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Finite amplitude acoustic wave propagation through atmospheric turbulence is modeled using a

Khokhlov–Zabolotskaya–Kuznetsov (KZK)-type equation. The equation accounts for the combined

effects of nonlinearity, diffraction, absorption, and vectorial inhomogeneities of the medium. A nu-

merical algorithm is developed which uses a shock capturing scheme to reduce the number of tem-

poral grid points. The inhomogeneous medium is modeled using random Fourier modes technique.

Propagation of N-waves through the medium produces regions of focusing and defocusing that is

consistent with geometrical ray theory. However, differences up to ten wavelengths are observed in

the locations of fist foci. Nonlinear effects are shown to enhance local focusing, increase the maxi-

mum peak pressure (up to 60%), and decrease the shock rise time (about 30 times). Although the

peak pressure increases and the rise time decreases in focal regions, statistical analysis across the

entire wavefront at a distance 120 wavelengths from the source indicates that turbulence: decreases

the mean time-of-flight by 15% of a pulse duration, decreases the mean peak pressure by 6%, and

increases the mean rise time by almost 100%. The peak pressure and the arrival time are primarily

governed by large scale inhomogeneities, while the rise time is also sensitive to small scales.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3557034]
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I. INTRODUCTION

Both linear and finite amplitude acoustic wave propaga-

tion through turbulence are strongly affected by wind veloc-

ity fluctuations through convection of the wavefronts.1–4 The

propagation of linear acoustic signals in an inhomogeneous

moving medium has been widely investigated, for example,

within the high frequency approximation5–7 and using the

wide angle parabolic approximation.8–10 Linear scattering of

sound waves on random scalar inhomogeneities have also

been considered using Born approximation.11 Focusing of

high amplitude and wide band acoustic signals has been

considered either in homogeneous medium giving the initial

distortion of the wavefront12–14 or in media with determinis-

tic inhomogeneity.15,16 The diffraction of nonlinear acoustic

pulses from random structures has only been reported for

media with scalar type inhomogeneities.17 To our know-

ledge, nonlinear focusing of wide band acoustic signals in a

medium with random distribution of flow velocity has not

yet been considered.

This work is partially motivated by the case of sonic

boom propagation, where both numerical simulations11,17,18

and experimental studies19–22 have shown that the fluctua-

tions produce random focusing and defocusing of the acous-

tic wave leading to significant changes in the statistics of the

acoustic wave parameters, e.g., shocks with high peak pres-

sures and short rise times can be observed in focal regions.

Changes in the acoustic parameters results in corresponding

changes in annoyance and subjective loudness of sonic

booms.23,24 The perceived loudness of sonic booms heard

outdoors is an important factor of acceptability of supersonic

flights overland.25 Typical peak overpressure measured at

the ground level in sonic boom experiments with small size

aircraft are of the order of 100 Pa,19 which corresponds to an

incident pressure amplitude of 50 Pa (as the ground reflec-

tion results in a near pressure doubling at the microphone).

The characteristic nonlinear distance given by this overpres-

sure is of the order of 10 km, which is very long comparable

to the width of the turbulence boundary layer (TBL). This

suggests that sonic boom propagation through TBL could be

considered as linear. However, atmospheric conditions or

aircraft maneuvers can result in focal regions in which over-

pressures more than 600 Pa have been reported19,26; in this

case nonlinear effects during propagation through the TBL

may become important.
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The goal of this paper is therefore to study the focusing

of nonlinear acoustic pulses in a moving randomly inhomo-

geneous medium. For this purpose, a nonlinear parabolic

sound propagation model based on a Khokhlov–Zabolot-

skaya–Kuznetsov (KZK)-type evolution equation is used.18

The advantage of this model is that, besides conventional

nonlinear and diffraction effects, it also accounts for both

longitudinal and lateral fluctuations of the turbulent velocity

field. Random single and multiscale velocity fields are gener-

ated using a turbulence model based on a random Fourier

Modes technique.6 Using the model for inhomogeneities ran-

domly distributed in space permits investigation of pressure

field statistics in the presence of turbulence. Therefore, the

advance reported here is to investigate the influence of non-

linear-diffraction effects on the statistics and peak values of

the N-wave parameters in media with random vectorial

inhomogeneities.

The paper is organized as follows: in Sec. II, the theoret-

ical model based on the KZK-type evolution equation is

described together with a model of the random velocity field.

Section III contains a description of numerical algorithm

used to solve the model equation.

In Sec. IV, the effects of diffraction, nonlinearity, and

randomly inhomogeneous velocity fields on high amplitude

N-wave focusing are presented and the statistics of a number

of wave field parameters is analyzed.

II. THEORETICAL MODEL

A. Evolution equation for nonlinear waves in
inhomogeneous moving medium

A nonlinear evolution equation, which accounts for fluc-

tuations in sound speed, density, and all components of the

velocity of the moving medium, has been derived within the

parabolic approximation in Ref. 18. For this work, we

neglect terms with scalar inhomogeneities, that is, fluctua-

tions of medium density and speed of sound, and the

resulting model equation is

@
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0q0

p
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Here, p is the acoustic pressure, s ¼ t� x=c0 is the retarded

time, x is the propagation coordinate, y and z are the

transverse coordinates, c0 is the ambient sound speed, ux is

the longitudinal component of the flow in the medium,

u? ¼ ðuy; uzÞ is the transverse component of the flow, q0

is the ambient density of the medium, b is the coefficient

of nonlinearity, d is the diffusivity of sound, and r?
¼ ð@=@y; @=@zÞ;D? ¼ r2

?.

