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The Mach number dependence of the tones generated by round jets impinging on a flat
plate, due to aeroacoustic feedback loops establishing between the jet nozzle and the plate, are
investigated using large-eddy simulations. Six jets atMach numbers varying from 0.6 to 1.1 and
a nozzle-to-plate distance of 8 nozzle radii are considered. For M = 0.6, the upstream sound
radiation is broadband and weak, which suggests the absence of marked feedback phenomena.
For higher Mach numbers, it is tonal and intense, highlighting the establishment of feedback
loops between the nozzle and the plate. Tones are present at the same frequencies in both the
velocity spectra in the shear-layer and the near-nozzle acoustic spectra, highlighting a coupling
between the jet flow structures and the upstream-propagating pressure waves. For M ≤ 1,
the dominant tone is associated with an axisymmetric oscillation mode of the jet, whereas for
M = 1.1, it is related to an helical mode, showing that the jet azimuthal structure is affected
by the Mach number. For both azimuthal modes, standing-wave patterns are found inside the
jets in the pressure amplitude fields at the tonal frequencies, indicating interactions between
upstream and downstream-propagating waves. Moreover, the tone frequencies decrease with
the Mach number. They are located in the frequency ranges of the upstream-travelling guided
jet waves, indicating that these waves close the feedback loop in all cases. As for the amplitude
of the tones, it increases by about 45 dB between M = 0.6 and 1, which is much higher than
the rise predicted by the M8 law. It is then reduced by 15 dB for M = 1.1, suggesting a weaker
resonance for this jet.

I. Introduction
Strong acoustic tones can be generated by jets impinging on a flat plate. Such tones have been observed for high

subsonic jets in many experiments, such as those of Wagner [1], Neuwerth [2], Preisser [3], Ho & Nosseir [4, 5] and
Powell [6]. Later, they have been also found for supersonic impinging jets in the experiments of Norum [7], Tam
& Norum [8] and Henderson et al. [9] and in the simulations of Gojon & Bogey [10] and Bogey & Gojon [11], for
instance. Similar tones are emitted by subsonic and supersonic jets impinging on a perforated plate [12–14]. They
are produced by a feedback loop establishing between the nozzle and the plate. The downstream part of this loop
consists of the well-known Kelvin-Helmholtz instability waves, related to the formation and convection of coherent
structures in the jet mixing layers. The upstream part is formed by upstream-propagating guided jet waves [15], defined
by specific dispersion relations and classified into modes depending on their radial and azimuthal structures. Such
waves play a role in other resonance phenomena, for example in screech noise generation mechanisms [16, 17] and
jet-flap interactions [18, 19]. They are also involved in the generation of tones in the near-nozzle pressure field of free
jets [20–22]. The properties of the guided jet waves and of the feedback loop depend on the jet Mach number. In
particular, for impinging jets, Tam & Ahuja [15] observed that no feedback loop establishes for Mach numbers M lower
than 0.7. Moreover, the azimuthal structure of the jets varies with the Mach number. Indeed, based on the work of
Tam & Ahuja [15], Panickar & Raman [23] showed that only an axisymmetric feedback mode is found for M < 0.89
and that helical feedback modes exist for higher Mach numbers. Furthermore, the effects of the Mach number on the
feedback frequencies were studied experimentally by Jaunet et al. [24]. These frequencies are organized into stages as
the Mach number increases, which is typical of resonance phenomena. They lie in the allowable frequency ranges of the
upstream-travelling guided jet waves, suggesting a closure of the feedback loop by these waves.
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However, several questions remain about the influence of the Mach number on the feedback mechanisms in impinging
jets. Among others, it is still unclear whether the nature of the dominant tone is axisymmetric or helical for jets at Mach
numbers higher than 0.89, for which both oscillation modes are possible. Moreover, the link between the staging of the
tone frequencies with the Mach number and the properties of the upstream-propagating guided jet waves closing the
loop still needs to be clarified. Furthermore, the effects of the jet velocity on the intensity of the tones have not been
studied thoroughly.

