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A modal analysis is carried out during the deceleration of a fan-OGV rig. The azimuthal
modal content of the two first Blade Passing Frequencies is analyzed via an iterative Bayesian
inverse approach. Interestingly the deceleration tests show as expected that the modal distribu-
tion is modified and particularly how some dominant modes are replaced by others as the shaft
speed is varied. It also suggests that the geometric arrangement of the array has an influence on
the modal distribution captured by the array. The method is assessed by a comparison with
steady regime measurements operated on the same rig. The test data is obtained from a fan rig
test database collected in the European project TurboNoiseBB.

I. Nomenclature

c = vector of unknown complex coefficients
𝐶𝑚 = modal coefficient
𝐸𝑂 = engine order
𝑓 = frequency
𝐾 = number of microphones
𝐿 = number of unknowns
𝑚 = azimuthal order
𝑀 = highest resolved azimuthal order
𝑛 = radial order
n = vector of complex additive noise coefficients
𝑝 = complex acoustic pressure
p = vector of complex pressure coefficients
Ω = rotational speed
𝑟0 = radial coordinate
𝑧0 = axial coordinate
Δ = difference
𝜇𝑖, 𝑗 = mutual coherence between 𝜙𝑖 and 𝜙 𝑗
𝜙 = azimuthal coordinate
𝚽 = azimuthal basis matrix

II. Introduction
Several mode detection techniques have been developed over the past decades for the analysis of ducted fan noise

[1–8]. The majority of them have been dedicated to steady fan operating conditions, hence it is usually assumed that
the measured sound field is stationary and ergodic. During fan noise testing procedures it is common that run-ups
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and deceleration measurements are carried along different working lines on the fan map. On the numerical side,
Computational Fluid Dynamics (CFD) simulations are often employed for the analysis of aerodynamic and aeroacoustic
signatures of rotor-stator interaction. However, the numerical simulations are computed on a static point. Accounting
for the computational cost of the CFD, only few operating points can generally be simulated, whereas the whole range
of regimes can be investigated with the deceleration measurements. In particular use can be made of the transition
between cut-on to cut-off of rotor-stator interaction modes.

Recently, the Bayesian approach has been successfully applied to estimate the broadband modal content at steady
operating conditions [9]. The data has been collected during a fan rig test carried out in the framework of the EU
project TurbonoiseBB at the Anecom test facility. The goal of the current work is to extend this technique to the case of
deceleration tests obtained during the same experimental campaign. The focus is given to the tonal components of
the fan noise in particular at the blade passing frequency (BPF) and its first harmonic. The analysis of the broadband
content at varying shaft speeds is a difficult task due to the very low signal-to-noise ratio. Indeed, the signals measured
by wall-flush mounted probes are dominated by pressure fluctuations associated to the turbulent boundary layer. For the
tonal noise, the pressure fluctuations due to the acoustic contribution are high enough to ensure a good signal-to-noise
ratio. Therefore, a good estimation of the cross-spectra between array microphones might be obtained from a Short-Time
Fourier Transform (STFT).

The remainder of the paper is structured as follows. Section III gives an quick overview of the in-duct mode detection
problem and the Bayesian approach that is extensively described in [9–11]. Section IV describes the test bench that
provided the current database. Section V discusses the results for measured and simulated data. Finally, section VI
summarises the main findings discussed herein and provides perspectives of further developments.

III. Theory

A. Modal decomposition
For a cylindrical duct, the in-duct pressure field can be expressed as a weighted sum of azimuthal and radial modes

by

𝑝(𝑧, 𝑟, 𝜙) =
∞∑︁

𝑚=−∞

∞∑︁
𝑛=0

[
𝐴+
𝑚,𝑛e

𝑗𝑘+𝑧𝑚,𝑛
𝑧 + 𝐴−

𝑚,𝑛e
𝑗𝑘−𝑧𝑚,𝑛

𝑧
]
𝑓𝑚,𝑛 (𝑟)e 𝑗𝑚𝜙 (1)

where the indexes 𝑚 and 𝑛 are for azimuthal and radial orders respectively. 𝐴+
𝑚,𝑛 and 𝐴−

𝑚,𝑛 are the coefficients of
modes propagating downstream and upstream. 𝑘±𝑧𝑚,𝑛

are the axial wavenumbers in both downstream (+) and upstream
(−) direction and 𝑓𝑚,𝑛 (𝑟) is a normalised shape factor depending on the duct’s cross section and radial boundary
conditions. For more details about these terms please refer to [9].

