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Abstract

Measurements are obtained for the statistical
properties of ultrasonic waves which propagate through
a turbulent temperature field. Two heated grids in
air are utilized to generate a spatially random thermal
pattern typical of atmospheric or oceanic environments.
Incident acoustic waves are emitted with spherical
or piston-like transducers.

Experimental values for the second order coherence
function are theoretically predicted using the stochastic
Helmholtz equation in the parabolic approximation
and a modified von Karman spectrum. The importance
of the outer scale of turbulence is pointed out. Results
are also given for the scintillation index and the
probability distribution of the intensity.

Introduction

Acoustic wave propagation in a turbulent medium
undergoes chaotic changes of phase and amplitude
(intensity). Measurements of acoustic change in the
atmosphere and ocean have been obtained ; but because
the details of the velocity and temperature variations
in these media were unknown, the influence of these
parameters on the sound characteristics, such as the
mutual coherence function or the intensity fluctuations,
were not obtainable.

The propagation of sound waves through turbulent
velocity fields has already been investigated under
laboratory conditions by several authors (Candel,
Julienne and Juliand (1), Blanc-Benon (2), Guedel (3)).
For temperature fields, Stone and Mintzer 4) made
experiments with a water tank in which a random
temperature field was produced by a heater array
placed at the bottom. But in this arrangement, minute
air bubbles were generated. As pointed out by Numbert
and Lumley the appearance of these discrete
impurities presented an additional and not well

controlled parameter. An installation with a grid in-

air eliminates this problem and has been chosen. in
this work. To simulate atmospheric or oceanic conditions
of acoustic propagation, it is assumed that the acoustic
wave length A remains small compared to the integral
length scale L of the temperature field, which, in
turn, is smaller than the range of propagation x, i.e.
X>>L>A.

Experimental arrangement

The heated grids as well as the locations of the
acoustic transmitter and receiver are sketched in
Fig. 1. Each grid consists of a plane arrangement of
conductors with square mesh of 9 cm. The two grids
are placed horizontally in a large anechoic room
(10 m x 7 m x 8 m) and the mixing of the free convection
plumes above them generates the turbulent thermal
field. The second grid is shifted above the first grid
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to change the size of the heating cells (M =9 cm;
M = 4.5 ecm). The overall dimensions of the system are
1.1mx2.2m and the maximum power consumption
of each grid is 32 Kw.

The acoustic propagation measurements were made
at the height H = 1.75 m corresponding to 20 or 40 times
the mesh size M. With one heated grid, the mean
temperature rise above ambient was 27° C and the
relative temperature fluctuation T'/T had an rms value
of 1.71072. The statistical uniformity of the thermal
field was achieved within 0.5° C excluding 1.5 meshes
near the edges. The one dimensional spectrum Feqr (Kq)
of T' was measured with a FFT analyser Nicolet 6604,
in the range 0.5 - 200 Hz with a constant bandwith
of 0.5 Hz. Frequencies were converted into wave numbers
Ki by a Taylor hypothesis based on the mean upward
velocity (1.25 m/s measured with a hot wire). Results
are given in ¥ig. 2 and compared with the one-dimensional
spectrum deduced from the modified von Karman form

qbe (K) by :

Fx)=| & Q) d W
Lf
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2
Ce is the structure constant, Lg is the outer scale
of turbulence related to the integral scale

Ly (Lo =1.339 L), £, is the inner scale, and B0
is the spectrum of the fluctuation €(r) in the index
of refraction. The integral scale.-Lq deduced by
integration of the spatial correlation curve is 7.6 cm.
The inner scale Eo related to the high frequency cutoff
was estimated to be 0.1 cm. The index changes which
may be induced by velocity fluctuations in the x direction
prove to be negligible ; indeed an upper limit is given
by u'y/cg (u'y is the fluctuating component in the upward
direction) and measurements indicates that
Wy/cg=6.10"4, The same measurements were also
made with the two heated grids. The mean temperature
rise was 35° C and the rms value of T!/T can reach
2.5 10~2. The mean velocity in the upward direction
was 1.5 m/s and the integral scale Lt was 5 cm.
Additionnal details are given in Blanc-Benon (6),

