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Summary. In this paper, noise-generation mechanisms of subsonic round jets are
investigated numerically. Compressible LES based on explicit filtering are carried
out with the aim of computing directly aerodynamic noise. Both the aerodynamic
and the acoustic fields are obtained for different Reynolds numbers. The LES proce-
dure as well as comparisons of results with experimental data are described. Noise-
generation mechanisms are then discussed in the light of simulations. Two noise
contributions are identified, in agreement with the description of turbulent flows in
terms of coherent structures and fine-scale turbulence.

1 Motivations

Prediction of the noise generated by a subsonic jet remains a difficult prob-
lem. One of the fundamental reason is the real complexity of the developing
turbulent flow including the mixing between the jet exiting from a nozzle and
the ambient medium. A numerical simulation must be capable, for instance,
of relating subtle changes of the flow at the nozzle exit to the radiated noise
with the aim of noise reduction. The involved noise-generation mechanisms,
on the other hand, are not well understood and still debated in the recent
literature.

Research efforts to identify noise sources have remained mostly theoret-
ical and experimental. Theoretical approaches are generally based on overly
simplifications of the turbulent jet flow, and measurements provide only a
limited amount of information on the turbulence. A number of recent techni-
cal reviews of jet noise modelling [1, 2, 3, 4] are available. The present study
focuses on the application of compressible large-eddy simulations (LES) to
compute directly both the aerodynamic turbulent field and the correspond-
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ing radiated acoustic field. With the direct noise computation (DNC), the
investigation of sound-generation mechanisms takes the advantage that any
turbulent quantity required for the analysis of the acoustic field is available.
However, to have confidence in the DNC, serious numerical issues must be
addressed before [5, 6]. LES enables to deal with more realistic jets and to
study Reynolds number effects on the flow and its acoustics. Furthermore, the
rapid development of computational aeroacoustics will allow us to take into
account a part of the nozzle geometry in the simulation.

The present work is also motivated and guided by the following remarks.
Turbulence and aerodynamic noise are intrinsically linked, and a direct identi-
fication of sound sources from only the radiated acoustic field is undoubtedly
an intricate and ill-posed problem. In addition, methods for predicting the
far-field noise from an accurate knowledge of the turbulent field or the near-
pressure field are now well established. Before anything else, the challenge
is to reproduce a high-fidelity DNC simulation of the flow including the thin
turbulent shear layer of the exit boundary layer at the nozzle or the Reynolds-
number effects for instance.

The present paper is organized as follows. In section 2, the numerical
procedure used for the compressible LES is detailed. DNC results of round
subsonic jets are presented in section 3 and compared with experimental data.
Section 4 is devoted to the investigation of noise-generation mechanisms from
the DNC data. Finally, concluding remarks are given in section 5.

2 Compressible LES based on an explicit filtering

Following the works of Vreman [7] et al., the filtered compressible Navier-
Stokes equations can be recasted as follows:

∂tρ̄ + ∂j(ρ̄ũj) = 0

∂t(ρ̄ũi) + ∂j(ρ̄ũiũj + p̄δij − τ̃ij) = σsgs
i (1)

∂t(ρ̄ĕt) + ∂j((ĕt + p̄)ũj + q̃j − τ̃ij ũj) = σsgs
e

where ρ represents the density, ui the velocity, p the pressure, τij the viscous
tensor and qj the heat flux. The overbar denotes a filtered quantity, and the
filtering is assumed to commute with the time and spatial derivatives. The
tilde denotes the Favre (density-weighted) filtering ũi = ρui/ρ̄. The variable
ĕt is defined as the total energy density of the filtered variables, i.e. ρ̄ĕt ≡
p̄/(γ − 1) + ρ̄ũiũi/2 for a perfect gas, where γ is the specific heat ratio. The
terms σsgs

i and σsgs
e in the right-hand side of (1) are the so-called subgrid-scale

(SGS) terms. A detailed definition of each of the other terms of equation (1)
is given in references [7, 8].

Low-pass filtering applied to any nonlinear problem introduces unknown
terms which represent the interaction between the resolved scales and the
non-resolved scales. Since the nineties, considerable efforts have led to clever
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SGS models, see for instance the recent review of Meneveau and Katz [9], and
to a better understanding of the interactions with the numerical algorithm
solving the governing equations. In parallel, several studies have also pointed
out some difficulties to reproduce correctly the behavior of high-Reynolds
number flows [10] or of transitional shear flows [11, 12]. This is especially the
case when the SGS model is based on a turbulent viscosity which has the
same functional form as the molecular viscosity.

