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The present work addresses the installation effects expected for the tonal noise of a pair of
side-by-side contrarotating subsonic propellers mounted near a wing trailing edge. This generic
configuration mimics future urban air-vehicle architectures. The installation effects refer to the
additional sources of aerodynamic noise caused by blade-wing interaction and their scattering by
the wing, compared to the case of isolated propellers. The paper aims to demonstrate the ability
of analytical models to estimate these effects, which is of primary interest for the preliminary
design steps of an installed propulsion system. Furthermore, the analytical parametric study
might help determine promising configurations for future aircraft. In the analytical formulation,
dipole-like noise sources of the propellers are considered, assuming rigid blades. The sound
radiation from the propellers is formulated in three dimensions for characteristic spinning
modes of the tonal noise. In contrast, the half-plane Green’s function accounts for the sound
scattering by the wing. A finite-chord correction is applied to the half-plane formulation and
validated by numerical simulations. The results show that the installation effect is crucial for
analyzing tonal propeller noise at low frequencies. In particular, sound radiation is significantly
increased when the blade tips operate in the close vicinity of the trailing edge.

I. Nomenclature

𝛼 = Angle of attack
𝛼𝑑 = Dipole angle
𝛽 = Compressibility parameter
𝛾 = Blade sweep angle
𝜌0 = Fluid density
𝜃, 𝜃0 = Observer and source angles
𝜔,Ω = Angular frequency
𝜏 = Half-time span of a Gaussian pulse
𝐵 = Number of blades
𝑏0 = Half-width of a Gaussian distortion
𝐶 = Amplitude factor
𝑐 = Blade chord
𝑐0 = Sound speed
𝐶𝐿 = Lift coefficient
𝐹𝑡 , 𝐹𝑑 = Dipole strength and amplitude
𝐹𝑠 = Blade-loading harmonic
𝐺

(0)
1/2 = Half-plane Green’s functions without flow

𝐺
(𝑀0)
1/2 = Half-plane Green’s functions with flow
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𝐾, 𝑘 = Corrected and normal wavenumber
𝐾 = Modified Bessel function
𝑀0 = Mach number
𝑚 = Blade-passing frequency order
𝑛 = Mode order
𝑟 = Blade radius
𝑟, 𝑟𝑜 = Observer and source radial positions
𝑟 = Distance between the observer and source
𝑅 = Distance variables in GF
𝑠 = Blade-loading harmonic order
𝑇 = Period of rotation
𝑡 = Time
𝑈0 = Flow velocity
𝑢0, 𝑢1 = Upper bounds of the integrals in GF
𝑊0 = Instantaneous relative speed on a blade
𝑤(𝑡) = Periodicity of a Gaussian variation
𝑤0 = Depth of wake- velocity deficit
𝑤𝑠 = Distortion harmonics
𝑥, 𝑥0 = Observer and source streamwise positions
𝑧, 𝑧0 = Observer and source positions

II. Introduction

In parallel to the continuing growth of civil air transport, innovative electric and hybrid-electric aircraft concepts arepresently under increasing development to meet future noise and gas emission requirements. Similarly, new flying
architectures emerge at a smaller scale, from drones to urban air vehicles. All are disruptive technologies for which the
airframe and the propulsion systems can no longer be optimized separately, unlike what was done in the past for the
more conventional fuselage-and-wing aircraft.
A particular interest is given the Urban Air Mobility (UAM), for which many concepts emerged that are likely to

lead to new sources of community noise [1–5]. These small vehicles will probably be the first to reach maturity in
the near future. Related to this is the propulsion concept referred to as Distributed Electric Propulsion (DEP), relying
on multiple fans or propellers installed spanwise along a wing, either as pusher or puller units. Apart from electric
power-supply issues, the main challenges inherent to DEP systems include the effects of inflow distortions on propeller
efficiency and noise. These effects, of aerodynamic and acoustic nature, will highly depend on the relative positioning
of the propellers on the wing/airframe. The aerodynamic installation effect refers to the interaction of a propeller with
mean-flow gradients around the wing, which induces additional sources of aerodynamic noise. The acoustic installation
effect refers to the scattering of propeller noise by the wing and other surfaces. Both justify dedicated studies, to
understand, model, and optimize all aspects of propeller-airframe integration. Within this context, resorting to analytical
models is an attractive approach. However, analytical modeling requires that the dominant sound-generating mechanisms
are previously identified, on the one hand, and that simplifications are accepted for mathematical tractability, both on
the flow features and the geometry, on the other hand. Furthermore, the models must include design parameters as
realistically as possible for practical use in optimization algorithms.
Especially when analytical methods are used, the noise radiated by a propeller in free field is often predicted, relying

on Ffowcs Williams & Hawking’s formulation of the acoustic analogy. The analogy states that, from the standpoint of a
distant observer, the moving blades can be replaced by equivalent monopoles, dipoles, and quadrupoles [6, 7]. The
latter corresponds to thickness noise, loading noise, and flow noise, respectively. The analogy equation is solved with
the free-space Green’s function, either in the time domain or in the frequency domain. In installed configurations, the
diffraction of propeller noise by the airframe or surrounding surfaces must be explicitly considered, because it is able to
strongly restructure the sound field. In this case, the wave equation or the Helmholtz equation must be solved with
additional boundary conditions imposed on the surfaces. In a general case, this is achieved with numerical methods.
Alternatively, a tailored Green’s function can be used, provided that the geometry of the surfaces can be simplified,
preserving the dominant scattering effects. This enables one to develop a complete analytical approach, including source
modeling and diffraction. The present study aims to demonstrate the usefulness of this approach, particularly at the
early design stage of a mechanical system, in the context of innovative, installed, and/or distributed propulsion systems.
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In essence, the approach has to start with the definition of a generic configuration, in which a propeller and a
scattering surface are arranged with variable positioning parameters. The problem is formulated in the frequency
domain because diffraction is a matter of comparing dimensions and wavelengths. For mathematical tractability,
in particular separation of variables and homogeneity in the expression of boundary conditions for the Helmholtz
equation, the surface is defined along iso-values of the coordinate system. The surface must also be compatible with a
uniform fluid motion, corresponding to forward flight. In the present work, the generic configuration includes a flat
rectangular plate mimicking a wing, embedded in a mean-flow normal to its edges, and a pair of side-by-side propellers
in the aft part of the wing. This configuration corresponds to a real one that will be tested as a part of the ongoing
research project ENODISE. Analytical modeling is understood as a way of exploring many geometrical parameters and
propeller operational conditions with a minimum cost to select either promising or detrimental configurations prior to
their detailed characterization in the experiment. More precisely, the relative wing-propellers positioning is the main
investigated parameter. A key aspect of being assessed is that placing the propulsion units over the wing and at a quite
short distance to its surface is expected to bring the benefit of shielding for observers on the ground.
The present paper is organized as follows. The generic configuration of interest is depicted in section III. The

