1
𝑘2𝑧

(
𝑘 𝜉

√︃
𝑘2𝜂 + 𝑘2𝑧 + 𝑘𝜂

√︃
𝑘2
𝜉
+ 𝑘2𝑧

)2
𝑘2
𝜉
+ 𝑘2𝜂

𝜑3𝐷𝑧𝑧 (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) (16)

More precisely, it is weighted by a factor defined in Eq. (16) (supposing 𝑘𝑧 ≠ 0 and |𝑘 𝜉 | + |𝑘𝜂 | ≠ 0) in comparison with
the correct spectrum. Consequently, the shape of the spectrum is strongly altered. Although the component 𝜑𝜂𝜂 plays
the major role in the aeroacoustic response (as shown for example in [8]), non-negligible effects might be expected. For
this reason, the most reasonable path to obtain a complete 3 non-zero wavenumber turbulence, relies again on the usual
SNGR formalism already initiated with (𝑘1, 𝑘2, 𝑘3 = 0) turbulence.

𝒖′(𝑿, 𝑡) = 2
𝐾∑︁
𝑘=1

√︁
𝐸 (𝑘𝑘 )Δ𝑘 cos (𝒌𝒌 · (X − U𝑡) + 𝜓𝑘 ) 𝝈𝒌 (17)

The general form of Eq. (9) is given by Eq. (17). However, it is not possible to take directly into account through an
energy spectrum formulation the periodic boundary conditions which should ensure that 𝑘𝑦 = 𝑚2𝜋/𝐿𝑦 . That is why,
the approach proposed here is generalizing the key idea already probed with the (𝑘1, 𝑘2, 0) turbulence structure. The
wavenumber space is no more discretized by spherical volumes of an equivalent radius 𝑘 and thickness Δ𝑘 , but by
rectangular boxes with an elementary volume Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧 . The relation between the two discretizations is given by
Δ𝑘 � Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧/(2𝜋𝑘2).

𝒖′(𝑿, 𝑡) = 2
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

√√√
𝐸

(√︃
𝑘2
𝜉 ,𝑙

+ 𝑘2
𝜂,𝑙𝑚

+ 𝑘2𝑧,𝑛
)

2𝜋𝑘2
Δ𝑘 𝜉Δ𝑘𝜂Δ𝑘𝑧cos

(
𝑘 𝜉 ,𝑙 (𝜉 −𝑈𝑡) + 𝑘𝜂,𝑙𝑚𝜂 + 𝑘𝑧,𝑛𝑧 + 𝜓𝑙𝑚𝑛

)
𝝈𝒍𝒎𝒏

(18)
Hence, the modified energy spectrum formulation is now defined in the CAA frame by Eq. (18) in which the wavenumbers
space is discretized over parallelepipeds in order to simplify the implementation and keep the framework used for
previous formulations (using autocorrelation velocity spectra). A similar decomposition has been proposed by Gill et al.
[15]. The divergence free condition of Eq. (17), is translated as: 𝒌 · 𝝈𝒍𝒎𝒏 = 0, with 𝒌 = (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 𝑘𝑧,𝑛)𝑇 and 𝝈𝒍𝒎𝒏,
a unit vector. The direction of the turbulent velocity in Eq. (18) has to be determined. This is practically achieved by
means of an efficient algorithm (similarly to [14]), which main steps are summarized in Appendix. A, and implemented
inside the Fortran routines to generate the synthetic turbulence. In Appendix. B, a piece of demonstration is given to
show the consistency between this modified energy spectrum formalism proposed here and previous formulations based
on autocorrelation spectra.
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2. Taking into account wall boundary conditions by means of a non-divergence free window function
The full 3D turbulence formulation implies that a vertical velocity component 𝑢′𝑧 has to be considered. This

additional component has to be damped near the wall boundaries in order to avoid spurious noise sources, which is a
non-tricky issue.

𝒖′(𝑿, 𝑡) = 𝐴 𝑓𝑤 (𝑧)cos (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓) 𝝈 (19)

A window function 𝑓𝑤 (𝑧) is applied to a given fluctuating velocity in Eq. (19), where 𝐴 is the initial amplitude of this
given fluctuation, such as the velocity tends to zero near the wall boundaries. The chosen windowing, without care on
divergence, is a gate function with half sinusoidal lobes on each side controlled by a length size 𝐿𝑤 .


∀𝑧 ∈ [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 + 𝐿𝑤 ], 𝑓𝑤 (𝑧) =

1
2

(
1 − cos

(
𝜋
𝑧 − 𝑧𝑚𝑖𝑛
𝐿𝑤

))
and 𝑓 ′𝑤 (𝑧) =

𝜋

2𝐿𝑤
sin

(
𝜋
𝑧 − 𝑧𝑚𝑖𝑛
𝐿𝑤

)
∀𝑧 ∈ [𝑧𝑚𝑖𝑛 + 𝐿𝑤 , 𝑧𝑚𝑎𝑥 − 𝐿𝑤 ], 𝑓𝑤 (𝑧) = 1 and 𝑓 ′𝑤 (𝑧) = 0

∀𝑧 ∈ [𝑧𝑚𝑎𝑥 − 𝐿𝑤 , 𝑧𝑚𝑎𝑥], 𝑓𝑤 (𝑧) =
1
2

(
1 + cos

(
𝜋
𝑧 − (𝑧𝑚𝑎𝑥 − 𝐿𝑤 )

𝐿𝑤

))
and 𝑓 ′𝑤 (𝑧) = − 𝜋

2𝐿𝑤
sin

(
𝜋
𝑧 − (𝑧𝑚𝑎𝑥 − 𝐿𝑤 )

𝐿𝑤

)
(20)

The function 𝑓𝑤 proposed in Eq. (20) ensures a smooth transition at boundaries due to the fact that 𝑓𝑤 is 𝐶1 everywhere
on the interval [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥] and that 𝑓𝑤 (𝑧𝑚𝑖𝑛) = 𝑓𝑤 (𝑧𝑚𝑎𝑥) = 𝑓 ′𝑤 (𝑧𝑚𝑖𝑛) = 𝑓 ′𝑤 (𝑧𝑚𝑎𝑥) = 0.

div(𝒖′) = 𝑓 ′𝑤 (𝑧)𝐴 cos(𝒌 · 𝑿 − 𝜔𝑡 + 𝜓)𝜎𝑧 ≠ 0 (21)

However, this window function implies that the divergence free property of the synthetic turbulence field is no more
ensured as shown by Eq. (21). The impact on the far-field acoustics will be discussed on the baseline numerical
simulations in section V.

