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Tam and Auriault’s statistical mixing noise model has been reformulated by the authors
so to be able to compute propagation effects with help of Pierce’s wave equation, that is fairly
accurate and acoustic preserving. This study presents predictions computed with this model
for the sound emitted by two Mach 0.9 round jets. One is isolated, the other one is installed
beneath a flat plate. Tailored adjoint Green’s functions are computed using the finite element
solver Actran TM. The methodology is able to retrieve acoustic measurements within 2 dB for a
range of Strouhal numbers of more than two orders of magnitude. For an observer located close
to the jet axis, at polar angle 𝜃 smaller than 𝜃 = 50◦, poorer predictions are obtained however.
It is found that Tam and Auriault’s mixing noise model designed for the radiation of the
turbulence fine scales does not radiate isotropically but peaks instead around 𝜃 = 45◦. Tailored
adjoint Green’s functions computed for the isolated and installed configuration demonstrate
the ability of the proposed methodology to account for propagation effects due to the flow and
the presence of surfaces.

I. Introduction

Since the early assessment by Lighthill, seventy years ago [1], of the acoustic intensity radiated by a turbulent flow,
a number of improvements have been made in the modelling of the sound emitted by jets. Acoustic spectra are now
commonly inferred from a RANS solution of the jet flow, and involve the subtle combination of many ingredients.
Among these are the choice of an acoustic analogy such as Lighthill’s [2], Lilley’s [3], LEE [4], GAA [5], or based on
Pierce’s equation [6]; the calibration [7] [8] and the modelling of the sound source intercorrelation with for instance a
Gaussian function [9] [10], an exponential function [7] or a hyperbolic cosine function [11]. The choice of a fixed [5]
or moving [7] reference frame for the source modelling; the account of the source convection [1] [12]; the taking into
account of the source compactness [13] as well as the choice of a turbulence model for the source [14] [3] [15] [16]
are other parameters to be set. Various approximations to simplify the double integral applying on the source volume
can be made, such as a Fraunhofer-like approximation [10] or a Taylor expansion [6]. The calculation of the sound
propagation can then be computed directly [17] [18], or addressed with an adjoint approach that takes benefit from the
reciprocity principle to recast the radiation problem [19] [20] [21]. Green’s functions can then be solved analytically
or numerically as well for the direct problem [22] [23] as for the adjoint one [24] [6].

In the present work, a recast of Tam and Auriault’s mixing noise model for the acoustic potential [25] is retained.
As for their original contribution [10], an isotropic Gaussian model for the sound source intercorrelation set in a moving
reference frame is considered. In the same way, the double volume integral is simplified assuming that Fraunhofer’s
condition is fulfilled. Sound propagation is consistently solved within the adjoint framework. Compared to the original
model, the propagation of sound is modelled with Pierce’s wave equation which represents an elegant alternative to
the full set of LEE for being scalar, acoustic preserving and fairly accurate. Adjoint Green’s functions to Pierce’s
wave equation are solved by means of the flow reversal theorem (FRT), which proved to be equivalent to the adjoint
approach for self-adjoint operators [21]. The authors have shown how the finite element solver Actran TM could be
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used to compute such adjoint Green’s functions for an isolated jet for an observer normal to the flow direction [6]. This
procedure is used in the following. This represents the major change with respect to the reference model [10], and
the focus is therefore laid on the ability of this formulation to properly account for propagation effects in an installed
configuration and for angles that are not normal to the jet axis. The installation effects on the acoustic radiation
of a jet beneath a flat plate are investigated. Predictions obtained with the model are compared with measurements
carried out at the Pprime laboratory [26]. The present contribution aims to demonstrate that the presence of flow
and surfaces can be dealt in the computation of adjoint Green’s functions. In the first part of this paper, the jet noise
model considered is briefly recalled. Then, to verify the model’s accuracy at angles shallow to the jet axis, predictions
obtained in the downstream direction of an isolated round jet are compared with measurements. In a last section,
acoustic spectra radiated by the installed jet in the nozzle exhaust plan are computed and compared to measurements
for various azimuthal angles.

