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INTRODUCTION

As a starting point, we consider the linearized Euler equations which govern sound propagation in a steady
mean flow (ρ̄, ū, p̄) where ρ, u = (u, v) and p denote the density, the velocity and the pressure respectively.
Using Cartesian coordinates x = (x, y), these equations read
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where γ is the specific heat ratio, r the gas constant, T the temperature, for a perfect gas p = ρrT , and
f = f̄ + f ′ for any variable f . In the present work, these equations are solved in the following form
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where the vectors U, E, F and H are given by
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for a parallel base flow ū(y), ρ̄(y), v̄ = 0 and p̄ = p∞ = constant. A Gaussian function is taken for the
unidirectional sheared mean flow
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and the density profile is deduced from the Crocco-Busemann relation
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where the variables with subscript j are defined at the jet axis. The time-harmonic acoustic source term
ST = (0, 0, 0, Λ) is given by Λ = S(x, y) cos (ω0t) with S = Ae−αxx2−αyy2

. For the numerical resolution, the
equations are made dimensionless by using:
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The parameters of the problem are Mj = 0.756, Tj = 600 K, T∞ = 300 K, γ = 1.4, r = 287 m2.s−2.K−1,
b = 1.3, αx = 0.04 log(2) m−2, αy = 0.32 log(2) m−2, A = 10−3 kg.m−1.s−3 and ω0 = 76 rad.s−1. The mean
pressure is p̄ = 103330 kg.m−1.s−2. A Strouhal number based on the jet exit velocity and an estimation of
the jet diameter 2b can be defined as St= f0 2b/uj = ω̃0/π � 0.085 where ω̃0 = ω0b/uj.

In the present simulations a dimensionless amplitude Ã0 = 10−3 has been used rather than Ã = A ×
b/(ρju

2
j). As a consequence dimensional pressure of the test case is obtained by multiplying p̃ by a factor

b/uj � 3.5 × 10−3 since the problem is linear.

SIMPLIFIED LINEARIZED EULER’S EQUATIONS

The linearized Euler equations (1) govern the propagation of small acoustical disturbances through a steady
mean flow in taking into account all the mean flow effects such as refraction and convection of the sound
by the mean flow. However, spatially growing instability waves are also solutions of these equations. The
fluctuating velocity and density can be eliminated by differentiating (1) for a parallel mean flow and the
resulting equation for the pressure reads
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)
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where D̄ = ∂/∂t + ū∂/∂x is the convective derivative. Equation (4) can be seen as a wave equation, but rep-
resents also the generalization of the Rayleigh equation for a compressible perturbation. Figure 1 shows the
spatial growth rate and the phase velocity as a function of the frequency of the Kelvin-Helmholtz instability
wave obtained by seeking solutions of the homogeneous equation in the form p′ (x, t) = p̂(y) exp (ikx − ωt)
where k = kr + iki is the complex wave number. The wave number corresponding to the angular frequency
ω̃0 of the acoustic forcing is found to be k̃H � 0.53883− i0.04906.
The objective of the present problem is to compute only the acoustic part of the solution, and not the
associated instability wave. The authors have developed an acoustic analogy based on the Linearized Euler
Equation (LEE) with an ad hoc source term reducing to Lilley’s analogy for a parallel mean flow.3 In order
to prevent the development of instability waves which can overwhelm the radiated acoustic field and thus
prohibit the use of the hybrid approach, a simplified formulation of LEE has been proposed. This simplified
formulation is obtained in removing arbitrarily the term dū/dy in the vector H. As a result, the equation
for the pressure reads now

D̄3p′ − c̄2
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D̄

∂p′
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− dū
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The only difference between equations (4) and (5) is the factor 2 in the velocity gradient term. The con-
sequences for the description of the acoustic propagation are not easy to describe. Note however that this
approximation is not the usual high-frequency approximation of (4), namely the ray-tracing equations, as
given by Candel6 for instance. Note also that this formulation has been successfully applied to the noise
generated by an isothermal mixing layer,3 where vortex pairings produce a relatively low-frequency sound
field.