Fig. 9 𝑓𝑤 (𝑧) with 𝑅𝑤 = 15% and 𝐿𝑧 = 0.2 m.

An example of a window function is presented in Fig. 9 (where 𝑅𝑤 = 𝐿𝑤/𝐿𝑧 = 15%). Figs. 10a and 10b show
respectively turbulence spectra at 𝑧 = 0 (where 𝑓𝑤 (𝑧) = 1) and 𝑧 = 0.185 (where 𝑓𝑤 (𝑧) = 0.5). They demonstrate a
good agreement with the theoretical spectra, which validates the adapted formulation relying on the energy spectrum.
Since the windowing consists simply in the multiplication of the turbulence fluctuations by a constant, the spectra
amplitude at 𝑧 = 0.185 are simply reduced here by a factor 0.52 as illustrated in Fig. 10b.
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a) b)

Fig. 10 Liepmann spectra of the upwash and spanwise velocity components (black solid line ) and the
streamwise component (black dotted line ). Synthetic turbulence spectra in solid line with circles (upwash
component in red −©−, spanwise component in green −©−, and streamwise component in blue −©−) obtained
with 𝑁 = 30, 𝑅𝑤 = 15%, 𝑀 = 16, 𝐿𝑦 = 𝑠 = 8.5 cm, Δ 𝑓 = 1 Hz, and averaged over 250 blocks. Spectra from the
left figure obtained for location 𝑧 = 0.1 and from the right figure at location 𝑧 = 0.185 where 𝑓𝑤 (𝑧) = 0.5.

3. Theoretical development and implementation of a divergence free window function
Equation (21) shows that in order to obtain a divergence free formulation, the expressions governing the velocity

have to be modified. The choice has been made to only modify the component 𝑢′𝑧 since it plays a minor role in the noise
source generation process.

𝜕𝑢′𝑧
𝜕𝑧

= − 𝑓𝑤 (𝑧)𝐴 sin (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓) 𝑘𝑧𝜎𝑧 + 𝑓 ′𝑤 (𝑧)𝐴 cos (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓) 𝜎𝑧 − 𝑔′𝑤 (𝑧)𝐴𝜎𝑧 (22)

Consequently, in order to cancel the additional spurious term in Eq. (21) the derivative of 𝑢′𝑧 given by Eq. (22) is
modified by means of a correction function 𝑔𝑤 (𝑧). After some calculations (ensuring ( 𝑓𝑤 , 𝑔𝑤 ) ∈ 𝐶1 and boundary
conditions) presented in Appendix. C, one can show that the following equality has to be satisfied.

cos
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛 +

𝑘𝑧𝐿𝑤

2
−𝜔𝑡 + 𝜓

)
cos

(
𝑘𝑧𝐿𝑤

2

)
= cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛 + 𝑘𝑧𝐿𝑧 −

𝑘𝑧𝐿𝑤

2
−𝜔𝑡 + 𝜓

)
cos

(
𝑘𝑧𝐿𝑤

2

)
(23)

Two cases arise from Eq. (23). Firstly, let us consider that cos(𝑘𝑧𝐿𝑧/2) = 0 which leads to 𝑘𝑧 = (2𝑛 + 1)𝜋/𝐿𝑤 with
𝑛 ∈ N. However, since 𝑘𝑧 ≠ 𝜋/𝐿𝑤 (see Appendix. B), this solution implies that the discretization can not be uniformly
spaced. Moreover, if 𝐿𝑤 is chosen too small the discretization steps tends to become very wide which could affect the
precision of the solution. The another possibility is to consider 𝑘𝑧 = 2𝑛𝜋/(𝐿𝑧 − 𝐿𝑤 ). The case 𝑅𝑤 = 15%, which
gives the same envelope that for the non divergence-free scenario, but with a slightly shifted discretization of the 𝑘𝑧
wavenumbers, is considered. The generated spectra with the new implementation are compared with the analytical
solutions in Figs. 11a and 11b. There is a good agreement for the streamwise and upwash components for all cases. The
fact that the spanwise spectra are altered is related to the choice of applying the correction on the 𝑢′𝑧 component of the
velocity.
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a) b)

Fig. 11 Liepmann spectra of the upwash and spanwise velocity components (black solid line ) and the
streamwise component (black dotted line ). Synthetic turbulence spectra with divergence free formulation
in solid line with circles (upwash component in red −©−, spanwise component in green −©−, and streamwise
component in blue −©−) obtained with 𝑁 = 30, 𝑅𝑤 = 15%, 𝑀 = 16, 𝐿𝑦 = 𝑠 = 8.5 cm, Δ 𝑓 = 1 Hz, and averaged
over 250 blocks. Spectra from the left figure obtained for location 𝑧 = 0.1 and from the right figure at location
𝑧 = 0.185 where 𝑓𝑤 (𝑧) = 0.5.

4. Some words about the numerical optimization
The synthetic turbulence generation process has been implemented in Fortran code. Previous routines used at

ONERA for annular geometries [1, 2], have been rewritten in a Cartesian coordinate system. In parallel, several
features have been added in order to lower the CPU generation cost. Turbulence structures having a symmetry axis
are generated only on a line of the mesh and duplicated afterwards on all the injection plane. Turbulence equations
have been decomposed as much as possible using trigonometric identities to factorize operations. In order to speed-up
the generation process of a full 3D synthetic turbulence some additional optimization has been needed. It has been
chosen not to generate turbulence over all the time steps of the simulation similarly to [11]. The missing time steps are
recovered by a linear interpolation. For example, here, the synthetic turbulence field has been generated one time step
over 10 on the baseline computations, still ensuring 40 points per period at the highest simulated frequency. For each 3
channels simulation presented below, the 3D turbulence generation process has required only around 10 hours on one
thousand cores, for which the CAA converged solution was obtained in about 30 hours on 1077 cores.

