Applied Acoustics 174 (2021) 107752

Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier.com/locate/apacoust

Pole identification method to extract the equivalent fluid characteristics g
of general sound-absorbing materials S

Antoni Alomar, Didier Dragna, Marie-Annick Galland *

Universite de Lyon, Ecole Centrale de Lyon, INSA Lyon, UCB Lyon 1, CNRS LMFA, UMR 5509, 36 Av Guy de Collongue, Ecully 69134, France

ARTICLE INFO ABSTRACT

Article history:

Received 10 March 2020

Received in revised form 18 October 2020
Accepted 23 October 2020

Available online 22 November 2020

A method is presented to characterize general sound-absorbing materials through a pole-based identifi-
cation of the equivalent fluid. This is accomplished by 1) determining the extended equivalent fluid of the
material sample through the transfer function method (TFM), 2) identification of the acoustic response of
the material through the poles of the extended effective density and compressibility, and 3) build the
effective density and compressibility from the poles associated to the local acoustic response. Real pole
pairs describe a dissipative medium (or equivalently an over-damped resonating medium), which is the
natural behavior of rigid-frame porous materials, while complex-conjugate pole pairs describe a locally-
resonant medium typical of metamaterials. Complex-conjugate poles associated to elastic resonances of
the sample are discarded. We test the method for several non-conventional porous materials. In general,
a better fit to the measured surface impedance is obtained than with an acoustics-based identification to
the Johnson-Champoux-Allard-Pride-Lafarge model (JCAPL), and the method appears also to be robust to
errors of the TFM.
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1. Introduction

The increasing global need for diminishing the environmental
noise levels pushes the development of materials with improved
acoustic performance in multiple applications: architectural acous-
tics, air conditioning systems, silencers of terrestrial motorized
vehicles, ventilation systems, aircraft engine noise, etc. An accurate
acoustic modeling of these materials is crucial in order to make
predictions in untested configurations, and to implement opti-
mization strategies.

Many sound-absorbing materials behave like an equivalent
fluid characterized by an effective density and effective compress-
ibility, which are complex functions of frequency. Based on the
physics of acoustic perturbations at the microstructure level fol-
lowed by homogenization, a number of models for the effective
density and effective compressibility have been proposed, such
as Attenborough’s model [1], the Johnson-Champoux-Allard-Prid
e-Lafarge model (JCAPL) [2-5], Wilson’s relaxational model [6], or
the recent three-parameter model of Horoshenkov et al. [7]. All
of them rely on a distinct set of physical hypotheses and on a cer-
tain knowledge of the geometrical properties of the microstruc-
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ture. They are characterized in general by a set of parameters
which can be measured through specific tests, like the resistivity
[8], porosity [9], tortuosity [10], etc. The validity of the resulting
models is then classically verified by acoustic impedance measure-
ments in a Kundt’s tube. This process can become complex and
long because of the large number of parameters and thus of inde-
pendent testing rigs, requiring in general multiple samples, whose
homogeneity is not guaranteed. This is why many users choose to
perform the parameter identification entirely from acoustic mea-
surements in a Kundt’s tube, and the parameters are determined
from a best-fit of the measured and predicted surface impedance
in the frequency range of interest. But this method is not always
satisfactory. Besides relying on different physical assumptions
which may not be met by certain types of microstructure, it fre-
quently leads to parameter values outside the ranges compatible
with their physical grounds.

The concept of equivalent fluid strictly requires that the mate-
rial sustains a single acoustic wave mode. In the particular case
of porous materials this implies that the frame is rigid to acoustic
perturbations. But in reality porous materials do not have a rigid
frame, even if they can behave as rigid in certain conditions, and
the deformation of the frame needs to be accounted in general.
In a first approximation, small deformations of the frame can be
modelled linearly, leading to the so-called poro-elastic materials.
Description of poro-elastic materials requires the full theory of Biot
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[11-13] in order to account for the coupling of the acoustic field
and the elastic frame. For conventional air-saturated porous mate-
rials, where the mass density of the frame is much larger than the
mass density of air, this coupling is in practice only important in
the vicinity of the elastic resonances of the sample [14]. Away from
the resonances the material behaves close to the rigid-frame limit.
However, the high sensitivity of the resonant response to the sam-
ple boundary conditions, together with the difficulty of determin-
ing the exact experimental boundary conditions, make impractical
a direct identification to the full poro-elastic model.

Double porosity materials are another example of materials
beyond the scope of existing equivalent fluid models. These
materials are composed of a microstructure and a mesostructure:
a number of inclusions of a secondary material are embedded
inside the primary microstructure. The models of the microstruc-
ture and the mesostructure need to be appropriately coupled,
which in general depends on the particular geometry of the
inclusions. In the simple case of cylindrical inclusions under nor-
mal incidence, an analytical coupling model has been proposed
[15].

Locally-resonant acoustic metamaterials have been widely
studied in the last two decades due to their high absorption poten-
tial. This type of metamaterials are characterized by local/inner
resonances which can absorb incoming acoustic energy [16]. These
local resonances can induce a negative effective density [17-19]
and/or negative effective compressibility [20,21] (real parts) in cer-
tain frequency bands, leading to an imaginary sound speed and no
propagation of sound there. These materials are not found in nat-
ure but can be manufactured artificially. The continuous improve-
ment of fabrication technologies will soon allow to manufacture
locally-resonant metamaterials with optimal absorption properties
[22]. Although simple equivalent fluid models exist around the
local resonances [23], no general physical model exists for these
materials.

The transfer function method (TFM) [24] can be used to deter-
mine the equivalent fluid of any given material sample. TFM was
originally proposed for porous materials, but it can be applied to
any material that can be acoustically described through an equiv-
alent fluid. As the concept of equivalent fluid, TFM assumes there is
a single acoustic plane wave mode in the material, for which rea-
son it is conventionally restricted to rigid-frame porous materials.
Nevertheless, it can in principle be applied to more general mate-
rials, in which case the deduced equivalent fluid needs to be inter-
preted appropriately.

