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Abstract. — This study deals with the numerical determination of subsonic and supersonic jet mixing noise. An
analytic expression for the acoustic intensity can be deduced from Lighthill’s analogy (1952, 1954). Ribner (1969)
proposed a modeling of the Lighthill stress tensor for an isotropic turbulence description, and Goldstein & Rosenbaum
(1973) have developed a similar approach for an axisymmetric turbulence description. In these models, some variables
remain unknown and are usually expressed by using empirical or dimensional considerations. Instead of following this
approach, we locally deduce these quantities from aerodynamic results, which are the mean velocity, the turbulent
kinetic energy k and the dissipation rate €. Aerodynamic computations are performed by using a k& — € turbulent
code, modified for compressible free shear flows. Thus, intensity, spectrum and power of the radiated acoustic field
are numerically calculated for subsonic and supersonic free jets (0.56 < M < 2.0). The comparison between these
numerical results and experimental data shows the predictive capability of the two models, except when refraction

effects are not negligible.

Pacs numbers: 43.28Ra.

1. Introduction

Lighthill’s theory (1952, 1954) formulated from the fun-
damental equations of motion uses an analogy to calculate
the acoustic radiation from a limited volume of turbulent
fluid embedded in an infinite homogeneous medium at
rest. The acoustic fluctuations generated by the turbulent
flow are equivalent to the acoustic fluctuations generated
by a quadrupole distribution of strengh T;; in a fictitious
homogeneous domain at rest. The T}; tensor is stochastic
and can normally be defined only in a statistical sense.
However, the governing wave equation is so simple that
the mean square sound pressure field can be expressed
in terms of a double integral of the two point space-time
correlations of T;; (Crighton, 1975; Goldstein, 1976).

Using assumed correlations in an approximate form of
T;j, Proudman (1952), Ribner (1964, 1969), Pao & Low-
son (1970), Goldstein & Rosenbaum (1973) proposed ex-
plicit formulations for turbulence generated aerodynamic
noise. The models defined in these studies require statis-
tical informations about the turbulence. These quantities
are usually obtained by means of empirical or dimensional
considerations.

Over the years different methods have been devised
to directly include the flow effects on the radiated noise.
In the development due to Phillips (1960), the Lighthill
equation is replaced by an inhomogeneous wave equation
for a moving medium with the mean flow effects appear-
ing in the wave operator rather than in the T;; source
term. However, the formulation devised by Phillips does
not exhibit an exact wave operator in a moving medium
as pointed out by Lilley (1972) and Doak (1972). From
Phillips’equation, Lilley deduced a third order wave equa-
tion to further separate propagation terms and source
terms. Much work has been expended in order to solve
Lilley’s equation for uniform and non uniform mean flows.
Many of these studies deal with the propagation of acous-
tic waves due to monopolar or quadrupolar source terms.
The analytical solutions derived are rather sophisticated
and lack generality. The sound generation models are
also rather specialized. Being analytically and numeri-
cally much more difficult to apply than the Lighthill based
formalisms, the added labor has not yet paid off in predic-
tive capability. However the work done on this problem
has enhanced the current understanding of aerodynamic
noise generation and propagation.
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In general the technical literature dealing with jet
noise is quite extensive and one can find detailed inves-
tigations of the physics of sound generation in turbulent
shear flows. Many studies deal with the mechanisms of
noise generation, the influence of the organized structure
of turbulence, the propagation of the sound waves from
the noise sources through the jet flow. The number of
studies which consider the computation of the sound ra-
diated from the basic aerodynamic field is much smaller.
The new possibilities offered by modern computational
fluid dynamics have not been extensively used for noise
estimation. This aspect is adressed in the preset article.

