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Adeep learning surrogate for the direct numerical temporal prediction of two-dimensional acoustic waves propagation

and scattering with obstacles is developed through an autoregressive spatiotemporal convolutional neural network. A

singledatabaseofhigh-fidelity latticeBoltzmannsimulations is employed in the trainingof thenetwork, achievingaccurate

predictions for long simulation times for a variety of test cases representative of bounded and unbounded configurations.

Thecapacityof thenetwork toextrapolateoutside themanifoldof examples seenduring the trainingphase isdemonstrated

by obtaining accurate acoustic predictions for relevant applications, such as the scattering of acoustic waves on an airfoil

trailing edge, an engine nacelle, or an in-duct propagation. The study focuses on the influence of three main design

parameters thatallowrollingoutaccurateandstable long-termpredictions: 1) thechoiceofadataset-relatedcharacteristic

time, 2) the normalization of the input data, and 3) the number of input temporal frames into the neural network. The

results show that for the optimum choice of design parameters, the presented data-driven model is able to systematically

obtain low-error prediction at a lower computational cost than the reference high-fidelity computational code.

Nomenclature

bp = Gaussian pulse half-width
c = Gaussian pulse center
c0 = speed of sound
D = domain size
L = loss function
Nnodes = number of nodes in per spatial direction
rc; R = cylinder radii
u = fluctuating velocity vector
U = uniform probability distribution function
x = spatial coordinate vector
xc = cylinder center
xp = Gaussian pulse center
x r = Rectangle origin
Δt = time step

Δx = grid spacing
ε = amplitude of initial Gaussian source
εp = amplitude of initial Gaussian pulse
θ = neural network parameters
ρ = fluctuating density
σ = standard deviation
τD = nondimensional time based on the domain size
ϕ = acoustic potential

I. Introduction

T HE propagation of acoustic waves in complexmedia constitutes
a challenging task in the context of aerodynamically generated

noise. The presence of complex boundaries,mean flow, or background
medium inhomogeneities affects the trajectory of propagating waves
through known physical mechanisms such as scattering, dispersion,
reflection, or absorption. Taking into account such phenomena is
required to design quiet aeronautical devices; however, creating such
predesign tools with a low cost is still an open challenge. To do so, two
types of approaches exist for predicting noise propagation [1]: on the
one hand, direct numerical computational aeroacoustics simultane-
ously calculate both acoustic sources and the subsequent wave propa-
gation [2]. Direct computations yield highly accurate results but are
highly demanding in terms of computational costs. On the other hand,
hybrid methods constitute a more affordable way to perform aeroa-
coustic predictions. These methods rely on the separate computations
of the source region and the propagation into the far field. The
propagation step can be achieved either through semianalytical means
(acoustic analogies) or fully numerical approaches (linearized Euler
equations or acoustic perturbation equations).¶

The coupling between the source and the propagation regions can
become cumbersome, especially when considering the complexmedia
effects on propagation. For example, acoustic analogies for nonhomo-
geneous media (e.g., Lilley’s analogy for sheared mean flows [3])
require an additional effort in the computation of the associatedGreen’s
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function because of the presence of hydrodynamic modes and critical
layers.The sameobservation applies for complex boundary conditions,
as in the Ffowcs Williams and Hawkings analogy [4], where new
integrals appear when accounting for the presence of moving surfaces.
Thus, the more mean flow or boundaries effects are taken into account
by the acoustic analogy, the more complex the calculation of the
associatedGreen’s function or its subsequent convolutionwith sources
becomes. In the most complex cases, which are relevant for industrial
application, the Green’s function can no longer be fully analytically
calculated (e.g., annular ductwith swirlingmean flowanalogy [5]), and
numerical methods must be employed instead. Therefore, in the gen-
eral cases of complexmean flows or boundary conditions, propagation
methods must rely on expensive numerical methods by using (for
instance) high-order numerical schemes to ensure low dissipation
and dispersion properties, which prevents these methods from being
applied efficiently at a predesign stage.
In this context, using a reduced-order model or, more generally, a

data-driven surrogate model can help drive down the computational
cost of aeroacoustic prediction while maintaining a high accuracy
level. The quick development of deep learning methods, with neural
networks at their backbone, has led to applications in several fluid-
mechanics problems. Examples can be found in turbulencemodeling
[6], prediction of aerodynamic flows [7], performance [8] and inverse
design [9] of airfoils, identification of nonlinear unsteady loads [10],
or prediction of compressible cavity flows [11].
Recent work by the authors [12,13] developed an alternative

method to replicate, at lower cost, a high-fidelity numerical code
for the propagation of acoustic waves using a surrogate model:
instead of resolving the discretized propagation equations, a neural
network was trained with examples of high-fidelity direct lattice–
Boltzmann method (LBM) simulations, resulting in a data-driven
convolutional neural network for acoustic wave propagation. It was
found that such an approachmanaged to reproducewave propagation
in simple academic cases of two-dimensional (2-D) quiescent closed
domains with reflecting walls. These promising results suggest that a
similar approach might be applied in open-domain problems in the
presence of complex boundary conditions (such as ducts or scattering
objects). In particular, the method has demonstrated good generali-
zation capabilities (e.g., being able to predict wave propagation of
unseen source distribution) while diminishing classical numerical
constraints [e.g., the Courant–Friedrichs–Lewy (CFL) number],
allowing faster simulations without loss of accuracy.
Yet, the previous framework [12] implicitly encoded the boundary

conditions of the problem, and was thus not applicable to more com-
plex geometries and representative configurations. Several studies
have dealt with the problem of encoding boundary condition informa-
tion into neural network surrogates for modeling partial differential
equations (PDEs). Some make use of built-in tools of convolutional
networks, such as periodic padding to encode simple boundary con-
ditions, such as periodic conditions [14]. Other works dealing with
more complex geometries employ binary inputs [7] or signed distance
functions [15] to encode the geometry information. However, such
works only tackle steady-state problems, such as Reynolds-averaged
Navier–Stokes predictions [7] or sound pressure level estimation [15].
Closer to the problem of interest, Lino et al. [16] predicted the full

spatiotemporal propagation and scattering of seismic waves with a
convolutional network. They employed a binary field to encode geom-
etry information and used an autoregressive strategy to perform the
temporal prediction. However, few quantitative results were shown: in
particular, regarding the ability of the network to perform accurately
outside the training dataset. Furthermore, it seems that they trained the
network on different datasets, depending on the different types of
boundary conditions. A general database capable of training the neural
network for different types of boundaries conditions would be benefi-
cial to such kinds of methods because it would avoid the cost of
retraining the network each time. A typical example of such a pathol-
ogy can be found in physics-informed neural networks (PINNs) [17],
which need to be retrained for each new set of initial or boundary
conditions. Someworks, such as that byMoseley et al. [18], employed
PINNs to solve thewave equation for complex backgroundmedia [18]
and parameterize the source input position in order to avoid retraining

the model for each new set of initial conditions. Other works, such as
that of Hasegawa et al. [19], used a combination of spatial (convolu-
tional autoencoder) and recurrent neural networks (long short-term
memory), creating a reduced-order model for the prediction of low-
Reynolds-number unsteady flows around bluff bodies.Again, a binary
field allows the network to work on different types of body shapes.
However, the problem of using a single neural network for various
types of boundary conditions, such as reflective and nonreflective
acoustic conditions, is still an open question.
Consequently, the present work proposes a unified generic frame-