Eq. 1 can be expressed in terms of azimuthal modes only by setting

𝐶𝑚 (𝑧0, 𝑟0) =
∞∑︁
𝑛=0

[
𝐴+
𝑚,𝑛e

𝑗𝑘+𝑧𝑚,𝑛
𝑧 + 𝐴−

𝑚,𝑛e
𝑗𝑘−𝑧𝑚,𝑛

𝑧
]
𝑓𝑚,𝑛 (𝑟) (2)

giving,

𝑝(𝑧0, 𝑟0, 𝜙) = 𝑝(𝜙) =
∞∑︁

𝑚=−∞
𝐶𝑚 (𝑧0, 𝑟0)ej𝑚𝜙 (3)

where 𝐶𝑚 (𝑧0, 𝑟0) are the modal amplitudes of azimuthal order 𝑚.
In practice, this decomposition is associated with a circumferential array of microphones characterized by the

azimuthal coordinate 𝜙 of the microphones. It can be expressed in a matrix-vector notation as,

p = 𝚽c + n, (4)

where: p ∈ C𝐾 is a vector of complex pressure coefficients at a given angular frequency 𝜔 (obtained from a Fourier
transform), n ∈ C𝐾 a vector accounting for additive noise, c ∈ C𝐿 a vector containing the unknown complex coefficients
and 𝚽 ∈ C𝐾×𝐿 a matrix with elements 𝑒 𝑗𝑚𝜙 . 𝐾 is the number of microphones and 𝐿 = 2𝑀 + 1 where 𝑀 is the highest
resolved azimuthal order depending on the array configuration. In turbomachinery applications, it is always below the
duct cut-off frequency.
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Beamforming is a well-known technique to solve Eq. 4 for the modal coefficients. This technique has however a
limited resolution and poor quantification results. In addition it assumes that modes are uncorrelated, which is not
the case for tonal noise due to rotor-stator interaction. To overcome these limitations, the iterative Bayesian Inverse
Approach (iBIA) proposed in [9] is applied in the present work. This approach is briefly described in the next section.

B. Bayesian approach
The Bayes’ theorem gives an estimate of c given the measurements p by:

[c|p] = [p|c] [c]
[p] , (5)

where [p|c] the probability density function (PDF) of the likelihood model, [c] is the PDF of the prior distribution of
the unknown coefficients c and [p] is the marginal distribution of the observations. The Bayesian formalism reduces to
modelling the different PDFs based on the specifics of the problem and then solving for the posterior PDF [c|p]. The
approach employed here follows from previous work [9–11]. In particular the likelihood is modelled as a complex
Gaussian distribution whereas the prior is modelled by a Generalized Multivariate Complex Gaussian distribution. The
details of the approach and the resulting algorithm are given in [9]. In brief, it comes down to a minimization problem
involving an ℓ2-norm on the data-fitting term and an ℓ𝑝-norm as a penalty term. For the preliminary results presented in
the next section, a value of 𝑝 = 1 has been chosen in the minimization problem. Other values of 𝑝 might be interesting
for instance to highlight some aspects of tonal noise analyses, such as enforcing the sparsity of the solution if it is known
a priori that a small number of modes are dominant.