The fast development of 3D-printing technology allows nowa-
days to fabricate rigid porous networks with a deterministic
microstructure [25]. However, the pore sizes are still limited to
the order of millimeters, which is significantly larger than the
wavelengths of interest in acoustics, but may be of the order of
the sample sizes used. Even if these rigid-frame, porous-like mate-
rials are strictly described by JCAPL [26], the use of samples of
material which are not large enough (compared to the microstruc-
ture characteristic length), may induce errors in the determination
of the equivalent fluid through TFM.

A new identification approach is proposed here based on a pole
identification of the effective density and compressibility deter-
mined from TFM, thus relying only on acoustic measurements of
a single material sample. First, a partial fraction expansion is fitted
to the effective density and compressibility obtained from TFM.
And second, the real and complex-conjugate poles in the expansion
are identified to certain physical behaviors of sound propagation in
the material, including dissipative, local resonances, or sample res-
onances. Therefore, the model proposed allows to characterize not
only rigid-frame porous materials, but also poro-elastic materials,
double-porosity materials and metamaterials. The sample reso-
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nances can then be discarded to obtain the equivalent fluid charac-
teristics of the material.

From a practical standpoint the method used is similar to an
acoustic JCAL identification, but it has the advantage that it bene-
fits from vector fitting [27] or Padé approximants [28] to determine
the optimum pole parameters. In a JCAPL identification the param-
eters are determined by a generic minimization algorithm, in gen-
eral less efficient.

Finally, another advantage of the proposed identification
method has to do with its relationship with the formulation of
sound propagation in the time-domain. Using the Additional Dif-
ferential Equation (ADE) method [29], a pole-based model of the
effective medium leads to a time-domain formulation of the prop-
agation of acoustic waves through the material. As opposed to
other methods, this approach is compatible with high-order
numerical schemes [30].

After describing the method in Sections 2-4, in Section 5 we
validate it and compare it against an acoustic-based JCAPL identi-
fication, for various conventional and non-conventional porous
materials: a melamine sample, a rock wool exhibiting an
acoustic-elastic coupling, a double-porosity rock wool sample,
and two 3D-printed porous networks with a large pore size.

2. Extended equivalent fluid

We define an extended equivalent fluid as the effective density,

Dext, and the effective compressibility, INQX} leading to the correct

acoustic field outside the material when modelled through the
equations (using the exp(jwt) convention):

- . ap
JOPext (@)t + a—i =0, (1)
L~ .ol
JOK ()P + =0 (2)

where p and i are the temporal Fourier transforms of the pressure
and the velocity fields, respectively. These equations need to be
accompanied by the appropriate acoustic boundary conditions.
The extended effective speed of sound in the material is then:

Kexe(w)
Pext (@)’

3)

and the extended characteristic impedance and propagation
wavenumber can be expressed as:

Zext(a)) = \/ pext(w)kext(w)7 (4)

()

Consider a sample of material of thickness H, in a duct. The sur-
face impedance corresponding to a rigid-backing and a configura-
tion with an air gap of depth L,, are, respectively:

v)

Zi(w) = —j% cot (ke (@)Hn). (6)

= — t(wH,L, t iex Hp zex
7o) mdgw) $co (co- ¢/Co) CO (c t((U.)N )+ +(@) @)
—j cot(wHmLag/Co) + jZext(®)

where ¢ is the porosity of the material. The absorption coefficient is
then determined directly from either surface impedance as:

Zs — pocol’

a=1-
Zs + pyCo

8)
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Egs. (1) and (2) imply that there is a single wave mode in the
material which obeys the acoustic boundary and interface condi-
tions. If there are more than one wave modes, as in the case of
poro-elastic materials, the acoustic wave mode is interpreted as
an equivalent acoustic wave mode leading to the correct acoustic
field outside the material. In general, the extended equivalent fluid
of a material sample cannot be regarded as an actual equivalent
fluid because it depends on the sample dimensions and boundary
conditions, and not only on the material itself. The effective density
and compressibility of an actual equivalent fluid model are labelled

p, and K.
2.1. Relationship between the extended equivalent fluid and TFM

The TFM [24] unveiled a correspondence between the effective
density and compressibility of a given porous material sample and
its surface impedance corresponding to two different rear bound-
ary conditions, and provided an experimental procedure to deter-

mine p and K-'. The TFM equations are a direct consequence of
Egs. 1,2 and the boundary and interface conditions, and they have
the same assumptions: there is a single wave mode propagating in
the material which obeys the acoustic boundary and interface con-
ditions, leading to the correct acoustic field outside the material.
This is why the output of TFM can actually be interpreted as an
extended effective density and compressibility. Furthermore, the
generality of the extended equivalent fluid concept allows the
application of TFM not only to porous, but also to other types of
sound absorbing materials. In the identification method proposed,
TFM is used to determine the extended effective density and
extended effective compressibility of the samples of sound-
absorbing material.

3. Pole-based model of the equivalent fluid

In this section we present a method to characterize and extract
the equivalent fluid from the extended equivalent fluid. First we
show how the poles of the extended effective density and com-
pressibility determined from TFM can be determined efficiently
using a partial fraction expansion. Then we present the physical
interpretation of the poles, including the poles associated to the
elastic resonances of the sample. Finally, a summary of the process
to extract the equivalent fluid model of a given material sample is
presented.

3.1. Partial fraction expansion of the extended equivalent fluid

The extended effective density and extended effective com-
pressibility obtained from TFM can be decomposed as a sum of real
and complex poles through a partial fraction expansion:

~ Nrp Apk
) = + e
Pext(®) = Poy, :; Tt — JO
Nip B/)I +_iCpl Bpl — ij[ (9)
= Olpl +jﬁpl _jw Opl _jﬁpl —j(i)

NrC

- _ A
Kex]t(w) = KEolo + Zﬁ
k=1"

NiC - .

Ba +jCa Bq —jCa )
+ - — + - — |, 10
Z(Oﬂaﬂﬂaﬂw v~ 3o o) 1o

=1

where the complex poles come in complex-conjugate pairs because

the inverse Fourier transform of pey () and I?;}t(a)) must be real.

There exist various algorithms in the literature to determine the
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optimal pole parameters for given pey(w) and K;! (m), such as vec-

ext

tor fitting [27] or the Padé approximants [28]. In order that all solu-

tions are stable all the poles of p.. and K, need to have positive
real values of /; and o;, which is not an issue because both algo-
rithms allow to search for stable poles only. Vector fitting has been
used here.