II. Tam and Auriault’s mixing noise model reformulated for Pierce’s wave equation

A. Governing equations
In their study [10], Tam and Auriault have shown that the source of flow noise associated with turbulent mixing

could be described with some success considering solely the fluid dilatation and compression. This standpoint, inspired
from the kinetic theory of gases, entails following simplification of the Reynolds stress tensor,

𝜌0 𝒖
′ ⊗ 𝒖′ ≈ 𝑞𝑠 Id (1)

where 𝑞𝑠 measures the compression caused by the fluid fluctuations, Id is the identity matrix, 𝜌0 is the fluid mean
density and 𝒖′ corresponds to the fluctuating velocity. Acoustic fluctuations generated by the turbulent mixing process
of a jet is then described by, 

𝜌0
D𝒖′

D𝑡
+ ∇𝑝′ = −∇𝑞𝑠

D𝑝′

D𝑡
+ 𝛾𝑝0∇ · 𝒖′ = 0

(2)

where D/D𝑡 = 𝜕/𝜕𝑡 + 𝒖0 · ∇ is the material derivative along the mean flow, 𝑝0 and 𝑝′ are the pressure mean value and
fluctuations respectively, and 𝛾 corresponds to the adiabatic index of air. Assuming the acoustic fluctuations can be
described by an acoustic potential 𝜙 given by ∇𝜙 = 𝜌0 𝒖

′ and 𝑝′ = −D𝜙/D𝑡. Tam and Auriault’s mixing noise model
can be recast with Pierce’s wave equation into,

D2𝜙

D𝑡2
− ∇ · (𝑎2

0∇𝜙) = −D 𝑞𝑠
D𝑡

, (3)

B. Adjoint statement of the problem
In statistical jet noise modelling, it is convenient to separate noise generation mechanism from the sound propagation

in choosing an adjoint framework [20] [10] [25]. This is done here by considering adjoint Green’s functions 𝜙†𝒙𝑚 ,𝑡𝑚
associated with Pierce’s wave equation for the canonical scalar product and for an observer located at 𝒙𝑚 and a listening
time 𝑡𝑚,

D2𝜙†𝒙𝑚 ,𝑡𝑚

D𝑡2
− ∇ · (𝑎2

0∇𝜙
†
𝒙𝑚 ,𝑡𝑚

) = 𝛿(𝒙𝑚 − 𝒙)𝛿(𝑡𝑚 − 𝑡) (4)

where the anti-causal solution of previous equation has to be computed. Equation (4) is solved using FRT [21]. The
physical meaningful acoustic fluctuations are then recovered from Lagrange’s identity [21],

𝜙(𝒙𝑚, 𝑡𝑚) = − < 𝜙†𝒙𝑚 ,𝑡𝑚
,
D𝑞𝑠
D𝑡

> (5)

C. Modelling of the acoustic noise spectra
Previous expression for the acoustic potential 𝜙 is used to compute the acoustic power spectral density,

𝑆𝑝𝑝 (𝒙𝑚, 𝜔) = lim
𝑇→∞

1
𝑇

∫
R
d𝜏
∫ 𝑇 /2

−𝑇 /2
d𝑡𝑚

D 𝜙

D𝑡𝑚 ,𝒙𝑚

D 𝜙

D𝑡𝑚+𝜏,𝒙𝑚

𝑒𝑖𝜔𝜏 (6)
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where D/D𝑡𝑖 ,𝒙 𝑗 is the material derivative expressed for a time 𝑡𝑖 and position 𝒙 𝑗 , and 𝜔 is the angular frequency of the
sound. In Tam and Auriault’s mixing noise model, the sound source intercorrelation reads [10] [25],