V. Aeroacoustic applications on the rectilinear cascade configuration

A. Introduction to the numerical set-up on the baseline (untreated) geometry

1. Inviscid mean flow calculation
The mean flow has been computed by means of a 2D open source Euler code proposed in [25]. Inflow conditions

are indicated in Fig. 12. A few loops have been performed to get the targeted upstream Mach number of 0.3. This has
been done by adjusting the exhaust static pressure. This approach was shown to be an efficient alternative to previous
RANS approach which requires some corrections near the solid boundaries in order to remove boundary layers and
recirculation zones, incompatible with the inviscid assumption of the CAA code. For the mean flow computation, a
single channel simulation with periodic boundary condition has been considered. The obtained mean velocity field has
been then duplicated and interpolated on the CAA mesh for acoustic multi-channel computations. It has to be noted that
the upstream Mach number and the entrance flow angle used for the CAA have been chosen before the final values (see
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Table 1) have been provided by the consortium. However, it should not modify the conclusions drawn here.

Fig. 12 𝑈𝑥 , levels between 60 and 120 m · s−1.

2. Simulated configuration and main assumptions of the aeroacoustic computations
The CAA simulation setup uses the boundary conditions presented in Figs. 3 and 12. Except for the one channel

computations and the parametric study on the vane count from [5] on the baseline geometry, which are performed on a
H pattern grid (more discussed in [5]), all the CAA grid is designed using an O-H pattern plotted in Fig. 14. This
choice has been made in order to facilitate the generation of the 3D mesh for the serrated geometry. Indeed, the mesh is
practically designed using an in-house tool ersatZ which allows to apply suitable 3D deformations on the reference
skeleton to obtain the serrated shape and to extend them within the grid volume. For more information about the meshes
and the preliminary results one may refer to the previous paper from Buszyk et al. [5]. The main conclusion from this
preliminary study was that multi-channel computations are mandatory to avoid spurious resonance phenomena in the
mid frequency range resulting from periodic boundary conditions and requiring to include at least 3-vane channels in
the CAA domain. A typical result from these parametric studies [5] is shown in Fig. 13. All the following simulations
discussed in the next paragraphs are achieved using 3-vane channels and first solutions from [5] are completed using full
3D turbulence modeling.

Fig. 13 Downstream sound power per vane. Parametrical study on the number of vanes (channels) in the CAA
domain taken from [5], with a (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0) turbulence. Computations performed with Δ 𝑓 = 10 Hz and
averaged over 10 blocks.
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Fig. 14 O-H pattern CAA mesh.

B. Aeroacoustic predictions on the baseline (untreated) geometry
The acoustic computations with a 3D turbulence injection are performed using 3-vane channels which is also a

good compromise in terms of CPU [5]. The parameters used for the generation of the 3D synthetic turbulence are the
following: 𝐿𝑦 = 0.255 m, 𝑀 = 48, 𝑁 = 30, and Δ 𝑓 = 100 Hz. In Fig. 15, snapshots of synthetic turbulent flows related
to the transverse velocity (𝑢′𝑦) are clearly showing the different patterns issued from 1D (a), 2D (b) and (c), and 3D
(d) injected turbulence. Note that 1D (parallel gust), 2D (planar), and full 3D structures are respectively linked to the
number of velocity components (1,2 or 3) [15] and then to the non-zero wavenumbers involved in the present turbulence
models. For the latter 3D turbulence, the velocity field has been cropped in order to avoid the visual effect induced by
the window 𝑓𝑤 (𝑧) at the borders.

a)
b) c) d)

Fig. 15 Turbulent-like velocity snapshots for 𝑢′𝑦 (levels between ±2 m · s−1 for the 𝑘𝑧 = 0 cases and between
±10 m · s−1 otherwise). Turbulence structures from (a) to (d): (𝑘 𝜉 , 𝑘𝑧 = 0), (𝑘 𝜉 , 𝑘𝑧), (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0), and
(𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧).

The pressure fluctuations are then extracted at the vane skin and radiated in the far-field using an in-house code (MIA).
MIA solves the FWH equation restricted here to the loading noise term with a solid surface formulation. The power
spectra were obtained by a weighted angular integral over half a circle downstream of the cascade, as performed in
[5]. In order to compensate the lack of energy input due to the window function 𝑓𝑤 (𝑧) (with 𝑅𝑤 = 0.15), a simple
correction has been applied to the spectra: 20log(1/(1− 𝑅𝑤 )). The numerical spectra are compared to Amiet’s solution
for an isolated flat plate in Fig. 16. Please note that a cascade model as proposed in [28–30] might be used to get a
reliable reference solution, so that the Amiet-based spectrum is only giving a biased estimate by neglecting the cascade
effect (quite significant in this configuration). In high frequencies, Amiet’s model is overpredicting the acoustic spectra
because it does not take into account any thickness. For (𝑘 𝜉 , 𝑘𝑧 = 0), (𝑘 𝜉 , 𝑘𝑧), and (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) turbulent structures,
the computations have been performed with Δ 𝑓 = 100 Hz and with Δ 𝑓 = 20 Hz for (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0) turbulence.
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Fig. 16 Downstream sound power per vane. Amiet’s solution for an isolated flat plate in black solid line
. Numerical solutions for different synthetic turbulence injected in 3-channels computations in color: −•−
(𝑘 𝜉 , 𝑘𝑧 = 0), −•− (𝑘 𝜉 , 𝑘𝑧), (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0), −H− (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) with div(𝒖′) ≠ 0, and −H− (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) with
div(𝒖′) = 0. A 1 kHz moving average has been applied to raw CAA spectra.