In the present work, the large-eddy simulations (LES) of six impinging round jets at Mach numbers varying from
0.6 to 1.1 are performed in order to investigate the effects of the Mach number on the feedback mechanism establishing
between the nozzle and the plate. The jets are at a Reynolds number of 105 and are initially highly disturbed. They
impinge on a flat plate located at a distance L of 8 nozzle radii from the nozzle exit. The first objective of this study
is to observe the establishment of feedback loops between the nozzle and the plate. For that purpose, the flow and
acoustic fields are detailed. In particular, the velocity and near-nozzle pressure spectra are examined to determine tonal
frequencies. The contributions of the first two azimuthal modes are explored to study the oscillation modes of the jets.
The frequencies and the axisymmetric or helical nature of the tones are compared with the properties of the free-stream
upstream-propagating guided jet waves with the aim of highlighting the role of these waves in the feedback mechanisms.
The Mach number variations of the tone frequencies and amplitudes are detailed. Finally, the structures of the pressure
fields at the peak frequencies are investigated.

This paper is organized as follows. The jet parameters and numerical methods used in the LES are presented in
section II. The results of the simulations are detailed in section III. Finally, concluding remarks are given in section IV.

II. Parameters

A. Jet parameters
The six jets computed in this work have Mach numbers of M = 0.6, 0.75, 0.8, 0.9, 1 and 1.1 and a Reynolds number

ReD = u jD/ν of 105, where u j is the jet velocity, D is the nozzle diameter and ν is the air kinematic viscosity. They
originate at z = 0 from a cylindrical nozzle of radius r0 and length 2r0, and are at ambient pressure and temperature
p0 = 105 Pa and T0 = 293 K. They impinge on a plate located L = 8r0 downstream of the nozzle exit, as in the
experiments of Jaunet et al. [24]. At the nozzle inlet, a Blasius laminar boundary-layer profile with a thickness of
δ = 0.15r0 is imposed for the velocity. Vortical disturbances uncorrelated in the azimuthal direction are added in the
boundary layer at z = −r0 to create velocity fluctuations at the nozzle exit, using a procedure described in Bogey et
al. [25]. The profiles of mean and rms axial velocities obtained at the nozzle exit for the six jets are represented in
figure 1. They are very similar to each other. In figure 1(a), the mean velocity profiles resemble the Blasius laminar
boundary-layer profile at the inlet, while the turbulent intensities reach a peak value of 9% at r = 0.97r0 in figure 1(b).
Therefore, the jets are initially highly disturbed.
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Fig. 1 Nozzle-exit radial profiles of (a) mean axial velocity 〈uz〉/u j and (b) axial turbulence intensity
〈u′zu

′
z〉

1/2/u j ; M = 0.6, M = 0.75, M = 0.8, M = 0.9, M = 1 and - - - M = 1.1
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B. Numerical methods
The numerical setup is the same as that of very recent LES of subsonic [14] and supersonic [26, 27] impinging jets.

The unsteady compressible Navier-Stokes equations are solved in cylindrical coordinates (r, θ, z) using an OpenMP
based in-house solver. A second-order, six-stage Runge-Kutta algorithm [28] is employed for time-integration and the
spatial derivatives are computed with eleven-point low-dispersion finite-difference schemes [29]. At the end of each
time step, a selective filtering is applied to remove grid-to-grid oscillations [28]. This filter also acts as a subgrid-scale
model ensuring the relaxation of turbulent kinetic energy near the grid cut-off frequency [30]. No-slip and adiabatic wall
conditions are imposed to the plate and nozzle walls. In order to handle possible shocks created by the jet impingement
in the jet potential core, a damping procedure using a dilatation-based shock detector and a second-order filter is used
to remove Gibbs oscillations in the vicinity of shocks for z ≥ 3r0 [31]. The radiation boundary conditions of Tam &
Dong [32] are implemented at the radial and lateral boundaries of the computational domain. They are associated with
sponge zones combining grid stretching and Laplacian filtering to prevent significant spurious reflections [33]. The
method of Mohseni & Colonius [34] is applied to treat the singularity on the jet axis. The closest point to the axis is
located at r = ∆r/2, where ∆r is the radial mesh size near the jet axis. The azimuthal derivatives near the jet axis are
evaluated with fewer points than permitted by the grid to increase the time step of the simulations [35]. More precisely,
the effective azimuthal resolution near the origin of the polar coordinates is reduced down to 2π/16.