work based on a deep autoregressive convolutional neural network to
tackle both bounded and unbounded acoustic problems in quiescent
flows, with potential scattering by inner objects. Thework focuses on
two mains aspects: 1) the ability of the trained neural network to
perform in various physics regimes dependent on the choice of
boundary conditions (some of which differ significantly from the
ones present in the chosen database), and 2) the influence on the
choices of hyperparameters employed to train an accurate and stable
model for long-term autoregressive predictions.
First, the methodology regarding the choice of neural network

architecture and its training are presented in Sec. II, Then, Sec. III
describes the unique dataset employed for training the neural network
and its validation. In Sec. V, several test cases representative of
unbounded problems are evaluated using the present framework,
and they are compared with the LBM reference. In particular,
Secs. V.C and V.D explore two additional cases representative of
typical industrial applications, namely, a NACA airfoil and an engine
nacelle. Ducted configurations aswell as a completely closed domain
are also studied in Sec. VI. Section VII studies the influence of the
main hyperparameters of the learned model. Finally, Sec. VIII dis-
cusses the computational cost of the presentedmethodwith respect to
traditional numerical computational fluid dynamics (CFD) methods.

II. Deep Learning Methodology

A. Modeling Dynamical Systems with a Learned Surrogate

The objective of this work is to efficiently approximate the com-
plete space–time evolution of a dynamical system with a surrogate
model trained on high-fidelity data. Here, the system of interest is the
propagation and scattering of acoustic waves with hard-reflecting
obstacles in quiescent flows, which can be described by the following
Cauchy problem for the acoustic density ρ wave equation:8>>><

>>>:
∂2ρ�x; t�

∂t2
� c20Δρ�x; t� � f�x; t�; x ∈ D; t ∈ �0; T�

B�ρ�x; t�� � 0; x ∈ ∂D
ρ�x; 0� � I0�x�;

(1)

where ρ is defined in the domain D with boundaries ∂D. B is the
boundary operator that enforces the boundary conditions (here, B �
0 expresses the absence of sources along the boundaries). Typically,
for hard-reflecting walls, it simply reads∇ρ�x ⋅ n�j∂D � 0. Note that
c0 is the speed of sound, f is a source term, and I0 is the initial
condition expressed as a volume distribution.
For an arbitrary boundary condition operator B, Eq. (1) is usually

resolved numerically by discretizing the state variable in space
and time, and subsequently integrating the time evolution from t to
t� Δt using an iterative solver, whereΔt is the time step between to
iterations.
The goal of the present study is to recast this numerical integration

as an optimization problem in order to learn the space–time evolution
of the acoustic density. Discretizing the state variable in space and
time, let ρi ∈ Rd1×d2 be the solution of Eq. (1) at time step i on a
uniformly spaced discretization ofD defined by a grid with di nodes
in each direction.
The learned PDE operatorG, defined by its trainable parameters θ,

must fulfill the following time-invariant equation:

ρi�1 � G�Xi�1; θ� (2)
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where Xi�1 � fρi; ρi−1; : : : ; ρi−kg is the input of the surrogate
model, corresponding to the k� 1 previous time states.
The operator G is obtained by solving the following optimization

problem:

argmin
θ

L�G�Xi�1; θ�; ρi�1� (3)

where L is a metric of the distance between the approximated
prediction from the learned operator ρ̂i�1 � G�Xi�1; θ� and the
actual solution ρi�1. Here, ρi�1 is obtained through a high-fidelity
numerical simulation database as described in Sec. III, but it could be
obtained by other means: analytical solutions (if existing), experi-
mental observation, or a blending of the previous.
Such a space–time operator can be learned through a highly non-

linear neural network regressor. For high-dimensional databases,
such as the ones encountered in computational aeroacoustics or
computational fluid dynamics, the use of convolutional networks is
an efficient solution to simultaneously learn the spatial and time
integration, as shown in earlier works [13,14,16]. The main advan-
tage with respect to traditional numerical schemes is twofold: in
comparison with explicit schemes, such as Euler or Runge–Kutta
integrators, the learned surrogate is not constrained by the classical
time-stepping stability constraints [12,20]. Furthermore, it does not
require any matrix inversion as implicit integrators do.

B. Autoregressive Spatiotemporal Prediction of Wave Propagation

Once trained, the resulting neural network G is employed in an
autoregressive strategy to predict the complete spatiotemporal evo-
lution of acoustic fields. Although the network is only trained to
predict one single time step ahead from the input data, this autore-
gressive strategy is used as a time integrator to propagate signals up to
an arbitrary time horizon.
Formally, the acoustic density at time t � iΔt can be calculated as

ρi � G ∘ G ∘ : : : ∘ G|����������{z����������}
i−ktimes

�Xk�1� (4)

where Xk�1 � fρk; ρk−1; : : : ; ρ0g contains the initial condition. In
practice, the last predicted frame (i� 1 in Fig. 1) is added to a new
series of inputs (composed of frames at i − k� 1; : : : , and i� 1). In
Fig. 1, the input is composed of k consecutive frames t � i − k, t �
i − k� 1; : : : ; t � i of acoustic density and of a Boolean mask
representing the position of the obstacles. The output is the next
frame at t � i� 1 with a resolution of N × N voxels. Convolution
kernels have a size of k × k, and each rectangular block is propor-
tional to the number of convolutional filters per layer (c#). ReLU
activations are used, except at the last layer, where an identity map-
ping is used to obtain both positive and negative outputs. Skip
connections are employed to facilitate the training of the network.

In practice, k � 1; and this choicewill be justified in Sec.VII. Note
that in previous works [12], four input snapshots (k � 3) were
employed because it was seen that varying this parameter had an
insignificant influence on the overall performance of the neural net-
work. However, the effects of k have to be studied again in this work
due to a fundamental change in the nature of the data: whereas in
Ref. [12] all the simulations conserved the acoustic energy over time,
this conservation no longer holds in this work because nonreflecting
boundary conditions are potentially employed (see Sec. III for further
details regarding the dataset).

C. Neural Network: U-Net Convolutional Network

AU-net convolutional neural network [21] is employed as shown
in Fig. 1. It follows an encoder-decoder layout characterized by anU-
shape in the successive convolution and downsampling/upsampling
operations. Such an architecture is capable of treating large structured
image-like inputswith few trainable parameters by sliding small local
trainable convolutional filters around the input (here, 3 × 3 convolu-
tional filters are used). In comparison with classical fully connected
networks, convolutional networks naturally encode neighborhood
information between pixels, which is key when resolving partial
differential equations. This can be related to the stencils used to
calculate the spatial gradients in a discrete grid.
Furthermore, chained convolutions are combined with downsam-

pling operations to increase the receptive field [22] in order to capture
long-range spatial information. The U-net architecture combines con-
volutions with pairs of down- and upsampling operations to treat the
input in a multiscale way. In this case, maximum pooling operation
along with bilinear upsampling is employed. The multiscale treatment
separately processes the different scales of the problem, specializing the
different filters to focus either on local orglobal flow features.TheU-net
networkwas found to convergemore quickly than themultiscalemodel
used in previous works [12]. This can be attributed to the presence of
skip connections that facilitate the backward flow of gradients during
the optimization of the network. Moreover, U-net networks have better
inference time performance as compared with the multiscale net of
Ref. [12], which further accelerates the acoustic predictions.
Leaky nonlinear rectifying linear units (ReLUs) are employed

after each convolution operation to create a nonlinear mapping
between learned features. For a fixed set of boundary conditions,
the modeled wave equation [Eq. (1)] is linear. However, when
dealing with changing boundary conditions (different reflecting
conditions), such linearity no longer holds: the solution cannot be
superposed for two separated domains with reflecting obstacles to
obtain the solution for the superposed geometry. Nonetheless, the
possibility of using a linear mapping by replacing all nonlinear
activation by identity functions in the network has been explored.
However, such an approach has been found to not yield accurate
results in the neighborhood of reflecting obstacles. This suggests