Regarding the numerical spectra associated with (𝑘 𝜉 , 𝑘𝑧 = 0) and (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0) turbulence, one may notice that
taking into account 𝑘𝜂 provides a more linear shape with respect to the attenuation slope in medium and high frequency
range. However, the bump (around 800 Hz) due to a numerical amplification using periodicity conditions over 3-vane
channels instead of 7 is stronger when a turbulence with a varying 𝑘𝜂 is injected, see Fig. 15 from [5]. Regarding the
comparison between CAA results and Amiet’s solution, the levels are definitely over-estimated by the isolated flat plate
approximation. This is why, even if the non-zero divergence turbulence is the closest solution to one from Amiet, it
represents in fact the worst numerical prediction. Indeed, following literature [30, 31], a few decibels reduction is at least
expected in low frequencies due to the cascade effect and in high frequencies due to the non-zero thickness of the airfoils
[32]. Looking at the divergence free result, taking into account the 𝑘𝑧 wavenumber seems not to modify the spectra
(green vs. pink curves), which is in accordance with previous numerical simulations (in [5]) and with Amiet’s theory.

a) b)

Fig. 17 𝑢′𝑧 (levels between ±10 m · s−1) at the injection surface in the (𝑦, 𝑧) plane. Fully 3D turbulence with
non-zero divergence (on the left) and with divergence free formulation (on the right).
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a) b)

Fig. 18 Isosurfaces of 𝑝′ at ±200 Pa. Turbulence (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) with non-zero divergence (on the left) and
(𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧) with divergence free formulation (on the right).

Snapshots of the turbulent-like velocity 𝑢′𝑧 at the injection plane are plotted in Fig. 17. The structure with the
divergence-free condition (Fig. 17b) appears to be less homogeneous compared with those obtained without the
correction term on 𝑢′𝑧 (Fig. 17a), which is in accordance with the deviations on autocorrelation spectra presented in Fig.
11. However, as clearly visible on iso-surfaces of fluctuating pressure in Fig. 18, the non-zero divergence formulations
(Fig. 18a) gives rise to local intense spots extending through the CAA domain and interacting with the vanes, and
responsible for some noise increase. On the contrary, the solution obtained with the divergence-free formulation (Fig.
18b) is found to be much cleaner without generation of additional numerical spurious sources.

C. Design of a passive treatment based on leading edge serrations
The leading edge serrations have been firstly designed on a 2D plane, plotted in Fig. 19a, following the background

from previous studies, the most recent is presented in [2]. The theoretical optimal serration wavelength, defined from
[19], corresponds to twice the turbulence length scale of 8 mm. The serration amplitude is defined directly related
to the serration angle and so the ratio ℎ𝑠/𝜆𝑠. Although the acoustic benefit could be improved by increasing ℎ𝑠, a
practical limitation of the ratio ℎ𝑠/𝑐 is required to avoid a noticeable loss of aerodynamic performances for industrial
applications. Such a threshold has been used in [2]. Hence, setting ℎ𝑠/𝜆𝑠 = 1 can be considered as a reasonable value
close to the optimum design. For the numerical computation, in order to get an integer number of serrations along the
span, the quantities have been slightly increased to end with ℎ𝑠 = 𝜆𝑠 = 16.7 mm. To apply the planar deformation on
the 3D geometry of the airfoil, the ersatZ tool has been used. The first step has consisted in the extraction of the camber
and thickness laws. An homothety has been then applied to these laws in order to obtain the shape of the airfoil at
the roots of the serrations. To get the airfoil geometry at the hills of the serrations, the camber law was extended at
the leading edge, keeping a constant angle as illustrated in Fig. 19b. The ersatZ modeler which is able to extend the
skeleton deformations (see Fig. 19c) to the cells of the volume mesh has been used to apply a morphing of the baseline
CAA grid, presented in Fig. 20, in order to perform aerocoustic simulations on the treated design.
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a) b) c)

Fig. 19 2D plot of the serration geometry (on the left). Diagram of the deformation applied on the NACA 7310
airfoil (on the middle), and 3D geometry obtained by ersatzZ (on the right).

Fig. 20 Views of the skin CAA mesh and 𝑧 slice at the peak of the serration.

D. Assessment of the noise reduction provided by the serrated geometry

1. Mean flow and CAA computation
In order to obtain the mean flow around the new geometry with the 2D Euler open-source code, the computation

was performed on 𝑧 planes, from which the velocity field has been then interpolated on the 3D CAA mesh. Thus,𝑈𝑧 is
set equal to zero in the domain, which is a proper approximation. Indeed, the vertical (radial) component of the mean
flow velocity has shown to be almost negligible in comparison with the other velocity components by RANS solutions
discussed in Section VI, and also consistent with previous studies on realistic turbofan configurations [2]. The resulting
Euler mean flow fields, in terms of axial velocity maps and streamlines visualization, are plotted in Figs. 21a and
21b, respectively for planar cuts at root and peak of the serration. The streamlines are perfectly aligned to the airfoil
geometry for these two tricky positions, which should allow to properly assess the turbulence-airfoil sources and sound
propagation in the CAA.
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a) b)

Fig. 21 Isocontour maps of𝑈𝑥 (levels between 60 and 120 m · s−1) with streamlines. Cuts at the root (left) and
peak (right) of the serration.

The 𝑧 vorticity isosurfaces issued from the fully 3D turbulence simulation on the serrated case are plotted in Fig. 22, in
which the contour maps of the RMS pressure fluctuations on the vane skin are surimposed. Moreover, the strongest
pressure sources are located at the roots and peaks of the serrations in accordance with the literature [2, 8]. Finally, the
pressure fluctuations are equally distributed over the 3 vanes, which satisfies the periodicity conditions (enforced in the
transverse direction) and indicates the good convergence of the CAA computation.

Fig. 22 Isosurfaces of vorticity 𝜔′
𝑧 , s−1 and RMS wall pressure 𝑝′𝑟𝑚𝑠 , Pa (levels between 0 and 250 Pa).