C. Computational parameters
The same mesh grid is used for the six simulations. It is similar to that employed in a very recent simulation of a jet

at a Mach number of 0.9 impinging on a flat plate at L = 6r0 [14]. More precisely, the numbers of points in the radial,
azimuthal and axial directions are equal to 559, 1024 and 1124, respectively, which yields a total number of 640 million
points. The grid extends out to r = 15r0 in the radial direction and down to z = 8r0 in the axial direction. The radial
mesh spacing, shown in figure 2(a), is equal to ∆r = 0.014r0 on the jet centerline and decreases down to ∆r = 0.0036r0
at r = r0 in the shear layers. It then increases to reach a maximum value of ∆r = 0.075r0 for r > 6.2r0, which leads to a
Strouhal number St = f D/u j varying from 4.8 at M = 1.1 up to 8.9 at M = 0.6 for an acoustic wave with five points
per wavelength. The axial mesh spacing ∆z, in figure 2(b), is minimum and equal to ∆z = 0.0072r0 at the nozzle exit,
and maximum and equal to ∆z = 0.012r0 between z = 2r0 and z = 6r0. Farther downstream, the axial mesh spacing
is reduced down to ∆z = 0.0072r0 near the plate at z = 8r0, as at the nozzle exit. The extremum values of the mesh
spacings and the stretching rates in the axial and radial directions are the same as in the study of Bogey [36], where a
grid convergency study was performed for a free jet with the same ejection conditions as the impinging jet at M = 0.9
of the present work. The results presented in this paper are obtained after simulation times of 1000r0/u j for all jets.
During the simulations, density, velocity components and pressure along the jet axis at r = 0, along the lip line at r = r0,
on the surfaces at r = 15r0, z = −2r0, z = 0 and on the plate at z = L are recorded at a sampling frequency enabling
spectra to be computed up to St = 12. Density, velocities and pressure are also saved at the azimuthal angles θ = 0, 90,
180 and 270 degrees at a halved frequency. The azimuthal Fourier coefficients of the density, pressure and velocity
fields are also estimated up to the mode nθ = 4 for 0 ≤ r ≤ 15r0 and 0 ≤ z ≤ 8r0. The spectra are computed from these
recordings and they are averaged in the azimuthal direction when possible.
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Fig. 2 Variations of (a) radial and (b) axial mesh spacings.
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III. Results

A. Snapshots of the flow and acoustic fields
Snapshots of the vorticity norm in the flow and of the pressure fluctuations outside are presented in figure 3. For all

jets, in the vorticity fields, the shear layers thicken with the axial distance due to the formation of large-scale vortical
structures. The structures are convected down to the plate, where their impingement creates wall jets. Farther from the
stagnation point, the wall jets spread radially and widen with the radial distance. In the pressure fields, high-frequency
sound waves are found to be generated near the flat plate, notably in the wall jets, and to propagate in the upstream
direction. For M ≥ 0.75 in figures 3(b-f), intense low-frequency waves originating from the plate are also visible. They
are produced by the impingement of the jet turbulent structures on the plate. Their wavefronts are periodically spaced,
revealing tonal radiations. For Mach numbers between 0.8 and 1 in figures 3(c-e), no phase shift is observed between
the two sides of the nozzle, indicating an axisymmetric pressure field. This is not the case for the jet at M = 1.1 in
figure 3(f), which may be due to helical jet oscillations. As for the amplitudes of the pressure fluctuations, they are
about 500 Pa for M = 0.6 and increase with the Mach number to reach a maximum for M = 1. In particular, they are of
the order of 1000 Pa for the jets at M ≥ 0.9.

Fig. 3 Snapshots of vorticity norm in the flow and of pressure fluctuations outside in the (z, r ) plane for
(a) M = 0.6, (b) M = 0.75, (c) M = 0.8, (d) M = 0.9, (e) M = 1 and (f) M = 1.1. The color scales range from
0 to 15u j/r0 for vorticity, from white to red, and between (a-c) ±0.005p0 and (d-f) ±0.01p0 for pressure, from
blue to red.