IV. Experimental set-up
The data used herein originate from the experimental database obtained during the EU project TurboNoiseBB∗, in

which a large fan rig test was operated over several working lines with emphasis on approach, cutback and sideline flight
conditions. A sketch of the ducted test-section is shown in Fig. 1. The fan stage consisted of a 20 blades fan and a
44 vanes stator. Besides 3 component radial hotwire measurements along several axial positions in the rotor wake, a
number of microphones were distributed in the duct and the far field. The in-duct microphone arrays were located both
at the intake (CMD1) and in the bypass duct (CMD3 and AX1). The axial array was composed of 60 regularly spaced
microphones, whereas each azimuthal ring was composed of 100 non-uniformly distributed probes according to the
array optimization technique proposed by Rademaker et al. [12]. The data retrieved from this optimized array allow for
modal detections up to 𝑚 = ±79 with reduced aliasing.

Fig. 1 Sketch of the fan rig showing the in-duct microphone arrays.

Data were acquired at a fixed sampling frequency from 100% ND to 30% ND (Nominal Drive ND = 7718 rpm) for
about 9 minutes. Additionally, a tachometer trigger signal delivering one pulse per revolution was also recorded. The
instantaneous rotational speed during the deceleration is shown in Fig. 2.

∗https://cordis.europa.eu/project/id/690714
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Fig. 2 Instantaneous shaft speed during the deceleration.

V. Results

A. Experimental results
Since tonal noise is related to multiples of the rotational frequency, the tachometer signal is used to resample

the wall-pressure time signals from time to angular domain. Thus a fixed number of synchronized samples per rotor
revolution is obtained. A Fourier transform is applied to blocks of a fixed number of revolutions, which is equivalent to
a fixed engine order resolution.

A fixed engine order resolution implies a variable frequency resolution according to the following expression:

Δ 𝑓 = Δ𝐸𝑂
Ω

60
with Ω the rotor speed in rpm. Fig. 3a shows the variation of the frequency resolution for blocks of 10, 20, 40, and

80 revolutions. These block sizes correspond to engine order resolutions of 0.1, 0.05, 0.025 and 0.0125 respectively.
For the 10 revolutions block, the slope is quite high compared to that for the 40 and 20 revolutions blocks. The relative
variation of the shaft speed would be helpful to choose a block size.

The relative variation of shaft speed can also be expressed as the relative variation of the Blade Passing Frequency
between consecutive blocks as plotted in Fig. 3b. Negative values are expected because of deceleration but some positive
values are produced by oscillations in rotational speed during deceleration. All block sizes show deviations that increase
with time, and the longer the block size, the higher the deviations. As the time interval between successive rotations
increases with the block size, the difference between rpm values at end and the beginning of a block also increases.
However, the relative variation is rather small and remains below 1%.

The choice of 40 revolutions (engine order resolution of 0.025) is a good tradeoff between frequency resolution and
shaft-speed variation within a block. Therefore, Fourier transforms have been applied to signals split into blocks of 40
revolutions.

(a) Variation of frequency resolution (b) Relative variation of Blade Passing Frequency

Fig. 3 Impact of the number of revolutions per block on the (a) frequency resolution and (b) relative variation
of shaft speed.