Since the number of poles is an input to the vector fitting algo-
rithm, the question then arises of whether to directly fit with a
small number of poles or fitting with a larger number of poles,
and then retain the desired poles. In all cases tested the difference
between both cases is small. The results shown correspond to fit-
ting with a reduced number of poles.

3.2. Local effective response: dissipative and resonant

The physical grounds for using real and complex-conjugate pole
pairs of the effective density and effective compressibility to
describe an equivalent fluid are taken from the theory of metama-
terials. According to effective medium theory arguments in elec-
tromagnetic metamaterials, together with the electromagnetic-
acoustic analogy, a locally-resonant acoustic metamaterial can be
modelled by a continuous distribution of harmonic oscillators
leading to an effective compressibility of the form [31,32,23,20]:
~ 2
K () ~ -y - Fe0ic —J00cbc (11)

Poy @ — i —jlcw
where w.c and I'c are the natural resonance frequencies of the
effective medium and their damping coefficients, respectively. An
additional derivative forcing term (which is zero in the metamate-
rial literature) has been added in the numerator, and will be justi-
fied later. An analogous expression can be supposed for the
effective density:

5.
B Fpa)*p —jow,,G,

w? -2, - L0’ (12)

p(w) = pg

As simple examples, a 1D duct coupled to a continuous distribu-
tion of Helmholtz resonators is equivalent to an effective medium
defined by Eq. (11) [23,21], and this is also the case of a layered
composite material [33]. On the other hand, a duct filled with a dis-
tribution of membranes is equivalent to an effective medium
defined by Eq. (12) [19,21].

Eqgs. (11) and (12) lead to two different behaviors depending on
the relative value of the dissipation and the resonant frequency:
over-damped and under-damped.

3.2.1. Dissipative behavior: real pole pairs
In the case of an equivalent fluid associated to p (an analogous

argument applies to IN<*1), if I'y > 2w,, the resonance is over-
damped, and the resonator is equivalent to a pair of real poles:

~ Apl Ap2
w) = - —, 13
p( ) p0+/1p] +Jo }“[)2 +Jw ( )
T, — /T2 - 4w?, T, +/T% - 4w?,
I =S = (14
A :prfp — 4 @G Ay — —Fpar, - 2,;160*,)(;,;‘ (15)

JT2 - 402, /T2 - 402,

In this case the dissipation overwhelms the underlying resonant
behaviour. Note that the additional terms G,, G¢ in Egs. 11,12 allow
that A,; +Ap # 0,Ac1 + Az # 0, leading to a more general real
pole pair (as in Eq. (9)).

All rigid-frame porous materials obeying JCAPL appear to be
well-described using a reduced number of real poles for the effec-
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Fig. 1. JCAL prediction of the effective density (a,b) and the effective compressibility (c,d) of a rigid-frame polyurethane foam with ¢ = 2850 N-s-m~* ( ), and a rigid-
frame metallic foam with ¢ = 19200 N-s-m* (=), reconstruction using one pair of real poles of the polyurethane foam (- - - ), and the metallic foam (= = = ).

tive density and effective compressibility. Fig. 1 shows the fit for two
rigid-frame foams of low resistivity (¢ = 0.98, 0., = 1.04,5 = 2850
N-sm4 A=2-10*m,A' =5-10"*m)[34] and moderate resistiv-
ity (¢ =0.65,0,=2250=19700 Nsm*A=1-10* m,
A '=3.5.10"* m) [35], using one real pole pair. More real poles
may be added for higher accuracy or if a larger frequency band is
considered.

3.2.2. Locally-resonant behavior: complex-conjugate pole pairs

On the other hand, if the resonance is under-damped, i.e.
I'y < 2w.,, the resonator is equivalent to a pair of complex conju-
gate poles:

i B, +iC, B, —jC,

W) = Py + - - - — 16
p(w) = pg %, 3B, +io %, 5, +jo (16)
2

P 27 P 2 ki
F,0? —o,w.,G,
Bp:w%c,]7 c, =%~ %O (17)

2
/- +40?,

and in this case the equivalent fluid responds to an impulsive
source as a damped resonator at its natural frequency, w,,. Note
that the additional terms G,,G¢ in Eqgs. ((11) and (12) allow that
B, # 0,Bc # 0, leading to a general complex-conjugate pole pair
(as in Eq. (9)). This locally-resonant behavior, described through a
complex-conjugate pole pair of the equivalent fluid, is associated

to metamaterials. For frequencies where Re(p) < 0 or Re (IN<*1> <0
the sound velocity (Eq. (3)) becomes purely imaginary and plane
waves decay exponentially. In the even more peculiar, but realiz-
able case that Re(p) < 0 and Re (1?*1) < 0, the sound velocity is real

and plane waves propagate. However, the effective medium
response is anomalous: it expands under a pressure rise and moves
to the right when pushed to the left (and viceversa) [36].

3.3. Elastic resonances of the sample

Once the poles of the extended equivalent fluid have been

identified from a partial fraction expansion of p. and K}, only
the ones associated to the local acoustic response should be
retained in the equivalent fluid model of the material. The poles
associated to resonances of the sample, as the ones usually
appearing in poro-elastic materials, are discarded. As will be
shown in Section 5.2, the surface impedance around the elastic

resonances is well captured by a real pole pair plus a complex-

conjugate pole pair of p. and K;l. An analytical justification
for this is hard to find from the full poro-elastic model, mainly
because the two wave modes in the material are important and
neither can be directly identified with an elastic mode or an
acoustic mode. However, an argument can be made to justify
the apparent simplicity observed. Consider an elementary
mechanical model (EMM) of the elastic sample consisting of a
two-degree-of-freedom mass-spring-damper, characterized by a
mass m,, a damper of constant y, and a spring of constant k.,
as shown in Fig. 2. As the excitation is harmonic (~ exp(jwt))
so is the resulting acoustic field and the vibration of the EMM.
The acoustic field in the duct is equal to:

p(x) = Aexp(jkx) + Bexp(—jkx), (18)

where A is the amplitude of the incoming wave and B the ampli-
tude of the reflected wave. The external forcing on the EMM is

equal to the pressure in the duct at x =0, i.e. Fe=A+B. The
acoustic velocity at x =0 is equal to the velocity of the mass-
less piston, il = —(A — B)/(pyCo). The surface impedance of the
EMM is:

, _ Fo_  _A+B
=g, Pla—p

(19)

The application of the force/velocity relations for the spring and
the damper, plus Newton’s law for the mass leads to the impe-
dance of the EMM [37]:
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Fig. 2. EMM for the elastic resonances of the sample.
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(20)

The choice of the two-degree-of-freedom mass-spring-damper
instead of the conventional one-degree-of-freedom configuration
[38] responds to the presence of two wave modes in the material,
and will be evident in Section 5.2 from the measured surface impe-
dance. In the proposed analogy, the degree of freedom at x = 0 can
be associated to the movement of the air, which has a negligible
mass, while the degree of freedom of the mass element can be
associated to the vibration of the frame. This type of resonance is
similar to the mass-air-mass resonance encountered for example
in double-glazed windows [39].

Now that we have put forward a model for the acoustic impe-
dance associated to the elastic resonances, can we identify it with

a complex-conjugate pole pair of pey and K.1? Using Egs. (6), (16)

ext *
and (13) to compute the surface impedance associated to a

complex-conjugate pole pair of p. and/or K, it is observed that
it indeed creates a complex-conjugate pole pair of the surface
impedance, as in Eq. (20), but also introduces a pair of real poles,
due to the divergence of the cotangent at low frequencies. This
behavior is not accounted by the simple EMM model. Nevertheless,
the contribution of the complex-conjugate pole pair on the impe-
dance can be obtained by subtracting the surface impedance com-
ponent associated to the real pole pair to the total surface
impedance:

Zs* _ Zs _ Z;'eal poles7 (2-1)

where Z1* P js obtained from Egs. (6) and (7) retaining only the

real poles and the constant term of e, and I~<;x1t. The resulting impe-
dance contribution due to the elastic resonance should then
approach Eq. (20).

Since local and sample resonances may look similar in the
extended effective density and compressibility, some a priori
knowledge of the nature of the material and the boundary condi-
tions, such as the elastic bulk modulus, may be helpful to identify
the sample resonances. In the case of conventional porous materi-
als where no local resonances are expected, the complex-conjugate
poles can be directly identified to elastic resonances of the sample.
Another way to identify the elastic sample resonances is to slightly
modify the boundary conditions of the sample in the Kundt’s tube.
A large impact on the surface impedance around the resonance is
indication of a sample resonance.

3.4. Summary of the method to extract the equivalent fluid

In summary, the procedure proposed to determine experimen-
tally the equivalent fluid is composed of three successive steps:

1. experimental determination of the extended equivalent fluid,
pexuf(gx]t, through TFM,

Dissipative
TFM behavior
o Retain
Vector Real poles " poles
fitting .
Equivalent
Extended fluid
equivalent Local 0,K™!
fluid Vector resonance Retain
N -1 fitti .
Pexis Kext e (metamaterial) poles
Complex-
conjugate
poles
Sample Remove
resonance oles
(elastic) p
Resonant
behavior

Fig. 3. Conceptual map leading to the choice of real and complex-conjugate pole pairs to build the equivalent fluid model, according to their dissipative/resonant and local/

sample nature.
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2. identify the pole pairs of ﬁext,f(;,}t via partial fraction expansion,

3. identify the sample resonances and build the equivalent fluid of ide
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the samples, the TFM method and the complementary JCAPL

ntification.

the material, [),INC‘, by superposing the pole pairs describing 4.1. Material samples

the local acoustic response of the material, dissipative (real pole
pairs) or resonant (complex-conjugate pole pairs).

We have tested the proposed method against several conven-

tional and non-conventional porous materials:

Fig. 3 shows a conceptual map of the entire procedure to extract
the equivalent fluid.

4. Experimental methods

In this section the experimental methodology to characterize
the material samples is presented, including the description of

(a) As a case of approximately rigid-frame porous material a
sample of melamine foam of thickness equal to 30 mm has been
tested in a small Kundt’s tube (D = 30 mm).

(b) We have tested three samples of a 30 mm thickness rock
wool layer exhibiting elastic behavior. The first sample contains
no perforations (RW), the second sample (RW-7) and the third

Table 1
Properties of the material samples tested.
Porous material Hp, (m) D (m) Frequencies (Hz) Expected elastic behavior Double-porosity
Melamine 0.03 0.03 200-5500 Yes No
RW 0.03 0.10 150-1900 Yes No
RW-7 0.03 0.10 150-1900 Yes Yes
RW-19 0.03 0.10 150-1900 Yes Yes
OPC 0.036 0.03 200-5500 No No
FPC 0.05 0.03 200-5500 No No

(a) Melamine (b) RW (left), RW-7 (center) and RW-19 (right) (c) OPC (left) and FPC (right)

Fig. 4. Material sampl

es tested.

Mic 2 Mic 1

Loudspeaker

Fig. 5. Kundt’s tube configuration in TFM [24] corresponding to two different boundary conditions at the rear face of the sample: (a) rigid backing, (b) an air gap L.

6
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sample (RW-19) contain respectively 7 and 19 cylindrical perfo-
rations. The diameter of the perforations is 8 mm. The samples
were tested in a large Kundt’s tube (D = 100 mm).

(c) We have also considered two samples of rigid 3D-printed
porous networks consisting of cubic periodic cells
[40,41,26,42]. The first sample (OPC, one-pore-cell) contains
one centered spherical pore per unit cell, connected to the adja-
cent cell pores through six cylindrical channels. It has a cell size
of 3 mm and is composed of 12 cells across the sample thick-
ness (total sample thickness of 36 mm) and 10 cells across
the sample diameter. The second material sample (FPC, four-
pore-cell) is also formed of periodic cubic cells, but it contains
four pores of different sizes per cell, and it is anisotropic. It
has a cell size of 5 mm and is composed of 10 cells across the
thickness (total sample thickness of 50 mm) and 6 cells across
the sample diameter. They have been tested in a small Kundt’s
tube (D = 30 mm). The material consists of ABS polymer fila-
ments Z-ultra (Zortrax M200), with a Young modulus of about
1.85 GPa. Note that the actual Young modulus and Poisson ratio
of the porous networks are necessarily lower due to the pres-
ence of the pores. The rigidity of the samples suggest however
that their Young modulus is still much larger than the mela-
mine and rock wool samples.