B. Mean flow fields
The variations of the centerline mean axial velocity, of the shear-layer momentum thickness and of the axial

turbulence intensity at r = r0 are presented in figure 4. In figure 4(a), the centerline mean axial velocity is approximately
equal to the exit velocity down to z = 6.5r0 for the six jets. It decreases down to zero on the plate at z = 8r0. For
M ≥ 0.9, velocity oscillations are found, due to the presence of compression cells in the potential cores of the jets.
In figure 4(b), the shear-layer momentum thicknesses are comparable for all jets. They increase nearly linearly down
to z = 7r0 then more drastically between z = 7r0 and z = 7.8r0 because of the wall jet. As for the root-mean-square
(r.m.s.) values of the axial velocity fluctuations along the nozzle-lip line, in figure 4(c), they increase very quickly
between z = 0 and z = 2r0 in all cases. For z ≥ 2r0, they do not vary much down to z = 7r0. In this zone, the turbulent
levels are highest for M = 0.6, with values around 17% of u j , and lowest for M = 0.9, with values around 13% of u j .
Finally, they are reduced down to zero on the plate.
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Fig. 4 Variations of (a) the centerline mean axial velocity 〈uz〉/c0, (b) the shear-layer momentum thickness
δθ/r0 and (c) the axial turbulent intensity 〈u′zu

′
z〉

1/2/u j at r = r0 for M = 0.6, M = 0.75, M = 0.8,
M = 0.9, M = 1 and - - - M = 1.1.

C. Velocity spectra
To study the development of the jet flow structures, the power spectral densities of the radial velocity fluctuations u′r

in the mixing layer at r = r0 between the nozzle and the plate are displayed in figure 5. For M ≤ 0.9 in figures 5(a-d), a
spot of significant levels is observed for axial positions z between 4r0 and 7.5r0 at Strouhal numbers between 0.1 and 0.9.
This spot is due to a broadband hump in the velocity spectra, associated with large coherent structures formed a few radii
downstream of the nozzle exit. For M = 1 and 1.1 in figures 5(e,f), this spot is not visible anymore because of lower
broadband levels. Moreover, for M ≥ 0.75 in figures 5(b-f), the strongest levels are found along thin lines beginning at
approximately z = 2r0 for M = 0.75, 0.8 and 0.9, z = r0 for M = 1, and z = 3r0 for M = 1.1, and extending down to the
plate. They are located at Strouhal numbers depending on the jet Mach number. More precisely, the Strouhal numbers
of the lines are equal to 0.46, 0.54 and 0.61 for M = 0.75, to 0.51 and its first harmonic for M = 0.8, to 0.40 and its two
first harmonics for M = 0.9, to 0.31 and its first harmonic for M = 1 and to 0.29, 0.46 and 0.66 for M = 1.1. These
persistent peaks indicate the presence of tones in the velocity spectra, suggesting the establishment of aeroacoustic
feedback loops between the nozzle and the plate. The jet shear layers thus appear to be forced by upstream-travelling
waves closing the loops. The feedback loops and the upstream-propagating waves are investigated in the next sections.

In order to examine the forcing of the jet shear layers by the upstream-propagating waves, the spectra of the radial
velocity fluctuations in the mixing layer and the contributions of the two first azimuthal modes to these spectra are
computed near the nozzle-exit and near the plate. The spectra obtained near the nozzle lip, at r = r0 and z = 0.4r0, are
represented in figure 6 as a function of the Strouhal number. For all jets, a broadband hump is observed for both modes
around a Strouhal number of St = 1.7, which is close to the frequency Stθ = f δθ/u j = 0.016 of the most-amplified
Kelvin-Helmholtz instability waves obtained using linear stability analysis [37]. For M = 0.6 in figure 6(a), no tones
are observed in the velocity spectra, which is not the case for the jets at higher Mach numbers. For the latter jets, the
tone frequencies are similar to those of the tones observed in the spectrograms of figure 5. The tones are associated
with the axisymmetric mode nθ = 0 for M = 0.75 and 0.8 in figures 6(b,c), and with the axisymmetric and first helical
modes for M = 0.9, 1 and 1.1 in figures 6(d,e,f). For nθ = 0, a tone is strongly dominating at St = 0.61 for M = 0.75
in figure 6(b), at St = 0.51 for M = 0.8 in figure 6(c), at St = 0.40 for M = 0.9 in figure 6(d) and at St = 0.31 for
M = 1 in figure 6(e), whereas two strong tones are located at St = 0.29 and 0.66 for M = 1.1 in figure 6(f). Weak
harmonics of the dominant tone are also observed for M = 0.9 and M = 1. For nθ = 1, a weak tone emerges at St = 0.7
and St = 0.57 for M = 0.9 and M = 1, respectively, and a tone of high amplitude appears at St = 0.46 for M = 1.1.
For both modes, the frequencies of the dominant tones are three to five times lower than those of the most-amplified
Kelvin-Helmholtz instability waves, suggesting again that the tones are caused by feedback loops establishing between
the nozzle and the plate. This presence of low-frequency tones and high-frequency instability waves was also observed
experimentally in the near-nozzle pressure spectrum of an impinging jet at a Mach number of 0.9 by Ho & Nosseir [4].