Equation (1) is a KZK-type equation, where the first

term accounts for propagation, the second term for nonlinear

distortion, the third for thermoviscous absorption, the fourth

for flow inhomogeneities in the propagation direction, and

the fifth for transverse flow inhomogeneities. The right-hand

side accounts for the effects of diffraction in the parabolic

approximation. The validity of the model is restricted to

smooth velocity inhomogeneities with small Mach numbers

u=c0 � 1, which primarily results in scattering in the

forward direction up to 20� off axis.27

In two-dimensional (2D) Cartesian coordinates and in

dimensionless variables, Eq. (1) can be cast as
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Here V¼ p/p0 is the acoustic pressure normalized by the

pulse amplitude p0, r ¼ x=k is the propagation distance and

q ¼ y=k is the transverse spatial coordinate, both normalized

by the initial pulse length k, and h ¼ 2ps=T0 is the time nor-

malized by the initial duration of the pulse T0 (the initial

pulse length and duration are related by k ¼ c0T0). The

dimensionless nonlinearity parameter is given by N ¼ k=xn,

where xn ¼ T0c3
0q0=2pbp0 is the characteristic distance at

which the amplitude of a plane N-wave decreases by a factor

of
ffiffiffi
2
p

. The dimensionless parameters Ujj ¼ ux=c0 and

U? ¼ uy=c0 are the longitudinal and the transverse compo-

nents of the velocity field, normalized by the sound speed,

and A ¼ 2p2d=ðc0kÞ is the dimensionless absorption

parameter.

A typical value of the dimensionless nonlinearity

parameter for sonic booms in the atmosphere is N ’ 0:0025

(p0 ’ 50 Pa).19,25 As noted in the introduction, this results in

almost linear acoustic wave propagation. However, peak

pressures more than 600 Pa have been measured associated

with focusing of sonic boom waveforms.19,26 Therefore, in

these simulations, three values of N are considered: N¼ 0

which results in linear propagation, N¼ 0.025 corresponding

to p0 ’ 450 Pa, and N¼ 0.05 corresponding to p0 ’ 900 Pa

in order to evaluate nonlinearity beyond the range observed

in sonic booms. The wind velocity in the turbulent

atmosphere during sonic boom experiments was up to 15

m/s (Ref. 19), which results in the dimensionless parameters

for the velocity fluctuations Ujj;? ’ 0:04. The dimensionless

absorption parameter depends on the acoustic wavelength

and for a boom generated by an aircraft of the order of 50

m one obtains the dimensionless absorption parameter

A � 3:6 � 10�8. Note that for realistic modeling of the shock

front in air one needs to account for relaxation processes

which affect absorption and dispersion.28 In this paper the

relaxation effects are not taken into account as the emphasis

is on the effects of random inhomogeneities, nonlinearity,

and diffraction rather than the details of the shock front. By

modeling relaxation processes in air one predicts about a

20-fold increase in attenuation for a wavelength of 50 m,

that is, the effective absorption for sonic boom frequencies

is A � 6 � 10�6. For the simulations employed here, both of

these values of A were too small to ensure a stable solution

with a reasonable size grid and therefore a value of

A ¼ 3:4 � 10�4 was used for the simulations.

B. Geometrical acoustics equations

The geometrical acoustics approach was used to trace

acoustic rays and to determine the positions of caustics along
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ray paths in an inhomogeneous moving medium. The ray

tracing equations were developed from the eikonal equation

for a moving inhomogeneous medium1,7,29 and in the

absence of scalar inhomogeneities they take the form

dxi

dt
¼ c0ki

1� l � u=c0

þ ui;
dki

dt
¼ �kj

@

@ri
uj: (3)

Here the variable t is the travel time of the acoustic pulse

along a given ray, r ¼ ðx; y; zÞ is the location of the ray in

space, k is the nondimensional wave vector, l¼ k/jkj is the

unit vector in the direction of wave vector, and i and j
indicate either the x, y, or z component of the corresponding

vector.

The ray trajectory is completely determined by the

distribution of medium inhomogeneities and by initial condi-

tions given at time t¼ 0. For a plane wave and 2D Cartesian

geometry, the initial conditions can be written as

r0 ¼
0

y0

� �
; k0 ¼

1

1þ ux=c0

1

0

� �
: (4)

The location of caustics was determined by solving the

system of equations for geodesic elements R ¼ ð@r=@y0Þt,
which follow the ray tube section, and by defining positions

of caustics by the condition R¼ 0 (Ref. 30),

dRi
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where Q ¼ ð@k=@y0Þt designates “conjugate” elements.

Appropriate initial conditions for the system of Eq. (5) are
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C. Inhomogeneous velocity field

A model of randomly oriented spatial Fourier modes

was employed here to generate random inhomogeneous

velocity fields.6 This model is valid under the assumption

that the travel time of the acoustic wave through the inhomo-

geneity is much smaller than the characteristic time of the

evolution of the turbulence, i.e., the inhomogeneities are

considered to be “frozen.” The frozen inhomogeneous field

was generated by summation of Jmax random modes,

uðrÞ ¼
XJmax

j¼1

eUðKjÞ � cosðKj � rþ /jÞ; (7)

eUðKjÞ �Kj ¼ 0: (8)

Here Kj is the wave vector, /j is the phase of jth Fourier

mode. The angle hj between Kj and x axis, and phase /j for

each mode was taken from the independent random number

sequences with uniform distributions within the interval

½0; 2p�. Equation (8) is the consequence of velocity field

incompressibility which is justified by the small Mach num-

bers used in modeling. The velocity amplitude of each mode

jeUðKjÞj in Eq. (7) was determined by the kinetic energy

spectrum E(K): jeUðKjÞj ~ffiffiffiffiffiffiffiffiffiffiffi
EðKÞ

p
;K ¼ jKj.

Two different formulations for the turbulence energy

spectrum were considered: Gaussian and modified von

Kármán. Gaussian energy spectrum describes a single-scale

inhomogeneous medium and in 2D geometry is

EðKÞ ¼ 1

8
r2

uK3L4 exp �K2L2

4

� �
; (9)

where r2
u is the variance of medium velocity fluctuations and

L is the characteristic scale of randomly inhomogeneous me-

dium. The modified von Kármán energy spectrum,

EðKÞ ¼ 8r2
u

K3

L
2=3
0 K2 þ 1=L2

0

� �14=6
exp � K2

K2
m

� �
; (10)

describes a multiscale turbulence, including the inertial

interval given by Kolmogorov’s “five thirds” power law, and

therefore, is closer to the spectrum of real atmosphere.31,32

Here L0 and l0 are the outer and inner turbulent scales,

respectively, and Km¼ 5.92/l0 is the Kolmogorov wave

number.