2. Sound Power Level reductions (ΔPWL) from CAA and comparison with analytical and empirical solutions
The noise reduction assessed in terms of ΔPWL spectra are summarized in Fig. 23. The numerical predictions with

the different synthetic turbulence injections are compared with both an analytical solution and a semi empirical law
proposed by ISVR [19]. The analytical solution presented in [20] solves the Helmholtz advective equation using the
Wiener-Hopf (WH) technique for any piecewise leading edge geometries. It has been slightly modified for applications
to finite span airfoils in [2, 5]. The semi-empirical law (from [19]) provides the noise optimal noise reduction (occurring
when 𝜆𝑠 = 2𝐿𝑡 ) for a single-wavelength geometry in terms of the Strouhal number: ΔPWL=10log(𝑆𝑡) + 10. There is
a good agreement between the different solutions in the medium frequency range especially in comparison with the
semi-empirical law. As discussed in previous numerical studies [5, 27], ignoring the spanwise turbulence variation leads
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to an overprediction of the noise reduction particularly in high frequencies. The 3D turbulence numerical prediction (in
pink) exhibits a slightly smaller noise reduction in high frequencies compared to other CAA computations in particular
the 2-wavenumbers (𝑘 𝜉 , 𝑘𝑧) formulation (in blue). Practically, this study tends to show that the (𝑘 𝜉 , 𝑘𝑧) turbulence
model is a good compromise in terms of accuracy vs. CPU time. Moreover, the ΔPWL spectra achieved in this case is
found to be almost identical when using 1-channel or 3-channels simulations, which makes this approach very attractive.

Fig. 23 ΔPWL spectra (downstream radiation). Wiener-Hopf analytical solution in black solid line and
semi-empirical log-law in brown solid line . Numerical solutions for different synthetic turbulence injected
in 3-channels computations: (𝑘 𝜉 , 𝑘𝑧 = 0), (𝑘 𝜉 , 𝑘𝑧), (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0), (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧).
Numerical solution for a (𝑘 𝜉 , 𝑘𝑧) synthetic turbulence injected in 1-channel computation. A 1 kHz moving
average has been applied to raw CAA spectra.

The expected acoustic performances from numerical/analytical/semi-empirical approaches are gathered in Table 3.
There is a very good agreement between the trends drawn from Fig. 23 and the average noise reduction provided in
Table 3. However, drawing conclusions from the overall sound power level noise reductions (ΔOAPWL) is a bit tricky,
since it is influenced by the shape of the baseline noise spectra. Indeed, due to resonance phenomenon associated with
periodic boundary condition (more discussed in [5]), some bumps appear in the spectra which tend to over-predict the
noise emission around 500 to 1000 Hz, for the 3-channel set-up. The later bump is a bit less visible on a multi-channel
computation with a turbulence invariant along the cascade directions, as shown in [5] by Fig. 15. Consequently, in order
to give a better idea of the overall noise reduction for the multi-channel computations, the frequency range 1300 Hz to
9800 Hz is also considered. In any case, for all the methods a significant ΔOAPWL (noise reduction) around 6 dB is
expected.

Average ΔPWL, 0.2 to 9.8 kHz ΔOAPWL, 0.2 to 9.8 kHz ΔOAPWL, 1.3 to 9.8 kHz
WH 7.3 5.5 6.8
10 log(𝑆𝑡) + 10 7.5 4.9 6.1
CAA (𝑘𝑥 , 𝑘𝑧 = 0) 11.0 5.2 6.2
1-vane CAA (𝑘𝑥 , 𝑘𝑧) 8.7 6.7 7.1
CAA (𝑘𝑥 , 𝑘𝑧) 8.6 5.4 6.4
CAA (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 = 0) 9.0 3.9 5.3
CAA (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) 7.2 3.5 5.7

Table 3 Average ΔPWL and ΔOAPWL, dB.

Additionally, a parametric study has been performed using the analytical solution (based on the WH technique) in
order to evaluate the acoustic performances at the three certification points (approach APP, cutback CUTB and sideline
SDL). The obtained results are plotted in Fig. 24. The prediction at M=0.3 (condition used for the CAA) is also given.
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These results show that the noise reduction is shifted towards high frequencies. As already pointed out in [2], the
peak-frequency of the PWL reduction roughly follows the one related to the noise emission spectrum, at respective
regimes. By the way, the low-noise design remains efficient at low-speed and high-speed flows, and thus well adapted
for acoustic certification.

Fig. 24 ΔPWL spectra (downstream radiation) obtained from WH solutions at 3 certification points:
APP (M = 0.34), CUTB (M = 0.53), and SDL (M = 0.64). WH solution for M = 0.3 in black solid
line .

VI. Aerodynamic assessment of the serrated design

A. RANS simulations set-up and aerodynamic performance analyzes
In addition to aeroacoustic computations, an aerodynamic assessment has been conducted through RANS calculations

(performed by R. Barrier) using ONERA code elsA and applying the Jameson spatial scheme and k-l Smith turbulence
model. The full span extension has been considered, with the use of adiabatic walls condition on the vane and end-walls
and periodic boundary condition at vane channel sides. In the spanwise direction, 421 points are used, ensuring 30
points per serration wavelength. A view of the CFD grid containing about 5 million cells is shown in Fig. 25a. For the
serrated case, the vane skin mesh (see Fig. 25b) is trimmed using the in-house modeler ersatZ. Two operating point
conditions have been investigated, at approach (APP) and at the aerodynamic design point (ADP), with inlet Mach
number respectively equal to 0.34 and 0.67, and inlet total pressure and temperature respectively equal to 101325 Pa and
288.15 K. The inflow turbulence intensity is set equal to 4.5% and a turbulence viscosity ratio of 0.01 is considered.
At APP (selected condition for which the CAA simulations were performed), aerodynamic penalties are found to be
acceptable with the first serrated design (mainly achieved for acoustics purpose) as illustrated by Fig. 26 (contour maps
of Mach number) and further below in Fig. 29a, related to pressure loss coefficient. In Fig. 26, comparisons of the
cut views (taken at the roots of the serration), do not reveal significant changes with only a slight flow separation at
the trailing edge suction side. This gives rise to a 0.14 pt. deviation for total pressure loss coefficient and +1.8 deg.
deviation for outlet flow angle (see summarized results gathered in Table 4).
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a)
b)

Fig. 25 1-channel mesh of the baseline CFD geometry (on the left) and zoom view of the serrated mesh (on the
right).

a)
b)

Fig. 26 Mach number (levels between 0.05 and 0.45) at APP. Baseline geometry (on the left) and serrated design
with cut at the root (on the right).