Fig. 1 Schematics of the U-net multiscale CNN [21] with three scales of convolutions at full, half-, and quarter-resolutions.
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that the usage of the nonlinearity is key to building a physical
surrogate that treats complex boundary conditions.
The input to the neural network corresponds to the previously defined

Xi�1 vector concatenated with an additional obstacle grid g indicating
the presence of the reflecting obstacles with a Boolean encoding (ones
assigned to obstacle pixels and zeros to fluid ones). Thus, the positions
of the boundary conditions are explicitly given as inputs to the neural
network, as employed in other works using convolutional neural net-
works in fluid-mechanics-related problems [7,23,24].
The time step Δt at which the prediction t → t� Δt is performed

is fixed by the temporal spacing between the input and output; thus, in
order to change its value, a new training is required.

III. Dataset: Propagating Gaussian Pulses in
Unbounded Domain with Hard Wall Obstacles

As in Ref. [13], the numerical code based on the lattice-Boltzmann
method is used to generate the data for the optimization of the network
on the training dataset. Such a dataset, employed to feed inputs into the
neural network and compare its outputs with supervised references, is
described in the following section. Particular attention is paid to the
validation of the LBM code on the wave scattering by objects to
guarantee the accuracy of the training database.

A. Numerical Setup

The dataset consists of 120 (100 for training and 20 for vali-
dation) 2-D simulations of time-propagating acoustic waves on
square domains with nonreflecting boundary conditions (dubbed
the “unbounded” domain) and varying random obstacles with

hard-reflecting walls (cylinders and rectangles), which are placed
inside the numerical domain, as sketched in Fig. 2. The computa-
tional domain has a size of D ×D. Similar to the dataset used in
Ref. [13], the acoustic sources are composed of a random number
of Gaussian pulses, which are used as initial conditions for the
fluctuating density field, namely,

ρ�x; 0� �
XNp

p�1

εp exp

�
−
log 2

b2p
kx − xpk

�
(5)

where the number of initial pulses Np is sampled from an uniform
distribution U�1; 5�; ε is the pulse amplitude, which is here fixed to
εp � 10−3; bp is the pulse half-width; and xp is the pulse center
coordinate such that xp � U �0.2D; 0.8D�2.
Two types of reflecting obstacles are used: cylinders and rectan-

gles. For each simulation, the set of cylinders is defined as follows:

C�fx∈Dkjx−xck2 < r2cg; c∈ �0;Nc�
withNc �U�0;3�; rc �U�0.08D;0.15D�; xc �U�0.2D;0.8D�2 (6)

whereNc is the number of cylinder, and rc is their radius with respect
to their center coordinates xc.
Similarly, the set of rectangles is defined as follows:

R� fx� �x; y� ∈Dkx− xrj < wr ∩ jy− yrj < hrg; r ∈ �0;Nr�
with Nr � U �0;3�; wr � U�0.01D;0.3D�; hr � U�0.01D;0.3D�;

xr � U �0.2D;0.8D�; yr � U �0.2D;0.8D� (7)

whereNr is the number of rectangles; hr is their height; andwr is the
width with respect to their left bottom point, defined by coordi-
nates xr � �xr; yr�.
Boundary conditions at the obstaclewalls aremodeledwith bounce-

back conditions. This type of boundary is not generally fitted for
inclined boundaries, such as the cylinderwall. However, in the absence
of mean flow, if the wavelength of acoustic waves is sufficiently large
with respect to the cell size Δx, then the bounce-back “staircase” will
be compact and have no effect on the accuracy of the numerical results.
This is demonstrated in Sec. III.B, where the LBM is validated for
wave scattering by a cylinder. Nonreflecting boundary conditions are
modeled using a perfectly matched layer that prescribes a damping
term in the governing equations in order to attenuate outgoing acoustic
modes [25]. The output fields from the LBM simulations are cropped
to only feed the physical domain to the neural network, with each
direction being discretized withNnodes � 200.Fig. 2 Schematic of a typical dataset simulation.

Fig. 3 Snapshots of acoustic density for different dataset simulations at a fixed time (τ � 0.35).
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This dataset aims at studying the capacity of the neural network
to predict the scattering of acoustic waves by such hard-wall reflect-
ing obstacles and their subsequent propagation into the far field.
Furthermore, complex interactions between acoustic waves and
reflecting walls are also simulated because the random arrangement
of obstacles may act in some cases as a waveguide, rearranging the
signals into modelike shapes. Figure 3 shows an example for different
simulations in the dataset. Initial conditions are composed of Gaussian
pulses of acoustic density located at random positions. Obstacles
(cylinders and rectangles) are randomly located in the computational
domain. Because the obstacles may overlap, this creates complex
geometries where the acoustic signals reflect and diffract.
The results are reported using a normalized time based on the size

of the domain D, which is defined as

τD � tc0∕D (8)

A grid spacing of Δx � D∕�Nnodes − 1� � 0.5025 is employed.
Notice that in the LBM, thevalue of the time stepΔt is proportional to
the grid spacing, which is Δt � cs∕c0Δx here. This acts as a Cou-
rant–Friedrichs–Lewy condition, depending on the sound speed in
lattice units cs, which is determined by the lattice choice, which is
equal to �cs�lb � 1∕

���
3

p
≃ 0.57 here in the 2-D nine-velocity lattice-

Boltzmann lattice [26].
The time τD corresponds to thepropagation timeof anacousticwave

from one boundary to the other. Each training simulation is stopped at
τtrainD � 1.44 (corresponding to 500LBM iterations), leaving sufficient
time for all signals to leave the computational domain. The effect of
such a parameterwill be studied inSec.VII.Density fields are recorded
at time steps that are multiples ofΔτ � 0.0087 (i.e., every three LBM
iterations). The latter time step is the one used by the convolutional
neural network (CNN) in order to demonstrate the CNN capability to
replicate high-fidelity codes while mitigating their CFL constraint. In
practice, the computed LBM fields are packed into groups of k� 1
inputs and one target frame for the training phase, as detailed in
Sec. II.B. The choice of k will be justified in Sec. VII.