For this, we will use a method for aerodynamic noise
estimation based on the studies of Ribner (1969), and
Goldstein & Rosenbaum (1973) and proposed in Béchara
(1992) and Béchara et al. (1992, 1993). In the present
article we generalize this approach to subsonic and su-
personic jet flows. The key idea is to use Reynolds av-
erage Navier-Stokes computations based on a modified
k — € model for compressible free shear flows in order
to deduce statistical informations about the turbulence
from local aerodynamic computations and then use these
informations to evaluate the aerodynamic noise sources.
We will specifically consider cold free jets exhausting from
a circular nozzle into an atmosphere at rest. We assume
that for supersonic Mach numbers, the jet is adapted (i.e.
that it does not contain shocks). A brief presentation of
Lighthill’s theory is given in Section 2. In Sections 3 and
4, the noise generation models due to Ribner and Gold-
stein et al. are reviewed. Aerodynamic results for subsonic
and supersonic cold round free jets are described in Sec-
tion 5. Finally, comparison between acoustical results and
experimental data is carried out in Section 6.

2. Lighthill’s theory

From the fundamental equations of motion, Lighthill
(1952, 1954) has shown that the density fluctuations ob-
served at a point x in the far field, and generated by a
limited volume V of turbulent fluid (see Figure 1), are
‘given by:

1 a:iz]-
(P - po) (X, t) 471'04
|x—y|
/ 6t2 1.]( y,t— Co dy(l)
with

Ty = puiuj + ((p—po) — €2 (p— o)) 6i5 — Ti5  (2)

where T;; is the instantaneous Lighthill’s stress tensor.
The source term T;; can be replaced by the instantaneous
Reynolds tensor pu,uj, for high Reynolds number flows
without entropy fluctuations. Furthermore, the density in
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Figure 1. Geometry of sound source radiation.

the source term is approximated by p, if the Mach num-
ber is not too large, i.e. M < 2. With these assumptions,
the T;; tensor is finally reduced to pou;u;. Assuming a
stationnary turbulence, one may define the autocorrela-
tion function of the pressure Cpp:

[p(x,t) _po] Lp(x,t'*"r) —po] (3)

PoCo

Cpp (x,7) =

In agreement with standard aeroacoustic studies the
correlation function is normalised by p,c,. With this con-
vention the correlation function evaluated for 7 = 0 is
equal to the acoustic intensity (when the observation
point x is in the far field). Inserting relation (1) in equa-
tion (3), the function Cp, takes the following form in the
far field:
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with
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P2

Rijr (y,m,7) =

where R;jj; is the fourth-order space-time velocity cor-
relation tensor, and ¢;;x; designates an arbitrary tensor
independant of 7. This last tensor is selected so that the
mean value of R;jx; (y,m,0) equals zero. Thus, two waves
emitted at the same time by two source points separated
by the vector n in V, are observed at the point x and at
times t and t + At, where the retarded time At is equal
to x.m/cox.

However, in the equation (4), the time 7 in the corre-
lation tensor Rijr; (y,0,7) represents the crossing time
of a convected eddy rather than the characteristic decay
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time of the turbulence. It is then convenient to intro-
duce a moving reference frame, to take into account con-
vection effects (Fflowes Williams, 1963; Crighton, 1975;
Goldstein, 1976):

E=n-Uy: (5)

and the new correlation tensor is such that:

R (v, 8:7) = Rigia iy, 9, 7) (6)

In this frame, which moves with the mean convection
velocity of eddies, the decay time of turbulence is maxi-
mum. Hence, the retarded time compared to this decay
time may be neglected and Ryjxi (y,&,7) changes very
slowly during the period x.£/c,z. Thus, equation (4) be-
comes:

Po TiT;TrT) 1
Cop (x,7) = —_
e (%, 7) 1672c8z2 z¢ C5

64
X/A%[R1]kl (Y7£’t)]t=z’:=dyd£ (7)

where C = 1 — M, cos 8 designates the convection factor,
and 6 represents the angle between the mean flow direc-
tion y; and the direction of the observer located at point
x (see Figure 2).

observer

jet axis

Figure 2. Sketch of the jet flow configuration.