key steps of the analytical methodology and mathematical background of the sound-scattering model are reported in
section IV. The dipole sources are recognized as dominant at the low Mach numbers of interest. The free-field radiation
model of propeller noise, including the estimation of the steady-loading and unsteady-loading noise sources and their
expansion into source-modes, is presented. The basic sound scattering by the trailing edge is modeled, resorting to the
rigid half-plane Green’s function for the Helmholtz equation. An innovative and simple finite-chord correction applied
to the scattering model and its numerical validation are described in section V. Finally, validation tests and main results
are presented and discussed in section VI, prior to some concluding remarks.

III. Propeller-Wing Configuration
The selected propeller-wing configuration, depicted in Figure 1, includes a finite thin plate and two six-bladed side-

by-side subsonic propellers of 0.2m diameter, installed at different positions near the trailing edge. It is representative
of drones or future electric distributed propulsive architectures for aircraft.
Various mechanisms are expected in such an arrangement. First, the blades interact with the wake or the potential

upstream field of a pylon in the over-the-wing configurations. This induces blade-loading harmonics (BLH) on the
blades and subsequent tonal noise radiation. Other BLH are produced as the blade tips cross the boundary layer or the
wing’s wake for some relative positions. Additionally, suppose the blade tips are close enough to the wing trailing edge.
In that case, a possible amplification occurs because of the asymptotic behavior of the Green’s function for compact
source-to-edge distances. This effect typically regenerates sound in the shadow region for masking configurations
(see subsection IV.E). If the blade tips operate outside the mean-flow gradients of the wing, diffraction of free-field
propeller noise is the only remaining effect; the important question is whether the amplification operates or not. Both
aerodynamic and acoustic installation effects make a significant sound increase expected as the propeller distance to the
plate is reduced. However, which installation effect dominates is probably a matter of combined parameters, which must
be clarified.
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Fig. 1 Wing-propellers configuration, reference frames and main notations.

Several configurations were analytically assessed, as shown in Table 1; only the most critical cases, depicted in
Figure 2, will be analyzed and discussed.
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Table 1 Parametric variations of the wing-propellers configurations. 𝑟 is the radius of the propellers.

1 2 3
D r 0.5r 0.1r
h r+r r+0.5r r+0.1r
d 2r+r 2r+0.5r 2r+0.1r

(a) Case 1 = D2h3d2 (b) Case 2 = D3h3d2 (c) Case 3 = D3h2d2

U0

Fig. 2 Wing-propellers critical configurations. Same distance between propellers in all cases.

IV. Analytical Tonal Noise Prediction
This section first reviews the elementary expressions of the tonal noise radiated by a propeller in the far-field. They

are used only as a reference for analyzing the modal properties of the radiated field. Next, the formalism of source-modes
is introduced, from which the sound field could be expressed uniformly in the whole space. Such a procedure is well
suited when the near-field investigation is interesting. It is also extendable to various configurations, such as a pair
of synchronized propellers, and can be easily related to the physical BLH sources. Finally, the diffraction model is
developed in a second step, based on the Green’s function tailored to the geometry.

A. Rotating Dipole
Propeller tonal noise is radiated at multiples of the blade-passing frequency (BPF), noted 𝜔/(2𝜋) = 𝑚𝐵Ω/(2𝜋),

where Ω stands for the angular rotational frequency and 𝐵 the number of blades. In free-field, the noise radiated by
a propeller with the real flow corresponding to an installed configuration; thus, the true sound sources (but ignoring
additional scattering) are predicted relying on Ffowcs Williams & Hawking’s formulation of the acoustic analogy
[6, 7], reduced to the dipole source terms. The tonal noise is formulated in the frequency domain, and the far-field is
expressed in such a way suited to highlight the modulation by the azimuthal flow distortions and interference properties
between blades. At the multiple of order 𝑚, and for a blade segment of mean radius 𝑟, the general expression for the
far-field complex-valued sound-pressure amplitude at observer point x reads as follows, with the convention e−i 𝜔𝑡 for
monochromatic waves:

𝑝𝑚𝐵 (x) =
i 𝑘𝑚𝐵𝑟

4𝜋

∞∑︁
𝑠=−∞

𝐹𝑠 (𝑟)
{
cosΘ cos 𝛾(𝑟) G(1)

𝑚𝐵−𝑠 + sinΘ sin 𝛾(𝑟) G(2)
𝑚𝐵−𝑠

}
(1)

with 𝑘𝑚𝐵 = 𝑚𝐵Ω/𝑐0, and

G( 𝑗)
𝑛 =

Ω

2 𝜋

∫ 2𝜋/Ω

0
G 𝑗 (𝑡) ei 𝑛Ω𝑡 d𝑡 , G1 (𝑡) =

ei 𝑘𝑚𝐵𝑅
′

𝑅′2

[
1 − 1

i 𝑘𝑚𝐵𝑅′

]
, G2 (𝑡) = sin(Ω𝑡 − 𝜙) G1 (𝑡)

The expression is valid everywhere in space, as discussed, for instance, by Roger & Moreau [8, 9]. It holds for a pure
axial-flow architecture, both terms in the brackets corresponding to the axial and tangential components of the blade
force, respectively. 𝛾(𝑟) is the stagger angle, defined as the blade-segment inclination with respect to the rotational
plane, or equivalently as the angle between the force and the axial direction. The observer location is defined by its
spherical coordinates (𝑅,Θ, 𝜙) in the reference frame attached to the circular path of the segment of radius 𝑟 , featured
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in Figure 3, as well as the exact source-to-observer distance 𝑅′. The complex-valued factors 𝐹𝑠 (𝑟) are the Fourier
coefficients of the periodic force on the blade segment, referred to as the blade-loading harmonics (BLH).

eZ

eY

eX

Fs 
�(r) 

 

R

r
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���t

�

x = (R,���)

Fig. 3 Reference frame attached to a rotating blade segment and associated coordinates.