The spherical acoustic waves were generated by
TDK ultrasonic sources (f = 23.5 kHz ; 31 kHz ; 39 kHz ;
75 kHz), and the collimated beam by a home-made
piston-like transducer using the Sell technique. The
area is 100 cm2 and the frequency is adjustable in the



range 20-100 kHz (Blanc-Benon (1)). The transmitted
signals were received on 1/4" microphones (Briiel &
Kjagr 4135) located in a plane normal to the x-axis.
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Fig. 2 - Comparison between the experimental (one-
dimensional) spectrum of temperature
fluctuations, Fq% and the theoretical spectrum
deduced from Eq.1 with the von Karman
function.

Theoretical considerations

The propagation of a time-harmonic acoustic wave
in a random medium characterized by small temperature
fluctuations (T'/T<<1) and an integral turbulent
scale L7 large in comparison with the acoustic
wavelength A, s (%overned by the stochastic Helmholtz
equation (Tatarski ).

(b« K Ce@)PF) .00 @

EF) = -T1F)/T

where P(YZ) denotes the space dependence of the pressure,
Ko the wave number, & () the fluctuations in the
index of refraction, and T=(x,y,2). For paraxial
transmission along the x-direction, P(F) can the be
expressed as P = Udexplikg x) ; after subtitution
into Eq. 2 and omission of the second
derivative 3'U/3x? one obtains the parabolic equation :

2k %xu(x,f) R Aj._. U(:,js’):,k, EapUkj)-0

x> 0
. . )
Do = 3730300 5 Faly,2)

and the appropriate initial condition takes the form
U(O,}”’)::Ua(;") at x=0. Equation3 has been
extensively sfudied (Tatarski (7), Ishimaru (8)) and
can be solved accurately for the first two moments
of the field (average field, mutual coherence function)
if one assumes that the fluctuation £ (7)is gaussian
and delta-correlated in the x direction, i.e. :

< E(x,J"a’) f(x',f’) > = J(x-x')A(f"f;') (4)

where A(g:7-§") is related to the spectrum 47{( Kby
the following two-dimensional Fourier transform :

Acf;) = zwf[@o?’).uf(ﬂ?’.ﬁ)d? (5)

For isotropic turbulence A( ‘E’ )} can be expressed as :
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The expression of the mutual coherence function
useful for the present investigation is therefore :
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For a spherical wave Eq.7 can be simplified to the
form :

x,p7) =2 . f.lfﬁ—’.d-
¢ ,ﬁ,g) ) exp( < fs Q H) o
He & A -A(z 7))
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For the fourth-order coherence function, which
gives information about the intensity fluctuations there
is no exact solution. Several authors approximate this
moment by asymptotic methods (Gochelashvili and
Shishov (9)," Zavorotni, Klyatskin and Tatarski (10),
Whitman and Beran 11)) or numerical methods
(Macaskill 12),  Tur (13),  Uscinski (14)). For weak
fluctuations the variance of the log-amplitude is very
often predicted ; for strong fluctuations it is common
to estimate the normalized variance of irradiance
function ext=(<1ly-<xy!)kI . Even though no exact
solution of the fourth-order coherence equation exists,
a useful approach is made by Gracheva, Gurvich, Kaskarov
and Pokasov (15) who suggested that sT*depends on
only one parameterx/f , where appears as a
longitudinal scale (0.0%3 ¢~ T kot )4/, For comparison
with previous experiments in laser propagation through
the atmosphere, it is more convenient to use the
parameter (502 which is the estimate of &x*in Rytov's
method. We note that pg.% is a function of the incident
acoustic wave, and can be expressed simply only for
plane waves or spherical waves with a Kolmogorov
spectrum for C?i(‘f{).

Results

Transverse coherence functions

In Fig. 3 the measured values of the coherence
function for the spherical wave are plotted in terms
of the receiver separation p; for two ranges of
propagation (x =122 cm, 155 cm). The solid curves
are computed from Eq.8, employing a modified von
Karman spectrum (Eq. 1), and dotted curves are obtained

from Eq. 8 but with a Kolmogorov spectrum 0.03} C,-_‘K'"’-6

We note that the coherence functions decrease rapidly
as the propagation length and frequency increase. The
transverse coherence function is accurately described
by a von Karman spectrum which takes into account
the outer scale of turbulence.