3. Ribner model

Ribner (1964, 1969) has developed a formulation of the
noise generation from the Lighthill’s theory with the fol-
lowing assumptions. The velocity field is described as the
sum of a local mean flow component U in the y; direc-
tion and a turbulent fluctuating component u; with zero
mean:

u; = Ubyi + ue, (8)

Inserting this decomposition (8) into the space-time
correlation tensor R;jx;, and assuming that the turbu-
lence is locally homogeneous and isotropic, R;jx can be

written in the form:

Rijrr = w'viu'vju" s u'’yy
! n - 17 T
+ U'U"(61:6150"t ju" sy + 0156100 c5u" e,

+ 01:01w' s ju" ¢ + 6156110 150" 11 ) (9)

With reference to the terminology introduced by Lil-
ley (1958), the first term is called the self-noise contri-
bution (contribution arising from turbulence alone), and
the second term is called the shear-noise contribution (in-
teraction between turbulence and mean flow). Morever,
if one assumes a normal joint probability of the variables
u'y and «”;, the self-noise contribution can be expressed
as follows (Batchelor, 1953):

! ! n " —
W'y uyu'y = weul; u g uy

+u i u g ey + w g uy g (10)

If one postulates that the two-point velocity tensor
Ri; is the product of a time factor by a space factor,
and if one assumes that the turbulence is isotropic, it is
possible to write the correlation tensor in the form (Hinze,
1975):

Rij (v,6,7) = e 7 Ry; (v,6) (11)
Rij (v,€) = u2 [(f + %é%) b5 = %%&?] (12)

where the longitudinal correlation function f is taken to
be:

FO)=e 3 (13)

In expressions (11) (12) and (13) the coordinate sys-
tem is cartesian, L is the longitudinal integral scale of
turbulence, wy the characteristic angular frequency and
u? is equal to 2/3 k, where k is the turbulent kinetic en-
ergy.

To evaluate the product of mean velocities U'U”, one
may use a Taylor expansion around the point y + %5 , and
obtain:

1 1
U/Ul/ =U <y2 — 552) U <y2 + 562)

2
U? (y2) — %52 [2—;}2] + other terms (14)

Finally, using expressions (8) to (13) and the axisym-
metric property of the autocorrelation function Cpp, the
integration (7) for 7 = 0 provides the directional intensity
I = JSelf—noise | Shear—noise radiated from an unit source
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volume located at y:

3p°utL 1

Self —nois
I nme( 2\/5 7r255:1:2 Csw

x|y)= (15)

IShear—noise (X | y &=

3.0 ou 2 4 ryShear—noi
= g#ﬁ(ayz) geet DR (16)

DShear noise __

Lot % (cos® 8 + cos? 6)

From these expressions one finds that the self-noise
contribution has an isotropic directivity, which is a direct
consequence of the isotropic description of the turbulence.
The total intensity takes the compact form:

1

I(x|y)= A+§(cos 6 + cos® 6)

This expression exibits the influence of convection
which enhances the radiated acoustic intensity in the
downstream direction. However, this simplified expres-
sion of the convection factor C has a singularity at high
Mach numbers. A more sophisticated analysis developped
by Ffowcs Williams (1960, 1963) and taking into account

the changes of retarded time with source position leads
to a modified convection factor Cy, given by:

o

Cm

Il

[(l—M cosf)’ + 2L2]

(o]

[(1 — M. cosf)® + a2M3] : (17)

where « is a constant. An expression for the power spec-
tral density can be deduced by a Fourier transform of
expression (7). One may write :

—52 9.2
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4. Goldstein and Rosenbaum model

Goldstein & Rosenbaum (1973) have developed a similar
approach for an axisymmetric description of the turbu-
lence. Indeed, the mean flow introduces a preferred di-
rection y; for the turbulent fluctuations. For example,

Davies et al. (1963) noticed a reduction by a factor 3 of
the transverse integral scale Lo of the turbulence with
regard to L; . As a consequence, the non isotropic struc-
ture of the turbulence can have an important effect on
the directivity pattern (Ribner, 1969).

For an axisymmetric turbulence, the two-point corre-
lation tensor R;; (x,£) is given in cartesian coordinate
by:

aQim

Rij = €ilm g,
1., ;
Ciim = 2 (1= 1) (L= m) (m — )

Gij = &k eijk@1 + €1k (61;Q2 + £Q3))

_(2 _&
@ (651 & 853>Q1 )

The scalar functions @; and Q5 are selected with the
same assumptions as in Ribner’s model: the two-point
correlation tensor is written as a product of a time factor
by a space factor. The following choice is kinematically

acceptable:
_ 1/2
Qu(y,&7) = “%W?f(y,’r) exp {— <% + %) }
Q2(y,&7) = (utg - Ut1) fly,7)
1/2
XexP{‘(?z +,§22> } (21)
with