If a sufficiently high number of modes is included in

Eq. (7) and each of the modes is randomly chosen with uni-

form probability distribution of hj and /j, then the resulting

velocity field u(r) is statistically homogeneous, isotropic,

and has an a priori defined energy spectrum.6 In this work,

random velocity fields with the Gaussian spectrum were

modeled using 300 Fourier modes uniformly distributed

between wave numbers 0.01/L and 9.0/L. Velocity fields

with the modified von Kármán spectrum were modeled using

600 Fourier modes (for better discretization of the inertial

zone), logarithmically distributed between Kmin¼ 0.01/L0

and Kmax¼ 4.0/l0. The inhomogeneity outer scale L0 was

chosen the same as the characteristic scale L given by the

Gaussian energy spectrum: L0 ¼ L ¼ 4k. The inner scale

was chosen as l0 ¼ 0:8k. The root mean square value of the

velocity fluctuations for both spectra was ru ¼ 3 m/s, which

resulted in velocity fluctuations of about 15 m/s. Thus, both

the outer length scale of the inhomogeneities and the ampli-

tude of velocity fluctuations were chosen according to exper-

imentally observed meteorological conditions.33,34 The

model of kinematic turbulence presented here does not pre-

tend to fully reproduce the complexity of turbulent boundary

layer, including its anisotropy, stratification, fluctuations in

temperature, and density. However, this model is sufficiently

flexible and most of the listed effects, including turbulence

anisotropy, could be incorporated.9

Shown in Fig. 1 are typical realizations of a random ve-

locity field obtained for both the Gaussian [left column,

Figs. 1(a)–1(c)] and the modified von Kármán [right column,

Figs. 1(d)–1(f)] energy spectra. Patterns of the normalized

longitudinal velocity Ujj ¼ ux=c0 [Figs. 1(a) and 1(d)], the

transverse velocity U? ¼ uy=c0 [Figs. 1(b) and 1(e)], and the
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absolute velocity [Figs. 1(c) and 1(f)] are presented. The ve-

locity fluctuations with the Gaussian energy spectrum have

one characteristic scale and therefore have smooth structures

without small scale inclusions. In comparison, the modified

von Kármán energy spectrum, with its continuum of length

scales, results in much finer structure of the field. Note that

the x component of the random velocity field is elongated

along the x axis and y component along the y axis. This

effect is in agreement with the fact that longitudinal correla-

tion length Lf is always longer than the transverse correlation

length Lg because the fluid particles move more easily in the

direction of local disturbance than transverse to it. For exam-

ple, in fully developed three-dimensional (3D) turbulent field

the corresponding relation is: Lf¼ 2Lg (Ref. 35).

III. NUMERICAL ALGORITHM

A. Boundary condition

An N-wave pulse was taken as the initial waveform for

the simulation as it is similar to the measured sonic booms

as they enter the atmospheric boundary layer.19,36 The pro-

file of the two shocks in the N-wave was modeled as a Tay-

lor shock, which is the stationary solution for a plane shock

wave in a thermoviscous fluid.36,37 In dimensionless form

the initial condition is expressed as

V0 ¼
h

2p
tanh

N

4A
ðh� pÞ

� �
� tanh

N

4A
ðhþ pÞ

� �� �
: (11)

The initial waveform, modeled by Eq. (11), is consistent

with two physical phenomena: nonlinearity and thermovis-

cous absorption. Moreover, the rise time (width) of

smoothed shock is determined by the ratio between dimen-

sionless coefficients of absorption and nonlinearity. If the

rise time is defined as a time corresponding to the change in

pressure on the shock from 5% to 95% of the maximum

pressure, then it approximately equals to 10 A/N. In the limit

of A=N ! 0, the initial waveform, Eq. (11), becomes an

ideal N-wave with the amplitude Vmax
0 ¼ 1:0. Note, that in

the case of linear wave propagation modeling (N¼ 0.0), the

initial condition is taken equivalent to the case of lowest

considered nonlinearity, that is, N¼ 0.025.

Rigid boundary conditions were set in transverse direc-

tion. In order to ensure that reflections from edges of numeri-

cal domain do not perturb the results, the spatial

computational window was taken larger than the analyzed

region. It was assumed, according to the validity limitations

of the parabolic approximation, that maximum diffraction

angle caused by inhomogeneity was less than 20�.27 Thus,

the spatial computational window in the transverse direction

was 400k, while the width of analyzed region was 360k.

B. Numerical method

The nonlinear evolution equation (2) was solved using a

combination of time and frequency domains based on the

operator splitting procedure. The code marches in the propa-

gation distance r and at each grid step the equation is split in

five equations describing different physical effects:

FIG. 1. (Color online) Comparison of ran-

dom velocity field distributions with Gaus-

sian (a)–(c) and modified von Kármán (d)–

(f) energy spectra. (a) and (d) are longitudi-

nal components of normalized medium

velocity fluctuations, (b) and (e) are normal-

ized transverse components, (c) and (f) are

absolute values of normalized velocity fluc-

tuations. The color bars show range of the

data: velocity data has both negative and

positive values and the absolute values are

only positive.
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@V
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The diffraction term, Eq. (12), was solved using a Crank–

Nicholson finite difference (CNFD) algorithm.38 The nonli-

nearity term, Eq. (13), is commonly solved using the

exact implicit Poisson solution V ¼ Vðhþ NVrÞ.38,39 This

method includes linear interpolation from a nonuniform time

grid back onto a uniform time grid which reduces the accu-

racy of the algorithm and also introduces numerical dissipa-

tion that accumulates with distance. It was shown recently

that it was necessary to have about 50 grid points per shock

to obtain a solution with adequate accuracy (about 3%

error).40 A very high number of grid points per pulse is

therefore required in simulations as the rise time is typically

very small in comparison with the pulse length. Initial rise

time in model experiments of Ollivier and Blanc-Benon22

and Lipkens and Blackstock21 is estimated using quasi sta-

tionary solution to the Burgers equation (11) as 0.4% of the

wave duration (pulse length). Taking into account total

absorption (due to thermoviscous absorption and relaxation),

the typical rise time value in sonic boom experiments is esti-

mated as 1% of the wave duration, while in random foci it

could be as little as 0.15% of the wave duration.19 A require-

ment of 50 points per shock would require more than 10 000

grid points to model laboratory experiments and more than

30 000 grid points to model sonic booms. This result in very

high memory requirements, especially in the case of 3D

calculations.