lim
𝑇→∞

1
𝑇

∫ 𝑇 /2

−𝑇 /2
d𝑡𝑠

D 𝑞𝑠
D𝑡𝑠 ,𝒙1

D 𝑞𝑠
D𝑡𝑠+𝜏,𝒙2

=
𝑞𝑠

2

𝑐2𝜏2
𝑠

exp

(
− |𝒓 · 𝒖0 |

𝑢2
0𝜏𝑠

− ln(2)
𝑙2𝑠

(𝒓 − 𝜏𝒖0)2

)
(7)

where 𝑙𝑠 and 𝜏𝑠 are respectively the characteristic length and time of the turbulence intercorrelation, and 𝑞𝑠/𝑐 is the
strength of the modelled source of sound. After some derivations detailed in [25],

𝑆𝑝𝑝 (𝒙𝑚, 𝜔) =
∫
Ω
d𝒙2

2𝑞2
𝑠𝑙

3
𝑠

𝑐2𝜏𝑠

(
𝜋

ln(2)

)3/2 ���D−𝒖0 ,𝒙𝑚

(
𝜙†

(𝒙2, 𝜔)
𝒙𝑚

)���2 exp

(
−𝜔2𝑙2𝑠

4 ln(2)𝑢2
0

(
1 +

𝑢2
0 |𝒙𝑚,⊥ |2

𝑎2
∞ |𝒙𝑚 |2

))
1 + 𝜔2𝜏2

𝑠

(
1 − 𝒖0 · 𝒙𝑚

𝑎∞ |𝒙𝑚 |

)2 (8)

where 𝑎∞ is the ambient speed of sound, and 𝒙𝑚,⊥ = 𝒙𝑚−(𝒙𝑚 ·𝒖0)𝒖0/𝑢2
0. The material derivative D−𝒖0 ,𝒙𝑚

(
𝜙†

(𝒙2, 𝜔)
𝒙𝑚

)
can be expressed analytically in presence of flight effects, that is when the ambient media is moving at a constant
Mach number 𝑀 𝑓 . In the end, for a microphone located in the far-field at a polar angle 𝜃𝑚 from the jet axis, Tam and
Auriault’s mixing noise formula can be recast for Pierce’s wave equation into,

𝑆𝑝𝑝 (𝜃𝑚, 𝜔) =
∫
Ω
d𝒙2 2

(
𝜋

ln(2)

)3/2 𝜔2𝑞2
𝑠𝑙

3
𝑠

𝑐2𝜏𝑠
𝐶 𝑓

���𝜙† (𝒙2, 𝜔)
𝜃𝑚

���2 exp

(
−𝜔2𝑙2𝑠

4 ln(2)𝑢2
0

(
1 + 𝑀2

∞ sin2 𝜃𝑚
))

1 + 𝜔2𝜏2
𝑠 (1 − 𝑀∞ cos 𝜃𝑚)2 (9)

Where azimuthal dependences on the observer location are discarded in the formula, for simplicity and because the jets
investigated here are round. Note that it is straightforward to include these dependences in the model from equation
(8). And where 𝐶 𝑓 corresponds to the analytically computed flight effects,

𝐶 𝑓 =

(
1 +

𝑀 𝑓 cos 𝜃𝑚
1 + 𝑀 𝑓 cos 𝜃𝑚

)2
(10)

D. Calibration of the constants appearing in the model
The time 𝜏𝑠 and length 𝑙𝑠 of reference are connected here to each other by a characteristic velocity 𝑢′ref such that,

𝑙𝑠 = 𝑢′ref 𝜏𝑠 with 𝑢′ref =

√
2
3
𝑘max (11)

From dimensional considerations the characteristic length 𝑙𝑠 can be rebuilt from 𝑘 , the turbulent kinetic energy in
[m2.s−2], and |𝜕𝑢𝑧/𝜕𝑟 |max, the maximal shear in each axial section of constant 𝑧 in [s−1] considering,

𝑙𝑠 ∝
√
𝑘/

����𝜕𝑢𝑧𝜕𝑟

����
max

(12)