B. Validation of the Dataset

The LBM code is validated with respect to the scattering of a
Gaussian pulse by a cylinder. A schematic is shown in Fig. 4a. A rigid
cylinder of radius R is located at �x; y� � �0; 0� inside a domain of
size 30R × 30R, plus an additional 2R of sponge zones at each
boundary. A density Gaussian pulse of half-width of b∕R � 0.4 is

located at �x; y� � �8R; 0�, and a probe is located at �x; y� �
�0; 10R�. The LBM employs a recursive and regularized BGK
(BGK stands for Bhathagar, Gross and Krook [27]) collision model
(with the LBM) [28] to maintain code stability with low numerical
dissipation. Two cases are compared: the first onewith the pulse half-
width is discretized by 12 lattice points (901 lattice points in the
domain excluding sponge zones), and the second one is discretized
with 18 points per half-width (1351 lattice points in the domain,
excluding sponge zones).
The results are compared to the analytical solution derived by

Tam [29]. For a pulse of half-width b and a pulse parameter of α �
�log 2�∕b2 located at �xs; ys�, the total unknown potential can be
divided in two components related, respectively, to the incident
(subscript i) and reflected waves (subscript r):

ϕ�x; y; t� � ϕi�x; y; t� � ϕr�x; y; t� (9)

The total pressure field is found as follows:

p�x; y; t� � −
∂ϕ
∂t

� −
∂
∂t
�ϕi � ϕr�

� Re

�Z
∞

0

�Ai�x; y;ω� � Ar�x; y;ω��e−iωt dω
�

(10)

where Ai�x; y;ω� is given by

Ai�x; y;ω� �
1

2α
e−

ω2

�4α�J0�ωrs� (11)

and rs �
��������������������������������������������
�x − xs�2 � �y − ys�2

p
. Jk represents the Bessel function

of first kind of order k. Ar�x; y;ω� is given in polar coordinates
�r; θ�:

Ar�x; y;ω� �
X∞
k�0

Ck�ω�H�1�
k �rω� cos�kθ� (12)

where

Ck�ω� �
�
ω

2b
e−

ω2

�4α�

�
εk

πωH�1� 0
k �r0ω�

×
Z

π

0

J1�ωrs0�
r0 − xs cos�θ� − ys sin�θ�

rs0
cos�kω� dθ (13)

a)

5 6 7 8 9 10 11
-0.030

-0.020

-0.010
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0.010

0.020

0.030

0.040
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0.070

exact
LBM (12 ppw)
LBM (18 ppw)

b)

Fig. 4 Configuration used for the validation case (Fig. 4a): a cylinder of radiusR located at the domain center scatters a Gaussian pulse. Measurements
are performed at probe location. Fluctuating density ρ 0 at probe location �x; y� � �0; 10R� for dimensionless time τ � tc0∕D for different initial pulse
spatial resolution b∕Δx (indicated as point-per-wavelength or ppw in the legend) and reference analytical solution (Fig. 4b).
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with ε0 � 1 and εk � 2 for k ≠ 0. Also, rs0 is defined as

rs0 �
���������������������������������������������������������������������������������
r20 − 2r0xs cos θ − 2r0ys sin θ� x2s � y2s

q
(14)

and H�1� 0
k is the derivative of the Hankel function of the first kind of

order k.
The pressure solution obtained in Eq. (10) can be related to the

fluctuating density field through the linearized equation of state:
p � c20ρ.
Figure 4b shows the time evolution of the density at the probe

location for two different resolutions of the LBM lattice. A resolution
of 12 points per half-width is sufficient to capture all the physics of
the problem accurately. The first amplitude peak represents the direct
propagation of the initialGaussian pulse,whereas the other twopeaks
at tc0∕D � 8 and 10 arise from the pulse scattered by the cylinder
wall. Therefore, the pulses in the dataset are resolvedwith b∕Δ � 12
points per initial half-width.

C. Testing Data

The autoregressive methodology is tested in a series of unbounded
and bounded cases to demonstrate the ability of the framework to
predict acoustic propagation for several configurations with a quies-
cent mean flow. The objective is to demonstrate that a single neural
network, trained on a dataset such as the one described in Sec. III.A,
can perform accurately on all the test scenarios without the need to
build a tailored database for each case. The interest of such approach
is to avoid the repetition of the costly training process for each new
configuration, as well as to demonstrate that the employed neural
network is able to perform well on new cases not seen during the
training process.
Sketches of the different domain configurations and initial pulse

locations are shown in Fig. 5. Gray hashed zones represent non-
reflecting boundary conditions, whereas black zones represent
reflecting obstacles: a) free-field propagation; b) scattering by a
cylinder; c) scattering by a NACA0020 airfoil; d) propagation inside
a nacelle and scattering into far field; e) in-duct wave propagation for

Fig. 5 Schematic view of test geometries and density-field initial condition.
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different diameter-to-domain length ratios (from left to right) of
h∕D � 0.4, 0.6, and 0.8; and f) closed-box propagation. All the
domains are kept at the size of D ×D. First, the network is tested
on a series of open bounded cases (i.e., nonreflecting boundary
conditions are employed in the four boundaries of the domain),
shown in Figs. 5a–5d, respectively. Then, bounded configurations
are also studied, where at least two opposite domain boundaries are
set as reflective conditions, thus testing the ability of the network to
propagate acoustics in ductlike shapes. The lower part of Fig. 5 shows
the four tested bounded configurations, shown in Fig. 5e for the
ductlike geometry and Fig. 5f for the closed-box domains.

IV. Training and Evaluation Methodology

The methods used to train the neural network in practice are
presented, providing the most important hyperparameters of the
training in detail. Some emphasis is also put on the repeatability of
the neural network, which is inherently stochastic. Such a study is
necessary in order to obtain more robust results when dealing with
autoregressive predictions, as demonstrated in Ref. [30].

A. Data Normalization

Neural networks benefit from scaling the inputs so that themean and
the standard deviation of their inputs are close to zero and one,
respectively [31], in order to improve the stability of the neural network
training. However, scaling all the inputs with their statistical moments
generates a loss of physical information for the neural network, most
importantly in time-dependent problems, because the network may no
longer capture the relative changes of amplitude between different time
steps, accounting for phenomena such as diffusion or, in the present
case, energy decay (e.g., the acoustic signals leave the computational
domain after some time). Thus, two types of input normalization are
tested in this work in order to evaluate their performance when
performing long-term autoregressive predictions.

Global Normalization

The first normalization, used in aU-net network dubbedGlobUnet
(Globally-normalized U-net), consists of a global scaling to normal-
ize all inputs by 1∕ρ0, where ρ0 is the amplitude of oneGaussian pulse
at t � 0 such that

~ρi �
ρi
ρ0

(15)

This scaling intends to preserve the original amplitude scaling of the
dataset, which may be important to account for time-decaying phe-
nomena. The disadvantage of this method is that some of the network
inputs when the acoustic signal has mostly left the computational
domain may have a small amplitude as compared with the initial
condition. Thus, the network may struggle when processing such
low-energy inputs, and it may overfit to high-energy signals.

Local Normalization

The second normalization, denoted as LocUnet (Locally-normal-
ized U-net), employs an input-to-input scaling. In particular, each
input is normalized by σ�ρi−k�, where σ is the standard deviation of
first frame for each input (composed of consecutive spatiotemporal
frames of density, as explained in Sec. II):

~ρi �
ρi

σ�ρi−k�
(16)

Because k consecutive frames are used at each input, the network is
presented with information about amplitude decay between all the
different snapshots, although more locally than for the global nor-
malization. The advantage of such a strategy is that it removes the
low-signal energy problem of the global normalization. It may,
however, amplify spurious noise (e.g., numerical reflections at the
boundaries) with low amplitude in the original dataset scale. Both
strategies are compared for all test cases in Secs. V and VI.