Fly,r)=evi™ (22)
Thus, by integration over the source volume, one ob-
tains the following expression for the acoustic intensity:
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and

Ly 3 1\1? s
A== M=|=-(A-— N=1-—=
Ly’ [2( A)]’ Uss

Because of the axisymmetric description of the turbu-
lence, the self-noise also features an angular dependence.
The radiation pattern has a dipole shape with a dipole
axis perpendicular to the mean flow direction. It is inter-
esting to notice that in the case of an isotropic turbulence
(8=1, = N =0), DRI =1

Like for Ribner’s model, an expression of the power
spectral density can be deduced by Fourier transforma-
tion of the correlation function:

1 22L L2 4
SSelf—-noise (X | y w) _ PolUt] Linlip w_
PP ?

T 40v2r

medr?  wr

c2.,2
T 8w? Self —noise
xe f DGoldstein (25)

1 pou2Ly L4
(x | y,w) = =22
N T

2 (22
ou w4 - 64:5 Shear—noise
X (ayz w_fe t DGo]dstein (26)

SShear—noise
PP

5. Application of the two models to jet
noise prediction

At this point it is worth summarizing the various steps
and approximations which lead to the final model.

1. The acoustic model is based on the Lighthill’s anal-
ogy. The stress tensor pou;u; is decomposed in terms
of a mean velocity and a fluctuating component. It is
assumed that the velocity fluctuations have a gaus-
sian probability density function. The computation of
the far sound field requires a knowledge of the mean
aerodynamic field and a model for the space-time cor-
relation of the velocity fluctuations.

2. To get these informations, one uses average mean flow
equations together with a k — e closure scheme. The
mean aerodynamic flow, the local length scale, con-
vection velocity and characteristic frequency are de-
termined from the calculations.

3. The k — ¢ aerodynamic model does not provide the
space-time correlation function which is determined
by making use of additional assumptions (isotropic
turbulence or axisymetric turbulence, gaussian shape
for the correlation function, Taylor hypothesis for con-
vected turbulence fluctuations).

A complete model is obtained in this way and it is
used in this article to calculate different jet noise radiation
problems.

5.1. Aerodynamic results

The aerodynamic results are obtained from a numerical
solution of Reynolds average Navier-Stokes equations as-
sociated with a k — e model. These calculations are car-
ried out with an axisymmetric compressible version of
the code ESTET developed by the “Laboratoire National
Hydraulique” of the “Direction des Etudes et Recherches
d’Electricité de France” (see appendix). We account for
compressibility effects on the turbulence, by introducing
an energy dissipation resulting from dilatation processes
into the standard k — e model (see Zeman, 1990 for in-
stance). Computations are made for unheated free jets at
nominal Mach numbers of 0.56, 0.86, 1.33, 1.48, 1.67 and
2.0. Numerical results are compared with several groups
of experimental data (Davies et al., 1963; Lau et al., 1979;
Nagamatsu et al., 1970; Seiner et al., 1982).

Figures 3 and 4 respectively display Mach number
contour plots and spatial distributions of the turbulent
kinetic energy k for two nominal Mach numbers of 0.86
and 2.0. The computation domain has 20D in the axial di-
rection, with a nozzle diameter D of 0.025 m. The length
of the potentiel core X, (i.e. the length where the mean
center-line velocity is constant) is about 6D for the sub-
sonic jet and 9.6D for the supersonic jet, which is close to
the experimentally observed values of 5D (Nagamatsu et
al., 1970) and 10D (Seiner et al., 1982). The jet mixing
layers corresponding to the maximum of turbulent energy
k may be identified in Figure 4. The production of & is
directly associated with velocity gradients, which reach a
maximum in the mixing layers and are negligible in the
potentiel core. The growth of the length of the potentiel
core in the supersonic case induces thinner mixing layers.
Figure 5a demonstrates the close agreement between the
mean center-line Mach number and experimental data of
Seiner et al. (1982) for the nominal Mach number of 2.0.
The small bulges observed in this case are due to a slight
mismatch between the jet exhaust pressure and the am-
biant pressure. Comparison of velocity profiles with ex-
perimental data for different axial locations are reported
in Figure 5b. Other comparisons, based on the radial in-
tensity profiles and the longitudinal integral scale of the
turbulence are not shown in this paper, but indicate that
suitable numerical predictions are indeed obtained.