Each term of the sum defines a free-field radiation mode of order 𝑛 = 𝑚𝐵 − 𝑠. Its radiating structure expresses
the coherent character of the sound sources and the associated interference between blades. The interference is better
emphasized with the acoustic and geometric far-field approximation, corresponding to 𝑘𝑚𝐵𝑅′ ≫ 1 and leading to the
following expression:

𝑝𝑚𝐵 (x) =
i 𝐵 𝑘𝑚𝐵

4𝜋 𝑅
ei 𝑘𝑚𝐵𝑅

∞∑︁
𝑠=−∞

𝐹𝑠 (𝑟) ei 𝑛 (𝜙−𝜋/2)J𝑛 (𝑚𝐵 𝑀 (𝑟) sinΘ)
[
cosΘ cos 𝛾(𝑟) − (𝑚𝐵 − 𝑠)

𝑚𝐵

sin 𝛾(𝑟)
𝑀 (𝑟)

]
(2)

noting that 𝑘𝑚𝐵 𝑟 = 𝑚𝐵 𝑀 (𝑟), where 𝑀 (𝑟) = Ω𝑟/𝑐0 is the tangential Mach number at the current radius. The order 𝑛
appears as the number of azimuthal lobes of the mode.
The contribution of the near field terms is neglected in Equation 1; nonetheless, it is essential for installation-effect

studies. Therefore, introducing the formalism of source-modes (see next section) as an alternative to Equation 1 is
well suited to illustrate the formation of acoustic wavefronts from the near-field of distributed sources. The far-field
expression, Equation 2, highlights which BLH are effectively contributing to a given BPF harmonic. Indeed, the Bessel
function rapidly drops to zero as its order exceeds the value of its argument in absolute values. Thus, it operates as a
’band-pass’ filter on the BLH spectrum. Furthermore, Equation 2 is used to compare predictions with measurements
directly, usually carried out with far-field microphones.

B. Source-Mode expansion
According to the general rotor tonal-noise formulation, Equations 1 and 2, the sound radiated at the frequency

𝑚𝐵Ω/(2𝜋) by the array of the same element repeated on all blades is expressed as a sum of spinning radiation modes.
Each isolated mode is defined by its amplitude, the number of lobes 𝑛, and azimuthal phase velocity Ω𝑠 = 𝑚𝐵Ω/𝑛.
Its acoustic field can be reproduced from a continuous circular distribution of stationary point dipoles of the same
radius 𝑟 as the true source of the mode, provided that a proper phase shift is applied to the distributed dipoles and their
orientation is defined accordingly. Such a distribution is called a source mode. For the source-mode 𝑛 associated with
the BLH of order 𝑠, the strength of the dipole source at angle 𝛼𝑑 on the circle and at time 𝑡 is 𝐹𝑡 (𝛼𝑑 , 𝑡) = 𝐹𝑑e−i𝑚𝐵Ω𝑡

with 𝐹𝑑 = 𝐹𝑠e−i 𝑛𝛼𝑑 , where 𝐹𝑠 is the BLH defining the dipole strength [10, 11]. Practical implementation is achieved by
discretizing the source-mode as an array of point dipoles. For each dipole, the contribution to the sound is expressed by
the scalar product of the dipole strength by the gradient of the free-space Green’s function for the Helmholtz equation.
The source-mode identity could be thought of as redundancy for free-field calculations. However, it is well suited

for understanding the formation of rotating-blade noise wavefronts close to the sources. Moreover, it is very convenient
to model the acoustic scattering by surrounding solid surfaces of arbitrary shape. Indeed, scattering is a matter of the
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relative position of a source to the surfaces and the distance-to-wavelength ratio. The total sound field can be reproduced
by a linear superposition of the scattered and direct fields calculated for all stationary dipoles of a source-mode circle,
as diffraction problems are usually formulated in the frequency domain for stationary sources. This can be achieved
in a semi-analytical way if a tractable expression of the tailored Green’s function is available (see the application
in section VI). Otherwise, the source-mode identity can be combined with a numerical integral formulation of the
diffraction problem [12].

C. Steady-Loading Noise Estimates
For subsonic installed rotors, steady-loading noise is most often of secondary importance compared to unsteady-

loading noise because of the higher radiation efficiency of blade-loading harmonics induced by the azimuthal mean-flow
distortions. Indeed, the associated rotor-locked modes, simulated by source-modes with orders equal to multiples
of the blade number, produce an evanescent sound field. However, this general free-field status obviously holds in
the presence of a sufficient amount of distortion and becomes questionable for small blade numbers. Moreover, the
scattering by obstacles in close vicinity of the source circle, particularly by the trailing edge of a wing, can convert
evanescent modes into effectively radiating patterns, leading to reconsidering the ranking. Therefore, the analysis must
consider steady-loading noise and unsteady-loading noise as two competing mechanisms. For both, the same approach
consists of splitting a blade into annular strips, assuming homogeneous flow conditions along with a strip’s spanwise
extent, for mathematical tractability. For steady-loading noise, shortly discussed in this section, this reduces to a simple
implementation of the Blade-Element Momentum Theory (BEMT).
Opposite to the case of unsteady-loading noise, blade-design parameters need to be specified. This seems

contradictory with a predictive approach at the early design stage when some parameters are still unknown. Therefore,
a short inspection is made in this section, showing the sensitivity of steady-loading noise with the main parameters
involved in the BEMT, namely the spanwise distributions of chord and twist. Two designs corresponding to identical
blade numbers and overall dimensions are compared, summarized in Figure 4. Both are typical APC designs, one of
which is reproduced from Romani [13]. Furthermore, the lift coefficient curve of the NACA-4412 airfoil is assumed.
Though arbitrary, this choice is not believed to question the basic conclusions.