The parameter 𝑞𝑠/𝑐 that corresponds to the amplitude of the sound source is simply modelled in accordance with
equation (1) as,

𝑞𝑠
𝑐

∝ 𝜌0𝑘 (13)

Compared to the original model of Tam and Auriault [10], these parameters do not require the computation of the
turbulent dissipation rate 𝜀, and thus RANS solvers based on different turbulence models can be used. This work
uses the statistics of the jet flow computed with a RANS solver relying on a (k-𝜔) closure model to inform the set of
parameters appearing in Tam and Auriault’s source model. The constants 𝑘max and |𝜕𝑢𝑧/𝜕𝑟 |max computed for each
axial positions of the Mach 0.9 round jet investigated in this work are presented in figure 1. The evolution along the jet
axis of the constants 𝑘max and |𝜕𝑢𝑧/𝜕𝑟 |max is smooth and it would be fairly easy to replace these curves with a fitting
semi-empirical model.
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Fig. 1 Evolution of the normalised maximal turbulent kinetic energy 𝑘max, and of the normalised maximal
shearing of the jet flow |𝜕𝑢𝑧/𝜕𝑟 |max.

Fig. 2 Evolution of the characteristic length 𝑙𝑠 along the jet lipline. , reference computed from the integral
length scale of a LES [25], and, , characteristic length 𝑙𝑠 computed from equation (12) with a proportionality
constant of 1.0.

The characteristic length 𝑙𝑠 of Tam and Auriault’s model is calibrated with the integral length scale computed
along the jet lipline of a LES computation as done in [25]. Figure 2 presents the evolution of 𝑙𝑠 along the jet lipline
as computed with equation (12) and compared to a reference solution. The characteristic length 𝑙𝑠 computed from
equation (12) displays a broken line composed by two lines that intersect at the closure location of the jet potential core.
The growth of 𝑙𝑠 is more rapid in the fully developed jet region than in the potential core zone. The characteristic length
𝑙𝑠 presented in figure 2 is computed from equation (12) with a proportionality constant of 1.0. In the developed region,
that is for 𝑧 ≳ 8𝐷 𝑗 the slope of the computed characteristic length matches with the reference solution inferred from
the LES solution. The characteristic time scale 𝜏𝑠 of Tam and Auriault’s mixing noise model is rebuilt subsequently
using equation (11).

To calibrate the amplitude 𝑞𝑠/𝑐 of the source autocorrelation as computed with equation (13), the noise spectra
measured at 𝜃𝑚 = 90◦ in the far field of a round jet is taken as reference. The measurements carried out at Pprime on
a Mach 0.9 isolated round jet, and presented in next section, are considered. The noise spectra are expressed in 𝑑𝐵/𝑆𝑡,
they are normalised to a distance of 1 m and compensated so as to correspond to an equivalent jet of section 1 m2. The
Fourier transform of the pressure autocorrelation 𝑆𝑝𝑝 obtained with Tam and Auriault’s formula is hence related to
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this normalised sound power level (SPL) by,

𝑆𝑃𝐿 (𝑑𝐵/𝑆𝑡) = 10 log10

(
𝑆𝑝𝑝 (𝒙𝑚, 𝜔)

𝑝2
ref

)
+ 10 log10

(
𝑢 𝑗

𝐷 𝑗

)
− 10 log10

(
𝜋𝐷2

𝑗

4

)
+ 10 log10

(
|𝒙𝑚 |2

)
(14)

where 𝑝ref = 20.0 𝜇Pa and |𝒙𝑚 | corresponds to the distance from the jet exhaust to the microphone position. The
Strouhal number 𝑆𝑡 is based on the jet diameter 𝐷 𝑗 and exhaust velocity 𝑢 𝑗 such that, 𝑆𝑡 = 𝜔𝐷 𝑗/(2𝜋𝑢 𝑗 ). At 𝜃𝑚 = 90◦
from the jet axis, mean flow refraction effects are deemed not of leading order and without external wind, Green’s
function appearing in Tam and Auriault’s formula may be approximated with [25],���𝜙† (𝒙, 𝜔)