Results of the aft tonal noise analyzing the azimuthal ring CMD3 (see Fig. 1) are presented hereafter. Fig. 4 shows
the modal spectrum computed at the first Blade Passing Frequency (BPF 1). The mode 𝑚 = 20 dominates down to
7400 rpm approximately and then seems to scatter its energy to the 𝑚 = 19 mode that in turn breaks down at 7200 rpm.
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Modes 𝑚 = 8 and 𝑚 = 4 decrease fairly regularly all along the deceleration and take the lead below 7200 rpm when
both 𝑚 = 20 and 19 have dropped 15 − 20 dB below 𝑚 = 8 and 𝑚 = 4. Both 𝑚 = 8 and 𝑚 = 4 have comparable levels
down to 3700 rpm except near 70% ND, where 𝑚 = 4 drops 5 − 10 dB below 𝑚 = 8 and between 60% and 50% where
𝑚 = 4 is 10 − 20 dB above 𝑚 = 8. At approach flight conditions (50% ND), a switch between 𝑚 = 8 and 𝑚 = 4 can be
seen on Fig. 4 𝑚 = 4 breaks down whereas 𝑚 = 8 rises by about 20 dB in a narrow peak that is reached just below the
approach point ≈ 3600 − 3800. At lower rpm, 𝑚 = 8 vanishes whereas 𝑚 = 4 dominates again down to ≈ 3300. rpm.
This switch between modes 𝑚 = 4 and 𝑚 = 8 clearly shows that the approach flight regime is at the verge between
2 modal behaviours; thus a slight over- or under- estimate can provide contradictory conclusions about which of the
modes 𝑚 = 4 or 𝑚 = 8 dominates the BPF. It perfectly illustrates the sensitivity of the modal content with respect to
slight variations of the shaft speed. Further investigation is needed to explain why and how modes that are not Tyler &
Sofrin [13] modes are generated. A candidate reason for this lies in the experiment itself: indeed, as discussed in detail
in [14–16] , the rotor wake measurements show evidence of blade-to-blade variations. These irregularities may give rise
to any harmonic of the shaft frequency. Moreover, the additionnal modes are far below the Tyler & Sofrin modes before
their cut-off. Mode 𝑚 = 20 before cut-off is about 20 − 25 dB above 𝑚 = 19 and 30 − 60 dB above 𝑚 = 4 and 𝑚 = 8.
After the 𝑚 = 20 cutoff, the overall level drops by 20 − 25 dB but BPF 2 becomes dominant with respect to BPF 1 as
seen on Fig. 5 with Tyler & Sofrin modes outreaching the modes 𝑚 = 4; 8; 19 of BPF 1. Thus it is likely that some
energy of BPF 1 sweeps over to BPF 2 and that the remainder of BPF 1 below 7400 rpm is essentially background noise
(see e.g. [17]).

Fig. 4 Mode spectra of selected dominant modes at BPF 1 as a function of shaft speed.

A closer look to BPF 2 is provided in Fig. 5 where the modal spectrum is computed similarly as for BPF 1. The sum
of modes shows an interesting pattern with peaks and troughs throughout the deceleration. The rotor alone mode 𝑚 = 40
dominates at high shaft speed (> 7500 rpm), competes with mode 𝑚 = −4 in between ≈ 7500 and ≈ 7300 before being
cut-off around 7300 rpm. At lower shaft speeds the rotor-stator interaction mode 𝑚 = −4 dominates the spectrum and
almost matches the overall level with a few exceptions. For example, at 6400 rpm there is a significant drop with respect
to the total level. The CMD3 microphones are flush mounted at the duct wall. The acoustic pressure drops observed in
Fig. 5 might be due to a destructive interference (cancellation) of the pressure associated with higher radial orders 𝑛 of
the azimuthal mode 𝑚 = −4. Indeed, modes associated to rotor-stator interaction are expected to be correlated for tones.

A full azimuthal and radial mode decomposition (ARMD) would be helpful to gain a better insight into modal
interaction. In addition, ARMD allows to separate downstream from upstream mode contributions. The ARMD requires
knowledge of additionnal data such as mean flow velocity and sound speed. Unfortunately, these data are not avalaible
for deceleration but they are for steady regime at different operating points. These steady data are used for the analysis
hereafter.

Another interesting trough in Fig. 5 appears around 70% ND, which correponds to a regime for which steady
measurements are available. First, the mode spectrum obtained from the azimuthal only decomposition is presented
in Fig. 6. The mode 𝑚 = −4 is dominant as expected from the Tyler and Sofrin’s rule [13]. This spectrum has to be
compared with that obtained from the azimuthal and radial decomposition on Fig. 7a. Data from both the CMD3
and AX1 arrays are considered for the ARMD. As can be seen, an unexpected 𝑚 = 0 is more energetic than 𝑚 = −4.
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Fig. 5 Mode spectra of selected dominant modes at BPF 2 as a function of shaft speed.

Upstream, the mode spectrum in Fig. 7b shows amplitudes that are lower than the average amplitude of downstream
modes and does not seem to explain the presence of the unexpected 𝑚 = 0.

Fig. 6 Mode spectrum at BPF 2 and 70%ND (azimuthal only decomposition).