In this paper, a six point explicit conservative Godunov-

type algorithm of the second order of accuracy in time and

first order of accuracy in propagation distance was used to

model nonlinear effects.41 This algorithm possesses good

stability and good accuracy in capturing the propagation of

thin shock fronts. Even with 3 temporal grid points per shock

the numerical error in estimation of acoustic pulse parame-

ters does not exceed 0.2%.40

At the third step, the convection in the direction of wave

propagation Eq. (15) was taken into account using the exact

solution for complex amplitudes Cn in the frequency

domain: Vðr; q; hÞ ¼
P

Cnðr; qÞexpð�inhÞ, Cnðrþ hr; qÞ
¼ Cnðr; qÞ expð�i2pnUjjhrÞ. Here n is the harmonic number

and hr is the grid step in propagation direction. Despite the

application of forward and inverse Fourier transforms, the

exact solution in the frequency domain was deemed prefera-

ble here comparing to the finite difference solution in the

time domain. The frequency domain approach gave better

accuracy for comparable computational time: a numerical

error in the solution with three time grid points per shock was

less than 1%, which was better than the accuracy achieved

using the Lax–Wendroff scheme.40,42 Moreover, this method

also allows simple implementation of the exact solution for

an arbitrary frequency dependent absorption and dispersion.

The thermoviscous absorption term here was solved as

Cnðrþ hrÞ ¼ CnðrÞ expð�An2hrÞ.
Finally, at the last computational step, the convection in

the direction transverse to the direction of the wave propaga-

tion Eq. (16) was taken into account. As the acoustic pres-

sure field does not have emphasized shocks in the transverse

direction, the transport equation was solved numerically

using the Lax–Wendroff explicit algorithm of the second

order accuracy in both spatial directions.42

The spatial grid steps in simulations were hr ¼ 2:5 � 10�2

and hq ¼ 2:0 � 10�2 in longitudinal and transverse directions,

respectively. The number of time grid points was n¼ 1024 per

N-wave. The temporal window was padded with 2n points

before and 4n points after the N-wave. The absorption was

taken to be A ¼ 3:4 � 10�4, however, this absorption was not

sufficient to model fine structure of thin shocks in caustics

which was controlled by the Godunov algorithm. The accu-

racy of simulations was tested by comparing numerical solu-

tions calculated with different steps. The reduction of the grid

steps by half resulted in less than 3% difference between the

wave parameters for the two solutions.

IV. RESULTS AND DISCUSSION

A. Diffraction effects

Figure 2(a) shows the distribution of acoustic rays cal-

culated using Eq. (3) for the realization of a turbulent atmos-

phere with a Gaussian energy spectrum [Figs. 1(a)–1(c)].

The figure illustrates that the random inhomogeneities result

in multiple regions of acoustic ray concentration, where a

corresponding local increase in pressure is expected. Propa-

gation of an initially plane N-wave through the same random

medium was also modeled using Eq. (2). Figure 2(b) shows

the spatial distribution of the normalized peak positive pres-

sure pþ/p0 obtained in the simulations (N¼ 0.05). The peak

positive pressure pþ is defined as the maximum value of the

pressure in an acoustic waveform. Overlaid are the isoveloc-

ity contour lines for the turbulent fluctuations. It can be seen

that regions of peak positive pressure always follow regions

where the effective sound speed c0þ ux (gray contour lines)

is low. This random focusing occurs because the regions of

low sound speed act as focusing lenses distorting the phase

front of the wave.43 The peak positive pressure of the

N-wave in the random foci is more than three times higher

than the amplitude of the incident N-wave; however, the

amplification is generally limited to propagation distances

x=k < 60. This limitation is in contrast with the results

obtained for harmonic wave propagation where focusing

regions occurred over all propagation distances.18 The peri-

odic nature of harmonic waves means that large differences

in travel time cannot prevent constructive interference.

However, for single pulses propagating in an inhomogeneous

medium, the increasing difference in the path lengths results
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in the loss of coherence. For the N-wave propagation mod-

eled here, the occurrence of high pressures far from the

source is a rare event, but some relatively high pressure

focusing zones are still observed even at long distances

[see e.g., Fig. 2(b), x=k ¼ 100].

Shown in Fig. 2(c) is an expanded view of the focal

region denoted by the black rectangle in Fig. 2(b). Overlaid

on the peak positive pressure pattern are the ray paths (gray

curves) and locations of first caustics (gray circles) and sec-

ond caustics (black circles) obtained from Eq. (5). For the

first caustics, the regions of ray concentration are in qualita-

tive agreement with the high pressure levels simulated using

the KZK model. However, the positions of caustics obtained

in geometrical acoustics approximation, which is a high fre-

quency limit, do not coincide with positions of maximum

values of acoustic pressure. Moreover, some caustics occur

in regions where the peak pressure is small. For second

(and higher order) caustics, even less correlation between

locations of the caustics and high pressures is observed. In

addition, some focusing zones observed in the peak pressure

patterns are not predicted by geometrical acoustics as they

are primarily formed by the waves diffracted from the first

order caustics [Fig. 2(c), x=k � 50]. Diffraction effects

therefore play an important role in predicting N-wave focus-

ing through atmospheric turbulence, especially at distances

beyond first caustics.

Figure 3 shows pressure waveforms obtained in simula-

tions for the initial N-wave at various distances along the

line y=k ¼ 212 that goes through the region of the highest

peak pressure. The rounded waveform produced at x=k ¼ 40

is a result of defocusing; these waveforms are typical for the

lower pressure regions. At x=k ¼ 51 the waveform has two

distinct shock fronts, presumably because there are two

bundles of rays that cross over at this location with slightly

different travel times. The waveform at the location of the

highest pressure (x=k ¼ 55) has a U-shape; this is consistent

with the waveforms observed in the field and laboratory

measurements, as well as with theoretical predictions of a

waveform in a focus.19,21,22,44,45 Steeper shock fronts are

observed in the focusing zones due to higher amplitudes and

therefore stronger nonlinear effects. However, nonlinear

FIG. 2. (Color online) (a) acoustic ray distribution in the inhomogeneous

moving medium with Gaussian energy spectrum [Figs. 1(a)–1(c)], (b) corre-

sponding acoustic field pattern (normalized peak positive pressure pþ/p0,

N¼ 0.05) with overlaid turbulence levels: black (ux/c0¼ 0.009) and gray

(ux/c0¼ – 0.009), (c) expanded view of the peak positive pressure pattern

with overlaid ray paths and caustic locations (gray points—first caustics,

black points—second caustics). Area of expansion is marked with black

rectangle in (b).