Fig. 4 Radial distributions of chord length (a) and twist (b), for two blade designs of APC types. Black-dashed
lines stand for the test case reported by Romani [13].

Once a blade is split into a series of segments, the BEMT is applied for each segment, at specified rotational speed
and advance ratio 𝐽 = 𝜋𝑈𝑎/(Ω 𝑅2), where𝑈𝑎 denotes the flight speed, assumed parallel to the axis. The induced speed
on the segment numbered 𝑗 reads

𝑣𝑖

Ω 𝑟 𝑗
=

1
2

−
𝑈𝑎

Ω 𝑟 𝑗
+

√︄(
𝑈𝑎

Ω 𝑟 𝑗

)2
+
𝐵 𝑐 𝑗

2𝜋 𝑟 𝑗
(𝐶𝐿 cos 𝜉 − 𝐶𝐷 sin 𝜉)

 , (3)
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and the local angle of attack 𝛼 𝑗 is defined as

𝛼 𝑗 = 𝛾 𝑗 − tan−1
(
𝑈𝑎 + 𝑣𝑖
Ω𝑟 𝑗

)
, (4)

if 𝐵 is the number of blades and 𝑟 𝑗 is the mid-span radius of the segment. The coupled Equations 3 and 4 are solved
iteratively, starting from a zero induced speed. Convergence to the values (𝛼 𝑗 , 𝑣 𝑗 ) is reached after a couple of iterations,
providing the values of the lift and drag coefficients 𝐶𝐿 (𝛼 𝑗 ) and 𝐶𝐷 (𝛼 𝑗 ). The latter determines the axial and tangential
forces needed for the sound predictions. Tests made on a configuration reported by Romani [13], not shown here, were
found in a good overall agreement with both measured data and numerical simulations performed with a LBM software.
This confirms that relevant steady-loading noise predictions can be obtained with the BEMT for the sake of further
indicative comparison with unsteady-loading noise calculations.
Test predictions made with the two-blade designs in Figure 4 are reported in Figure 5, for 𝐵 = 2 and a rotational

speed of 5,000 rpm, as a function the advance ratio. Nearly the same thrust coefficient is achieved, with similar levels of
steady-loading noise, despite the significantly different blade designs. Small discrepancies in sound pressure level are
only observed at the highest advance ratios, corresponding to the lowest thrust coefficients. It can also be guessed that, as
long as they correspond to only slight differences in lift coefficient at a given Reynolds number, other blade cross-section
shapes would not produce large differences, at least for the same technological option or family of propellers typically
here with straight blades. Tests have been repeated assuming six blades and the same rotation speed of 5,000 rpm, in
which case steady-loading noise is dramatically reduced to below 30 dB at the BPF. The results are added in Figure 5-a.
All blade angles have been arbitrarily increased by 5◦ in this second test for a more realistic operation, which leads to
substantially higher thrust ratios, also added in Figure 5-b. Again, the results are found nearly insensitive to precise
blade design.

Fig. 5 (a): predicted steady-loading noise levels at the first two BPF tones for a 2-bladed propeller, and for a
6-bladed propeller at BPF, as a function of advance ratio. Tip radius 15 cm, rotational speed 5,000 rpm. (b):
corresponding thrust ratios. Blade designs in Figure 4.

Within the scope of an early-design approach in which only global parameters are known, steady-loading noise
appears as essentially a matter of combined Mach number and blade number and, to a lower extent, of thrust coefficient
via the advance ratio. This makes reliable estimates possible with only a minimum knowledge of parameters. It is
worth noting that the sound from steady-state aerodynamics of blades also includes thickness noise. However, for most
technologies involving thin-enough blades, this noise remains lower than steady-loading noise, except in some directions
of possible steady-loading noise extinction. Furthermore, both correspond to the same rotor-locked radiation modes and
the same dipolar character of the equivalent sources, provided that Isom’s formulation of thickness noise is used [14].
For this reason, thickness noise is not discussed in this work.
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D. Unsteady-Loading Noise Sources - Wake Model and Distortion Harmonics
Installed propellers operate in stationary azimuthal distortions. This induces on the blades periodic lift fluctuations,

which are the sources of unsteady-loading noise. For DEP architectures, the distortions can be the wake of the wing or
of an upstream support, of the potential field of a downstream pylon. They can also be the local fluid acceleration and
the boundary layer developing over the wing, periodically crossed by the blades, for an installation close enough to the
wing. Other sources of unsteady loads on the blades arise from the aerodynamic coupling between propellers positioned
side-by-side at short distance from each other. This variety of conditions makes unsteady-loading noise intrinsic to the
installation but not to the original blade design. Furthermore, the response of the blades to variations of the relative
velocity does not depend significantly on the cross-section shape, as stated by linearized unsteady-aerodynamic theories.
Instead, it is usually derived, assimilating the blade segment to a zero-thickness flat plate of the same span, chord, and
stagger angle. When unsteady-loading noise must be compared to steady-loading noise, one key aspect is the amplitude
of the lift fluctuations compared to the mean lift. Another one is the typical angular extent of the distortion compared to
the circular path of a blade segment. In this section, an indicative Gaussian wake profile applied to the axial velocity is
considered as a model distortion.
At a given radius 𝑟, the Gaussian velocity deficit is defined by its depth 𝑤0 and its characteristic half-width 𝑏0,

assumed shorter than the perimeter 2𝜋𝑟 followed by the blade segment for consistency. The periodic passage of the blade
segment through the distortion produces a periodic upwash in a reference frame attached to the segment, the amplitude
of which is defined by 𝑤0 and by the normal projection with the factor cos 𝛾(𝑟). Either smooth or sharp distortions are
obtained depending on whether the ratio 𝑏0/(2𝜋𝑟) is relatively large or small, respectively. Smaller values induce more
impulsive lift variations on the blades, corresponding to efficient higher-order harmonics in the sound spectrum.
The periodicity is expressed by an infinite series of Gaussian time pulses:

𝑤(𝑡) = �̄�0 cos 𝛾(𝑟)
∞∑︁

𝑛=−∞
e−𝜉 (𝑡−𝑛𝑇)