The unexpected modal content in Fig. 7a could come from the array distribution itself. The CMD3 array was
optimised for mode detection up to azimuthal order 𝑚 = ±79 [7, 9] with 100 sensors. This optimisation does not hold
for the azimuthal and radial decomposition on both CMD3 and AX1 arrays as will be shown by the mutual coherence.

The mutual coherence given by Eq. 6 characterises the linear dependancy between columns of the modal basis 𝚽.

𝜇𝑖, 𝑗 (𝚽) = max
𝑖≠ 𝑗

|𝝓𝐻𝑖 𝝓 𝑗 |
| |𝝓𝑖 | |2 | |𝝓 𝑗 | |2

(6)

The coherence matrix is symetric with unity main diagonal (self-coherence), but half of the matrix and its diagonal
are set to zero for readability. The mutual coherence for the CMD3 and AX1 array is presented in Fig. 8. A diagonal
line with high values and a maximum of 𝜇 (0,0) , (0,1) = 0.78 between modes (0, 0) and (0, 1) can be seen in Fig. 8a. The
detailed view around modes 𝑚 = −4 and 𝑚 = 0 in Fig. 8b shows that high values correspond to coherence between radial
orders (𝑛 = 0, 1, 2, 3) for a fixed azimuthal order. In addition, the quite high value (𝜇 (−4,0) , (0,0) = 0.39) of the coherence
between azimuthal orders (−4, 0) and (0, 0) might explain the unexepected high amplitude of 𝑚 = 0 in Fig. 7a.

To further explore the effect of mutual coherence on the mode spectrum, simulated data is used to compare the
reconstructed modal spectrum from the TurboNoiseBB array to a reference array. Since randomised arrays have been
used for optimization of modal detection (see, for example, [7, 18]), the reference will be a randomised array.
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(a) ARMD (downstream) (b) ARMD (upstream)

Fig. 7 Modal spectra at BPF 2 and 70% ND.

(a) Cuton modes 𝑚 = ±31. (b) Detailed view

Fig. 8 Mutual coherence of the array consisted of both CMD3 and AX1 microphones.
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Fig. 9 Mutual coherence and condition number from random samples.

(a) Cuton modes 𝑚 = ±31. (b) Detailed view.

Fig. 10 Mutual coherence of randomised array.

The randomised array is obtained here by extracting random samples from a large uniform array. This uniform array
is constructed by setting a fixed step of 20 mm and 2◦ in the axial and azimuthal directions respectively. A total of 7740
coordinates are obtained for a length of 841 mm and randomised arrays are subsets of 160 out of the 7740 (CMD3 and
AX1 arrays span 841 mm and total 160 sensors). The mutual coherence and condition numbers obtained for 100 trials
are shown in Fig. 9. Whereas mutual coherence shows small variations, the condition number presents large deviations
and peaks. Thus, the array with the minimum condition number (around trial #30 on Fig. 9) is chosen for comparison
with the TurboNoiseBB array.

Compared to the TurboNoiseBB array, the randomised array still shows a maximum coherence between modes
(0, 0) and (0, 1) but a reduced coherence between higher radial orders (𝑛 = 2, 3). This can be seen in Fig. 10b where
peak values of the coherence are surrounded by low values. This is in contrast with the results shown in Fig. 8b, where
peak values are surrounded by high values too. Moreover, the randomised array also reduces the coherence between
azimuthal modes, as seen for example for the pair of modes (−4, 0) and (0, 0) in Fig. 10b.

B. Simulated data
The dominant modes evidenced in Fig. 7a that also show relatively high mutual coherence levels in Fig. 8, that is,

the two dominant azimuthal modes 𝑚 = −4 and 𝑚 = 0 with their associated radial orders 𝑛 = 0, 1, 2, 3, are chosen as
input spectrum for the modal simulations. The pressure vector is constructed by adding a random noise in order to
obtain a signal-to-noise ratio of SNR = 10dB. Two cases are studied, a spectrum with correlated modes, and a spectrum
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Fig. 11 Simulated input modal spectrum.