The diameter of the samples was very close to the diameter of
the tube. In the case that the sample wasn’t rigidly fixed on its
own, we added an additional layer of tape around the perimeter
of the sample to assure so. The only case in which this was neces-
sary was the 3D-printed porous networks.

Table 1 shows the properties of the various material samples
used, and Fig. 4 shows pictures of the samples.

4.2. Experimental determination of the extended equivalent fluid using
TFM

The extended effective density and compressibility of the mate-
rial samples are obtained experimentally using TFM. They are
determined from two surface impedance measurements corre-
sponding to different boundary conditions at the rear of the sam-
ple, namely two different air gaps between the sample and a
rigid wall. The setup in the Kundt’s tube for the two air gaps is
shown in Fig. 5. The details of the method have been included in
Appendix A.1. The result is independent, in theory, of the chosen
air gaps. In practice there is a restriction at low frequencies: both
the distance between microphones and the difference between
the two air gap depths need to be sufficiently high to capture the
phase differences. Sensibly smoother results are in general
obtained when one of the air gaps is set to zero. All results pre-
sented, unless explicitly stated, have been obtained using air gaps
of L,z =0 and 20 mm for the melamine and 3D-printed samples
(small Kundt’s tube), and of L,; = 0 and 60 mm for the rock wool
samples (large Kundt’s tube). In all cases the absorption coefficient
is shown at the training case L,, = 0 mm and at the prediction case
Lyg = 40 mm.

Applied Acoustics 174 (2021) 107752
4.3. JCAPL identification

In the case of porous materials a JCAPL identification may also
lead to the underlying rigid-frame porous medium. In order to
check this and compare against the method proposed, an
acoustics-based JCAPL identification has also been performed for
all single-porosity samples, through the surface impedance with
and without an air gap. In order to simplify the identification, the
Pride contribution to the model has been ignored, reducing to
the JCAL model defined through only six parameters. It has been
checked a posteriori that the refinement by the Pride parameters
is below the experimental and modeling error. For generality, the
full JCAPL model is presented in appendix A.2.

A more robust identification is obtained if performed in succes-
sive steps [43,44]. The porosity (¢) and the viscous permeability
(ko) have been determined a priori from the low frequency limits:

T Po 1
¢ =limo o 5m <zz”<w>> ’

u
M (Kexe () Zexe ()

ko = —lim,,_

)

where p is the molecular viscosity of air. The remaining parameters
have been determined from the minimization of the difference
between the computed and measured surface impedance, A, using
the fminsearch function of MATLAB®:

DB ACHE Z2@) | + 11285 1) = Z2 g (o) (24)

where Z{', Z(",, are the measured surface impedances without and

with air gap, respectively, and Z?,Z°., are the predicted surface

s1%s,ag

impedances obtained from Egs. (6) and (7). The JCAL model for

p(w) and IZ*l(w) (Egs. (30) and (31)) is used to determine Z(w)
and Z . (w).

Table 2 shows the JCAL parameters obtained for all the materi-
als tested (except those with double porosity). Note that the resis-
tivity is directly calculated from the viscous permeability through

the definition o = p/ko.

5. Validation against conventional and non-conventional
porous materials

In this section the method proposed is applied to the samples
tested: melamine foam, rock wool, two rock wool samples with
double porosity, and two 3D-printed porous networks. We com-
pare the proposed method against an acoustics-based JCAL
identification.

Table 3 shows a summary of the results obtained for all the
samples, in terms of the poles required to describe the extended
equivalent fluid and the poles retained in the equivalent fluid
model of the material.

Table 2
JCAL parameters of the various samples obtained from the direct JCAL identification (JCAL).
Porous material ¢ oo A (m) Ar (m) ko (m?) ko7 (m?) o (N-ss-m™*)
Melamine 0.99 1.0 13.10* 1.6.10°* 4.010°° 4.010°° 4500
RW 0.99 1.0 241077 35107 4.0-1071° 151071 44600
OPC 042 21 3.2.1074 1.1.10°3 141078 241078 1500
FPC 0.35 24 22.107* 1.010°° 9.0.107° 581078 2000
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Table 3
Summary of the equivalent fluid characterization of the material samples tested.
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Material JCAL Pole pairs of pext Pole pairs of ’N(Exlf Pole pairs of p Pole pairs of k-1
Melamine Yes 1 real 1 real 1 real 1 real
RW No 1 real + 1 compl-conj 1 real +1 compl-conj 1 real 1 real
RW-7 No 1 real +1 compl-conj 1 compl-conj 1 real no poles
RW-19 No 1 real + 1 compl-conj 1 compl-conj 1 real no poles
orC Yes 1 real 1 real 1 real 1 real
FPC Yes 1 real 1 real 1 real 1 real
1 ‘ %{--I’l-’--'-‘ 5.1. Mel {
P e .1. Melamine foam
4 Fig. 6 shows the absorption coefficients of the melamine sample
505! | corresponding to L,; = 0 mm (a) and L,; = 40 mm (b). In this case
: Fd the reconstruction using 1 real pole pair follows closely the full
// extended equivalent fluid result, as well as the direct measurement
' (except around 2800 Hz). The JCAL identification shows also an
// (a) overall agreement with the direct measurement. The JCAL param-
0 ‘ ‘ eters identified to the measured surface impedance are shown in
0 2000 4000 6000 Table 2, which are consistent with this type of porous material: a
f (HZ) porosity and static tortuosity very close to 1, viscous and thermal
lengths of the order of 10~* m and viscous and thermal permeabil-
1 — : ities of the order of 107 m?.
\‘Y.;":\ T et Fig. 7 shows the extended effective density and compressibility
\\/«/‘ together with their reconstruction using one real pole pair and the
JCAL identification. While IN<;,}[ is well captured by both identifica-
305+ 1 tion approaches, p.y is better captured by the proposed method,
3 even if the impact on the absorption coefficient is small.
J (b) 5.2. Rock wool
O . .
0 2000 4000 6000 Fig. 8 shows the measured absorption coefficient and the pre-

f (Hz)

Fig. 6. Absorption coefficient of the melamine sample corresponding to the direct
measurement (=), the calculation from the full extended equivalent fluid
determined from TFM (= = = ), JCAL identification (s = ==1), and the reconstruction
using one real pole pair ( ), for L,; = 0 mm (a) and L,; =40 mm (b).