𝒙𝑚

���2 =
1

16𝜋2𝑎4
0 |𝒙 − 𝒙𝑚 |2

. (15)

This analytical Green’s function is injected in equation (9) and serves to calibrate the amplitude. Figure 3 compares
acoustic measurements at 𝜃𝑚 = 90◦ from a 𝑀 𝑗 = 0.9 round jet [27] with the corresponding predictions obtained
when a unitary proportionality constant is used for equation (13). The values of 𝑙𝑠 and 𝜏𝑠 calibrated as earlier are
considered. The fit between predictions and measurements is remarkable in amplitude, shape and central frequency.

Fig. 3 Evolution of the characteristic length 𝑙𝑠 along the jet lipline. , reference computed from the integral
length scale of a LES [25], and, , characteristic length 𝑙𝑠 computed from equation (12) with a proportionality
constant of 1.0.

Having no need to tune the amplitude of the sound source to fit with the measurements is quite satisfactory, this is in
agreement with model for the sound source introduced in equation (1), and tends to indicate that the derivations have
been successfully completed.

III. Application to the study of installation effects of a jet under a flat plate

A. Studied test case
Two configurations from a test campaign performed in 2014 at the CNRS - Pprime laboratory are investigated in

this work. The first is a simple isothermal round jet exhausting a converging nozzle of diameter 𝐷 𝑗 = 0.050 m with
a jet Mach number 𝑀 𝑗 = 0.9. The second considers the same jet with identical operating conditions, but installed
beneath a rectangular flat plate of chord length 15𝐷 𝑗 which spans over 9𝐷 𝑗 . The jet is separated from the plate by
a distance of 2𝐷 𝑗 , so that the aerodynamic interactions of the jet with the plate are negligible. This configuration
is in turn particularly well suited to the study of acoustic propagation effects [26] [28] [29]. A photography of the
experiment is presented in figure 4.

Measurements are made with an azimuthal array of 18 microphones that can be translated along the jet axis. The
array of microphones is circular of diameter 28.4𝐷 𝑗 , it can be translated from an axial position 𝑧 ≈ −2.5𝐷 𝑗 to a
position 𝑧 ≈ 39𝐷 𝑗 , where the location of the duct exhaust serves as a reference for the z-axis. The azimuthal angle 𝜑
and polar angle 𝜃 are defined as in figure 4, i.e. the azimuth is null for a microphone set in the plan of the plate.
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Fig. 4 Photography of the mock up under study and definition of the polar and azimuthal angles 𝜃 and 𝜑.

B. CFD and CAA analyses
The finite element solver Actran TM is used to compute adjoint Green’s functions that are tailored to this con-

figuration. A uniform mesh composed of quadratic elements with tetrahedral shapes is created for the aeroacoustic
simulation. Cells are 0.2𝐷 𝑗 large and the total mesh possesses 16 × 106 DOF. Figure 5 presents the geometry and the
mesh considered for the installed jet. The convergent nozzle is modelled within the CAA analysis to mimic at best

Fig. 5 Grid used for the aeroacoustic analysis of the installed jet. A uniform mesh with quadratic elements
of size 0.2𝐷 𝑗 is considered. The transition layer [6] [25] is hidden to better distinguish the different numerical
domains.

the experiment. The procedure previously designed with commercial software to compute adjoint Green’s functions
associated with an observer set out of the computation domain [6] [25] is used anew here. In particular, PML are used
to truncate the duct interior volume and to mimic free field propagation outside.

The RANS computations used in this study have been carried out by G. Pont from Airbus Operations using the
FLUSEPA 7.2 solver that is based on a k-𝜔 turbulence model [30] [28]. Figure 6 displays the evolution of the turbulent
kinetic energy 𝑘 . No significant interaction of the jet aerodynamic with the flat plate is visible. The CAA grid spans
over 22.5𝐷 𝑗 downtream of the jet exhaust and is sufficiently large to include all the aeroacoustic sound sources.