An alternative to the modelling of the SGS terms is to recover the un-
filtered variables appearing in the SGS terms. These deconvolution or more
generally defiltering procedures are used to directly compute the SGS terms
involving nonlinear interaction between the scales supported by the numerical
grid but not accurately resolved by the algorithm. However, the energy trans-
fert between the resolved and the non-resolved scales of the grid need also to
be modelled. In the Approximate Deconvolution Model (ADM) introduced by
Stolz [13] et al. for instance, a relaxation term draining the energy to non-
resolved scales is introduced in the equations to take into account the scales
not represented by the numerical grid, and thus to provide a sufficient SGS
dissipation. A review of these approaches has been written by Domaradzki
and Adams [14].

A highly accurate algorithm has been developed in our works for solving
the compressible Navier-Stokes equations [8, 15, 16] in this framework, but
also to perform a direct computation of the noise generated by turbulent flows.
The discretization of the governing equations is performed with an optimized
thirteen-point stencil finite-difference scheme for the spatial derivation. The
modified wavenumber of the scheme is plotted in figure 1 for a uniform mesh
of grid spacing ∆x. Wavenumbers k∆x ≤ ks

c ≃ 1.83 are accurately discretized
without significant dispersion [15]. The cutoff or Nyquist wavenumber of the
grid is given by kg

c∆x = π, and the corresponding grid-to-grid oscillations
are not resolved. They are removed by a high-selective filtering, which is also
used as to model the dissipative effects of the SGS. The filter coefficients have
been optimized in the Fourier space [15]. The first kth moments of G are
zero (1 ≤ k ≤ 3) among the different properties of this class of filters [17].
The transfer function Ĝ of the filter is shown in figure 2. Wavenumbers such
that k∆x ≤ kf

c ∆x = π/2 are not affected by the filtering, and are also well
represented by the numerical grid. As shown in the same figure 2, the present
filter is very close to the secondary filter proposed by Stolz [12, 13] and co-
workers in the ADM. The different scales involved in the numerical resolution
are collected in figure 3.

To summarize, the following equations are therefore solved in the present
LES procedure:

∂tU + ∇.F(U) = −(σd/∆t)(1 − G) ∗ (U − 〈U〉)

where U = (ρ̄, ρ̄ũ, ρ̄ĕt), the vector F is given by the left-hand side of (1), and
〈·〉 represents a statistical averaging. All the non-linear terms are computed
from the filtered quantities as for a no-model procedure [12, 19, 20]. Note
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Fig. 1. Plot of modified or effective wavenumber of the scheme versus exact
wavenumber: optimized 13-points finite difference scheme of Bogey and Bailly [15]

, 6th-order compact scheme of Lele [18] and 2nd, 4th, 6th, 8th and 10th-
order central differences . Wavenumbers up to k∆x ≃ 1.83 or λ/∆x ≥ 3.5 are
accurately resolved by the 13-pts optimized scheme.
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Fig. 2. Transfer function of the optimized 13-points filter of Bogey and Bailly [15]
Ĝ , and of D̂ = 1− Ĝ . The tranfer functions involved in the approximate
deconvolution model [12] are also plotted : implicit primary filter Ĝi, and
secondary filter ĤN = 1 − Q̂N · Ĝi (N = 5 and kc∆x = 1/2).
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Fig. 3. Scales involved in the numerical algorithm for LES. The cutoff frequency of
the grid is given by kg

c ∆x = π but only the scales k ≤ kf
c are accurately resolved.

The scales with kf
c < k < kg

c are filtered. Note that the accuracy limit of the spatial
numerical derivation is such that ks

c ≥ kf
c .
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also that the independence of the results from the filtering has been studied
recently [21]. A six-stage low-storage Runge-Kutta algorithm [15] ensures the
time integration. Specific non-reflecting boundary conditions are implemented
to preserve the acoustic field generated by the turbulent flow. For further
details concerning the implementation of the filtering and of the boundary
conditions, the reader is referred to [8, 15].

