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A brief review of recent progress in the field of computational aeroacoustics (CAA) is proposed.
This paper is complementary to the previous reviews of Tam [(1995a) “Computational aeroacoustics:
issues and methods”, AIAA J. 33(10), 1788–1796], Lele [(1997) “Computational Aeroacoustics: a
review”, AIAA Paper 97-0018, 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada] and
Glegg [(1999) “Recent advances aeroacoustics: the influence of computational fluid dynamics”,
6th International Congress on Sound and Vibration, Copenhagen, Danemark, 5–8 July, 43–58] on
advances in CAA. After a short introduction concerning the current motivations of jet noise studies,
connections between computational fluid dynamics (CFD) and CAA using hybrid approaches are
discussed in the first part. The most spectacular advances are probably provided by the direct
computation of jet noise, and some recent results are shown in the second part.
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INTRODUCTION

It was in the early 1950s that jet-engine noise became

a new research domain, and that the noise of turbulent jets

became a branch of aeroacoustics. The first commercial

jet-powered aircraft, a de Havilland Comet operating

between London and Johannesburg, entered into service

on May 1952, and the same year, the first theory of

aerodynamic noise was published by Lighthill (1952,

1982). From the beginning, the high noise levels of jet

engines were deemed to be a serious environmental

problem. Certain airports imposed operational restrictions

or financial penalties, and aircraft noise certification

appeared in the 1970s. World traffic increased regularly,

and up to the 1980s, considerable jet noise reduction was

achieved as a consequence of improvements of propulsive

efficiency, particularly with higher bypass ratio engines.

Nowadays, society cannot tolerate additional noise

pollution, and traffic growth must be compensated for by

quieter aircrafts. Noise regulations are becoming more

stringent (International Civil Aviation Organization

chapter 2 phases out and is replaced by a new chapter 4

in a few years). Furthermore, potential solutions to reduce

jet noise are now often in conflict with the optimization

of engine performance. As a consequence, innovative

methods must be proposed to reduce the jet noise

of existing and new larger subsonic airliners. This is also

a key point to consider in the planning of a second

generation supersonic transport aircraft since the new

subsonic noise legislation may also be applied to them.

In parallel, problems specifically facing military aircrafts

must be tackled.

Prediction methods for jet noise were mainly semi-

empirical until about ten years ago, and were based on

the power laws established by Lighthill (1952) and others

later. Over the last ten years, advances in computational

fluid dynamics (CFD) have made it possible to improve

predictions by replacing flow parameters of these

semi-empirical models by computed values. But the

most spectacular aspect of this period has been the rapid

development of computational aeroacoustics (CAA).

Two main classes of methods have been developed

in CAA. In the first one, concepts that appeared early in

aeroacoustics, namely acoustic analogies or hybrid

approaches, are applied to time-dependent CFD data.

In the second one, the aerodynamic field and the acoustic

field are simultaneously calculated by solving the

compressible unsteady Navier – Stokes equations.

This direct noise computation (DNC) is ambitious, and

allows for a more physical investigation of noise

source mechanisms, but serious numerical issues must

then be addressed.

The goals of each class of methods are different, but in

the end, the aeroacoustics community needs both groups
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of predictive methods to face practical engineering

applications. A modern high-bypass ratio turbofan

engine, such as a CFM-56 engine, has a core jet velocity

Up . 375 m s21 and a temperature Tp . 890 K at take-off

conditions, with an area Ap . 0:296 m2:The bypass stream

or secondary jet exhaust is about Us . 255 m s21; with

Ts . 330 K and As . 1:176 m2:Considering an equivalent

jet with the same thrust, exit area and mass flow, its velocity

is around Uj . 350 m s21 at a temperature of Tj . 400 K:
The Mach number is M . 0:87 and the Reynolds number is

ReD ¼ UjD=n . 3:1 £ 107: At u ¼ 908; the acoustic

spectrum peak, estimated with the relation St ¼ fD=Uj .
0:5; is f . 127 Hz or in terms of acoustic wavelength

l . 2:7 m: In the downstream direction at u ¼ 158;
the relation St ¼ fD=c1 . 0:15 provides f . 37 Hz and

l . 9:1 m: A computation of the pressure signal up to a

frequency of f ¼ 2 kHz requires a cutoff Strouhal number

St . 10: This is, therefore, a high Reynolds number and

broadband problem.