2/𝜏2
, (5)

where 𝜉 = 𝑙𝑛2, 𝜏 = 𝑏0/(Ω𝑟) is the half-time of the pulse due to a single passage and 𝑇 the period of rotation
corresponding to the rotating frequency Ω/(2𝜋). The upwash is expanded in the Fourier series

𝑤(𝑡) =
∞∑︁

𝑠=−∞
𝑤𝑠e−i2𝜋st/𝑇 , 𝑤𝑠 =

1
𝑇

∫ 𝑇

0
𝑤(𝑡)ei2𝜋𝑠𝑡/𝑇 d𝑡

where the complex coefficients 𝑤𝑠 are the distortion harmonics, each of which induces a blade loading harmonic of
same order 𝐹𝑠 . They are found as

𝑤𝑠 =
Ω�̄�0 cos 𝛾(𝑟)𝜏

2𝜋

√︂
𝜋

𝜉
e−(𝑠Ω𝜏)

2/(4𝜉 ) (6)

For consistent but rough estimates, the relationship between the coefficients 𝑤𝑠 and 𝐹𝑠 per unit span is provided by
Sears’ theory, as

𝐹𝑠 = 𝜋𝜌𝑐𝑈0𝑤𝑠S
(
𝑠Ω𝑐

2𝑈0

)
, (7)

S standing for Sears’ function and𝑈0 for the relative speed on the blade. For the assumed Gaussian profile, the envelope
of the distortion-harmonic spectrum is also Gaussian, decreasing faster as the half-width of the distortion increases. The
model is handy for analyzing wake crossing. Typically, the near wake is deeper and narrower, closely downstream of a
pylon, within a quarter chord length, with relatively large values of 𝑤0 and small values of 𝑏0 or 𝜏. In contrast, the
opposite situation is encountered in the far wake.
For the practical inspection of an installed configuration, and if the aforementioned Gaussian model is retained,

representative parameters 𝑏0 and 𝑤0 need to be defined first, and the amplitudes of the blade-loading harmonics 𝐹𝑠
expressed as a percentage of the steady loading. Then Equations 1 or 2 provides compared tonal-noise estimates,
corresponding to the free-field. At this stage, only the aerodynamic installation effect is accounted for. The same can be
achieved for any distortion model, either defined by analytical expressions or by the numerical azimuthal Fourier series
of an arbitrary field. No precise application is detailed in the paper; the aforementioned procedure is only described for
methodological purpose. An example of propeller-wing wake interaction with arbitrary relative positioning is described
in the reference [15]. A simple analysis of orders of magnitude, which can help anticipate some results, is now given to
close the section.
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For a given amplitude of the velocity fluctuations in terms of upwash 𝑤𝑠 , the ratio of BLH to steady-loading strength
is about ����𝐹𝑠𝐹0

���� ≃ 2𝑎
𝜋

𝐶𝐿
S
(
𝑠Ω𝑐

2𝑈0

)
,

if𝐶𝐿 denotes the lift coefficient and 𝑎 = |𝑤𝑠/𝑈0 |. For a segment of 2 cm chord at a radius of 10 cm, the modulus of Sears’
function can be approximated as [1 + 0.6𝑠]−1/2. Assuming 5% of velocity fluctuations and a lift coefficient of order 1
leads to |𝐹𝑠/𝐹0 | ∼ 0.3 [1 + 0.6𝑠]−1/2, which is about 0.14 at the sixth BLH, feeding the symmetric radiation mode at the
BPF. Though Sears’ theory is known to overestimate the blade response, this value is quite large. Now diffraction tests,
not reported here, indicate that the symmetric mode is not amplified by the compact regime of the Green’s function,
whereas the rotor-locked mode of order 6 is substantially amplified, as shown later on in subsection VI.B. This simple
remark shows how source ranking is modified in the presence of scattering surfaces.

E. Propeller Noise Scattering - Half-Plane Green’s Function
For complete acoustic estimates, it is crucial to consider the diffraction of acoustic waves emitted by the propulsive

system or by solid bodies located near a wing, such as landing gears and/or high-lift devices. The complicated geometry
of an aircraft makes numerical tools necessary to quantify this effect accurately. However, for simpler assessment
at the early design stage, analytical formulations can be preferred as alternatives at the price of crucial geometrical
simplifications. In the present work, the retained dominant mechanism is the scattering of propeller noise by the
wing trailing edge. For this, in a first step, the wing is mimicked by a zero-thickness rigid half-plane extending to
infinity upstream and embedded in a uniform flow. This allows to use the half-plane Green’s function for the convected
Helmholtz equation, the problem being solved in the frequency domain. This approach has been thoroughly addressed
in the aeroacoustic literature for predicting the sound scattering by trailing edges in the presence of a mean fluid
motion [10, 16, 17]. Such an approach also requires that the true sound sources are described in terms of stationary
sources, which is ensured by the source-mode formalism. Nevertheless, suppose these simplifications are representative
of the underlying source and diffraction mechanisms. In that case, they may provide a quick estimate of the radiated
sound, reliable enough to compare various installed propeller configurations. In particular, the simplifications must
enable to infer orders of magnitude of the possible amount of reduction brought by a masking strategy, for instance,
installing propellers just above a wing, closely upstream of the trailing edge.
Figure 6 illustrates the test configuration, involving two side-by-side contrarotating source modes, which mimic a

pair of contrarotating propellers, and the half-plane accounting for the rear part of a wing. Results shown hereafter will
be displayed on three planes. The first one is the streamwise plane containing the axis of the right source circle, aimed
at characterizing the scattering from a lateral point of view. The second one is the front plane providing a view towards
the upstream direction, introduced to assess the radiation in a plane parallel to the shifted mode circles. Both modes are
spinning in the same frontal plane. The third one is a horizontal plane located below the scattering half-plane, also
considered to assess the noise perceived by an observer on the ground under the flight path of an aircraft, even if the
relatively moderate distance is not fully representative yet of the acoustic and geometric far-field. In addition, it provides
an insight into the masking effect as a function of the source position relative to the plate.