The spectra of the radial velocity fluctuations computed near the plate, at r = r0 and z = 7r0, are shown in figure 6
as a function of the Strouhal number. For all jets, a wide hump is visible around St = 0.5 for the two azimuthal modes.
This low-frequency hump is linked to large vortical structures resulting from the growth of the shear layer turbulent
structures with the axial distance. For M ≥ 0.75 in figures 7(b-f), tones are found in the spectra for the same azimuthal
modes and frequencies as for the spectra obtained at z = 0.4r0, highlighting the development of coherent structures at
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Fig. 5 Power spectral densities of the fluctuations of radial velocity u′r normalized by the jet velocity u j at
r = r0 between the nozzle and the plate for (a) M = 0.6, (b) M = 0.75, (c) M = 0.8, (d) M = 0.9, (e) M = 1 and
(f) M = 1.1. The color scale is the same in all cases and spreads over 3 dB, from white to black.

the feedback frequencies down to the plate. For M = 0.8, 0.9 and 1 in figures 7(c,e), secondary tones are also visible at
the harmonic frequencies of the dominant peak for the full signal and for nθ = 0.

D. Pressure spectra
The pressure spectra computed at z = 0 and r = 1.5r0 near the nozzle are presented in figure 8. For M = 0.6 in

figure 8(a), a broadband hump is observed around St = 0.33. No tone is visible, which suggests that there is no marked
resonance phenomenon in this jet. This result is in agreement with previous experiments [1, 3, 4] highlighting that no
feedback loop establishes for M < 0.7. For higher Mach numbers, tones emerge strongly. For the jet at M = 0.75 in
figure 8(a), three tones 10 to 15 dB higher than the broadband noise are visible at Strouhal numbers of 0.46, 0.54 and
0.61. For the jet at M = 0.8, a dominant tone emerging by 20 dB is found at a Strouhal number of 0.51 and secondary
peaks are observed at St = 0.85, 1.2 and 1.6. For the jet at M = 0.9 in figure 8(b), the pressure spectrum exhibits
a strong tone 25 dB higher than the broadband noise at St = 0.40 and secondary tones emerging by about 10 dB at
harmonic frequencies of the strongest tone and at St = 0.7 and 1. The spectrum for the jet at M = 1 displays a shape
similar to that for the jet at M = 0.9, with a dominant tone at St = 0.31 and weaker peaks at harmonic frequencies of
the dominant tone and at St = 0.5, 0.58, 0.82 and 1.25. For the jet at M = 1.1, three peaks 15 to 20 dB higher than the
broadband levels are observed at St = 0.29, 0.46 and 0.66. For the jets at M ≥ 0.75, the frequencies of the dominant
tones are similar to the peak frequencies of the velocity spectra in section III.C, highlighting a coupling between the
upstream-travelling waves and the flow structures.

The tones can be assumed to be produced by feedback loops establishing between the nozzle and the plate. The
loops consist of two steps. During the first step, the coherent structures of the jet shear layers are convected downstream
down to the plate, where their impingement generates acoustic waves. During the second step, these waves propagate
upstream to the nozzle, exciting the mixing layer at the nozzle exit, which produces another coherent structure and
closes the feedback loop. A model of prediction of the feedback frequencies was proposed by Ho & Nosseir [4]. In
this model, the feedback period is considered as the sum of two characteristic times, namely the time of convection of
the flow structures down to the plate and the time of propagation of the acoustic waves to the nozzle. The feedback
frequency can thus be estimated by