6 : T
Sa
'
. | | (@)
0 2000 4000 6000

f (Hz)

(b)
6000

0 2000 4000
f (Hz)

Fig. 7. (a,b) Extended effective density and (c,d) extended effective compressibility of the melamine sample (m===), reconstruction using a real pole pair (

identification (s===1).

dicted absorption coefficients using a full poro-elastic model and
the rigid-frame limit prediction (infinite Young modulus), all corre-
sponding to rigid backing. The one-dimensional analytical solution
for the case of a rigidly-backed poro-elastic layer is included in
Appendix A.3. The air-frame coupling is strongest around the res-
onance, around 350 Hz. A weaker secondary resonance is appreci-
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1 ‘ ‘ ‘

S 0.5

0 500

1000
f (Hz)

Fig. 8. Absorption coefficient of RW with a rigid backing, measured (),

1500 2000

predicted from a full poro-elastic model (
limit E — oo ( ).

), and predicted in the rigid-frame

ated at about 700 Hz. With an air gap the poro-elastic model
doesn’t predict any resonance (not shown), while the measure-
ments reveal a resonance at about 250 Hz (see Fig. 9(b)). This res-
onance is thought to be related to a flexural resonance of the
sample, not described by the analytical, one-dimensional poro-
elastic model.

The measured and predicted absorption coefficients of RW are
shown in Fig. 9, corresponding to L,; =0 mm (ac) and
L, = 40 mm (b,d), respectively. Note that in (b) and (d) the predic-
tion from the extended equivalent fluid is extremely accurate,
which is the case in all the material samples tested. In (a,b) it is
appreciated how the reconstruction using one real pole pair and
the JCAL identification both remove the peaks and troughs associ-

3 0.5
0 ‘ @
0 500 1000 1500 2000
1 f (Hz)

Thasansgde .3

(b

1000 1500 2000
f (Hz)

0 500

Fig. 9. (a,b) Absorption coefficient of RW corresponding to the direct measurement (
), the JCAL identification (=== = 1), and the prediction of a full poro-elastic model in the rigid-frame limit, E — oo (

real pole pair (
(b); (c,d) absorption coefficient of RW corresponding to the direct measurement (
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ated with the elastic couplings, and follow closely the rigid-frame
trend for L,; = 0 mm. With the air gap the measurements reveal a
flexural elastic resonance at about 250 Hz, whose impact on the
acoustic field is accurately predicted by TFM. It is remarkable that
the extended effective model based on a single plane wave mode is
capable of capturing the effect of such a three-dimensional elastic
mode. The reconstruction using a real pole pair is closer to the
rigid-frame limit of the full poro-elastic model than the JCAL iden-
tification. In (c,d) the measured absorption coefficient and their
reconstruction using one real pole pair, one real pole pair plus
one complex-conjugate pole pair, and one real pole pair plus two
complex-conjugate pole pairs are shown. The first complex-
conjugate pole pair describes the effect of the leading elastic reso-
nance, and the second complex-conjugate pole pair describes the
second elastic resonance. The sum of both the real and the
complex-conjugate pole pairs leads to a precise prediction of the
measured surface impedance.

Fig. 10 shows the obtained effective density (a,b) and effective
compressibility (c,d). A pair of real poles are enough to capture
the underlying rigid-frame behavior, and one complex-conjugate
pole pair of p.x describes the elastic resonance at 350 Hz. Similar
results are obtained for the effective compressibility. While the
JCAL identification captures the overall trend, the reconstruction
using a pair of real poles is slightly closer to the rigid-frame limit
from the full poro-elastic model.

Fig. 11 shows the measured surface impedance around the lead-
ing elastic resonance, with the contribution from the real poles of

Pexe and Kl subtracted, and is compared against the prediction
from the full poro-elastic model, and against a fit of the EMM
(Eq. (20)). Figs. 11(a,b) correspond to a rigid backing and 11(c,d)
to L,; = 40 mm. The prediction from the full poro-elastic model
has been obtained by subtracting the surface impedance of the

rigid-frame limit (E — oo) to the surface impedance of the actual

1
S 05| ]
0 d | (9
0 500 1000 1500 2000
f (Hz)
1 : : :
305/ ]
0 ‘ ‘ 4
0 500 1000 1500 2000

f (Hz)

), the full extended equivalent fluid from TFM (= = = ), the reconstruction using one
), for L,z = 0 (a) and L,; = 40 mm

), reconstruction using one real pole pair ( ), reconstruction using one real pole

pair plus one complex-conjugate pole pair for the leading elastic resonance of the sample (= = = ), and reconstruction using one real pole pair plus two complex-conjugate

pole pairs accounting for both elastic resonances of the sample (

), for L,g = 0 (c) and L,g = 40 mm (d).
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)
1500 2000

1000
f (Hz)

500

Fig. 10. (a,b) Extended effective density and (c,d) extended effective compressibility of RW (
real pole pair plus one complex-conjugate pole pair (= = = ), prediction by the full poro-elastic model in the rigid-frame limit, E — oo (

(nmumi).

@
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Im(Zs.)/(poco)

b
100 200 300 400 500 600
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Fig. 11. Surface impedance of RW around the elastic resonance, with the contribution of the real pole pair of pey and IN(;;t subtracted, from the measurement (
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), reconstruction using one real pole pair (

), reconstruction using one
), and the JCAL identification

i assssvsEsEEsEEEEEE)
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Rewy,
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), the full

poro-elastic model (= = = ), and the fit of the EMM (Eq. 20) (=== =1); (a,b) rigid backing, (c,d) L,; = 40 mm.

elastic sample. This is equivalent to subtracting the contribution of

the real poles of p. and K} because they account for the rigid-
frame behavior. It is observed that the real component is negative,
which implies that the EMM requires negative values of m,, k. and
%.- This shows that Z, cannot be interpreted as an actual surface
impedance, but only as a local contribution to the impedance

due to the complex-conjugate pole pair of the equivalent fluid. This

10

peculiar behavior can be used to identify elastic resonances. In the
air gap configuration the elastic resonance is flexural and it is thus
not captured by the full poro-elastic model, which is one-
dimensional. For a rigid backing the measurement trend is well
described by both the poro-elastic model and the EMM. A certain
bias between the measurement and both models is appreciated
at the lowest frequencies. This is attributed to an error in the pole
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3057

1000 1500
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Fig. 12. Measured absorption coefficient of RW-19 ( ) and predicted (= = =),
measured absorption coefficient of RW (=) and predicted (w m m ), with a rigid
backing.