IV. Acoustic predictions for the isolated jet

The results computed for the isolated configuration are presented first. Tam and Auriault’s mixing noise model
reformulated for the acoustic potential, and given in equation (9) is used to model the noise emitted by the jet. Noise
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Fig. 6 Isometric view of the CAA domain showing the nozzle geometry and the flat plate. Surfaces of constant
turbulent kinetic energy 𝑘 are displayed.

spectra calculated for the polar angle 𝜃 = 90◦ and 𝜃 = 60◦ are compared to the measurements conducted at the
CNRS - Pprime laboratory and presented in figure 7. The predicted acoustic spectra are computed over 100 different
Strouhal numbers to logarithmically discretise three decades of Strouhal numbers. All spectra are normalised following
equation (14). The predictions at both angles are in close agreement with the measurements in amplitude, shape and

Fig. 7 Predictions obtained for the polar angles 𝜃 = 90◦ (left) and 𝜃 = 60◦ (right). , measurements, ,
equation (9) with Actran TM’s adjoint Green’s functions, and, , equation (9) with the analytical free field
solution given in equation (15).

peak position. At 90◦ the levels between measurements and predictions match remarkably well, at 60◦ the calculated
spectra underpredict the measurements by 1 dB only. For Strouhal numbers greater than 4 the acoustic spectra computed
with Actran TM becomes incorrect. This is because the CAA grid is to coarse at this frequency to properly describe
adjoint Green’s functions. Below this limit the prediction computed with Actran TM and the one considering simple
free field propagation almost coincide.

Figure 8 presents the noise spectra obtained for an observer position forming an angle of 𝜃 = 30◦ with the jet axis.
The predictions are considerably worse for this shallow angle, and the model misses the measured pic by 10 dB. This
time, the predictions computed from the analytical solution fails to capture the correct peak frequency and shape of the
acoustic spectra. Shape and peak frequency are noticeably better predicted when using adjoint Green’s functions that
are tailored to the flow as computed with Actran TM. The grid cut-off limit identified previously at a Strouhal number
of 4 seems reduced to 1.5. Further effort is required here to better grasp the reason of this unexpected behaviour. This
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Fig. 8 Predictions obtained for 𝜃 = 30◦. , measurements, , equation (9) with Actran TM’s adjoint
Green’s functions, and, , equation (9) with the analytical free field solution given in equation (15).

capacity of the methodology to model the evolution of the noise spectra shape is observed at other shallow polar angles.
Figure 9 compares the predictions obtained at 𝜃 = 20◦, 𝜃 = 35◦, and 𝜃 = 50◦ with the corresponding measurements.
The continuous deformation of the noise spectra as the observer approaches the jet axis is quite well captured by the
model, indicating that refraction effects may be invoked to explain the evolution of the jet noise hump over the polar
angles. Figure 10 presents the evolution of the overall sound pressure level (OASPL) computed over the polar angles

Fig. 9 Predictions at polar angles 𝜃 shallow to the jet axis. , 𝜃 = 20◦, , 𝜃 = 35◦, and, , 𝜃 = 50◦. ,
measurements, and, , equation (9) with Actran TM’s adjoint Green’s functions.

𝜃 for the studied isolated jet. A relatively satisfactory prediction of the levels is obtained with the model proposed
for polar angles from 𝜃 = 50◦ to 𝜃 = 105◦. Compared to the predictions obtained relying on tailored adjoint Green’s
functions computed with Actran TM, it is seen that the evolution of the OASPL for observer close to the jet axis is
better modelled without taking into account the refraction effects entailed by the jet mean flow, but this is at the cost of
a poorer description of the acoustic spectra as illustrated previously. Further work is needed to better capture the level
of the sound radiated in the directions shallow to the jet axis [3, fig. 5] [15, fig. 6b]. The better taking into account of
the source convection effects or considering a model for the sound radiated by the instability waves are possible areas
to improve the present model.
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Fig. 10 Evolution of the OASPL over the polar angles 𝜃. ♦, measurements, +, equation (9) with Actran TM’s
adjoint Green’s functions, and, •, equation (9) with the analytical free field solution given in equation (15).