f =
N〈uc〉

L(1 + Mc)
(1)
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Fig. 6 Power spectral densities of the fluctuations of radial velocity u′r at r = r0 and z = 0.4r0 for (a) M = 0.6,
(b) M = 0.75, (c) M = 0.8, (d) M = 0.9, (e) M = 1 and (f) M = 1.1, full signal, nθ = 0 and nθ = 1,
- - - Stθ = f δθ/u j = 0.016.
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Fig. 7 Power spectral densities of the fluctuations of radial velocity u′r at r = r0 and z = 7r0 for (a) M = 0.6,
(b) M = 0.75, (c) M = 0.8, (d) M = 0.9, (e) M = 1 and (f) M = 1.1, full signal, nθ = 0 and nθ = 1.
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where 〈uc〉 is the mean convection velocity between the nozzle and the plate, Mc = 〈uc〉/c0 is the convection Mach
number and N is an integer representing the order of the feedback mode. This integer N corresponds to the number of
coherent structures between the nozzle and the plate. The feedback frequencies obtained by the model for different
values of N using the classical approximation 〈uc〉 = (2/3)u j are given in table 1. For all jets at a Mach number
M ≥ 0.75, there exists a value of N giving a frequency close to that of the dominant peak in the pressure spectra,
supporting the possibility of a feedback loop. The feedback order N decreases from 6 at M = 0.75 down to 3 at M = 1,
then it increases up to 5 for M = 1.1.

Table 1 Strouhal numbers StLES of the dominant tone frequencies in the LES and Strouhal numbers Stmodel

predicted by the model of Ho & Nosseir [4] for a feedback mode N .

M 0.75 0.8 0.9 1 1.1
StLES 0.61 0.51 0.40 0.31 0.46

N 6 5 4 3 5
Stmodel 0.67 0.54 0.42 0.3 0.48
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Fig. 8 Sound pressure levels (SPL) at r = 1.5r0 and z = 0 for (a) M = 0.6, M = 0.75 and M = 0.8;
(b) M = 0.9, M = 1 and - - - M = 1.1

To investigate the azimuthal structure of the pressure field near the nozzle for the six jets, the pressure spectra of
figure 8 are represented alongside the contributions of the two first azimuthal modes for the six jets in figure 9. For
the jet at M = 0.6 in figure 9(a), the low-frequency hump is linked to the axisymmetric mode nθ = 0. For the jets at
Mach numbers between 0.75 and 1, in figures 9(b-e), the dominant tones are associated with nθ = 0. Secondary tones
are also found for nθ = 0 at twice the frequencies of the dominant tones. Small peaks appear for the mode nθ = 1 at
St = 0.91 for M = 0.75, St = 0.84 for M = 0.8, St = 0.7 for M = 0.9 and St = 0.57 for M = 1. Finally, for M = 1.1,
in figure 9(f), the strongest tone at St = 0.46 is related to the first helical mode, whereas the two tones at St = 0.29 and
St = 0.66 are associated with the axisymmetric mode. Contrary to the other jets, two oscillation modes with comparable
amplitude exist. The azimuthal structure of the jets is hence affected by the Mach number.

E. Mach number variations of the near-nozzle tone properties
The Strouhal numbers of the tones in the near-nozzle pressure spectra are represented in figure 10 as a function of

the Mach number. They are compared with the experimental data of Jaunet et al. [24] and with the Strouhal numbers
predicted by relation (1) using 〈uc〉 = (2/3)u j . The tone frequencies in the simulations are close to those predicted by
the Ho & Nosseir’s model (1). The dominant tones lie near the curves associated with the mode N = 6 for M = 0.75,
N = 5 for M = 0.8, N = 4 for M = 0.9, N = 3 for M = 1 and N = 5 for M = 1.1. Secondary tones are related to the
modes N = 4, 5 and 7 for M = 0.75, N = 6 for M = 0.9 and 1 and N = 3 and 7 for M = 1.1. As the jet Mach number
increases, the frequencies switch from one curve associated with a mode N to another, highlighting a staging behaviour.
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Fig. 9 Sound pressure levels (SPL) at r = 1.5r0 and z = 0 for (a) M = 0.6, (b) M = 0.75, (c) M = 0.8,
(d) M = 0.9, (e) M = 1 and (f) M = 1.1: — full signal,— nθ = 0 and— nθ = 1.

The tonal frequencies found in the experiments also lie on curves given by the model of Ho & Nosseir and jump from
one mode to another, as in the simulations. Three feedback modes are observed depending on the jet Mach number. A
mode N = 3 is visible for Mach numbers higher than 0.7, a mode N = 6 exists for Mach numbers between 0.85 and 1.03
and a mode N = 5 is present for Mach numbers higher than 0.97. For M ≤ 0.9, the frequencies of the dominant tones in
the LES are related to feedback mode orders N higher than that of the mode N = 3 found experimentally, whereas for
higher Mach numbers, they are in agreement with those from the experiments. These discrepancies may be due to
differences in the nozzle-exit velocity profiles, unknown in the experiments.