FIG. 3. Typical waveforms, simulated at various locations along the line

y=k ¼ 212 including the source location x=k ¼ 0 and a caustic x=k ¼ 55.

N¼ 0.05.
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distortion of the wave (shocked structure) is also observed in

regions of low level pressure due to scattering of high

frequencies by the turbulence. At longer distance, x=k ¼ 83,

the waveform is stretched over a long time frame primarily

due to the large variety in travel paths through the medium.

As the pulse spreads in time it becomes more unlikely for

the medium to effectively refocus the wave and produce

high pressures at longer distances. Increasing difference in

the path lengths also results in thickening of the shock front

(x=k ¼ 115).

B. Nonlinear effects

The effects of acoustic nonlinearity were considered by

comparing numerical solutions for linear (N¼ 0) and nonlin-

ear (N¼ 0.025 and N¼ 0.05) wave propagation. Figure 4(a)

shows the peak pressure as a function of propagation dis-

tance along the line y=k ¼ 212, the same line as for the

waveforms shown in Fig. 3. An initial decay of the peak

pressure while propagating in the defocusing region is

observed for all three cases: linear and nonlinear propaga-

tion. However, in the vicinity of the caustic nonlinear effects

result in more effective focusing with the highest 60%

increase of the gain in pressure for N¼ 0.05 in comparison

with the linear one. The locations of the pressure maxima for

nonlinear waves are shifted a few wavelengths in the

longitudinal direction due to a combination of nonlinear

defocusing and nonlinear dissipation effects. For N¼ 0.025

nonlinear defocusing is dominant and the focus shifts the

furthest at x=k ¼ 56:1. For stronger nonlinearity (N¼ 0.05),

dissipation at the shock front results in a slight shift of

the focus (x=k ¼ 55:3) back toward the linear peak

(x=k ¼ 53:7). The focal spot becomes shorter in the axial

direction for stronger nonlinearity which is consistent with

tighter focusing of signals containing steeper shocks, i.e.

higher frequencies.

Figure 4(b) shows the peak positive pressure as a func-

tion of the transverse coordinate at x=k ¼ 55. Simulations

with higher nonlinearity yield narrower focal spots (half am-

plitude width is k for N¼ 0.05, 2k for N¼ 0.025, and 3k for

the linear case), which is also consistent with better focusing

of high frequency components generated due to nonlinear

propagation. The shift of the peak pressure in the transverse

direction is negligible as nonlinear refraction and dissipation

effects act in the propagation direction, which remain pri-

marily along the x axis.

The evolution of the maximum value of peak positive

pressure pmax as a function of propagation distance is shown

in Fig. 4(c). Here, pmax is defined as the maximum value of

pþ from all waveforms in the transverse direction between

y=k ¼ 20 and y=k ¼ 380. The linear and nonlinear propaga-

tion curves are very similar up to distances of x=k ¼ 20.

Beyond this range, the maximum peak pressure is almost

always higher for nonlinear propagation, i.e., nonlinearity

enhances focusing. However, the dependence of focusing

efficiency on nonlinearity parameter is not monotonic. Initial

increase of nonlinearity from N¼ 0 results in higher pressure

focusing gain. At some “critical” point the growth of focal

gain with nonlinearity switches to the decay, as nonlinear

dissipation at the shock front and nonlinear refraction

become dominant over focusing effects. Strong nonlinearity

(N¼ 0.05) results in lower level of maximum pressure than

moderate nonlinearity (N¼ 0.025) at most distances.

In general, nonlinearity will enhance focusing of an

acoustic wave in randomly inhomogeneous medium only if

the characteristic nonlinear distance xn is shorter than the

distance of the first caustic formation: xcaust. In other words,

if the peak pressure decrease due to nonlinear dissipation is

excessive before a caustic forms, then the ability of

FIG. 4. (Color online) Peak positive pressure distribution along (a) the hori-

zontal line y=k ¼ 212, (b) the vertical line x=k ¼ 55; (c) maximum value of

peak positive pressure, pmax, calculated from all waveforms in the lateral

direction along the horizontal axis. Data are shown for N¼ 0 (solid curve),

N¼ 0.025 (dotted curve) and N¼ 0.05 (dashed curve).
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nonlinearity to enhance focusing is diminished. The distance

where the probability density of the occurrence of first

caustic has a maximum can be determined in geometrical

acoustics approximation, from the root mean square velocity

of fluctuations ru, and the characteristic scale L of the inho-

mogeneities.6 For the random medium considered here,

xcaust ¼ 0:28L c0=ruð Þ2=3: (17)

According to Eq. (17) for N¼ 0.025 the nonlinear distance

xn=k ¼ 40 is longer than the caustic formation distance

xcaust=k ¼ 26 (xn > xcaust) and thus nonlinearity enhances fo-

cusing in the caustics. For N¼ 0.05 the nonlinear distance is

xn=k ¼ 20 which is less than the distance to the first caustics

(xn < xcaust) and therefore nonlinear dissipation suppresses

nonlinear enhancement observed for N¼ 0.025. However,

this rule is valid only on average; there is still a chance to

observe better focusing for strong nonlinearities. For exam-

ple, the local pressure maximum formed due to constructive

interference of the two bundles of rays [Fig. 2(c)] at the dis-

tance x=k ¼ 55 is higher for N¼ 0.05 than for N¼ 0.025.

Another phenomenon that can be observed is that the

positions of the peak pressure maxima in Fig. 4(c) vary with

the different values of N for distances beyond the caustic

formation distance. This indicates that peak pressures are

sensitive to interplay between nonlinearity, diffraction, and

inhomogeneities.

The effect of nonlinearity on waveform distortion is

shown in Fig. 5, where waveforms simulated at different

points of the acoustic field are presented.