5.2. Acoustic source modeling and results

In order to use expressions of Ribner’s model and Gold-
stein’s model, it is necessary to specify the statistical vari-
ables which appear in these formulations. Thus, from the
aerodynamic computation, we utilize the following clo-
sure relations:

1. The characteristic angular frequency of the turbulence
is given by:

€
~ 2r—
wr ﬂk
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Figure 3. Mach number contour plot. (a) M = 2.0. Six iso-
lines from 0.25 to 1.75 with a step of 0.3. (b) M = 0.86. Six
isolines from 0.1 to 0.85 with a step of 0.15.
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Figure 4. Turbulent kinetic energy contour plot. (a) M = 2.0.
Six isolines from 2000 to 12000 m?.s™% with a step of 2000
m2.s72. (b) M = 0.86. Six isolines from 400 to 3900 m?.s~2
with a step of 500 m%.s™2.
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Figure 5. Aerodynamic profiles for a nominal Mach num-
ber of M = 2.0. (a) Mean center-line Mach num-
ber. (b) Radial velocity profiles at different locations.
U—U% = f(n) with n = %Eyz(O.S) is the radial location
w};gll"se the velocity equals Uy = 0.5U7axis, where Ujayis is the
velocity on the center line of the jet at the given y; location,
and 6 is the local shear layer thickness 6 = y2(0.1) — 2(0.9),
which represents the radial distance between the points where
the local velocity is Uy = 0.1U1axis and Uy = 0.9U1axis-

2. From the concept of turbulent viscosity, the axial and
radial kinetic energy are determined from:

= 2 ol
Ut% = gk - 21/‘;%
— 2 U,
’U,t% = gk — 21/1;5'5;

where v; is the kinematic turbulent viscosity.

3. Integral length scales of turbulence should be deter-
mined from spectral considerations. However, numer-
ical simulations indicate that the longitudinal integral
scale can be approximated by the expression:

The k—e model based on the concept of turbulent vis-
cosity is unable to correctly represent a transverse in-



COMPUTATION OF JET MIXING NOISE 107
tegral scale. Thus, we impose a value determined from 2000
experiments by Davies et al. (1963): Ly = L;/3. This
accounts for the anisotropy of the turbulence length x 75 e
scales, a characteristic of free jet flows. a 800 »0 Y

4. The convection velocity U, cannot be directly deduced =) 2w R
from our aerodynamic calculations. This velocity is = 1600 | 3 Y © = Goldstein
often (Lush, 1971; Ribner, 1969; Tanna, 1977) consid- P il
ered as a constant throughout the jet, and equals 0.6 - i L . u += Yu & Dosanjh
0.7 times the mean jet exit velocity. However, Davies ' . 5 2 sorum & Seiner
et al. (1963) have measured the radial profile of U, in s v =SAE. norms
the mixing region of a subsonic jet. From these two 1z00 2 : . ' ' ‘ : :
results, we calculate in this paper the convection ve- VR R 1‘%. Cl's B =0
locity as 0.67U7axis Where Usays is the mean velocity j/Co
on the jet axis in the local Section. a)
Finally, the relations used to model the three quanti- 2200

ties wg, L1 and Lo, depend implicitly on unknown scal- 2605 L

ing constants. For this reason, a global adjustment fac- .

tor is introduced in the intensity expression of the Rib- @ 1800 | T T

ner and Goldstein models. For each of the two models, ;/ -6‘50"

this factor is determinated so that acoustical intensity at 1600 [~ de-""m

6 = 90° and for the exit Mach number M = 0.56, co- 1400 - O,EA" o Lush

incides with the experimental value of Lush (1971). In o8 =

other words, the acoustical intensity for a nominal Mach 1200 - o _U3law,

number M = 0.56, and an observation angle 8 = 90°, 1000 1 ] 1 . ) . . .

is taken as a reference. The two global adjustement fac-
tors determined in this way are used for all other flow
configurations.