3 Direct noise computation of round subsonic jets

The feasibility of the direct computation of noise via compressible LES was
demonstrated by Bogey & Bailly [22] for a jet at near sonic conditions, with
successful comparisons between predictions and measurements for the flow
and for the acoustic. This earlier work was based on the Smagorinsky SGS
model.

All the results reported subsequently are obtained with the LES procedure
described in section 2, with focus on isothermal jets at Mach number M =
uj/c∞ = 0.9 and at different Reynolds numbers ReD = ujD/ν where uj

is the jet exit velocity, D = 2r0 the jet diameter, ν the kinematic viscosity
and c∞ the ambient speed of sound. The mean velocity profile at the inflow
is defined by a hyperbolic-tangent profile with a ratio between the shear-
layer momentum thickness and the jet radius of δθ/D = 2.5 × 10−2. Small
random vortical perturbations are added to the mean velocity profile in the
initial shear-layer zone to seed the turbulence [8, 22]. The influence of these
inflow conditions on the flow development as well as on the sound field is
investigated in a recent paper [16]. The computational domain is discretized
by a 12.5 million point Cartesian grid with 15 points in the jet radius. The
flow is calculated up to 25r0 in the axial direction, and up to 15r0 in the
transverse directions including a portion of the radiated sound field. Sound
waves are accurately resolved up to a Strouhal number St = fD/uj ≤ 2.

Snapshots of jets for Reynolds numbers varying from ReD = 1.7 × 103 to
4×105 are presented in figure 4. These pictures clearly show the strong modi-
fication of the radiated pressure, with the emergence of high-frequency waves
in the sound field at 90o to the jet axis as ReD is increased. For the lowest
Reynolds number, the radiation pattern seems very similar to the radiation of
instability waves in supersonic flows. The same behaviors have been observed
for Mach number M = 0.6 jets [23]. The influence of the Reynolds number is
also clearly visible on the turbulent flow itself with a larger range of vortical
scales when the Reynolds number increases. The ratio δθ/D being kept con-
stant in all the simulations, the decrease of the initial momentum thickness
δθ with ReD leads to a stronger viscous diffusion and a larger length of the
potential core, from xc ≃ 5D to 7D. For ReD = 1.7 × 103, the development
of the turbulent flow occurs even notably later downstream, which prevents
vortex pairing.
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Fig. 4. Jets at Mach number M = 0.9. Snapshots of the vorticity norm in the flow
and of the fluctuating pressure outside, in the plane z = 0, for Reynolds number
ReD = 1.7 × 103, 2.5 × 103, 5 × 103, 1 × 104 and 4 × 105. The pressure color scale is
[−70, 70] Pa for all the simulations.

Figure 5 shows the evolution of the mean axial velocity uc/uj in the down-
stream direction for different Reynolds numbers. A good agreement is observed
between numerical results and experimental data. The mean velocity decay
is more rapid for low Reynolds-number flows. Axial profiles of the turbulence
intensity u′

rms/u′

j are also reported. For low Reynolds numbers, transition to
turbulence occurs later as mentioned before. Moreover, turbulence intensity
reach higher values in agreement with measurements. All these effects are
accurately reproduced with the present LES procedure [11, 23].

4 Jet noise mechanisms

The understanding of aerodynamic noise is intrinsically linked to the descrip-
tion of the turbulence. Turbulent flows contain a broad range of scales which
generally belong to one of the two following classes. The first one consists
of fine-scale turbulence, associated with random motions in turbulent flows,
and ranged in size from the larger scale given by the size of the flow, i.e. the
nozzle diameter for a jet, to the smallest one, namely the Kolmogorov scale
lη. The other class contains coherent structures or wave-packets. These large
scales dominate the flow, are organized, and are often reminiscent of insta-
bility waves. To avoid some confusions, note that large scales in LES contain
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Fig. 5. Jets at Mach number M = 0.9. Left, axial profile of the mean velocity uc/uj ,
and right, axial profile of the rms fluctuating axial velocity u′

rms/uj . Simulations:
ReD = 4×105, ReD = 104, ReD = 5×103 and ReD = 2.5×103.

Measurements: ▽ Stromberg [24] et al. (M = 0.9, ReD = 3.6×103), ◦ Arakeri [25] et

al. (M = 0.9, ReD = 5×105). △ DNS of Freund [26] (M = 0.9, ReD = 3.6×103). Note
that all the profiles are shifted in the axial direction to display the same potential
core length.

both fine-scale turbulence and coherent structures. Large scales in this con-
text mean scales resolved by the computational grid, and not only coherent
structures.