In the focal point [Fig. 5(a)] the N-wave transforms into

a classical U-shaped waveform, which occurs because focus-

ing manifests itself as a differentiation. As a result of the dif-

ferentiation, the peak amplitude of the U-wave increases for

N-waves with thinner shock fronts. The peak positive pres-

sure of the U-wave in the nonlinear case (N ¼ 0.05) is more

than 60% higher than its value in the linear case as nonli-

nearity results in steepening of the shock front, which in

nonlinear case is more than 30 times steeper than in the lin-

ear one. However, in regions of low pressure, the amplitude

of nonlinear wave may be lower than that of the linear one

[Figs. 5(c) and 5(d)] due to nonlinear dissipation. Because of

scattering of higher harmonics by caustics, steep shocks are

observed even in shadow zones where pressure amplitude is

low [Fig. 5(c)]. At longer propagation distances both linear

and nonlinear waveforms have very long tails as inhomoge-

neities introduce multiple paths with different times of flight.

In some cases, due to superposition of diffracted waves, it is

possible for the pressure in the tail to exceed the pressure

of the main wave and to form a relatively thin shock

[Fig. 5(d)]. Generally, the tail of the wave is longer outside

focusing regions than for U-waves inside them. For all wave-

forms, nonlinear effects result in steepening of the shock

front and lengthening of the pulse duration. However, in

spite of nonlinear steepening, waveforms in shadow zones

have thicker shock fronts than the initial waveform, appa-

rently due to the influence of inhomogeneities.

C. Effect of random inhomogeneities on N-wave
statistics

The statistics of N-waves were calculated by analyzing

waveforms from a single very large realization. The ergodic-

ity hypothesis was invoked so that calculating statistics

across the simulations was equivalent to doing calculations

of many realizations. The ergodic property was checked by

changing the width of the simulation from 50 L0 to 100 L0

and confirming that the mean parameter values did not

change. Figure 6 shows the evolution of N-wave metrics

with propagation distance. Shown in the left column are

mean peak positive pressure h pþ=p0i(a), mean rise time

hhshi(c), and mean arrival time shift hDhi(e). The shift in ar-

rival time was defined as a difference between time-of-flight

for a simulation in a turbulent atmosphere and the time-of-

flight for the case of linear propagation in a still medium.

The time-of-flight of the pulse was calculated at the 10%

level of the maximum pulse pressure. The right column

shows the corresponding standard deviations. Data are

shown for both linear (N¼ 0) and nonlinear (N¼ 0.05) prop-

agation in the turbulent (dashed curves) and still (solid

curves) media.

In the turbulent medium, up to x=k ’ 15, the mean

wave characteristics behave as if there was no turbulence at

all. The mean peak pressure decreases more rapidly for the

nonlinear case due to nonlinear dissipation [Fig. 6(a)]. For

both linear and nonlinear propagation, the difference in

mean peak pressure in still and turbulent media becomes no-

table for x=k > 15 and achieves its local maximum approxi-

mately at the location of the first order caustic formation

ðx=kÞcaust ¼ 26.

A gradual decay of the mean peak pressure with dis-

tance follows the geometry of acoustic field in the turbulent

medium. The field consists of localized focusing regions

with high pressure and larger defocusing regions with lower

pressure. The probability to observe low pressures is there-

fore higher and as a result the mean peak pressure dimin-

ishes. The standard deviation of the peak pressure [Fig. 6(b)]

FIG. 5. (Color online) Typical linear (N ¼ 0) and nonlinear (N ¼ 0.05)

waveforms simulated at different points of the acoustic pressure pattern

including (a) focal zones and (b)–(d) shadow areas.
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increases almost linearly up to the distance of the first caus-

tic formation and then decreases slowly. This monotonic

decrease is due to the fact that effective refocusing of the

pulse at long distances is a rare phenomenon and peak

pressures observed in random foci are smaller than at the

distance of first caustics.

The mean rise time and its standard deviation, Figs. 6(c)

and 6(d), increase monotonically with propagation distance for

all cases. For distances x > xcaust the presence of turbulence

results in a longer mean rise time than in the still medium

because multiple arrivals of the scattered waves affect the co-

herence needed for a short rise time. A greater increase in the

rise time is observed in the linear case because when nonlinear-

ity is present it steepens the waveform and prevents the shock

rise time from increasing too much. However, on average, non-

linearity cannot compensate completely for the effects of turbu-

lence. The standard deviation of the rise time in nonlinear

turbulent medium is of the same order as its mean value, thus

some of the waveforms have a rise time less than the initial one.

As shown in Fig. 6(e), the presence of inhomogeneities

results, on average, in a faster arrival time of the pulse. This is

consistent with the principle of least action or the Fermat prin-

ciple in application to acoustics: the wave path minimizes

travel time of the wave. For example, linear geometrical acous-

tics gives faster arrivals only when second order effects – ray

bending are taken into account.46 The analytical solution for

hDhi at second order in a 2D Cartesian random field with

Gaussian energy spectrum is hDhi ¼ �p3=2r2ðru=c0Þ2=L,

i.e., the mean arrival time decreases quadratically with

propagation distance [Fig. 6(e), dashed–dotted line]. In con-

trast, the diffraction model employed here accounts for the first

order effect and yields almost linear decrease of the mean ar-

rival time. Such behavior of arrival time was also observed in

analytical solutions obtained from the parabolic equation using

the Rytov approximation.47 Nonlinear lengthening of the pulse

results in even earlier arrivals. However, the difference in

arrival time in still and turbulent media is greater for the linear

propagation. For example, at the distance x=k ¼ 120 the differ-

ence hDhilin � hDhiturb
lin ¼ �1:7 for the linear case and

hDhinl � hDhiturb
nl ¼ �0:9 for the nonlinear case. Nonlinearity

thus decreases the effect of turbulence on arrival time here by a

factor of two. This shows the significance of nonlinear and dif-

fraction effects on arrival time.

Probability density distributions of the peak positive pres-

sure in a nonlinear (N¼ 0.05) turbulent medium are presented

in Fig. 7(a) at different propagation distances. All distributions

are scaled between the minimum and maximum observed

values of the peak pressure. It can be seen that initially nar-

row probability distribution becomes wider with propagation

distance. The maximum of the distribution translates to lower

pressures that are always smaller than the corresponding

mean value. The high pressure tail in the distribution exceeds

by three-fold the value of the initial peak pressure. Although

the distribution itself shifts to lower peak pressure, a few

occurrences of high amplitude N-waves still exist. For exam-

ple, at the distance x=k ¼ 60 the probability of a normalized

pressure amplitude greater than 1.5 is 1.3% and the pressure

more than doubles with a probability of 0.2%.