0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

0.8

Fig. 10 Mach number variations of the near-nozzle peak frequencies: • dominant and ◦ secondary tones in
the LES, ^ measurements of Jaunet et al. [24] and - - - relation (1).

The Mach number variations of the tone frequencies are represented in figure 11 for the two first azimuthal modes
separately. The frequencies predicted by the model of Ho & Nosseir are plotted using blue dashed lines. For both
modes, the dominant peak frequencies are close to the frequencies given by this model, even for the jet at M = 0.6 with
no marked resonance phenomenon. They can be associated with a feedback mode N , whose values are gathered in
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table 2 for each Mach number. For a given azimuthal mode, for M ≥ 0.75, the mode order N decreases monotonously
with the jet velocity. Moreover, in figure 11, the frequency bands of the free-stream upstream-travelling guided jet waves
determined using a vortex-sheet model are indicated by grey areas in order to investigate the possible closing of the
feedback loops by these waves. Each grey band is related to a radial mode of the guided jet waves, with the radial mode
order nr increasing with the frequency. The dominant tones lie in the frequency range of the first radial mode for both
azimuthal modes and the secondary tones are in or close to the frequency bands of the first three radial modes for nθ = 0
and of the second and third radial modes for nθ = 1. This result indicates that the free-stream upstream-propagating
guided jet waves are likely to close the feedback loops. For both azimuthal modes, the frequencies of the dominant tones
decrease with the Mach number, jumping from one curve related to a feedback mode N down to a lower one N − 1.
This mode jump is explained by the closure of the feedback loops by the guided jet waves. Indeed, the frequencies of
these waves for a given radial mode decay more rapidly with the Mach number than the frequencies predicted by the
model of Ho & Nosseir for a given feedback mode N . As the Mach number increases, the frequency of the mode N
becomes higher than the frequencies of the guided jet waves, which does not allow the closing of the loop. The loop
thus cannot be closed for the mode N , but for a lower one.

0.6 0.7 0.8 0.9 1 1.1

0

0.5

1

1.5

0.6 0.7 0.8 0.9 1 1.1

0

0.5

1

1.5

Fig. 11 Mach number variations of the Strouhal numbers of the tones in the near-nozzle pressure spectra for
(a) nθ = 0 and (b) nθ = 1, • dominant and ◦ secondary tones, (grey shading) allowable frequency bands of the
free-stream upstream-propagating guided jet waves, - - - Ho & Nosseir model (1) with N varying from (a) 3 to
7 and (b) 5 to 9.

Table 2 Feedback mode N related to the dominant peak frequency for nθ = 0 and nθ = 1.

M 0.6 0.75 0.8 0.9 1 1.1
N (nθ = 0) 3 6 5 4 3 3
N (nθ = 1) / 8 8 7 6 5

The Mach number variations of the tone amplitudes are plotted in figure 12. They are compared with the typical M8

scaling law of aerodynamic noise for subsonic jets [38], plotted in dashed blue lines. For nθ = 0 in figure 12(a), the tone
amplitude increases by 45 dB between M = 0.6 and M = 1. This increase is much greater than that predicted by the M8

law, indicating the generation of noise by a strong resonance phenomenon. For M = 1.1, the tone intensity is reduced
by about 15 dB with respect to the level for M = 1. This reduction may be due to the fact that two oscillation modes
with comparable amplitude are observed for the jet at M = 1.1, whereas the axisymmetric mode prevails for the other
cases. For nθ = 1 in figure 12(b), the intensity of the dominant tone increases by 10 dB between M = 0.75 and M = 1.
The variations of the tone amplitudes are much closer to the M8 law than those for nθ = 0. For M = 1.1, the tone level
is enhanced by 13 dB compared with that for M = 1. For this jet, a marked resonance is observed for nθ = 1, causing
this strong increase of the tonal intensity.
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Fig. 12 Mach number variations of the amplitudes of the near-nozzle tones for (a) nθ = 0 and (b) nθ = 1,
- - - M8.