The experimental results for a piston-like source
are given in Fig. 4. The solid curves are obtained from
EQ. 7 using a two-dimensional FFT algorithm with a
modified von Karman spectrum (Blanc-Benon, Chaize
and Juvé (16)). We note good agreement with the
experimental data. In this numerical evaluation of the
mutual coherence function [(x,§7,fd) we can
also calculate _  the intensity repartition

ST, F)>= {"(1,95,0) . In Fig.5 the measurements
of <I> are plotted for two ranges of propagation (x=
90 em; x=160cm) and one frequency (f =50 kHz).
We observe that the transverse intensity repartition
is very well predicted even in the region where lateral
lobes appear.

r(x,olfdJ/P(x,0,0)

X = 122 cm

Fig. 3 ~ Transverse coherence functions for a spherical
wave (@ f =123.5kHz ;Af=39kHz). Numerical
estimates with a modified von Karman spectrum
( Jand a Kolmogorov spectrum (----) with
Lp=5cm; T'/T = 0.025.
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Fig. 5 - Transverse intensity repartitions for a piston~
like transducer ( ® x=160cm; =%
x = 90 cm). Numerical estimates with a two-
dimensional FFT algorithm )

The normalized variance

The normalized variance O%s(<1®>-czs)/cs>® s
obtained by a digital treatment of the acoustic pressure
signal. In a first step, the pressure signal is heterodyned
to a frequency of 5 kHz. Then using a digital acquisition
DIFA TR10 30 (10 bit) interfaced to a PDP 11-23
processor, the pressure field is recorded with a sample
time of 40 ps. Typically we calculate the different
moments of the intensity <(T-<1)"> with 98 blocks
of 8192 samples (nis the order of the moment, <>
indicates an ensemble average).

In Fig. 6 the measured values of O for a spherical
wave are plotted in terms of ‘Ba calculated with
Rytov's method :

(S V4 13 ©)

ﬂ = (o.56 sz' kb}/ x )

Different frequencies have been used (f=23.5 kHz;
39 kHz ; 75 kHz), and the distance of propagation
in the turbulent medium is in the range
0.7 m < x < 2.2 m. The characteristics of the turbulent
thermal fields are Lp=7.6cm, T/T=0.017 and
Lp=5cm, T/T = 0.025. The solid curve represents
the solution for the large fluctuations (@o >>1)

Fig. 4 - Transverse coherence function for a piston~ suggested by Gochelashvili and Shishov 9.
like source ( @ f=20kHz; B f=30KkHz;
A f=40kHz; O f=50kHz; 1
f=60kHz; A f=70KkHz). Numerical estimates 2 /5

(10)

i

with a two-dimensional FFT algorithm and o
a modified von Karman spectrum (Lp=5cm; X
T/T = 0.025) ( )

1. + 4.9 ((é’oz) -




For the weak fluctuations (ﬁo<< 1) we indicate a linear
increase of St as predicted by Rytov's method (dotted
curve). When the path of propagation X, the temperature
fluctuation T'/T, or the frequency{ increases, the
normalized variance 6% tends to saturate at a level
slightly above 1.
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Fig. 6 - Scintillation index & | of spherical wave,
versus Fo-

a/ Lyp=7.6 cm; TV/T=0.017
ef =23.5kHz; Af=75kHz; ®f=39kHz.

b/ Lp=5cm;T/T=0.025
of=23.5kHz; #f=31KkHz
of=39kHz; Af=75kHz

curve 1+ 1.9 ( @oZ)-Z/S'

Fig. 7 shows the experimental values of &% for
a piston-like source. For comparison with previous
analysis we use the parameter P" calculated by
Tatarski (7) in the plane wave case :

. < 3[3 1)
- /
of =065 £ (4- cos £ ). exf{o.ﬁﬁzeié})dt

o

112
g =(11 ¢ M)

Experimental data are obtained for seven frequencies
(f = 20 kHz ; 30 kHz ; 40 kHz ; 50 kHz ; 60 kHz ; 70 kHz ;
80 kHz), several paths of propagation in the range
0.7m - 2.2 m, and the same turbulent thermal fields
as before. We observe that €% increases until f,= 2
and then we note a dependence on the parameter S,
similar to the plane wave case but with a different
saturation level. To explain this dependence of 6
on o it would be necessary to take into account
the effect of the outer scale of turbulence as has been
done by Whitman and Beran (11) for a plane wave.