(a) TurboNoiseBB array (b) Random array

Fig. 12 Modal spectra obtained from simulated data.

with uncorrelated modes. For the correlated mode case, the correlation is imposed between each dominant azimuthal
mode and its radial orders. For each case, the spectrum is a complex Gaussian distribution with zero mean and a case
dependent covariance matrix. The simulated input data with correlated modes is shown in Fig. 11 where the average
level of about 112dB is indicated by a dashed line.

The modal reconstruction obtained from simulated data with correlated modes is shown in Fig. 12. The dominant
modes detected with the TurboNoiseBB array in Fig. 12a are inverted (𝑚 = 0 more important than 𝑚 = −4) compared
with the input spectrum in Fig. 11. In addition, the average level is about 5dB lower than the input average level.
Conversely the modal detection with the randomised array yields a correct average level and dominant modes as shown
in Fig. 12b. Furthermore, radial orders of dominant modes with the randomised array show small variations and are
close to the input levels (about 10dB above the average level), whereas they show large variations with the TurboNoiseBB
array. In particular, the mode (𝑚, 𝑛) = (0, 2) is below 90dB, that is, outside of the Figure range.

Finally, the results obtained from the simulation of uncorrelated modes are shown in Figs. 13 and 14. The Input
spectrum is shown in Fig. 13 whereas the modal detection with the TurboNoiseBB array is plotted in Fig. 14a. The
dominant modes and radial orders are correctly captured compared with the case of correlated input data. The average
level is still about 5dB below the input data though. As can be seen in Fig. 14b, the randomised array continues to give a
correct average and dominant modes levels with the randomised array.

The results from the simulated data highlight the link between the mutual coherence of array sensors and the
correlation between indivdual modes. When input modes are correlated and their mutual coherence is high enough, the
modal reconstruction shows an inversion of dominant modes. For the measured data, tonal noise from the rotor-stator
interaction results in cross-correlated modes; therefore, the mode reconstruction should be carried out carefully high
coherence values are detected by the the sensor array.

9

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

og
ey

 o
n 

O
ct

ob
er

 1
0,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

42
98

 



Fig. 13 Simulated input modal spectrum with uncorrelated modes.

(a) TurboNoiseBB array (b) Random array

Fig. 14 Modal spectra obtained from simulated data with uncorrelated modes.

10

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

og
ey

 o
n 

O
ct

ob
er

 1
0,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

42
98

 



VI. Conclusions and outlook
Improved understanding of in-duct fan noise generation is classically obtained from azimuthal mode decompositions

(AMD) or sometimes even azimuthal and radial decompositions of tonal and/or broadband noise in steady operating
conditions. In the present study a novel extension to deceleration measurements is tested on the experimental database
obtained during the TurboNoiseBB EU project. An iterative Bayesian Inverse Approach (iBIA) is used to solve for the
modal coefficients.

The evolution of dominant modes as a function of the shaft speed highlights the rotor alone mode, rotor-stator
interaction modes as well as some modes that do not correspond to Tyler & Sofrin modes. The rotor alone mode
dominates the first BPF (BPF 1) at high shaft speeds but is quickly cut-off as the shaft speed becomes subsonic. At
the second BPF (BPF 2), the Tyler & Sofrin rotor-stator interaction mode 𝑚 = −4 almost matches the total pressure
level throughout the deceleration showing however strong pressure level drops. A further analysis with a full azimuthal
and radial mode decomposition at the 70% ND operating point shows an unexpected 𝑚 = 0 dominant mode with high
amplitude as compared to the 𝑚 = −4 mode level. An analysis of the mutual coherence between the sensors of the
array shows high coherence values between these two modes and between each of these modes and their higher radial
orders. Simulated data is used to compare results from the TurboNoiseBB array against a randomised array with the
same number of microphones and featuring a reduced mutual coherence level. The reconstructed mode spectrum
demonstrates that correlated modes associated with high mutual coherence values, induce an amplitude inversion of the
dominant modes. This conclusion is particularly important for mode detection performed at tonal frequencies since the
modes generated by rotor-stator interaction are expected to be highly correlated.

Future work should address the question of how to correct the reconstructed mode amplitudes when the sensor array
has high mutual coherence values.
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