NUMERICAL METHOD

LEE (2) are solved with the Sprint-2d solver developed for aeroacoustic applications.2,3 The numerical
algorithm has been updated with numerical schemes optimized in the wave-number space ensuring accuracy
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Figure 1: Spatial growth rate −kib, real wave number krb and phase velocity vϕ/uj = ω/kr as a function of the

frequency ωb/uj . The compressible Rayleigh equation is solved using a 4th-order Runge-Kutta shooting method and

the integration path is deformed in the complex plane to avoid the critical point.

up to five points per wavelength. A 11-point-stencil finite-difference scheme and a 6-step low storage Runge-
Kutta algorithm are used for the spatial derivation and time integration.5 Grid-to-grid oscillations are
removing by filtering the unknow vector using a highly selective filter on 11 points. The radiation boundary
conditions of Tam & Webb are implemented on the three last points of the computational domain and a
small buffer zone is added at the inflow boundary condition to prevent the possible generation of instability
waves by the outgoing acoustic field.4 A symmetry boundary condition is applied along the line x = 0.

After preliminary calculations, two grids of different size have been adopted and are presented in the paper.
The first one is a regular grid of 601×301 points with ∆x̃ = 0.4/b and ∆ỹ = 0.25/b. The whole computational
domain is −63 ≤ x̃ ≤ 175 and 0 ≤ ỹ ≤ 74. The domain of the second grid is similar but the step size in the
two directions is divided by 2 yielding a grid of 1201 × 601 points. Thus there are 10 points in the mean
shear flow with the finest grid. The time of the simulation corresponds to 18 periods of the source with a
CFL number of 0.9 and the average is calculated at the last period to obtain the root mean square pressure.
The computations are performed on a Nec-Sx5 with a CPU time per time iteration and by mesh point of
around 3.8 × 10−7 s. Using a Dec α server 1280 GS MARVEL (EV7, 1.15 GHz) the CPU time per time
iteration and by mesh point is 6.3 × 10−6 s.

RESULTS AND DISCUSSION

Numerical results obtained with the simplified formulation of LEE associated to wave equation (5) are
presented in figures 2 to 5. Figure 2 shows the pressure at the start of a cycle along the two lines ỹ = 15
and ỹ = 50. No appreciable difference has been observed between the two grids which emphasizes the good
accuracy of the optimized schemes. Figure 3 displays the pressure along the line x̃ = 100. Time evolution
and root mean square pressure profiles are reported in figures 4 and 5.

The simplified wave equation (5) prevents the development of instability waves as observed and discussed in
early works.3 But only an approximate high frequency acoustic field is obtained, not appropriate for the low
frequency source of the test case corresponding to a Strouhal number St < 0.1. The pressure field obtained
with the simplified formulation of LEE is shown in figure 6. A ray-tracing has been superimposed to show
that the wave equation (5) associated to the simplified LEE is not a full high-frequency approximation. As
expected the comparison with the analytical solution in figure 7 also displays some significant differences
especially in the shadow zone for x̃ > 50.
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Figure 2: Pressure p̃′ at the start of a cycle along the line ỹ = 15 (left) and the line ỹ = 50 (right): coarse

grid fine grid.
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Figure 3: Pressure p̃′ at the start of a cycle along the line x̃ = 100.
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Figure 4: Time history of the pressure p̃′ and root mean square pressure p̃rms along the line x̃ = 15.
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Figure 5: Root mean square pressure p̃rms along the line ỹ = 50 (left) and along the line x̃ = 100 (right).

Figure 6: Pressure field p̃′ at the start of a cycle and ray-tracing from the source: 32 rays are plotted from 0 ≤ θ ≤ π.
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Figure 7: Pressure p̃′ at the start of a cycle along the line ỹ = 15: analytical solution,1 simplified

formulation of LEE associated to wave equation (5), LEE (2) + source term (6).
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Finally, Eschricht, Thiele and their coauthors7 have presented during the workshop a new formulation to
remove the instability wave in the time domain. LEE (2) are solved forced by following source term in the
right hand side

ST =
(

0, Sx =
∂v̄

∂x
u′, Sy =

∂ū

∂y
v′, Λ

)
(6)

with Sx ≡ 0 for the workshop test case. The corresponding wave equation writes as
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)
= D̄2Λ − γp̄D̄

(
∂Sx

∂x
+

∂Sy

∂y

)
+ 2γp̄

dū

dy

∂Sy

∂x
(7)

The computed pressure thus obtained is reported in figure 7. The solution compares better with the analytical
one than the solution based on the simplified LEE.
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