However, at the ADP, the aerodynamic performances are significantly deteriorated compared to the reference geometry.
Indeed, contrary to the previous observations from Fig. 26, a strong flow separation is clearly shown in Fig. 28b by
comparison to the baseline solution in Fig. 28a. This has resulted in the proposal of a second design presented below,
consisting in a basic modification of the initial serrated design for aerodynamic purpose only.

B. Proposal of an alternative design to improve aerodynamic behavior at ADP (and APP) operating points

Fig. 27 Views of the baseline geometry (in grey) and the second serrated design (in blue).

In order to limit the aerodynamic penalties, more particularly pointed out at ADP, a second serrated design with an
increased averaged chord (the reference chord being set at the roots) has been proposed and simulated too. 3D views of
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this second serrated geometry are depicted in Fig. 27. As the serration parameters (ℎ𝑠,𝜆𝑠) are unchanged, this design
2 should have almost no impact on acoustic performances assessed with the design 1. The following results address
the aerodynamic performances obtained for both designs in comparison to the reference case. At APP, slightly better
performances are obtained with the second design as illustrated by the orange colored pressure loss distribution in Fig.
29a. The updated penalties for total pressure loss coefficient and outlet flow angle are found to be respectively reduced
to -0.10 pt. and +0.5 deg. with design 2, see Table 4. At ADP, the strong flow separation observed in Fig. 28b, is greatly
reduced in the presence of design 2. The overall performances addressed in Table 4 indicate a non-suitable penalty of
-1.6 pt. for total pressure loss coefficient and a flow angle deviation of +3.8 deg. with design 1. These critical values are
respectively reduced to -0.6 pt. and +0.8 deg. with design 2, which is a quite valuable improvement. These positive
effects are clearly pointed out on the spanwise profiles of pressure loss coefficient obtained for both designs, compared
to the reference solution in Fig. 29b at ADP. The benefit of using an increased mean chord is clearly highlighted, the
design 2 being able to reduce the penalties all over the span, with much more acceptable deviations.

a)
b) c)

Fig. 28 Mach number (levels between 0.1 and 1.2) contour maps cuts at ADP. Baseline geometry (on the left),
serrated design 1 (in the middle), and serrated design 2 (in the right) with cuts at the roots.

a) b)

Fig. 29 Pressure loss distributions along the dimensionless spanwise coordinate ℎ = 𝑧/𝐿𝑧 . At APP (on the left)
and ADP (on the right).
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baseline (reference) design 1 design 2
Total pressure loss coefficient at APP 0.9970 0.9956 (-0.14 pt.) 0.9960 (-0.10 pt.)
Total pressure loss coefficient at ADP 0.9880 0.9720 (-1.60 pt.) 0.9820 (-0.60 pt.)
Outlet angle (remaining swirl) at APP 2.1◦ 3.9◦ (+ 1.8◦) 2.6◦ (+ 0.5◦)
Outlet angle (remaining swirl) at ADP 2.5◦ 6.3◦ (+ 3.8◦) 3.3◦ (+ 0.8◦)

Table 4 Summary of the aerodynamic performances of baseline, serrated design 1, and design 2. Difference to
the reference value in parenthesis.

VII. Conclusion
The ability to implement a fully three-dimensional turbulencewith a limited computational cost has been demonstrated

in this study. Wall and periodic boundary conditions have raised important challenges. To address the latter issues, a
variant of the usual generation process based on the energy spectrum, similarly to [15], has been proposed. Adequately
defined weighting functions have been introduced to obtain a divergence free turbulence in the presence of wall BC.
From a methodological point of view, this work has provided some additional insight on the set-up of CAA computations,
following on preliminary CAA simulations performed at ONERA on the InnoSTAT configuration [5]. One may conclude
that multi-channel computations with at least a (𝑘 𝜉 , 𝑘𝜂 , 𝑘𝑧 = 0) turbulence are needed to reproduce the most accurately
the noise spectra on multi-channel configurations in medium and high frequencies. The convergence in low frequencies
is ensured only by taking into account a large amount of airfoils as shown in [5, 31]. If one is only interested in the
relative noise reduction, a one channel simulation with a (𝑘 𝜉 , 𝑘𝑧) turbulence structure appears appropriate. However, in
order to take into account very properly both cascade and serration effects, a 3D synthetic turbulence might represent
the best choice. The only drawback of a multi-channel computation with a 3D turbulence is that an important number of
vanes has to be taken into account in order to damp the bump in low frequency of the acoustic spectra associated with
periodic boundary conditions. Thus, an alternative is to consider multi-channel computations with (𝑘 𝜉 , 𝑘𝑧) turbulence
as usually performed at ONERA [1, 2], even if the spectra are a bit altered in medium and high frequencies. In any case,
the new fully 3D turbulence methodology might be of particular interest for cases where both 𝑘𝜂 and 𝑘𝑧 are likely to
strongly influence the acoustic sources. In parallel, a low-noise design with leading edge serrations has been proposed
for which around 4 to 6 dB overall noise reduction can be expected at the 3 certification points, with a good agreement
between the noise reduction spectra from the different methods. Finally, aerodynamic performances of the serrated
design were evaluated. At the approach point, the design offers acceptable performance losses. However, at the ADP
operating point, the aerodynamic penalties raise the need for an improved variant of the initial design. This second
design, involving a larger mean chord, should not modify the acoustic prediction since the leading edge sinusoidal shape
has been preserved. Even better, the improved aerodynamics might reduce the additional self-noise sources compared to
the first design.
As mentioned in the introduction, the LBM is an affordable high-fidelity approach that might be complementary to

the present hybrid CFD/CAA methods. In order to compare both, LBM calculations using the ProLB code are underway
at ONERA on these baseline and low-noise cascade geometries, including the full ECL cascade rig set-up [4].

Appendix

A. An algorithm to determine the direction of the velocity for 3D turbulence structures
Let us consider the wavenumber 𝒌 = (𝑘 𝜉 ,𝑙 , 𝑘𝜂,𝑙𝑚, 𝑘𝑧,𝑛)𝑇 in the coordinate system (𝜉, 𝜂, 𝑧). The goal is to build

on orthonormal basis (𝒌𝒂, 𝒌𝒃 , 𝒌𝒄) from 𝒌 in order to determine 𝝈𝒍𝒎𝒏 such as 𝒌 · 𝝈𝒍𝒎𝒏 = 0. The main steps of the
procedures are mentioned below with 𝛼𝑙𝑚𝑛 a random phase term sorted for each mode (𝑙, 𝑚, 𝑛).