B. Training the Neural Network and Repeatability

The supervised training of the neural network G is performed
over the dataset composed of Ns pairs of input–target samples
�Xi�1; ρi�1��≤i≤Ns

. Equation (3) is solvedbydefining the loss function
L2 used to train the neural network, which is computed at the output of
G, and reads

L2 �
1

N

XN
n�1

kρ̂ni�1; ρ
n
i�1k22 (17)

where the summation is done over the total numberN of data samples
of prediction–reference pairs. The loss minimizes the L2-norm mean
square error (MSE) of the prediction ρ̂ni�1 with respect to the reference
field ρni�1.
In practice, the training of the neural network is performed by

optimizing its parameters by using a variant of the classical minibatch
stochastic gradient descent algorithm, which is the Adam optimi-
zer [32], with an initial learning rate of 4 × 10−4 and a learning rate
schedule that decreases its value by 15% each time the network
validation loss reaches a plateau for more than 10 optimizer passes
on the full dataset (called epochs). Note that convolutional networks
are translation invariant by construction [33]. However, they are not
invariant by rotation. Thus, data augmentation is performed during the
training of the network: input–target pairs are randomly flipped in
angles of 90, 180, and 270 deg. Furthermore, the 120 database simu-
lations are split into training and validation sets using a 100:20 ratio.
To study the robustness of the training regarding the choice of the

training–validation split, a fivefold cross-validation study is performed;
i.e., five independent trainings are performed, and the holdout valida-
tion data are different for each run. Furthermore, the initial values of the
neural network are changed from run to run by varying the random
number seed. Repeating the neural network training with slightly
different initial conditions allows the collection of statistics during the
training and testing phases, enabling us to quantify the variability of the
method. In fact, a similar neural network as the present onewas found in
Ref. [30] to be extremely sensitive to the training conditions (hardware,
code optimization, etc.), which results in a large variability in the
predictions during the autoregressive prediction phase. By collecting
statistics during the training and evaluation phase, it is possible to
evaluate the significance of the possible improvements to hyperpara-
meter changes (e.g., influence of input normalization).
The PyTorch open-sourced framework [34] is employed to per-

form the training operations. The total training time in a NVIDIA
Tesla V100 Graphics Processing Unit (GPU) takes 24 wall-clock
hours. Table 1 summarizes the parameters employed to train both
cases. The resulting training and validation curves are presented in
Fig. 6 for both GlobUnet (left, in red) and LocUnet (right, in green).
Both training and validation metrics are plotted for both configu-
rations. Because the validation error remains very similar to the
training error in all cases, no early stopping was applied; and the
training is stopped after the convergence of the loss curve after
about 300,000 optimizer steps with a batch size of 32. After an
extensive hyperparameter search, the optimum choice of input
frames k is found to depend on the employed normalization. Thus,
k � 1 and k � 3 are found optimal for LocUnet and GlobUnet,
respectively. A discussion on this choice follows in Sec. VII. In
Secs. V and VI, the results for both baselines are compared.

C. Evaluation Metrics

Besides the loss function [Eq. (17)] employed for training the
network, some additional metrics are used to assess the accuracy of

Table 1 Summary of the neural network baseline found for each
normalization

Name
No. of simulations
(training/validation)

Input
normalization k τtrainD

No. of
runs

GlobUnet 120 (100/20) ρ0 3 1.44 5
LocUnet 120 (100/20) σ�ρi−k� 1 1.44 5
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the predictions. The gradient difference loss (GDL) error [35] is
employed to measure the error performed on the norm of the spatial
gradients and can be calculated as follows:

L2�k∇ρ̂;∇ρk��
1

N

XN
n�1

kfρ̂ni�1�x;y�− ρ̂ni�1�x−Δx;y�g

− fρni�1�x;y�−ρni�1�x−Δx;y�gk22�kfρ̂ni�1�x;y�
− ρ̂ni�1�x;y−Δy�g− fρni�1�x;y�−ρni�1�x;y−Δy�gk22

(18)

A backward finite difference scheme is employed to calculate such an
error.Note that inpreviousworks [36], thismetricwas added to the loss
function in combination with the mean-square-error loss [Eq. (17)] in
order to constrain the network to directly learn the spatial variations of
the data. However, such a strategy was found to degrade the results
significantly in the presentwork, due to the necessity to treat the spatial
derivatives at obstacle boundaries. This results in noisy signals for the
spatial gradients that lead to overfitting. Futureworks should deal with
a careful treatment of spatial gradients near the solid boundaries.
Additionally, another metric is employed: namely, the acoustic

density energy, which is related to the spatially integrated root mean
square of the density signal:

Eρ�t� �
��������������������Z
Ω

ρ2

2
dΩ

s
�t� (19)

Such an energy represents a portion of the total acoustic energy, with
the other part being linked to the fluctuating velocity. Such a fluctu-
ating velocity could be calculated by integrating in time the linearized
momentum equation (possible with two or more time steps of fluc-
tuating density or pressure, i.e., k > 0).
Finally, in order to obtain a representative value for a full rollout of

the prediction in time, three additional time-integrated metrics are
employed, namely, the integrated mean square error (IMSE) over
time, which is defined as

E�ρ̂; ρ� � 1

T

Z
T

0

L2�ρ̂; ρ��t� dt (20)

the integrated gradient difference loss (IGDL)

E�k∇ρ̂;∇ρk� � 1

T

Z
T

0

L2�k∇ρ̂;∇ρk��t� dt (21)

and the integrated energy error (IEE)

E�Eρ̂; Eρ� �
1

T

Z
T

0

kEρ̂ − Eρk22�t� dt (22)

Such metrics are employed in Sec. VII to study the influence of
different network hyperparameters in the prediction error.

V. Density-Field Prediction in Unbounded Test Cases

This section presents the results for the first four tests (test cases
a–d), defined in Sec. V. All available networks (five runs per nor-
malization strategy, with 10 runs in total) are evaluated for the
different test cases presented next, which are representative of typical
benchmarks in computational acoustics with nonreflecting boundary
conditions.

A. Free-Field Propagation

The initial condition for the open bounded case (Fig. 5a) corre-
sponds to a Gaussian pulse of half-width of b∕D � 0.06, which is
located in the center of the domain. The neural network is provided
with the first two frames (k � 1) of the simulation, which are issued
from a LBM simulation with the same boundary and initial condi-
tions; and the autoregressive method subsequently unrolls the com-
plete prediction until the nondimensional time τ � 1.7 is reached.
Snapshots at several times are shown in Fig. 7 for the two studied

normalization strategies and compared with the reference LBM. The
results show that all neural networks perform well during all the
phases of propagation, even when the pulse interacts with the non-
reflective boundary. More quantitative results are shown in Fig. 8,
where a slice at constant y∕D � 0.5 is extracted. For each normali-
zation strategy, both the mean and standard deviation (shaded
area) are depicted. The reference LBM solution is plotted with white
circles. The LocUnet solutions seem to be less prone to variability at
later times of the propagation, with a lower deviation in the error than
GlobUnet. This can be confirmed by inspecting the three quantities
described in Sec. IV.C, namely, the evolution of themean square error
L2 (relative to the initial pulse amplitude ρ0), the evolution of the
gradient difference loss L2�k∇ρ̂;∇ρk� (relative to the norm of the
spatial gradients at t=0) k∇ρ0k, and the evolution of the acoustic
pressure energy over time Eρ. Figure 9 shows the evolution of these
metrics over time, depicting the mean and standard deviation (error
bars) for the five different runs per normalization. Three regimes in
the error behavior are observed: one with constant energy levels,
where the pulse has not yet reached the boundary (τ < 0.5); the time
of evacuation of the acoustic signal through the nonreflecting boun-
dary conditions (0.5 < τ < 0.7); and finally the time where only a
fraction of the initial signal energy remains in the domain (τ > 0.7).
In the first regime, both normalization approaches show similar
trends, even though the LocUnet strategy has a small advantage in
terms of the mean squared error and the spatial gradient error. Then,
both networks stabilize in very similar error levels (at τ � 0.7). After
the pulse has completely left the computational domain, after
τ � 0.8, the GlobUnet prediction starts to drift in terms of energy
levels, resulting in a significant increase of error accumulation and
variability within runs. It even leads to divergence of the predictions