From an experimental point of view, most of the noise originates from
near the end of the potential core [27], and seems to be associated with the
breakdown of the coherent structures [28]. Two-point azimuthal correlations
of the acoustic pressure display high levels in the main emission direction
at shallow angles [29, 30]. Lower correlation-levels are measured for angles
θ ≃ 90o from the jet axis and they appear enhanced as ReD decreases. In
the classical framework, this change of the acoustic field with the angle is
attributed to mean flow effects on sound propagation [31].

The present numerical works bring support to the conjecture of two dis-
tinct noise components as proposed by Tam [32]. The structure of the sound
fields have been investigated numerically [23] for the two observation positions
θ ≃ 30o and θ ≃ 90o, and two acoustic radiations have been identified:

• a component nearly independent from the Reynolds number, which dom-
inates the sound field in the downstream direction with a low-frequency
spectrum, and high levels of azimuthal correlation. A Strouhal scaling is
observed for the spectral peak with a u9

j power law. The noise mechanism
involved appears to be linked to the periodic intrusion of vortical coherent
structures into the jet [22].

• a component closely dependent on the Reynolds number, which vanishes
as ReD decreases. A Strouhal scaling is found for this broadband acoustic
radiation, with a weak azimuthal correlation, and a u7.5

j power law. This
component is responsible for the noise emitted in the sideline direction at
high-Reynolds number whereas its contribution at lower angles is masked
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by the previous component. It is mainly generated by the transional flow in
the shear-layer developping from the nozzle exit to the end of the potential
core, and is therefore direcly connected to ReD.

Among the different results obtained, the scaling of the peak of the acoustic
spectra in the downstream and sideline directions versus the Reynolds number
is reported in figure 6. The two noise contributions are distinguished with a
fairly constant Strouhal number for the first one, and a Strouhal number
decreasing at lower Reynolds numbers for the second one.
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Fig. 6. Peak Strouhal number versus Reynolds number obtained for the + Mach
0.9 and × Mach 0.6 jets in the downstream direction θ ≃ 30o, and for • Mach 0.9
and Mach 0.6 in the sideline direction, θ ≃ 90o.

Noise-source mechanisms can be identified by establishing direct links
between turbulent flow events and emitted sound waves. In particular, the
causality method can be applied to LES data [33] by calculating the following
normalized cross-correlation function:

Cfp (x1,x2, t) =
〈f(x1, t0) p′(x2, t0 + t)〉

〈f2(x1, t0)〉
1/2

〈p′2(x2, t0)〉
1/2

between two points x1 and x2, at two times seperated by t. A review
from the experimental point of view can be found in reference [34]. Since
all the turbulent quantities are available in simulations, variables such as
f = u′, v′, w′, u′u′, v′v′, w′w′, k (kinetic energy) or ω (norm of the vortic-
ity vector) can be correlated to the acoustic pressure p′. As an illustration,
figure 7 shows the correlation obtained between the centerline vorticity and
the pressure signal at θ = 40o. A significant correlation level is found near the
end of the potential core, and this result still holds when the Reynolds number
varies [33], which corroborates the presence of the coherent-noise component.
In the same way, the correlations between the flow, along the shear-layer as
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well as along the jet axis, with the acoustic pressure are found to be very weak
or insignificant.
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Fig. 7. Identification of noise sources by cross-correlations between vorticity along
the jet axis and pressure at the point •, located at θ = 40o in the acoustic field
for the ReD = 4 × 105 jet. The color scale is defined from -0.14 to 0.14, with white
in the range [-0.035 0.035]. The solid line represents the acoustic propagation time
between the centerline points + and the observer point •. The dotted line shows the
end of the potential core.

5 Perspectives

The present direct noise computations, based on compressible LES with ex-
plicit filtering, support the presence of two distinct jet noise-generation mech-
anisms, corresponding to a decomposition of the turbulent field into coherent
structures and fine-scale turbulence. These two noise contributions have spe-
cific characteristics which can be identified. In particular, the Reynolds num-
ber dependence is well reproduced by the LES for the sound field in the sideline
direction. One of the next step is to include a part of the nozzle to better sim-
ulate the incoming transitional turbulent flow. This work is in progress and
should allow to study noise reduction concepts involving chevrons or beveled
nozzles.
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