1) 𝒌𝒄 =
𝒌

| |𝒌 | |

25

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Ju
ly

 2
9,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

22
57

 



2) Supposing that 𝑘 𝜉 > 0


𝒌𝒂 =

(
−
𝑘2𝜂 + 𝑘2𝑧
𝑘 𝜉

, 𝑘𝜂 , 𝑘𝑧

)𝑇
( 𝜉 ,𝜂,𝑧)

, if |𝑘𝜂 | + |𝑘𝑧 | ≠ 0

𝒌𝒂 = (0, 𝑘𝜂 , 0)𝑇( 𝜉 ,𝜂,𝑧) , if |𝑘𝜂 | + |𝑘𝑧 | = 0

3) 𝒌𝒂 =
𝒌𝒂

| |𝒌𝒂 | |
and 𝒌𝒃 =

𝒌𝒃
| |𝒌𝒃 | |

4) 𝒌𝒃 = 𝒌𝒄 ∧ 𝒌𝒂
5) 𝝈𝒍𝒎𝒏 = cos(𝛼𝑙𝑚𝑛)𝒌𝒂 + sin(𝛼𝑙𝑚𝑛)𝒌𝒃 , with 𝛼𝑙𝑚𝑛 ∈ [0, 2𝜋]

B. Link between formulations based on the turbulence energy spectrum and the velocity autocorrelation spectra
For the sake of simplicity, let us assume that 𝛽𝑐 = 0. In order to achieve the comparison between the formulations,

an amplitude of a given mode 𝑢′
𝑖
= 2

√︁
𝐸 (𝑘)Δ𝑘 𝜎𝑖 = 2

√︃
𝐸 (𝑘)/(2𝜋𝑘2)Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧𝜎𝑖 is considered. The directivity of

the velocity is given by the vector 𝝈 which satisfies Eq. (24), following Appendix. A.

𝝈 = cos(𝛼) 𝑘

𝑘2
√︃
𝑘2𝑦 + 𝑘2𝑧

©«
−(𝑘2𝑦 + 𝑘2𝑧)
𝑘𝑥𝑘𝑦

𝑘𝑥𝑘𝑧

ª®®¬ + sin(𝛼)
1

𝑘2
√︃
𝑘2𝑦 + 𝑘2𝑧

©«
0

−𝑘𝑧𝑘2

𝑘𝑦𝑘
2

ª®®¬ (24)

The next step is to consider the mean value (denoted by the subscript 𝑚𝑒𝑎𝑛) of the squared norm of the vector 𝝈 from a
statistical point of view, considering an infinite number of 𝛼 randomly sorted.

𝜎21 = cos
2 (𝛼) 1

𝑘2

(
𝑘2𝑦 + 𝑘2𝑧

)
⇒ 𝜎21,𝑚𝑒𝑎𝑛 =

1
2
1
𝑘2

(
𝑘2𝑦 + 𝑘2𝑧

)
=
1
2

(
1 − 𝑘2𝑥

𝑘2

)
𝜎22 =

1
𝑘4

(
𝑘2𝑦 + 𝑘2𝑧

) (
cos(𝛼)𝑘𝑥𝑘𝑦𝑘 − 𝑠𝑖𝑛(𝛼)𝑘𝑧𝑘2

)2
⇒ 𝜎22,𝑚𝑒𝑎𝑛 =

1
2
1
𝑘2

(
𝑘2𝑥 + 𝑘2𝑧

)
=
1
2

(
1 −

𝑘2𝑦

𝑘2

)
𝜎23 =

1
𝑘4

(
𝑘2𝑦 + 𝑘2𝑧

) (
cos(𝛼)𝑘𝑥𝑘𝑧𝑘 + 𝑠𝑖𝑛(𝛼)𝑘𝑦𝑘2

)2
⇒ 𝜎23,𝑚𝑒𝑎𝑛 =

1
2
1
𝑘2

(
𝑘2𝑥 + 𝑘2𝑦

)
=
1
2

(
1 −

𝑘2𝑧

𝑘2

)
The expression of averaged (mean) velocities, with respect to 𝛼, can now be expanded.

𝑢
′2
1,𝑚𝑒𝑎𝑛 = 4

𝐸 (𝑘)
4𝜋𝑘2

(
1 − 𝑘2𝑥

𝑘2

)
Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧

𝑢
′2
2,𝑚𝑒𝑎𝑛 = 4

𝐸 (𝑘)
4𝜋𝑘2

(
1 −

𝑘2𝑦

𝑘2

)
Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧

𝑢
′2
3,𝑚𝑒𝑎𝑛 = 4

𝐸 (𝑘)
4𝜋𝑘2

(
1 −

𝑘2𝑧

𝑘2

)
Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧

If one considers the squared amplitude of the average statistical velocities (𝑢′
𝑖,𝑚𝑒𝑎𝑛

= 2
√︁
𝜑𝑖𝑖Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧), the formulations

which would have been obtained using autocorrelation spectra 𝜑𝑖𝑖 = 𝐸 (𝑘)/(4𝜋𝑘2) (1 − 𝑘2
𝑖
/𝑘2) are recovered. To

conclude, it has been demonstrated that if an infinite number of modes is sorted, the two formulations (relying on the
energy spectrum or the autocorrelation velocity spectra) tend towards the same limit.

C. Determining conditions under which a divergence free formulation can be achieved
The choice has been made to alter the 𝑢′𝑧 component, with the aim of achieving a divergence free formulation.