Scatteringhalf-plane

ez

ey

ex

x0

x

U0

z0

z

�0

�

Frontal plane

ez

ey

ex

Horizontal plane

Scattering

half-plane

H

Streamwise

plane

U0

D

h

d

Fig. 6 General half-plane reference frame. Scattering planes and side-by-side contrarotating source modes
positions (left) and notation for source and observer locations (right).
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Use is made of the analytical expression of the half-plane Green’s function introduced first by MacDonald [18]
in a quiescent medium and readdressed by Jones [19], Rienstra [17], and Roger et al. [10] in two dimensional and
three-dimensional forms with a uniform flow normal to the edge. Ffowcs Williams & Hall also applied this function
in their far-field approximation of turbulence scattering into sound in the vicinity of trailing edge [20]. An important
outcome is that some amplification operates on dipoles, with the factor (𝑘 𝜚0)−1/2, for sources approaching the edge [10].
This compact scattering regime corresponds to a cardioid radiation pattern. In the present investigation, the sources
of propeller noise are distributed on a circle of arbitrary radius and distance to the trailing edge. If the diameter is
sufficiently large with respect to the wavelength, some source positions can get very close to the edge, whereas others
remain well apart, leading to some imbalance between the scattered source components of a rotor. The exact formulation
of the Green’s function is therefore needed.
The Green’s function is valid for arbitrary positions of the sources and the observer but ignores span/chord-end

effects. It provides an approximation by reproducing the main physical features for sources close enough to a trailing
edge in terms of geometrical parameters and radiating at wavelengths sufficiently lower than the actual chord and span.
If expressed in cylindrical coordinates for an observer at point 𝑥 = (𝑟, 𝜃, 𝑧) and a source point 𝑥0 = (𝑟0, 𝜃0, 𝑧0), with the
𝑧-axis along the edge and 𝜃 being 𝜋 along the half-plane and zero in its continuation Figure 6, the three-dimensional
form of the half-plane Green’s function in a medium at rest reads

G(0)
1/2 (x, x0) =

−i𝑘
4𝜋2

{∫ 𝑢0

−∞

K∗
1 (i𝑘𝑅

√
1 + 𝑢2)

√
1 + 𝑢2

d𝑢 +
∫ 𝑢1

−∞

K∗
1 (i𝑘𝑅

′
√

1 + 𝑢2)
√

1 + 𝑢2
d𝑢

}
, (8)

where K∗
1 is the complex conjugate of the modified Bessel function of order 1. x0 = (𝑥0, 𝑦0, 𝑧0) and x = (𝑥, 𝑦, 𝑧) are the

source and observer vectors respectively and 𝑘 = 𝜔/𝑐0. The exact acoustic pressure field of a point dipole is given by
the scalar product between its strength F and the gradient of the Green’s function, as 𝑃 (0)

1/2 = F · ΔG(0)
1/2. Thus Equation 8

is the basis for deriving the uniformly valid radiated field of arbitrary source distributions accounting for the diffraction
by the edge, at the price of numerical treatment of the integrals and derivatives concerning the source coordinates The
dependence e−i𝜔𝑡 of monochromatic waves is implicitly assumed. The distance variables and upper bounds of the
integrals are given by the following expressions, where the subscript 0 is the notation referring to the source location:

𝑢0 =
2
𝑅

√
𝑟𝑟0 cos

𝜃 − 𝜃0

2
𝑢1 = − 2

𝑅′
√
𝑟𝑟0 cos

𝜃 + 𝜃0

2

𝑅2 = 𝑟2 + 𝑟2
0 (𝑧 − 𝑧0) − 2𝑟𝑟0 cos(𝜃 − 𝜃0) 𝑅′2 = 𝑟2 + 𝑟2

0 (𝑧 − 𝑧0) − 2𝑟𝑟0 cos(𝜃 + 𝜃0)

Flow effects associated with forward flight can be included in the scattering model by considering a uniform mean
flow of Mach number 𝑀0, keeping the reference frame attached to the half-plane. The Green’s function accounting for
the presence of a uniform flow normal to the spanwise direction is obtained from the corresponding Green’s function in a
quiescent fluid by a Lorentz transform and stretching the space variables and by multiplying by the factor 1

𝛽
ei𝐾𝑀0 (𝑥−𝑥0) .

The rigid half-plane Green’s function in the presence of a uniform flow in the positive 𝑥-direction reads:

G(𝑀0)
1/2 (x, x0) =

1
𝛽

ei𝐾𝑀0 (𝑥−𝑥0)G(0)
1/2 (X,X0) , (9)

in which X and X0 are coordinate vectors for which the streamwise coordinate 𝑥 has been replaced by 𝑋 = 𝑥/𝛽, the
wavenumber being rescaled as 𝐾 = 𝑘/𝛽 with 𝛽2 = 1 − 𝑀2

0 . The flow direction is in the coordinate 𝑥 to fit with the
scattering by the trailing edge. The angles 𝜃 and 𝜃0 are defined as the corrected angles from the wake direction 𝑥 > 0.
The stretching of coordinates generates the following transformed variables:

𝑟 =

√︃
𝑋2 + 𝑦2, 𝑋 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃

V. Finite-Chord Correction
In the current approach of simplified geometry, considering the finite chord length 𝑐 of the wing in the analysis

requires replacing the rigid half-plane with an infinite strip of coordinates (−𝑐 ≤ 𝑥 ≤ 0, −∞ ≤ 𝑧 ≤ ∞). The scattering
of a source-mode by the strip may strongly differ from the ideal trailing-edge scattering deduced from the half-plane
Green’s function, especially if the chord length 𝑐 is not much larger than the acoustic wavelength 𝜆. Sound is scattered
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by both the leading edge and the trailing edge, so that more sound is expectedly regenerated in what would be the shadow
region, if any, with significant interference between sounds coming from both edges. The interference is also incomplete
in the reflection region. Such effects must be accounted for when searching for some optimized configurations, which
would require the exact Green’s function for a strip of an arbitrary chord. Unfortunately, no uniformly-valid, closed-form
expression for this Green’s function is available knowledge of the authors.
High-frequency solutions for the diffraction of an acoustic plane wave by an infinite rigid strip in a fluid at rest,

derived with a two-step application of the Wiener-Hopf technique, are reported, for instance, by Noble [21]. For this,
two complementary half-plane problems are solved iteratively, the scattering by the second edge being understood as
a correction to the scattering by the first edge. However, the two-step approach is a high-frequency approximation,
typically valid for non-compact chords, that is, high values of 𝑘𝑐. Higher-order iterations should be determined for
moderate values of 𝑘𝑐. Moreover, the plane-wave assumption is restrictive. Howe has derived a Green’s function for a
strip, in the case of low Mach numbers and sources close to an edge [22], using an iterative procedure and a matching
with a compact Green’s function for low frequencies. These reference solutions only address limited cases.
The uniformly valid formalism needed for the present investigation is missing. Therefore, a somewhat empirical

correction procedure is proposed in the next section as an alternative. Its validity is assessed in subsection V.A.