Fig. 6 Evolution of training andvalidation errors duringneural network training forGlobUnet (left) andLocUnet (right). Error curves averaged for five
trainings per normalization. Standard deviation depicted with a shadow zone.
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in some runs. On the other hand, the use of the local normalization
mitigates such an error accumulation over time, even at long times of
simulationswhen almost no signal is still in the domain (see τ � 1.73
in Fig. 8). Furthermore, it manages to reach a very similar energy
level across all the runs, indicating a stable rollout in time, even
though a small offset in energy levels is observed.
These observations suggest that employing the local normalization

is key in obtaining a stable autoregressive prediction capability, with
low variability between runs. This first test highlights one of the key
challenges of the application of data-drivenmethods to problems that
switch from energy-preserving to energy-decaying dynamics, even-
tually reaching low residual levels in the domain and increased noise-
to-signal ratios. The normalization of the model inputs plays an
important role in avoiding overfitting to only one of the regimes

and learning the actual wave operator that remains identical in all
cases (i.e., the propagation of waves in free field).

B. Scattering by a Cylinder

Next, as in the validation case of the dataset in Sec. III.B, the
scattering of a Gaussian pulse by a cylinder is studied (test case b).
The computational domain is sketched in Fig. 5b: the initial condition
is an initial Gaussian pulse of half-width of b∕D � 0.06, which is
located at a distance x∕D � 0.25 from the cylinder of radius
R∕D � 0.075, located in the center of the domain; whereas the four
boundaries are left as nonreflecting conditions.
The results for such a test case are shown in Fig. 10. The density

fields of both the reference LBM simulation and the neural network

Fig. 8 Slices of density fields at y∕D � 0.5 for test case a for different times and networks: LBM reference (circles), GlobUnet runs (red), and LocUnet

runs (green). Scale changes between time steps for improved visualization.

a) b) c)

Fig. 9 Evolution ofmean square error (left), gradient-difference error (center), and acoustic density energy (right) for test case a (free-field propagation).
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Fig. 7 Acoustic density prediction for test case a for propagation of a Gaussian pulse in free field.

5898 ALGUACIL ETAL.

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Se

pt
em

be
r 

22
, 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

14
95

 



predictions are compared, along with the local error normalized by
the L∞ norm of the error, in order to show where the error is
concentrated. The challenge for the neural network is to correctly
predict the scattering of the pulse by the cylinder, as well as to
correctly model the nonreflecting boundary conditions, as was
already discussed for the free-field propagation case. Slices of the
density fields at two positions of y∕D � 0.5 and y∕D � 0.25 are
shown in Fig. 11, as well as the evolution of the global metrics in
Fig. 12. For all four tested networks, a similar behavior is observed as
in the previous test: the error grows initially next to the cylinder wall,
whereas at later times, the regions of high error are concentrated near
the boundaries. The LocUnet again achieves a lower error than
GlobUnet with similar behavior as the one observed for the free-field
propagation (see Sec. V.A), which is typically for times after τ � 1.
Both strategies exhibit a concentration of error by the rightmost

domain boundary at x∕D � 1 at times around τ � 0.7, when the
wave reflected by the cylinder reaches that boundary. Nonetheless,

the LocUnet manages to closely follow the signal oscillations even
for such long-time horizons, and GlobUnet only manages to capture
the high-amplitude signals at early simulation times; however, it fails
for the lower-amplitude peaks after τ ≃ 1.0. This suggests that the
global scaling forces the network to focus on high-amplitude signals,
whereas lower-amplitude ones have been neglected during the train-
ing process. Thus, it demonstrates the superiority of the local nor-
malization, which can adapt to varying signal amplitudes and capture
the energy-decaying dynamics accurately.

C. Scattering by a NACA0020 Airfoil

The third test case corresponds to the scattering of aGaussian pulse
wave with a NACA0020 airfoil. The computational domain is
sketched in Fig. 5c. The airfoil leading edge is located at coordinate
�x; y� � �0.3D; 0.5D�, whereas the chord and thickness are 0.4D and
0.08D, respectively. The initial acoustic source is a Gaussian pulse
located at �x; y� � �0.5D; 0.8D�, above the airfoil trailing edge. This
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Fig. 10 Acoustic density prediction for test case b with cylindrical obstacles for different times as compared with reference LBM target (first row) and
normalized spatial errors.

Fig. 11 Slice of density fields at different times at y∕D � 0.5 for networks: LBM reference (circles), GlobUnet (red), and LocUnet (green) for test case b.
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is the first test casewhere the network encounters a geometry that was
not present in the database. The purpose is to study the ability of the
network to predict the strong scattering typical of sharp edges, as in
the airfoil trailing edge.
The results in Figs. 13 and 14 show that for low times of propa-

gation (τ < 0.4), the error concentrates in the trailing-edge region: as
seen, for example, in the slices for τ � 0.1 and τ � 0.31, both
GlobUnet and LocUnet do not closely fit the density levels at the
trailing edge (x∕D � 0.7), indicating the difficulty of the network to
handle sharp edges, which it was not trained for. Nonetheless, the
local error performed by LocUnet is smaller than the GlobUnet one,
which has a large variability in this region. The leading edge is,
on the contrary, well predicted. This offset in density creates some

dispersion phenomena visible in the error fields of Fig. 13: the
backscattered wave from the trailing edge is not in phase with the
reference simulation. Interestingly, the prediction error near the sharp
trailing edge has a pattern similar to a dipolar source term. A better
understanding of this localized error and possible corrections are left
for future work.

D. Scattering by a Two-Dimensional Nacelle

To demonstrate the capabilities of the presented framework in an
industrial-relevant case, a simplified duct-nacelle configuration is
tested, as shown in Fig. 5d. Each side of the nacelle is modeled as
a symmetric NACA airfoil at a zero angle of attack with respect to
the horizontal direction. Both airfoil leading edges are located at
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Fig. 13 Acoustic density prediction for test case c (scattering by a NACA0020 profile).