500 2000

identification due to the missing of the low-frequency tail of the
resonance. With the air gap the EMM model also fits well the mea-
sured trend, showcasing its generality.

5.3. Rock wool with perforations: double porosity material

The impact of the air inclusions can be appreciated in Fig. 12,
which compares the measured absorption coefficient of RW and
RW-19. The predictions using the double porosity model of Olny
and Boutin [15] (JCAL for the primary rock wool microstructure
and Zwikker and Kosten’s model [45] for the cylindrical air inclu-
sions) are included. Such a coupling model is limited to this simple
double-porosity configuration consisting of cylindrical one-
dimensional inclusions. Fig. 13 shows the predictions for the effec-
tive density and effective compressibility of RW (JCAL, assuming a
rigid-frame) and RW with a 10% of perforated surface with air
inclusions of 1 mm in diameter. In order to capture the behavior

1 (a)
510
~
=
o .
100t ‘ ‘
10" 102 10°
f (Hz)
= 0
£-10
S
E
10° ‘ ‘ ()
1 2 3
10 10 10

f (Hz)

Fig. 13. Effective density (a,b) and effective compressibility (c,d) of RW (rigid-frame)
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of the effective density at low frequencies the plots are shown in
logarithmic scale. Their reconstruction using one real pole pair
are in excellent agreement in the considered frequency range.
The reconstructions using only one real pole are also shown. While
the proposed method requires in general two real poles, in some
cases the contribution of one of the poles is much lower than the
other, leading to a good description using a single real pole. This
can be appreciated in the present case: for the double-porosity
material the effective density is accurately matched using a single
real pole, and RW is also matched well by a single pole except at
low frequencies.

Fig. 14 shows the absorption coefficient (a,b) and the obtained
effective density (c,d) of RW-7. As before, (a) corresponds to
L,; =0 and (b) to L,; = 40 mm. The absorption coefficients corre-
sponding to the extended equivalent fluid are not shown as they
match exactly the direct measurement. This double-porosity sam-
ple shows a similar elastic coupling as RW, but at a lower fre-
quency (~ 280 Hz). Similarly to RW, using one real pole pair plus
one complex-conjugate pole pair leads to an accurate reconstruc-
tion of the trend corresponding to the complete extended equiva-
lent fluid, with the real pole pair describing the underlying rigid-
frame behavior, and the complex-conjugate pole pair describing
the elastic sample resonance. In (c,d) it can be observed that the
effect of the elastic sample resonance on the effective density is
accurately captured by the complex-conjugate pole pair. RW-19
shows similar trends, but with a weaker impact of the resonance
(not shown).

5.4. 3D-printed porous material

Contrarily to the previous materials, an important variation of

Pext and IN<;,}[ of OPC and FPC is observed when changing the air
gap pairs used in TFM. In particular, spurious fluctuations in fre-

quency appear for both p. and K_}. They can be seen in Fig. 15,

ext*

;1.4'

lv1.37
~

m1.21
QO

Sy}

0.2 ‘
10" 102
f (Hz)

), fit of RW with one real pole (- - - ), fit of RW with two real poles (O), RW with a

double porosity of 10% of perforated surface (mmm), fit of RW with a double porosity of 10% of perforated surface using one real pole (= = = ), and fit of RW with a double

porosity of 10% of perforated surface using two real poles (/).
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Fig. 14. (a,b) Absorption coefficient of RW-7 corresponding to the direct measurement (
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), a reconstruction using one real pole pair of p.x and no real poles of K}

( ), and a reconstruction using two real poles plus a complex-conjugate pole pair for p.y and two complex-conjugate pole pairs for K, (- = =), for L,; =0 (a) and

L, =40 mm (b); (c,d) measured extended effective density (mm), reconstruction using a real pole pair (

conjugate pole pair (= = = ).

which displays pex for two pairs of air gaps, together with its recon-
struction using one pair of real poles. The reconstructions using one

0 . .
0 2000 4000 6000
f (Hz)
]
= 0
Y
ER
2 ‘ ‘
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f (Hz)

Fig. 15. Extended effective density of OPC corresponding to L,; =0 and 20 mm
( ), Lyg = 10 and 20 mm (m=mmm), the reconstruction of the former (- - - ) and
the latter (= = = ) using one real pole pair.
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) and reconstruction using a real pole pair plus a complex-

real pole pair are close to each other, indicating that they are more
robust to changes in the air gaps, thus providing a consistent model
for the equivalent fluid of the material. The oscillations observed in
Pexe and K1 are interpreted as spurious fluctuations due to the failure
of the plane wave approximation in these samples, due to the limited
ratio of the sample thickness to the pore size (~ 10).

The absorption coefficients of OPC are shown in Figs. 16(a,b),
corresponding to L,; =0 (a) and L,; =40 mm (b). With a rigid
backing, the absorption coefficients from both the JCAL identifica-

tion and the reconstruction of pe, and IZ;}t using one real pole pair
mimic closely the direct measurement. On the other hand, for the
prediction case L,; =40 mm the trend corresponding to the full
extended equivalent fluid obtained from TFM leads to an important
error at the largest frequencies, while both the JCAL identification
and the reconstruction with one real pole pair predict accurately
the direct measurement. This shows that 1) this material obeys
closely JCAL when it comes to the surface impedance, and 2) the
reconstruction using a pair of real poles is robust to the failure of
TFM at high frequencies.