5.2.1. Acoustic power

Figure 6a shows the acoustic power for the two models,
and for a range of nominal Mach numbers ranging from
0.56 to 2.0. Power levels are expressed in dB with a refer-
ence of 10713 W, and per unit of nozzle area. The same
figure also shows experimental data of selected articles
published by Lush (1971), Tanna (1977), Norum & Seiner
(1982), Seiner (1982), Yu & Dosanjh (1971). Values calcu-
lated according to S.A.E. international standards (1985)
are also plotted. Experimental values of radiated acoustic
power are correctly predicted by the two models. Figure
6b presents the experimental data of Lush (1971) and
Tanna (1977). In addition, dimensional laws (Goldstein,
1976) for subsonic and supersonic jets are also plotted:

8 2
W ~ pop2ﬂ%
¢ (1-M2)*

for a subsonic jet, and:

W ~ p,D*U?

for a supersonic jet.

One observes that the U JB law closely follows variations
of the acoustic power for a nominal Mach number M- <
1, whereas the Uf law is applicable for a nominal Mach
number M < 2.

b)
Figure 6. Evolution of acoustic power (dB - ref. 10713 W) asa
function of initial jet Mach number. (a) experimental data and
calculated estimates, (b) experimental data and dimensional
laws for subsonic and supersonic jets.

5.2.2. Acoustic intensity

Figures 7a to 7d display the acoustical intensity predicted
by the two models, formulations (15, 16) and (23, 24), for
a set of exhaust Mach numbers: 0.56, 0.86, 1.33 and 2.0.
Intensity levels are expressed in dB with a reference of
10712 W.m™2 , per unit of nozzle area. Numerical results
are compared to experimental data of Lush for the case
M = 0.56, Lush and Tanna for the case M = 0.86 , and
Tanna, for the two cases M = 1.33 and M = 2.0 .

Influence of the turbulence description is clearly
shown in these figures. Ribner’s model overestimates the
noise level by 5 dB for small angles (6 < 30°) unlike Gold-
stein’s model. Secondly, we notice that the two models un-
derestimate the intensity for rearward angles (6 > 90°).
This problem can be attributed to the simplified modeling
adopted for convection. However, overall acoustic power
can be accurately evaluated from the intensities deter-
mined at forward angles of observation (6 < 90°). Gold-
stein’s model demonstrates good agreement with exper-
imental data for subsonic and moderate supersonic jets.
The drop-off of experimental intensity for small angles
is caused by refraction effects, which are not included in
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150 150 the third case § = 15°, one observes in measurements a
translation of the spectral distribution of radiated energy
- because of refraction effects. However, in assuming that
fut T;; = pou;u;, one does not take into account these refrac-
T tion effects, which become more important as acoustic
| source frequency increases. Refraction effects are partic-
ok ulary important in the forward arc and this explains the
N differences between predicted and measured third-octave
" lh mor spectra for 6 = 15°.
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tween computations and experimental data becomes im- e —
portant. For this case, turbulent eddies are supersonically 10 10 10 Stlo 10°
convected by the mean flow, with as a consequence an b)
emission of eddy Mach waves. Unlike subsonic or moder-
ate supersonic flows, turbulent eddies cannot be treated 180.0
as compact sources and then, the evaluation of Tj; in
Lighthill’s analogy has to be carried out in a different way. 1600
Thus, one limitation of this approach is imposed by the = 1400
sonic convection Mach number M. , which corresponds %
to a nominal Mach number M ~ 1.5. — 1200
1000
5.2.3. % - octave spectra . © Tanna (1)
800 b 4 Tanna (2)
Third-octave spectra are plotted in Figure 8 as a function - : S‘;
of the Strouhal number Sy = fD/U; for Ribner’s model 600 *—— S — """'D — """'1 E—
and for 4 nominal Mach number. Figures 8a, 8b and 8c 10 10 10 Stlo 1¢
respectively correspond to an observation angle 8 of 90°, 0

120° and 15°. The numerical predictions are compared to
experimental measurements of Tanna et al. (1976).