FIG. 6. Evolution of N-wave metrics with propaga-

tion distance in turbulent (dashed) and still (solid)

media for linear N¼ 0 and nonlinear N¼ 0.05

regimes. The left column displays (a) mean peak

positive pressure, (c) mean rise time, and (e) mean

arrival time shift. The right column shows the cor-

responding standard deviations. The dashed–dotted

line shows the second order approximation for the

mean arrival time obtained within the geometrical

acoustics model.
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Figures 7(b)–7(d) show the first four moments of the

peak positive pressure distribution along the propagation

coordinate: mean value, standard deviation, skewness, and

excess factor. The skewness is a measure of the asymmetry

of a given distribution as compared to the Gaussian one. If it

is positive, the right-hand side of the distribution contains

more values than its left-hand side. The excess factor gives a

relative measure of “peakedness” of the distribution. A high

excess value means that more of the variance is due to the

infrequent extreme deviations, as opposed to the frequent

modestly sized deviations. Standard deviation, skewness,

and excess factors should increase at the distances where the

wave is most probable to focus. At these distances the distri-

bution of the peak pressure becomes asymmetric showing

occurrence of infrequent extreme fluctuations. Indeed, all the

factors, except the mean value, grow rapidly from zero to

some characteristic value attained at the distance where geo-

metrical acoustics predicts formation of the first caustics:

vertical lines in Fig. 7 as given by Eq. (17). Up to the first

caustics the propagation is well described by the geometrical

acoustics. In contrast to the high order factors, the mean

peak positive pressure is not significantly affected by the

occurrence of the first and higher order caustics [Fig. 7(b)].

At longer distances the standard deviation saturates, but the

skewness and excess factor are subjected to a strong change

as the wave propagates through the randomly inhomogene-

ous medium. The strongest fluctuations correspond to the

most intense focusing of the wave. For example, both the

skewness and the excess factor peak at the distance x=k¼ 60

corresponding to the focusing coefficient pþ/p0¼ 3.2. The

peaks are also situated at the distance x=k¼ 105 from the

source where the second order caustics occur—the black

dots shown in Fig. 2.

Figure 8(a) shows the probability density distributions

of the rise time calculated at different distances. The maxi-

mum of the distribution moves toward higher values with

the propagation distance. This is consistent with the corre-

sponding shift to the lower pressures in the distribution of

the mean peak positive pressure [Fig. 7(a)] as the rise time

for lower amplitude shocks in nonlinear medium is longer.

Nevertheless, very short rise times are also observed. For

example, in the focusing region x=k ¼ 60 the probability of

a decrease in rise time comparing to its initial value is 3.4%.

The minimum rise time observed is hsh ¼ 0:022, which is

almost three times smaller than the initial one.

The probability density distributions for the arrival time

[Fig. 8(b)] show that both the maximum of the distribution

and the mean value shift to earlier time and that this shifts

increase with propagation distance in a similar manner.

Earlier arrivals up to Dh ¼ �5:25, more than 3/4 of the

initial N-wave duration, are predicted. The distribution also

becomes wider with the distance.

D. Effect of turbulence model

The propagation of N-waves in a single-scale inhomoge-

neous medium with a Gaussian energy spectrum was studied

in the previous sections. Here we consider a more realistic

turbulent field which is a multiscale randomly inhomogene-

ous moving medium with a modified von Kármán spectrum.

Figure 9(a) shows the distribution of the peak pressure of the

initial N-wave propagating through the turbulent field given

in Figs. 1(d)–1(f). Overlaid are contour levels of the

FIG. 8. (Color online) Normalized probability density distributions at dif-

ferent distances from the source for nonlinear propagation (N¼ 0.05) in a

turbulent atmosphere. (a) Shock front rise time (bin width 0.016), (b) ar-

rival time shift (bin width 0.09). The vertical dotted line denotes the

mean value.

FIG. 7. (Color online) (a) Normalized probability density distributions of

the peak positive pressure at different distances from the source for non-

linear (N¼ 0.05) propagation in a turbulent atmosphere. The bin width

is 0.038 and the vertical dotted line denotes the mean value. Distribu-

tion parameters versus propagation distance are shown in the right col-

umn: (b) mean peak positive pressure and its standard deviation, (c)

skewness, (d) excess factor. The vertical dotted line indicates the dis-

tance of the first caustic formation obtained in the geometrical acoustics

approximation.
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longitudinal component of the random velocity field. Multi-

ple focusing and defocusing zones of the acoustic wave are

observed similar to the turbulence with Gaussian spectrum.

Focusing zones follow areas of low effective sound speed

and defocusing zones follow areas of high effective sound

speed. However, as expected, the structure of the acoustic

field is more complex and has fine structure due to the

presence of small scale velocity fluctuations.31 Moreover,

multiscale inhomogeneities result in occurrence of the first

focusing zones at shorter distances.6

The effect of the modified von Kármán spectrum on

the statistics of the peak positive pressure and arrival time

of the acoustic wave was found to be both qualitatively

and quantitatively analogous to that given by the Gaussian

spectrum. The most significant difference was obtained for

the rise time of the wave. Figure 9(b) shows the mean rise

time and its standard deviation along the propagation coor-

dinate for a modified von Kármán spectrum (dotted

curves), Gaussian spectrum (dashed curves), and still me-

dium (solid curve). The increase in the rise time in the

still medium is due to the combined effect of nonlinear

dissipation (N¼ 0.05) at the shock and thermoviscous

absorption, both decreasing the pressure and increasing the

rise time. When comparing the two random fields it can

be seen that the modified von Kármán spectrum results in

a longer shock rise time and a higher standard deviations

than the Gaussian spectrum. This suggests that the shock

front rise time is most sensitive to small scale inhomoge-

neities in the turbulent field.