A. Analytical Approximation
The aim is to reproduce finite chord effects with only minor modifications to the approach detailed in the previous

section, yielding estimates of the leading edge scattering rather than exact predictions. This will allow addressing issues
such as selecting suitable candidates for the propeller position and sorting out poor configurations in an optimization
strategy.
The idea, illustrated in Figure 7, can be summarized as follows. In the first step, the total sound from the source-mode

is calculated with the half-plane Green’s function, but for the observer, locations are distributed over the finite-chord
strip. For this, the observer point x is approached to the surface 𝑦 = 0 from any side. The source-mode defines the
primary sources, the total sound field of which includes the direct field and the scattered field. The latter is obtained by
subtracting the former from the total field. According to Green’s formalism, the scattered field is exactly the direct field
of secondary dipole sources distributed over the strip. After subtracting the direct field, the strength of these dipoles per
unit area equals the acoustic pressure jump between both sides of the strip, which is equivalent to considering twice the
scattered sound pressure at the wall 𝑦 = 0+. Once the secondary sources are known, their radiation is calculated in
a second step with the free-field Green’s function and combined with the direct field of the primary sources, which
finally provides a modified total field, an ’incomplete half-plane scattering’, hopefully, more reliable. Though the final
combination of primary and secondary sources is fully relevant, the secondary sources are only approximate since they
are deduced from a Green’s function tailored to the half-plane but not to the strip.

ez

ey

ex

Secundary sources
(truncated half-plane)

Primary
sources

U0

D

h

d
b

C

Fig. 7 Reference frame attached to a rotating blade segment and associated coordinates.

Furthermore, the strip must also be truncated spanwise for the practical implementation, with some span length 𝐿.
This effect is not addressed in the present model. However, a dimensional argument suggests that a finite span would
not significantly modify the radiation for 𝐿/𝜆 ≥ 1 and for observation angles that are not too shallow in the spanwise
direction.
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B. Numerical Validation
In order to assess the accuracy of the proposed analytical approximation, a comparison is made in this work with

a numerical simulation. The comparison is performed in a two-dimensional case, including a finite-chord segment or
a true airfoil shape, and a point dipole source, in the presence of a uniform mean flow. The numerical model solves
the convected Helmholtz equation using a 𝑝-adaptive finite element method [23]. In this approach, an a-priori error
indicator is used to adjust the order automatically in the elements to maintain a target accuracy, accounting for the local
mesh size, frequency, mean flow magnitude, and direction [24]. In this study, all computations were performed using
an engineering target accuracy of 𝐸𝑡 = 0.1%. The finite element unstructured mesh is generated using Gmsh [25].
An automatic Perfectly Matched Layer is applied on the outer boundaries in order to efficiently absorb the outgoing
waves [26]. The dipole source is implemented as a right-hand side in the convected Helmholtz formulation. Note that a
uniform mean flow is considered, including the true airfoil shape. A subsequent paper will examine the influence of the
mean flow variations around the non-zero thickness airfoil.

VI. Results

A. Validation of the Green’s Function Approximation
The relevance of the analytical approximation is assessed in this section by comparing it with the numerical

approach of subsection V.B. The test, reported in Figure 8 as instantaneous sound-pressure maps, is made with a 2D
reduction of the formalism. A point dipole is placed at some short distance of a finite plate of chord lengths 𝑐 = 𝜆

(Figure 8-a,b) and 𝑐 = 𝜆/2 (Figure 8-c,d).

(a) Numerical with 𝑐 = 𝜆 (b) Analytical with 𝑐 = 𝜆

(c) Numerical with 𝑐 = 𝜆/2 (d) Analytical with 𝑐 = 𝜆/2

Fig. 8 2D numerical and analytical instantaneous sound-pressure maps of a dipole in the presence of a
finite-chord plate. The dipole is featured by the red dot and the finite plate is shown in black. Same arbitrary
color scale on all plots.

Very similar wavefront patterns are found. The test corresponds to a main lobe of the direct field from the
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source, impinging on the trailing edge. This condition is known as responsible for the significant regeneration of
sound in the geometrical shadow region. In fact, for both frequencies, there is no masking by the plate but rather
a wavefront restructuring with multiple directivity lobes. The analytical approximation is found to reproduce these
features realistically.
For a more quantitative assessment, Figure 9 and Figure 10 display compared sound-pressure profiles extracted

along a horizontal line just above the flat-plate and a vertical line at the end of the flat-plate, featured by the red dots in
the figures. Discrepancies remain very acceptable with regards to noise estimates in terms of decibels. This confirms
the validity of the truncation procedure introduced in section V.
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(a) 𝑐 = 𝜆 (b) 𝑐 = 𝜆/2

Fig. 9 Horizontal line comparison between numerical and analytical instantaneous sound-pressure maps of a
dipole in the presence of a finite-chord plate.
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Fig. 10 Vertical line comparison between numerical and analytical instantaneous sound-pressure maps of a
dipole in the presence of a finite-chord plate.