For the two cases # = 90° and @ = 120°, experi-
mental values are correctly predicted with the numeri-
cal model. One finds that the model under-estimates the
acoustic intensity for low Strouhal numbers (S; < 0.1). In

Figure 8. Third-octave band spectra. (a) 8 = 90°, (b)

6 =120°, (c) 0 = 15°.

When refraction effects are negligible, one correctly
retrieves the experimental data of Tanna, except for low
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frequencies (S < 0.1). This lack of accuracy is due to the
turbulence modeling (k — ¢ model) used in the aerody-
namic computations.

5.2.4. Space-frequency distributions of sound sources

Space-frequency distributions of sound sources are plot-
ted in Figure 9 for the three values of the Mach number
M = 0.86, M = 1.33 and M = 2.0. One uses expres-
sion (25,26) of the Goldstein’s model in reduced variables:
W1 /Wimax = F(y*,S¢) where y* = y1/D is the dimen-
sionless axial location, and S; is the dimensionless fre-
quency or Strouhal number of the source, which is given
by :

St:

ol N
Slo

W, is the acoustic power per unit length of jet, deduced
from the acoustic power by integration over the jet cross-
section:

W1 (y1) =//‘/W(Y)dy2dy3

Figure 9 indicates that sound sources are concentrated
in the downstream region. The low frequency sources are
located in the initial developed region, while the high fre-
quency sources are situated in the mixing region, near
the nozzle. Most of the acoustic power is emitted by the
low wave-number components of turbulence. These re-
sults are in qualitative agreement with Lighthill’s the-
ory estimates (see for example Ffowcs Williams, 1963;
Crighton, 1975; Goldstein, 1976 ). The maximum of the
acoustic power moves downstream as the Mach number
increases (y* = 7.2 for M = 0.86, y* = 8.4 for M = 1.33,
y* = 12.3 for M = 2.0). This shift is due to the growth of
the potentiel core and to the associated displacement of
the regions where turbulent kinetic energy is produced.

6. Conclusion

We develop in this article a numerical method for the de-
termination of jet noise based on extensions of Lighthill’s
theory. Aerodynamic calculations are carried out using
a k — € turbulent code, modified for compressible shear
flows. Two formulations of noise generated aerodynami-
cally are studied: Ribner’s model (1969), which assumes
an isotropic description of the turbulence, and Goldstein
& Rosenbaum’s model which assumes an axisymmetric
description of the turbulence. These models have been
modified in order to incorporate statistical information
about the turbulence from local aerodynamic results. The
models use as input the calculated mean velocity, tur-
bulent kinetic energy k, and the rate of dissipation € .
The two models are in good agreement with experimen-
tal data for the evolution of acoustic power as a function
of the jet exit velocity. However, Goldstein’s model yields
more accurate predictions of the directivity pattern. One

Figure 9. Space-frequency distribution of sound sources. (a)
M =0.86, (b) M = 1.33, (c) M = 2.0.

also obtains with this approach a complete picture of the
space-frequency distributions of sound sources in the jet.
On this basis it appears that similar calculations could be
used to deal with others jet geometries, such as coaxial
jets (see Béchara, 1992; Béchara et al., 1992, 1993). In
a more general flow configuration, this approach still has
three limitations. First, it requires a specific Green’s func-
tion which uses the integral formulation of the Lighthill’s
equation. Secondly, refraction effects due to mean flow
gradients are not taken into account but they are known
to modify the aerodynamic noise spectrum. Third, the
convection Mach number must remain in the subsonic
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range or else the acoustic field is dominated by emission
of eddy Mach waves.

Appendix A

Turbulence model equations - The ESTET
code

The basic mean flow equations which are solved numeri-
cally are given in the following section. Then, the modified
k — € turbulence model for compressible mixing layers is
decribed in the next Section. Finally, the ESTET code is
briefly presented in the last Section.

A.1. Mean flow equations

A density-weighted (Favre) average is often used for com-
pressible flows. With this averaging precedure, the con-
servation equations of mass and momentum take a similar
form as in the incompressible case. Then, using the Favre
average for each variable ¢ = ¢+ ¢" = pd/p+¢", except
for the density and pressure, one may write the mean flow
equations as follows:

1. continuity equation
op O (pi;
% (Piis)
ot ox;

2. momentum conservation equation

=0

J

) % _|_ﬂ,.a_ﬁ'i_ = _@.
p ot Jazj o 8:1)_7'

where 7;; is the viscous stress tensor, which takes the
following form for a compressible newtonian fluid:

A aui+auj _g %5
T =4 ail,‘]' a(l?i 3”8&% *

and —pujulf

+ oo (75 — )

is the turbulence Reynolds stresses.