Fig. 14 Slices of density fields at y∕D � 0.5 for test case c (NACAairfoil) for different times and networks: LBMreference (circles), GlobUnet (red), and
LocUnet (green).

a) b) c)

Fig. 12 Evolution of mean square error (left), gradient-difference error (center), and acoustic density energy (right) for test case b (scattering with
cylinder).
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coordinates of �x; y� � �0.2D; 0.3D� and �x; y� � �0.2D; 0.7D�,
whereas the chord and thickness are set at 0.6D and 0.12D, respec-
tively. A Gaussian pulse source is initially located inside the duct at
�x; y� � �0.5D; 0.5D�, and the neural network is unrolled to propa-
gate the wave through the duct and into the far field.
This test case contains most of the physics studied in this work:

wave reflection, duct acoustics, and scattering of waves at both ends
of the duct. The results shown in Fig. 15 reveal the complex patterns
that appear in such a case: axial-traveling waves propagate both
upstream and downstream of the duct, whereas transverse waves
remain trapped inside the duct, forcing the appearance of ductlike
modes. Both GlobUnet and LocUnet manage to predict the density
patterns appearing in such a scenario accurately.A slice along the axis
of the nacelle (y∕D � 0.5) (Fig. 16) shows the overall fitting of the

LBM reference, even after the trapped modes become established
after a few iterations (τ > 0.24). The evolution of the acoustic energy
shown in Fig. 17 stresses the presence of these trapped, duct-like
modes through the periodic oscillation of energy and fluxes. Both
neural networks show signs of phase shifts because they do not follow
the oscillatory patterns after τ > 0.5. However, LocUnet manages to
follow the global trend of the oscillating energy, whereas the Glob-
Unet diverges faster from the reference simulation.
As seen in Sec. V.C, the scattering by both trailing edges creates

a local error accumulation, which creates a phase shift in the sub-
sequent propagation. This is more noticeable for GlobUnet, because
the GDL error peaks at some discrete times of τ � 0.4; 0.6, and 1,
which correspond to the times at which the formed acoustic modes
scatter symmetrically at both trailing edges. The error created at such
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Fig. 15 Acoustic density prediction for test case d with two NACA0020 airfoils forming a nacelle.

Fig. 16 Slices of density fields at y∕D � 0.5 for test case d (nacelle) for different times and networks: LBM reference (circles), GlobUnet (red), and
LocUnet (green).

a) b) c)

Fig. 17 Evolution of mean square error (left), gradient-difference error (center), and acoustic density energy (right) for test case d (nacelle).
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moments then propagates and pollutes the rest of the time predictions.
Thus, this test highlights that the studied method is able to accurately
predict complex acoustic propagation cases that differ significantly
from the training database. It also shows two of the main difficulties
encountered by the surrogate model: the scattering with sharp edges,
and the difficulty to predict in-duct propagation because of the
presence of trapped modes. The scattering seems to be the cause of
the in-duct propagation discrepancy because it generates dispersion
errors.

VI. Acoustic Prediction in Bounded Domain

A. In-Duct Propagation

To complete the observations made in the previous case regarding
the difficulty of neural networks to tackle the prediction of in-duct
wave propagation, a fifth test case is presented, where the propaga-
tion of a Gaussian pulse inside a two-dimensional duct of constant
diameter is considered. It allows the study of the long-time propaga-
tion by the neural network of trapped modes without taking into
account difficulties due to sharp edges. Three configurations are
studied, as shown in Fig. 5e. The size of the domain is kept constant
at D ×D, whereas three duct diameters h are investigated: h∕D �
0.4; 0.6, and 0.8.
Figure 18 compares the results for LocUnet and the LBM reference.

The initial bouncing on the duct walls is seen to be well predicted

(τ � 0.38). However, once the wave fronts simultaneously reach the
four edges of the simulation, where the nonreflecting condition coin-
cides with the duct wall, the error accumulates quickly in that region.
This behavior creates some spurious backreflected waves that pollute
the entire domain. This mismatch creates a dispersion error that can
beobserved in the energy evolution for the three studied cases (Fig. 19).
In the three cases, the LocUnet method demonstrates its superiority
because it manages to track the energy evolution much closer than
the globally scaled network. However, the phase dispersion is also
visible in both cases,which is an effect of the error created by the edges
of the simulation. These can be attributed to the fact that such a type of
junction between nonreflecting and wall boundary conditions is never
seen during training. Thus, it is hard for the network to infer the
behavior at such points. Here, it is hypothesized that even if the duct
walls areof infinite length in the axial direction, the networkhas always
learned on finite-length obstacles. Thus, it may be possible that it sees
the duct end as an open end, thus creating some reflected waves
because of the wave scattering at a duct opening. To mitigate this
behavior, the dataset could be augmented with some examples of
infinite length ducts.
Furthermore, the analysis of the energy evolution over time in

Fig. 19 reveals that the networks reduce their accuracy when the duct
aspect ratio is decreased. The smaller the h∕D becomes, the smaller
the wavelength λ of the associated acoustic mode is, thus increasing
the frequencyω of the acoustic signal through the dispersion relation
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Fig. 18 Acoustic density prediction for test case e for in-duct wave propagation with h∕D � 0.6.

a) b) c)

Fig. 19 Evolution of acoustic density energy for test case e: a) h∕D � 0.4, b) h∕D � 0.6, and c) h∕D � 0.8 (in-duct propagation).
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ω � 2πc0∕λ. Thus, such results suggest that the trained networks are
able to predict low-frequency signals more accurately than high-
frequency ones.

B. Closed Box Propagation

The last test case corresponds to the same type of boundary
condition studied in Ref. [13], namely, a hard-reflecting wall on the
four boundaries of the computational domain. The initial condition
corresponds to a Gaussian pulse centered at �x; y� � �0.5D; 0.5D�.
In practice, the neural network is given a geometry mask with one
continuous layer of “obstacle” pixels around the computational
domain.
The results in Fig. 20 show the evolution of the neural network

predictions for the LocUnet network. The network manages to
reproduce the highly symmetric patterns until times around τ �
0.6. For later times, a slight phase shift (originating from the corners)
unbalances the symmetry. As the energy content of this problem
remains constant, it is a hard problem for networks that have only
seen decaying problems in the training database. Nonetheless, the
network still manages to keep an accurate level of symmetry, which
demonstrates the capability of the training model to operate accu-
rately outside the training distribution.

VII. Influence of Parameters

In the two previous sections, both normalization strategies have
been trained with a different set of input frames (k � 1 and k � 3 for
LocUnet andGlobUnet, respectively). In this section, the influence of
such parameters on the neural network accuracy is explored. Addi-
tionally, the τtrainD parameter (the duration of the dataset simulations) is
included in this hyperparameter study because it was found to
possibly play a role in stabilizing the long-term autoregressive pre-
dictions. Table 2 summarizes the different studied hyperparameters.
Five training runs are again performed for each pair of hyper-

parameters. To evaluate their overall effect on autoregressive perfor-
mance, the integral quantities presented in Sec. IV.C (namely the
IMSE, IGDL, and IEE) are calculated for each of the test cases (test
cases a–f). The results are presented in Fig. 21 with the mean and
standard deviation for each set of runs. The baseline (best overall
performing strategy for each normalization) is hashed. Several con-
clusions can be extracted from such results:

A. Influence of Number of Inputs k

Decreasing k seems to benefit LocUnet across all metrics and test
cases. Furthermore, the variability between runs also decreases with
k, demonstrating the advantage of reducing the number of input
frames. It is not clear why this reduction benefits the neural network.
Recent works that studied this phenomenon reached opposite con-
clusions: Pfaff et al. [37] drew similar conclusions as in the current
work. Using a single neural network that directly maps the spatio-
temporal evolution t → t� Δt, they claimed that k > 1 leads to
overfitting. On the other hand, other works like those of Hasegawa

et al. [19] found that increasing k benefits the long-term accuracy of
the predictions. Different from the present work, they separated the
problem into a dimensionality reduction network and a learned
recurrent model that integrates the low-dimensional space. Further-
more, they focused on periodic flows such as the wake behind bluff
bodies. Thus, this remains an open question that is left as futurework.