Figure 11 shows further computed sound-pressure maps of a dipole source in the presence of a NACA-0012 airfoil.
In this case, the simulated wave-front patterns are similar to those with the flat-plate, in Figure 8-a,c. Despite the
significant thickness at the rounded leading edge, the precise airfoil shape has a weak effect on the sound radiation.
This is attributed to the fact that, for the considered source position, the key scattering features are imposed by the
trailing edge, which is ’sharp’ in both cases, therefore with the same degree of singularity. Different conclusions could
be drawn for sources close to the leading-edge; this aspect has not been considered in the present work. By the way,
the result suggests that, at least for sources in the rear part of an airfoil or wing and for the investigated values of the
chord-to-wavelength ratio, the main sound features are a matter of this ratio and source positioning. Therefore, the true
shape of the airfoil can be ignored for a first insight into the scattering mechanism. Finally, the analytical model appears
as a good candidate for fast and repeated calculations within the scope of parametric studies or optimization algorithms.
It will be used with confidence for subsequent three-dimensional inspection of the wing-propellers configuration.
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(a) 𝑐 = 𝜆 (b) 𝑐 = 𝜆/2

Fig. 11 2D numerical instantaneous sound-pressure maps of a dipole in the presence of the NACA 0012 airfoil.
The dipole is featured by the red dot and the airfoil is shown in white. Same arbitrary color scale on all plots.

B. Wing-Propellers Test-Case Results
The results of the test cases defined in section III are presented and discussed in the present section. They

complement a previous study performed with a single propeller [15]. Near-field sound-pressure maps for the rotor-locked
mode 𝑛 = 𝐵 = 6, associated with steady-loading noise at the BPF, are shown in Figure 12, in complementary
perpendicular planes, namely the propeller plane 𝑥 = 0 (a), the meridian plane 𝑧 = 0 (b) and the wing plane 𝑦 = 0 (c).
This mode only generates an evanescent wave in free field because of the low tangential phase Mach number, which is a
typical property of low Mach number propellers with significant blade numbers (see subsection IV.C).

(a) Lateral view (b) Frontal view (c) Top view

Fig. 12 Instantaneous free-field sound-pressure maps for the cumulative steady-loading noise sources (spanwise-
distributed mode 𝑛 = 6). Same color scale on all plots and iso-contours over 10% of the maximum range.
Propellers featured by red circles and segments, and future wing position featured by dashed black lines.

Figures 13, 14 and 15 compare maps for the mode 6 of steady-loading noise at the BPF, in the three selected installed
configurations for the same three aforementioned planes, respectively.
Significant amplification is found in all cases. The radiation is strongly enhanced in the presence of the wing

because of the vicinity of the scattering edge. This is attributed to the dipole nature of the blade forces acting as sound,
especially in case 1, where the blade-tip to trailing-edge distance is smaller than in the other cases. In addition, the
sound regeneration effect is seen in Case 2, even though it is located at the same blade-tip to trailing-edge distance as
Case 3. In case 3, the edge enters the angular range of local near-field extinction, whereas in cases 1 and 2, it enters a
near-field lobe; this stresses the high sensitivity of the amplification mechanism.
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(a) Case 1 (b) Case 2 (c) Case 3

Fig. 13 Instantaneous installed-field sound-pressure maps for the cumulative steady-loading noise sources
(distributed mode n = 6) for different cases in lateral view. Different color scale on all plots and iso-contours over
10% of the maximum range. Propellers and wing featured by red segments and black lines, respectively.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 14 Instantaneous installed-field sound-pressure maps for the cumulative steady-loading noise sources
(distributed mode n = 6) for different cases in frontal view. Different color scale on all plots and iso-contours over
10% of the maximum range. Propellers and wing featured by red circles and black lines, respectively.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 15 Instantaneous installed-field sound-pressure maps for the cumulative steady-loading noise sources
(distributed mode n = 6) for different cases in top view. Different color scale on all plots and iso-contours over
10% of the maximum range. Propellers and wing featured by red segments and black lines. respectively.
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In addition, the scattered field features large lobes, characteristic of an equivalent lift dipole. In these cases, the
distance of a part of the blade-tip circular path to the edge is much smaller than the wavelength, leading to a theoretical
condition for amplification according to subsection IV.E. This suggests that for installed subsonic propellers, the
steady-state aerodynamics of the blades possibly radiates loud sound, whereas it is relatively ineffective in ideal free-field
conditions.

VII. Concluding Remarks
The present work combined various analytical models to investigate fundamental features of the tonal noise radiated

by propellers installed on a rectangular wing. The focus was on relatively low frequencies, typically first multiples
of the blade-passing frequency, representative of drones or future distributed electric propulsion architectures. This
technological context implies blades operating close to the rear part of the wing, possibly including interaction with a
wake-like distortion. A two-step analytical prediction method has been proposed. The first step is the calculation of the
free field from the blade forces, based on a blade segmentation technique. Steady-loading noise and unsteady-loading
noise sources are estimated from the blade-element momentum theory and from linearized unsteady-aerodynamic
theories, respectively, for each segment. The second step is the calculation of the sound scattering by the trailing edge
of the wing, starting from the exact half-plane Green’s function for the convected Helmholtz equation in a uniformly
moving fluid. For this, an approximate finite-chord correction to the Green’s function has been proposed. In view of its
partially empirical character, the approximation has been assessed against numerical simulations performed with a
FEM software. The analytical and numerical predictions in the case of a zero-thickness flat plate were found in good
agreement. Furthermore, the FEM simulations exhibited small differences between a flat plate and a true airfoil shape
of 12% thickness for sources close to the trailing edge. This makes the analytical model an attractive and reliable tool
for fast and repeated calculations in an optimization process, as long as variations in terms of decibels are considered.
The coupling of sound generation and scattering models is made by replacing the true, rotating sources by equivalent
circular distributions of stationary phased dipoles, called source-modes. A key outcome is that modes which would be
evanescent in free field can be converted into very effectively radiating patterns if the blade tips of the installed propellers
are at a compact distance from the wing trailing-edge. In particular, steady-loading noise involving rotor-locked modes
enters this category. This detrimental effect of installing propellers over a wing could balance some other beneficial
ones in future distributed propulsion systems. Indeed, for instance, wing-propeller vicinity possibly reduces drag by
compensating the velocity deficit in the wake or in the boundary layers. Moreover, an over-the-wing installation makes
some masking expected for noise exposure on the ground. The present results suggest that the amplification by compact
scattering leads to reconsidering the competition between steady-loading and unsteady-loading noise contributions. The
analytical tools presented in the paper are believed to be a very efficient way of quantifying these combined effects at the
early design stage.
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