V. Acoustic predictions for the installed jet

The noise radiated by the jet installed under the plate is considered here. Only predictions computed in the nozzle
exhaust plan are presented. Thus, the polar angle of the observer is set to 𝜃 = 90◦ and the evolution over the azimuthal
angle 𝜑 is investigated. The azimuth is defined as in figure 4. The acoustic predictions obtained in the plan of the
plate, that is for 𝜑 = 0◦, are presented in figure 11. They are compared to the measurements, and to the predictions
obtained relying on adjoint Green’s functions calculated for the isolated jet configuration. The prediction of the

Fig. 11 Predictions obtained for 𝜃 = 90◦ and 𝜑 = 0◦. , measurements, equation (9) with Actran TM’s
adjoint Green’s functions computed, , for the installed jet, and, equation (9), for the isolated jet.

installation effects is well captured by the model, and above a Strouhal number of 0.1 the predicted spectra matches the
measurements almost perfectly. Compared to the spectra computed for the isolated jet, the level at the peak frequency
increases by 1 dB. A secondary hump for Strouhal numbers within the range 1.5 to 6 is also correctly described.

Predictions computed at azimuthal angles 𝜑 = ±20◦ are presented in figure 12. Again, the methodology enables to
capture nicely the dynamic of the measured noise spectra. Compared to the predictions relying on Green’s functions
computed for the isolated jet, the shielding at 𝜑 = 20◦ and the reflection at 𝜑 = −20◦ caused by the plate is correctly
described by the model. This reflects for Strouhal numbers greater than 0.6, into a 3 dB attenuation of the noise spectra
for 𝜑 = 20◦, and, into an increase of 3 dB for 𝜑 = −20◦ over the same Strouhal number range.
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Fig. 12 Predictions obtained for 𝜃 = 90◦ and 𝜑 = 20◦ (left), and, for 𝜃 = 90◦ and 𝜑 = −20◦ (right). ,
measurements, equation (9) with Actran TM’s adjoint Green’s functions computed, , for the installed jet,
and, equation (9), for the isolated jet.

The azimuthal evolution of the installed jet directivity is presented in figure 13. The OASPL is constant around
140 dB for 𝜑 ≤ −20◦, experiences a transition between −20◦ ≤ 𝜑 ≤ 20◦ and reaches plateau about 136 dB for 𝜑 ≥ 20◦.
The predicted OASPL agrees with the measured one within 0.5 dB.

Fig. 13 Evolution of the OASPL over the azimuthal angles 𝜑.♦, measurements, +, equation (9) with Actran
TM’s adjoint Green’s functions, and, •, equation (9) with the analytical free field solution given in equation (15).

VI. Conclusion

Tam and Auriault’s model to predict the sound emitted by the turbulent mixing of a jet is adapted to Pierce’s wave
equation. A robust formulation is thereby obtained, that enables the use of a numerical solver to calculate the precise
propagation of sound. The calibration of the sound source parameters is newly defined, it is solely based on mean flow
gradients and the turbulent kinetic energy. The tuning parameters were found unnecessary to obtain very satisfactory
results at ninety degree from the jet axis in terms of acoustic level, spectra shape, and central frequency of the jet noise
hump. The model gives results within 2 dB of confidence for polar angles greater than 𝜃 ≥ 50◦. While initially designed
to model the noise from fine scale turbulence, it is found that this reformulation of Tam and Auriault’s model does
not radiate isotropically. The ability of the methodology proposed to account for propagation effects caused by strong
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gradients in the flow and the presence of surfaces is demonstrated. Subtle variations in the acoustic spectra computed
for the installed jet configuration could be captured, which paves the way to the aeroacoustic shape optimisation of
jet-wing architectures.
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