Fig. 7 - Experimental scintillation index S of piston-
like source versus Tﬁo
a/ Ly =7.6cm; T/T=1.710"2

B 20 kHz; A30kHz;
AS50kHz; 060 kHz;

040 kHz

£ @70 kHz

b/ Lp=5cm; T/T=0.025

%20 kHz ; #% 30 kHz ; # 40 kHz

£ 50 kHz; %60 kHz; Xx70kHz; + 80 kHz.

Preliminary measurements of the intensity probability

distribution

There is considerable theoretical and experimental
interest in the probability distribution of the normalized
intensity 1/<I> (Strohbehn, Wang and Speck (17),
Furutsu (18)), For weak fluctuations the application
of the central limit theorem leads to a log-normal
distribution for the intensityI (Tatarski (1 ). For
the saturation region a Rayleigh distribution in amplitude
is often proposed and leads to an exponential distribution
for the intensity. In this paper we introduce a
generalized gamma distribution -that varies smoothly
from log-normal to exponential as a function of the
parameters b and k :

b
bkt _pl
W%/ (T) = (E/u"/r’(k))I e’

= ( reke 1/6) /T (k) y

r‘ Gamma function



The parameters b and k can be deduced from the

measurgments, of the moments my = <12>/<»2  and
mg = <I3>/<>9. These are obtained Dy solving the two

non linear equations :

M(k) .[(k-2/b)

my = 13)

FZCk-& ’//A)

Pl T (ka3/0)
PB( ks 415)

In Fig.8 experimental histograms of the normalized
intensity 1/<I> are plotted for a spherical wave at the
frequency of 23.5kHz and for four distances of
propagation in the turbulent field (x = 71.5 em ; 135 cm;
177.5 em; 220 cm). The solid curves correspond to
the distributions calculated from Eq.12 with the
estimates b and k deduced from the solution of Eq. 13.
We note a good agreement between measurement and
prediction. Similar results were also observed in the
case of acoustic propa%ation through a turbulent velocity
medium (Blanc-Benon 4). To justify the. fitting of the
data set by a generalized gamma distribution we used
a Kolmogorov-Smirnov "goodness-of-fit" test. We can
display the results of this goodness test by plotting
the theoretical cumulative distribution function F(I)
and the associated upper and lower 90 % confidence
bands, F*(I)+ Ax and F*(I) - Nx, where F* is the
empirical cumulative distribution. An example is given
in Fig. 9.

1 3 5

Fig. 9 - Cumulative distributions for generalized gamma
F and upper and lower 90 % confidence functions
F*+ Ax , F*- My associated to the experi-
mental function F*,
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Fig. 8 - Evolution of the probability distribution of
the normalized intensity 1/<I>, for a spherical
wave (23.5 kHz) with four rangesx and
Lp = 7.6 cm, T'/T = 0.017.



Conclusions

The effect of temperature fluctuations on the
propagation of acoustic waves has been investigated
with well controlled experiments involving a heated
air grid. The importance of the entire spectrum of
turbulence has been demonstrated for the transverse
coherence function. It appears that a satisfactory
theoretical estimate may be obtained for different
incident waves (spherical or piston like sources) using
a modified von Karman spectrum in the calculations
based on the parabolic approximation of the Helmholtz
equation. Also we have presented results for the
scintillation index and the probability distribution of
the intensity for which a generalized gamma distribution
is proposed. Finally, we infer from the experimental
data that it will be important to take into account the
effect of the outer scale of turbulence in the calculation
of the fourth-order coherence function.
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