A.2. Turbulence model

A modified k — ¢ turbulence model for compressible mix-
ing layers is used to calculate the Reynolds stresses. The
modification concerns the dissipation € and is based on
works of Zeman (1990). In this Section, we only present
the finally form of the & — € turbulence model.

The kinetic energy k is given by:

1 —
k= Zu"u;

The dissipation € of this kinetic energy is the sum of
two contributions € = € + €4. € is the solenoidal dissipa-
tion associated with the incompressible part of the veloc-
ity field. The distribution of this dissipation is given by
the standard transport equation for the dissipation. The
dilatation dissipation €4 resulting from dilatation effects

of the velocity field is given by the following expression
proposed by Zeman:

€=¢€+eq =6 [l+caf (M)
with M, = @ and c¢qg = 0.75

with the following function f:

2
f(M) =1 —exp [— (1‘40—7;’&) ] if My >0,1
f(M;)=0 if M, <0,1

The transport equations for k£ and e take the following
form:

(0% L 5 9k _
P\oat "o, ) ~

© [(b+2) & prc-n

8.’12_7' O 3.’1:]'

5( % 4495 2
£ ot ]aIL‘j -

_ 0 e\ Oes €s _
= b [<u+ E> Ba:j] + p [Ceaa (P + G) — Ceapes)

Using the eddy viscosity concept, which relates the
Reynolds stresses to the mean flow gradients, the pro-
duction term P may be written as:

Uq

8xj

P —
[ (om | 0% 20 o 10
B [M <3xj + dz; 30z 6”) §pk6”] dz;

where p is the turbulent viscosity given by:

.
By = PC;L?

The other production term G is calculated as (Jones,
1979):

ith
p oy 0x; Oz; w

= 7 < <1
ﬁ a.'E,; 07_0’t__1

The standard values of the empirical constants of the
k — € model given by Launder and Spalding (1974) are
used in the calculations:

C, =009 Cq =144 Ce =192
or=10 o, =13



COMPUTATION OF JET MIXING NOISE

111

A.3. The ESTET code

The ESTET code has been developed by the “Labora-
toire National Hydraulique” of the “Direction des Etudes
et Recherches d’Electricité de France”. The algorithm is
based on the projection method, introduced by Chorin &
Temam (1967), for the time discretization of the Navier-
Stokes equations. The characteristic method is used for
the convection step. The diffusion step and the pressure-
continuity step (or projection step) are solved using im-
plicit methods. The global method is of first-order accu-
racy.

The mesh is structured but irregular and all the cal-
culations are performed with an axisymetric version of
ESTET.

Appendix B

Nomenclature

sound speed

convection factor C =1 — M, cosf

autocorrelation function of the pressure

nozzle diameter

turbulent kinetic energy

Integral scale length of turbulence

convection Mach number M. = U./c,

nominal Mach number M = Uj/c,

pressure

power spectral density of the acoustic

intensity

Lighthill’s stress tensor

time

velocity

fluctuating turbulent velocity

mean flow velocity

eddy convection velocity

jet exit velocity

radiated acoustic power

coordinates of the observation point

coordinates of the current source point

Kronecker delta

rate of dissipation of the turbulent kinetic

energy k

angle between the mean flow direction and

the observer cosf = x.y1/x

i vector which separates two points in the
source volume in the fixed frame

] vector which separates two points in the
source volume in the moving frame

p density

Tij viscous stress tensor

wr local characteristic angular frequency of

turbulence

o
o

[¢]

P EESETLaQe

ke

-
<.

SIS

m Oy
o
Q.

S

Subscripts

) value of quantity in the medium at rest

1 value of quantity in the axial direction,
which is the mean flow direction

2 value of quantity in the radial direction

-~

value of quantity at the point (y,t)
value of quantity at the point (y + n,t + 7)

The origin of coordinate system is taken within the source
volume V .
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