The areas of interest are large in aeroacoustics, and this

paper is restricted to the contribution of CAA towards

improving predictions and better understanding of noise

source mechanisms in subsonic jets. It is not a review with

an exhaustive list of references, and the reader interested

by recent advances in CAA could consult the reviews of

Tam (1995a), Lele (1997) and Glegg (1999) as well as

proceedings of the recent jet noise workshop in Huff

(2001) and other contributions in this issue. The present

paper is organized as follows. In the second section, a brief

history of progress concerning jet noise is presented and

connections between CFD and CAA are discussed.

The direct calculation of noise, as defined before, is

tackled in the third section. Finally, some perspectives are

outlined in the fourth section.

PROGRESS ON JET NOISE

Lighthill’s Theory

The first formulation of an acoustic analogy was derived

by Lighthill (1952). The compressible fluid dynamic

equations are recasted into an inhomogeneous wave

equation, which yields:

›2

›t 2
2 c2

17
2

� �
r 0ðx; tÞ ¼

›2Tij

›xi›xj

ð1Þ

where Tij ¼ ruiuj þ ½ðp 2 p1Þ2 c2
1ðr2 r1Þ�dij þ tij

represents a distribution of equivalent noise sources.

Here, r, ui, p and tij are the instantaneous density, velocity

vector, pressure and viscous stress tensor. The subscript

1 denotes the state of fluid at rest in the far field,

r 0 ¼ r2 r1; and c1 is the speed of sound in the medium

at rest. For jet noise, the contribution of viscous terms can

be neglected in Lighthill’s tensor, and to simplify

the subsequent discussions, entropy fluctuations are

assumed to be unimportant, and are also neglected.

This last assumption could be relaxed if necessary. If the

volume occupied by the turbulent velocity field is far

from the observer, the acoustical density fluctuations are

given by:

r 0ðx; tÞ .
1

4pc4
1x

xixj

x2

ð
›2Tij

›t 2
y; t 2

jx 2 yj

c1

� �
dy: ð2Þ

From this integral solution, Lighthill obtained the

celebrated u8
j law governing the acoustic power radiated

by a subsonic jet. The dimensional analysis was extended

by Ffowcs Williams (1963) to high-speed jets, and reviews

on these subtle integral formulations can be found in

Crighton (1975) and in Crighton et al. (1992).

Statistical Approach

When a numerical calculation of the time-dependent

Lighthill tensor Tij is not available, an alternative approach

is to estimate the autocorrelation function of the pressure

defined as:

Rðx; tÞ ¼
p 0ðx; tÞp 0ðx; t þ tÞ

ðr1c1Þ
:

Using the relation p 0 ¼ c2
1r

0 in the far field, relation (2)

yields, for stationary turbulence:

Rðx; tÞ ¼
1

16p2r1c5
1x2

xixjxkxl

x4

£

ð ð
›4

›t4
Tij½yA; t�Tkl½yB; t þ t� dyA dyB ð3Þ

where square brackets [y, t ] denote the quantity is to be

evaluated at the retarded time t 2 jx 2 yj=c1: Usually,

only the main contribution Tij . ruiuj is retained in the

Lighthill tensor, where r is the local mean density.

Consequences of this assumption are discussed in

the next paragraph. Thus, the closure problem consists

of expressing the fourth-order two-point two-time

correlation tensor:

Rijklðy;h; tþ thÞ ¼ Tij½yA; t�Tkl½yB; t þ t� ð4Þ

where y ¼ yA; h ¼ yB 2 yA is the separation vector and

th ¼ x·h=ðxc1Þ is the variation of the retarded time.