B. GlobUnet Energy Drift and Energy Correction

The effect of k in GlobUnet is less clear: for the IMSE and IEE
metrics, decreasing k does not improve the results in general; whereas it
improves the IGDL. Such an erratic behavior confirms the observation
made in Secs. V and VI: because GlobUnet focuses on high-energy
signals, the energy and MSE metrics tend to diverge after reaching the
high noise-to-signal ratio regime. However, the GDL improves, indicat-
ing that the main problem of GlobUnet is the drift in mean signal levels
(energy). A possible remedy is to constrain the network to fulfill the
acoustic energy conservation over time. In a previous work [12], the
authors employed an energy-preserving correction in order to correct
such an energy drift. However, it relied on the assumption that the drift
was spatially uniform, which allowed the derivation of an analytical
expression to correct the network a posteriori (i.e., after the training
phase). Such a possibility was explored in the current work, but the
hypothesis of uniform drift no longer holds for the trained networks
(LocUnet or GlobUnet). The use of aGDL loss in Ref. [12] could be the
cause for obtaining such a uniform drift; whereas in the present work,
such a loss results in high training errors due to the overfitting of the
noisy numerical spatial gradients close to the obstacles boundaries
(e.g., sharp edges, such as the trailing edge of the NACA airfoil case).

C. Influence of Simulation Time τtrainD

Two datasets with different simulations times have been tested:D1

and D2 with τtrainD � 0.87 and τtrainD � 1.44, respectively. Increasing
the time of simulation seems to consistently reduce the error with the
LocUnet normalization in terms of the IMSE, IGDL, and IEE. It also
benefits the GlobUnet normalization consistently across the test cases.
This suggests that the neural network performance improves with a
dataset that captures the full range of the studied dynamics accurately.
The choice of dataset becomes a key design parameter when using
data-driven methods. Undersampling the problem dynamics could
lead to the so-called distribution shift [38] that affects the generaliza-
tion performance outside the training range.
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Fig. 20 Acoustic density prediction for test case f of closed-box wave propagation.

Table 2 Summary of the hyperparameter
search

Parameter Value

k f1; 3g
τtrain fD1; D2g � f0.87; 1.44g
Normalization GlobUnet/LocUnet
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VIII. Computational Performance

The computational costs associated with the presented method are
presented next. Such costs can be divided into three main phases: the
database generation; the training of the neural network; and the
inference phase, where the trained network is employed in an autor-
egressive manner. In the latter phase, these costs are compared to the
cost of performing a direct lattice-Boltzmann simulation.
The database and training costs are presented in Tables 3 and 4.

Both phases correspond to an offline phase of the deep learning
pipeline, which must be performed only once (in the case in which
the hyperparameters, such as the dataset size or optimizer learning
rate, are already optimal). It can be seen that the most costly phase
remains the training, which must be performed with a hardware

accelerator (GPU). Note that the cost of database generation remains
limited due to the 2-D nature of data. In the case of three-dimensional
simulations, this cost would increase significantly, along with the
training cost.
For the inference phase, Table 5 presents a comparison similar to

the one performed in Ref. [12]: the cost of one time-step prediction
is compared between CPU andGPU hardware for the baseline serial
LBM code (baseline 1) and the implemented U-net neural network;
and the time to reach a fixed nondimensional time is τ � 2.88. A
second reference for aMessage Passing Interface (MPI)-parallel run
of the LBM code in a single-node 24-core machine is also presented
(baseline 2). The acceleration factors with respect to both references
are written in the two last columns. For a time step of the neural
network of Δt � ΔLBM, and using the same CPU hardware, the
neural network is slower than the LBM reference (even more with
respect to the parallel reference). However, as was already shown in
Ref. [12], several strategies can be followed to speed up the com-
putations. First, using a GPU accelerator manages a speedup of
more than 12 times with respect to baseline 1 while still being
slower than baseline 2. Further accelerations can be attained by
processing several initial conditions treated by the neural network in
parallel (i.e., batched simulations; 47 times for a batch size of 64).
Also, modifying the time step of the neural network toΔt � 3ΔLBM

gives a significant speedup with respective to baseline 2 (2.5 times).
This strategy, which was already presented in Ref. [12], allows the
relaxation of stability criteria on the time step (e.g., the CFL
number) through learning the solution of the wave equation instead
of using explicit numerical time steppers. When both strategies are
combined, a large acceleration factor of 141 can be achieved with
respect to the MPI-based simulation.

a) b)

c) d)

e) f)

Fig. 21 Integral error measures: IMSE (left), IGDL (center), and IEE (right) for test cases a) open bound, b) cylinder, c) isolated airfoil, d) nacelle,
e) ductlike with h∕D � 0.6, and f) closed box. Employed baselines are hashed, corresponding to results depicted in Secs. V and VI.

Table 3 Computational cost of data generation

Hardware
Wall time per
iteration, ms

Wall time per
simulation, s

Wall time per
database, s

CPU Intel Gold
Xeon 6126

8.922 4.461 535

Table 4 Computational cost of data generation and training
of a neural network

Hardware
Wall time per

epoch, s
Wall time per training,

days

GPU NVIDIATesla V100
32 GB

0.014293 1
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IX. Conclusions

In this work, a method to deal with a variety of acoustic propagation
cases in quiescent media with a deep learning surrogate model is
presented. The neural networks are trained on a single database of
high-fidelity LBM simulations that contain examples of acousticwave
propagation, reflection and scattering with obstacles, as well as free-
field propagation. Multiple test cases demonstrate that a convolu-
tional neural network trained on such a database, with some specific
normalization (namely, local normalization by the input standard
deviation), manages to closely reproduce the results of the LBM
reference. Accurate results are obtained even on boundary conditions
and scattering configurations not seen during the learning phase. The
use of a locally normalized input significantly improves the results
and reduces the long-term error accumulation of the autoregressive
method. The different examples also highlight some of the challenges
encountered by the network, which are also typical of traditional
numerical solvers: the accurate treatment of nonreflective boundary
conditions, the scattering of acoustic waves by sharp edges, and the
prediction of duct modes in confined configurations. They also dem-
onstrate that these highly efficient nonlinear networks may be capable
of extrapolating to changes in the underlying statistical data distribu-
tion (e.g., energy-decaying versus energy-conserving flows).
Although neural network techniques for fluid dynamics and aero-

acoustics are in their early phases of development, studying their
capabilities in more complex cases remains a crucial step for their
applicability to real-world problems. The insights gained in this work
suggest that, besides the studied problem of treating the temporal
integration accuracy [14], care should be taken when modeling
problems with complex boundary conditions. Thus, techniques from
the CFD community could be employed to improve the capabilities
of such data-driven methods (e.g., nonreflective conditions, etc.).
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