E. Effect of the transverse velocity component

The KZK-type Eq. (2) contains a term, which

accounts for the transverse component of the velocity

field. To estimate the effect of this component of vectorial

fluctuations on the acoustic field, two types of computation

were performed: one which accounted for both longitudi-

nal and transverse fluctuations and the other that

accounted only for the longitudinal component. The simu-

lations were performed for the random velocity field with

the modified von Kármán energy spectrum and the results

for the peak positive pressure along both the propagation

axis and the lateral axis are shown in Fig. 10. Very little

difference is seen between the curves in either axis. The

presence of lateral velocity fluctuations results in slight

transverse shifting of the focal regions and small changes

in focusing efficiency. The shifts in foci locations do not

exceed half a wavelength and the change in peak pressure

in focusing zones is less than 3%. The results suggest that

the acoustic field is insensitive to lateral velocity fluctua-

tions for the turbulence model considered here. This is in

agreement with the fact that in Eq. (1) the term which

accounts for the transverse velocity fluctuations is smaller

than the term which accounts for longitudinal velocity

fluctuations.1,18 However, for large scale fluctuations or

lateral fluctuating flow, the effect can be significant.18

FIG. 10. (Color online) Distribu-

tions of the peak positive pressure

calculated with or without account

for the transverse component of the

random velocity field with the modi-

fied von Kármán spectrum. (a) The

maximum value as a function of

propagation distance where the max-

imum value at each distance x was

determined from all waveforms in

the lateral (y) axis and (b) the maxi-

mum value as a function of lateral

distance based on all waveforms in

the propagation (x) axis.

FIG. 9. (Color online) (a) Peak positive pressure distribution (N¼ 0.05) in a

randomly inhomogeneous field with a modified von Kármán energy

spectrum [Figs. 1(d)–1(f)]. Levels of turbulence intensity are marked with

black (ux/c0¼ 0.009) and gray (ux/c0¼ – 0.009) contours. (b) The mean rise

time and standard deviation along the propagation coordinate in a random

medium with Gaussian (dashed) and modified von Kármán (dotted) energy

spectra. Solid curve—mean rise time in a still medium.
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V. CONCLUSION

A generalized KZK-type evolution equation in 2D

Cartesian geometry was applied to study the propagation of

high amplitude acoustic pulses in randomly inhomogeneous

media. The model of random Fourier modes was used to

generate single and multiscale turbulent velocity fields with

Gaussian and modified von Kármán energy spectra. The

advance made here is that the nonlinear propagation of

N-waves in a turbulent medium was studied with account for

both longitudinal and lateral components of the flow. The

influence of random focusing of N-waves on the statistics of

the peak positive pressure, shock rise time, and arrival times

of the waves was investigated.

Nonlinear N-wave propagation in a random moving

media was modeled using a split-step marching algorithm.

The numerical procedure for each physical term was opti-

mized to provide a good accuracy and reasonable computa-

tional time. In particular, a Godunov scheme for the

nonlinear term was employed that gave better resolution of

the shock front and resulted in less computational time in

comparison with the exact implicit solution of the widely

used Texas algorithm.38 Calculation of the term governing

longitudinal inhomogeneities based on the exact solution in

the frequency domain also provided much better accuracy

with negligible increase in computation time as compared

with the direct finite difference time-domain modeling.

Results of simulations showed the importance of dif-

fraction phenomena to capture the effects induced by the

atmospheric turbulence. Qualitative and quantitative differ-

ences with results obtained using geometrical acoustics

approximation were demonstrated for locations of focusing

regions, especially at distances beyond formation of the first

caustics x > xcaust.

The simulated waveforms were consistent with those

measured for sonic boom propagation through the atmos-

pheric boundary layer. For example, the U-shaped wave-

forms with high amplitudes and short rise times that occur

because of local focusing by turbulence inhomogeneities and

increase the perceived annoyance of the boom were pre-

dicted in focal regions. Note, that shocks were obtained even

in regions of low pressure due to scattering of high harmon-

ics on caustics. It was shown that acoustic nonlinearity

enhances local focusing effects, increasing the peak pressure

(up to 60%) and decreasing the rise time (more than 30 times

in random foci). With further increase of nonlinearity strong

nonlinear dissipation suppressed waveforms before the foci

and the peak pressure increase was reduced but was still

greater than in the linear case. Nonlinear refraction shifted

foci locations further from the source.

Statistical analysis of nonlinear (N¼ 0.05) acoustic field

showed that at distances x > xcaust the presence of the turbu-

lence resulted in changes to the pressure (up to five times

increase in the peak values but a 6% decrease in the mean),

to the rise time of the shock front (twofold increase of the

mean), and to the average time-of-flight (faster average

arrival on about 15% of the initial pulse duration) as com-

pared to those parameters calculated in a motionless me-

dium. Nonlinear effects were shown to decrease the effect of

random inhomogeneities on the mean characteristics of the

N-wave but were not sufficient for complete compensation.

Note, that the first order effects of random inhomogeneities

on the mean arrival time were captured by the model, while

geometrical acoustics gave only the second order effects.

The choice of the turbulence model had a small impact

on the predictions of mean peak positive pressure and arrival

time. These parameters were mainly determined by large

scale inhomogeneities. In contrast, mean rise time was

equally affected by both large and small scales of turbulent

fluctuations.

The presence of a transverse flow was also negligible

for the turbulence model used here. The structure of the

acoustic field in turbulent flow was determined by its longi-

tudinal component. However the effect of transverse flow

becomes more pronounced with increase of the inhomogene-

ity scale, especially for uniform transverse flows.18 This sug-

gests that transverse fluctuations of random velocity fields

should be accounted for in models that wish to correctly

predict peak and mean characteristics of the acoustic field.

Finally, the simulation code developed here has the

potential to assess the impact of atmospheric turbulence on

sonic boom propagation in order to determine the effect and

the frequency of highly disturbing events. It could also be

employed to investigate jet-noise and other high amplitude

sound in the atmosphere.
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31K. Wert, P. Blanc-Benon, and D. Juvé, “Effect of turbulence scale resolu-

tion on numerical simulation of atmospheric sound propagation,” in Pro-
ceedings of 4th AIAA/CEAS Aeroacoustics Conference, AIAA1998-2245

Toulouse, paper (1998).
32D.K. Wilson, “A turbulence spectral model for sound propagation in the

atmosphere that incorporates shear and buoyancy forcings,” J. Acoust.

Soc. Am. 108, 2021–2038 (2000).
33R. Frehlich, Y. Meillier, M.L. Jensen, B. Balsley, and R. Sharman,

“Measurements of boundary layer profiles in an urban environment,” J.

Appl. Meteorol. Climatol. 45, 821–837 (2006).
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