The analogous results for FPC are presented in Fig. 16 (c,d). In
this case the predictions of the absorption coefficient at both air
gaps are worse in general, with a slightly better agreement coming
from the reconstruction using a pair of real poles, especially for
L,; = 40 mm. This shows that even in such an anisotropic medium
the proposed method captures better the behavior than a JCAL
identification. Also, the thermal length (As) obtained from the JCAL
identification is in this case smaller than the viscous length (A)
(see Table 2). This contradicts the physical assumptions of the
model and casts doubt on the validity of the identification. On
the other hand, it is also possible that this material in particular
has a microstructure which is not compatible with JCAL. A com-
plete JCAL identification of the low- and high-frequency asymp-
totics of this material is required to clarify this issue.
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Fig. 16. Absorption coefficient of (a,b) OPC and (c,d) FPC, corresponding to the direct measurement (
) and a JCAL identification (s == =1), for L,; = 0 (a,c) and L,; =40 mm (b,d).

using one real pole pair (

6. Conclusions

In this work a new framework to extract experimentally the
equivalent fluid of general sound-absorbing materials has been
presented, based on a pole identification of the extended effective
density and effective compressibility. An extended equivalent fluid
can approximate the acoustic response of non-rigid-frame materi-
als (characterized by multiple wave modes propagating in the
material) using a single wave mode approximation, and it is esti-
mated from TFM. The proposed method goes beyond the rigid-
frame porous materials described by JCAPL, and this has been illus-
trated by rock wool samples exhibiting an elastic coupling, rock
wool samples with double-porosity, and by a sample of 3D-
printed network formed of periodic cells of high pore size. An
acoustics-based JCAPL identification can also be performed to
determine an equivalent fluid of the medium, but the proposed
method leads in general to a better agreement with the rigid-
frame limit. It appears also that the pole-based identification is
robust to local errors of TFM.

One important application of the description of the equivalent
fluid using poles is the derivation of a time-domain formulation
from Eqgs. (1) and (2). Using the additional differential equation
method (ADE) [30,46], the equations in the frequency domain
can be transformed to an equivalent set of time-domain equations
compatible with high-order spatial and temporal schemes. Among
others, this opens the possibility of performing high-order,
two- and three-dimensional temporal simulations of extended-
reacting liners composed of a wide variety of materials.
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Appendix A. Appendix

A.1. Transfer function method for the determination of the extended
equivalent fluid

The extended characteristic impedance and extended propaga-
tion wavenumber of the material are determined from a pair of
measurements of a single material sample placed in a Kundt's tube,
at two different air gaps, L, L}, between the rear face of the sam-
ple and the rear piston (see Fig. 5):

5 z.Z, (zag - z;g) ~ZaZi(Z, - Z)) 25)
o (22— 24) - (2.~ 2)

~ _ 1 ( Zext) ( ag — Zext)

" () (zag+zm) -

Zag = — PoCo¢p cot (CUCLO%> —JpoCocb cot <wLO ) : (27)
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The surface impedance at both air gaps are determined from the
transfer function of the two microphone signals:
—H sin(wLy1 /co) + Sin(wLyz /Co)

H cos(wLy1 /o) — cOS(WLpa/Co)
—H' sin(@Ly1/¢o) + Sin(@Lyz/Co)
H' cos(wLy1/¢o) — €oS(Lyy /Co)

V4

=iPocod (28)

)

Z/

=JPoCod (29)

@

where Ly, Ly, are the distances from the sample surface to each
microphone, and H = pm1/Pma-

A.2. Johnson-Champoux-Allard-Pride-Lafarge model for the equivalent
fluid of rigid-frame porous materials

The Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) semi-
phenomenological model characterizes a rigid-frame porous mate-
rial with eight parameters: the porosity (¢), the high-frequency
limit of the tortuosity (o), the viscous length (A), the thermal
length (A"), the viscous permeability (ko ), the thermal permeability
(kp), the static viscous tortuosity (o) and the static thermal tortu-
osity (op):

b(w) = Lo L imne + b2 —
plo) =7 (ocmrjX( JMN? + b b+1)>, (30)
1 _ ¢ (. y-1
C:l+j17(\/jM’(N’)2+(b’)2—b’+1), 31)
2 !
S Z(ZOGkO ’ b/* 22’(0 7 (32)
A% (oo — ) (N) (o — 1)
wpoko 1 wpkyPr
X:—7 EarE— 33
o 7; G3)
M=oy PPt (34)
t 1
2000k 2k
N=5 N =18 (35)

The JCAL model is obtained from ignoring the Pride contribu-
tion: b =b' = 1. This determines oy and o} as a function of the
other six parameters.

A.3. Analytical solution for a rigidly-backed poro-elastic layer

The surface impedance of a rigidly-backed layer of poro-elastic
material of bulk modulus E and Poisson ratio v is given by the fol-
lowing equations [14]:

j Z, +FZy

Zs = "~ ¢ tan(kHy,) — F tan(kgHy) (36)
o <Pp +Rpyy —2Qpy, — \/Z> (37)
- 22 11 12
® z(PR _ Q2>
2
K == (Pp +Rpyy —2Qpy, + VA) (38)
2(PR —Q )
Pr 2L
¢ Zr (39)
Ze=(P+Qo0 . 7= (P+ap)t (40)
o Q kR ;o Q kL
f- (2en), 7o (2Rl a
A = (Ppy, +Rpy; — 2Q)012)2 - 4<PR - QZ) (P11P22 — p%z) (42)
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2 _ pK? 2 _ pk?
¢R:w2p11 PkR7 L:wzpu Pk; 43)
Qg — *py, Qk; — w?py,
AN (1-9¢)K
P:Kb-i-?ﬂ-%, Q=(1-¢)K;, R=¢K; (44)
E ) .
Ky = 30 -2 Ky =C (Cdefined in Eq. (31)) (45)
~ .a N .a o . a
011:,011—157 Pu:P12+J57 Pzz:pﬂ_]a (46)
2 : 2
a—= & ]4;00620(020’(0 (47)
ko UA" P
P11 =p1 4 0po(Co1), P22 = PPy + PPo(Coo-1),
P12 =~ Po(doc-1) (48)

In the limit E — oo, all sample resonances move to infinite fre-
quencies, and Z; and kg go to zero. The surface impedance
becomes:

7 ~ %z; cot(kiH), (49)

i.e. the material behaves like an effective medium of impedance Z;
and effective wavenumber k;.
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