𝜕𝑢′𝑧
𝜕𝑧

= − 𝑓𝑤 (𝑧)𝐴 sin (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓) 𝑘𝑧𝜎𝑧 + 𝑓 ′𝑤 (𝑧)𝐴 cos (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓) 𝜎𝑧 − 𝑔′𝑤 (𝑧)𝐴𝜎𝑧 (25)
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From Eqs. (21) and (25), one can obtain that 𝑔′𝑤 (𝑧) = 𝑓 ′𝑤 (𝑧)cos(𝒌 · 𝑿 − 𝜔𝑡 + 𝜓). More precisely, 𝑔𝑤 (𝑧) is a piecewise
function likewise 𝑓𝑤 (𝑧), defined as follows,

∀𝑧 ∈ [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 + 𝐿𝑤 ], 𝑔′𝑤 (𝑧) =
𝜋

2𝐿𝑤
sin

(
𝜋
𝑧 − 𝑧𝑚𝑖𝑛
𝐿𝑤

)
cos (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓)

∀𝑧 ∈ [𝑧𝑚𝑖𝑛 + 𝐿𝑤 , 𝑧𝑚𝑎𝑥 − 𝐿𝑤 ], 𝑔′𝑤 (𝑧) = 0

∀𝑧 ∈ [𝑧𝑚𝑎𝑥 − 𝐿𝑤 , 𝑧𝑚𝑎𝑥], 𝑔′𝑤 (𝑧) =
𝜋

2𝐿𝑤
sin

(
𝜋
𝑧 − 𝑧𝑚𝑎𝑥
𝐿𝑤

)
cos (𝒌 · 𝑿 − 𝜔𝑡 + 𝜓)

(26)

The idea of the following paragraphs is to demonstrate the conditions under which the previous system of equations
(Eq. (26)) can be satisfied taking into account that both functions 𝑓𝑤 and 𝑔𝑤 are 𝐶1 and cancel in 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 .
Let us consider that 𝑘𝑧 ≠ ±𝜋/𝐿𝑤 (the case 𝑘𝑧 = ±𝜋/𝐿𝑤 which is not detailed here and leads to the equality
sin

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝜋/𝐿𝑤 𝑧𝑚𝑖𝑛−𝜔𝑡 + 𝜓

)
= 0, which can not be ensured for every set of variables).

∀𝑧 ∈ [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 + 𝐿𝑤 ], 𝑔𝑤 (𝑧) =
−𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos(𝒌 · 𝑿−𝜔𝑡 + 𝜓)cos

(
𝜋
𝑧−𝑧𝑚𝑖𝑛
𝐿𝑤

)
− 𝑘𝑇𝜋

2𝜋2 − 2𝑘2𝐿2𝑤
sin(𝒌 · 𝑿−𝜔𝑡 + 𝜓)sin

(
𝜋
𝑧−𝑧𝑚𝑖𝑛
𝐿𝑤

)
+ 𝐶𝑎

∀𝑧 ∈ [𝑧𝑚𝑖𝑛 + 𝐿𝑤 , 𝑧𝑚𝑎𝑥 − 𝐿𝑤 ], 𝑔𝑤 (𝑧) = 𝐶𝑏

∀𝑧 ∈ [𝑧𝑚𝑎𝑥 − 𝐿𝑤 , 𝑧𝑚𝑎𝑥], 𝑔𝑤 (𝑧) =
−𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos(𝒌 · 𝑿−𝜔𝑡 + 𝜓)cos

(
𝜋
𝑧−𝑧𝑚𝑎𝑥
𝐿𝑤

)
− 𝑘𝐿𝑤𝜋

2𝜋2 − 2𝑘2𝐿2𝑤
sin(𝒌 · 𝑿−𝜔𝑡 + 𝜓)sin

(
𝜋
𝑧−𝑧𝑚𝑎𝑥
𝐿𝑤

)
+ 𝐶𝑐

(27)

The integrated form of Eq. (26) is given by Eq. (27), where three constants 𝐶𝑎, 𝐶𝑏 , and 𝐶𝑐 need to be determined. The
functions 𝑓𝑤 and 𝑔𝑤 have to be damped near the boundaries, for example at 𝑧𝑚𝑖𝑛, 𝑔𝑤 (𝑧𝑚𝑖𝑛) = 0. Thus, the constant 𝐶𝑎
satisfies,

𝐶𝑎 =
𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛−𝜔𝑡 + 𝜓

)
(28)

The continuity has to be ensured in 𝑧 = 𝑧𝑚𝑖𝑛 + 𝐿𝑤 , leading to 𝐶𝑏 = 𝑔𝑤 (𝑧𝑚𝑖𝑛 + 𝐿𝑤 ).

𝐶𝑏 =
𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧 (𝑧𝑚𝑖𝑛 + 𝐿𝑤 )−𝜔𝑡 + 𝜓

)
+ 𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛−𝜔𝑡 + 𝜓

)
(29)

Thus, the constant 𝐶𝑏 can be expressed by Eq. (29).

𝐶𝑐 =
𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑎𝑥−𝜔𝑡 + 𝜓

)
(30)

Likewise at 𝑧 = 𝑧𝑚𝑎𝑥 , 𝑔𝑤 (𝑧𝑚𝑎𝑥) = 0 which leads to Eq. (30).

𝐶𝑏 =
𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧 (𝑧𝑚𝑎𝑥 − 𝐿𝑤 )−𝜔𝑡 + 𝜓

)
+ 𝜋2

2𝜋2 − 2𝑘2𝐿2𝑤
cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑎𝑥−𝜔𝑡 + 𝜓

)
(31)

Thereafter, 𝐶𝑏 = 𝑔𝑤 (𝑧𝑚𝑎𝑥 − 𝐿𝑤 ) and 𝐶𝑏 has also to satisfy Eq. (31).

cos
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛 +

𝑘𝑧𝐿𝑤

2
−𝜔𝑡 + 𝜓

)
cos

(
𝑘𝑧𝐿𝑤

2

)
= cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧𝑚𝑖𝑛 + 𝑘𝑧𝐿𝑧 −

𝑘𝑧𝐿𝑤

2
−𝜔𝑡 + 𝜓

)
cos

(
𝑘𝑧𝐿𝑤

2

)
(32)

The constraint that 𝐶𝑏 = 𝑔𝑤 (𝑧𝑚𝑖𝑛 + 𝐿𝑤 ) = 𝑔𝑤 (𝑧𝑚𝑎𝑥 − 𝐿𝑤 ), imposes that Eq. (32) has to be verified.
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