F. Structure of the pressure field at the tone frequencies
The structures of the jet pressure fields in the plane (z, r) at the peak frequencies for the two first azimutal modes

are investigated using a Fast Fourier Transform in the time domain [10]. The amplitude fields obtained for the jets
at M = 0.6, 0.9 and 1.1 are represented in figures 13 for nθ = 0 and in figure 14 for nθ = 1. The results for the jets
at M = 0.75, 0.8 and 1 resemble those for M = 0.9. For the axisymmetric mode, for M = 0.6 in figure 13(a), a
spot of high amplitude is found in the jet for z ≥ 4r0, This spot may be linked to a compression zone caused by the
flow impingement on the plate. Moreover, the levels in the jet are much weaker for z ≤ 4r0 than farther downstream,
implying that the amplitude of the upstream-travelling guided jet waves near the nozzle is low. Hence, these waves
are unlikely to excite the jet shear layer, which prevents the establishment of a feedback loop. For M = 0.9 and 1.1
in figures 13(b,c), spots of high amplitude appear in all the jet column. They can be associated with the nodes of
a standing wave establishing between the nozzle and the plate, as observed by Panda et al. [39] for screeching jets
and by Gojon et al. [10, 40] for supersonic impinging jets. This standing wave is created by the superposition of the
downstream-propagating jet instability waves and upstream-propagating guided jet waves. As the instability waves are
linked to the vortical structures convected in the jet flow, the number of nodes of the standing wave is the same as the
number of structures between the nozzle and the plate. There are 4 and 3 lobes for M = 0.9 and 1.1, respectively, which
is in agreement with the feedback mode numbers N determined in the previous section in table 2.

Fig. 13 Pressure levels for the axisymmetric mode at the peak frequencies (a) St = 0.32 for M = 0.6,
(b) St = 0.40 for M = 0.9 and (c) St = 0.29 for M = 1.1. The color scales range from (a) 130 to 160 dB/St,
(b) 150 to 200 dB/St and (c) 140 to 190 dB/St, from blue to red.

The results obtained for the first helical mode are shown in figure 14. In all cases, the amplitudes near the jet axis
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are negligible, as expected for an helical oscillation mode. For M = 0.6 in figure 14(a), the pressure levels are highest in
the shear layers. No clear structures are found in the layers, suggesting no strong feedback phenomenon at the peak
frequency. For M = 0.9 and 1.1 in figures 14(b,c), lobes of amplitude are visible inside the jet, indicating a resonant
interaction between upstream- and downstream-propagating waves. The number of lobes is equal to 5 and 7 for M = 0.9
and 1.1, respectively, which is consistent with the values of N found in section III.E.

Fig. 14 Pressure levels for the first helical mode at the peak frequencies (a) St = 1.16 for M = 0.6, (b) St = 0.7
forM = 0.9 and (c) St = 0.46 forM = 1.1. The color scales range from (a) 130 to 160 dB/St, (b) 130 to 170 dB/St
and (c) 150 to 180 dB/St, from blue to red.

Conclusion
In this paper, the generation of tones by impinging round jets with a Mach number varying from 0.6 to 1.1 has been

investigated using large-eddy simulations. For the jet at a Mach number of 0.6, the emitted noise is broadband and weak.
For higher Mach numbers, intense tones are produced by feedback loops establishing between the nozzle and the plate,
consisting of downstream-propagating vortical structures and upstream-travelling pressure waves. Their frequencies
are thus close to those predicted by a classical feedback model. Each tone can be associated with a feedback mode,
whose order depends on the jet Mach number. As the jet Mach number varies, the tone frequencies jump from one
feedback mode to another, exhibiting a staging behaviour typical of resonance phenomena. Moreover, they also lie
in the allowable frequency ranges of the upstream-travelling guided jet waves, indicating that these waves close the
feedback loops. A feedback mode can establish only if its frequency is located in the bands of the guided jet waves,
which explains the mode jumps with the Mach number. Moreover, at each tonal frequency, the azimuthal structures of
the jet oscillation modes are consistent with the axisymmetric or helical nature of the guided jet waves. For M ≤ 1, the
dominant tones are related to an axisymmetric oscillation mode, whereas for M = 1.1, the strongest tone is associated
with the first helical mode, which shows that the Mach number affects the azimuthal structure of the jets. In further
work, it could be interesting to explain why the first helical mode is stronger than the axisymmetric mode for the jet at
M = 1.1. For this purpose, the growth rates of the Kelvin-Helmholtz waves at the tone frequencies for the two first
azimuthal modes could be compared to determine which is the most amplified mode.
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