Before modelling Rijkl in Eq. (4), a frame moving with the

energy-containing eddies at the convection velocity is

introduced to separate the convective amplification from

the evolution of the turbulence itself. In this frame, Ribner

(1969) developed the Lagrangian velocity correlations by

using analytical properties of isotropic turbulence

statistics. This analysis was repeated for axisymmetric

turbulence by Goldstein and Rosenbaum (1973). Without

going into further details, it must be observed from Eq. (4)
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that turbulence is assumed isotropic or anisotropic only

locally over the h integration:

Rðx; tÞ ¼
1

16p2r1c5
1x2

xixjxkxl

x4

£

ð
dy

ð
›4

›t4
Rijklðy;h; tþ thÞdh: ð5Þ

This expression can provide an estimate of the jet noise

directivity and space-frequency distribution, by taking the

Fourier transform of R(x,t).

Compressible Part of Tij

In statistical models, and more generally when using

hybrid methods for practical applications, one intends

to get an estimate of the radiated noise when only the

incompressible part of the velocity field is known.

However, by using such an approximation in Lighthill’s

tensor, the acoustic-mean flow interactions are definitively

lost. Thus, convection of noise sources can be taken into

account in Eq. (2) or in Eq. (5) but not the sound waves

which propagate without being affected by the presence of

the mean flow.

To emphasize this important point, useful in interpret-

ing numerical simulations, we consider the Lighthill

integral (2) while still neglecting the effects of viscosity

and entropy fluctuations. If the velocity is split into

ui ¼ ui þ u 0
i; the Lighthill tensor becomes:

Tij ¼

T
f

ij

ru 0
iu

0
j|fflffl{zfflffl}þ

Tl
ij

ruiu
0
j þ ru 0

iuj þ ruiuj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}: ð6Þ

The first part T
f
ij involves quadratic velocity fluctu-

ations, and is responsible for the self-noise component

in Eq. (2). The second part Tl
ij is linear in fluctuations,

and the contribution of the two first terms to Eq. (2)

is called the shear-noise according to Lilley (1958).

This decomposition into quadratic and linear terms is well

known in the field of incompressible turbulence where the

fluctuating pressure generated by a velocity field satisfies

the Poisson equation:

2
1

r1
72r 0 ¼

›2

›xi›xj

ðu 0
iu

0
j 2 u 0

iu
0
jÞ þ 2

›ui

›xj

›u 0
j

›xi

: ð7Þ

The first source term in Eq. (7) is associated to the slow

part of pressure while the term involving the mean velocity

gradients is associated to the rapid part, which is the

leading term in the rapid distorsion theory. This starting

equation was used for instance by Kraichnan (1956) to

derive a statistical modeling of pressure fluctuations in a

turbulent boundary layer.

Reverting to the compressible case, as pointed out

by Csanady (1966) and Lilley (1972) among others, the

linear terms in Eq. (6) are also propagation terms.

Assuming a sheared mean flow ui ¼ U1ðx2Þd1i and using

the conservation of mass, Lighthill’s equation takes

the following equivalent form:

1

c2
1

›2p

›t 2
2 72p

¼
›2ru 0

iu
0
j

›xi›xj

þ 2
dU1

dx2

›ru 0
2

›x1

þ
1

c2
1

›2p

›t 2
2

1

c2
1

D
2
p

Dt 2
ð8Þ

where the differentiation following the mean flow is

denoted D=Dt ¼ ›=›t þ U1›=›x1: To obtain a single

equation on the pressure, the linear term in u 0
2 must be

eliminated. By applying the mean flow convective

operator D=Dt to Eq. (8), and by noting that the

conservation of momentum provides

›

›x1

Dru 0
2

Dt
¼ 2

›2p

›x1›x2

2
›2ru 0

2u 0
j

›x1›xj

; ð9Þ

the following inhomogeneous wave equation is obtained:

D

Dt

1

c2
1

D
2
p

Dt 2
2 72p

 !
þ 2

ðcÞ

dU1

dx2

›2p

›x1›x2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼

ðaÞ

D

Dt

›2ru 0
iu

0
j

›xi›xj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}2 2

ðbÞ

dU1

dx2

›2ru 0
2u 0

j

›x1›xj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}: ð10Þ

The wave operator appearing on the left-hand side of

Eq. (10) is identical to that derived from the linearized

Euler equations (see for instance Goldstein (1976)). As a

result, all the mean flow–acoustic interactions are

included in this propagation operator for a sheared mean

flow. The two source terms (a) and (b) on the right-hand

side are now quadratic in velocity fluctuations. The first

one comes directly from the non-linear term in Lighthill’s

Eq. (8). The second comes from the splitting of the

shearnoise term of Eq. (8) into a propagation term (c) and

the source term (b) by using Eq. (9). Lighthill’s analogy

consists in a reformulation of fluid motion equations, in

which convection and refraction effects as well as noise

generation are included in Tij. When an accurate

estimation of the compressible part of Lighthill’s tensor

is available, mean flow effects are correctly calculated, but

in this case the acoustic field, namely the solution to the

problem, is already known.

Account of Mean Flow Effects in Hybrid Methods

The basic principle of a hybrid approach is to separate the

noise generation from the linear acoustic propagation by

recasting the equations of motion into an inhomogeneous

wave equation L½p� ¼ L: Lilley (1972) showed that for

a sheared mean flow ui ¼ U1ðx2; x3Þd1i; the effective

noise sources can be found in this way, since the wave
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operator L governing the sound propagation is known in

this case:

L ¼
1

c2

D

Dt

D
2

Dt 2
2 7 · ðc27Þ

" #

þ 2
›U1

›xi

›2

›x1›xi

i ¼ 2; 3: ð11Þ

The formulation of the source terms associated with

Eq. (11) raises some discussions (see for example Lilley

(1972) or Goldstein (1976)). One of the latest advances on

the topic is the work of Goldstein (2001), who showed that

at leading order, the source term is given by:

L ¼ 2
D

Dt

›si

›xi

þ 2
›U1

›xi

›si

›x1

with

si ¼ 2r
›u 0

iu
0
j

›xj

: ð12Þ

Expression (11) is a generalization of the operator

appearing in Eq. (10) for a stratified mean flow, for which

c ¼ cðx2; x3Þ; r ¼ rðx2; x3Þ and p ¼ p1 is constant.

Since sound propagation is governed by the linearized

Euler equations (LEE), Bailly et al. (1995) and Bogey and

Bailly (2002a) derived an acoustic analogy directly using

the LEE as a wave operator. In this hybrid approach,

the following equations are solved:

›r 0

›t
þ7·ðr 0u þ ru 0Þ ¼ 0

›ðru 0Þ
›t

þ 7·ðru u 0Þ þ 7r 0 þ ðru 0 þ r 0uÞ·7u ¼ s

›r 0

›t
þ7·½r 0u þ gpu 0� þ ðg2 1Þp 07·u 2 ðg2 1Þu 0·7p¼0

8>>><
>>>:

ð13Þ

where the source term is again given by Eq. (12), having

noted that si ¼ 2›ru 0
iu

0
j=›xj when there is no mean

temperature gradient. The two analogies based on

Eqs. (11)–(13) are equivalent in the sense that the

inhomogeneous wave equation L½p 0� ¼ L derived from

Eq. (13) yields exactly Eqs. (11) and (12).

However, even in the case of a stratified mean flow, the

problem is not so well posed for noise generation.

The homogeneous equation L½p 0� ¼ 0 is a generalization

of the Rayleigh equation to a compressible perturbation in

the space–time domain. As a consequence, the fluctuating

pressure obtained in solving Eqs. (11) and (12) is not

necessarily of acoustic nature, and can also be associated

to instability waves, likely to generate noise. This

mechanism is for example the dominant noise source for

supersonic jet noise. In other words, there is now a

potential generation term on the left-hand side of

L½p 0� ¼ L: In other respects, these instability waves

can overwhelm the acoustic solution of Eq. (13).

High-frequency approximations can be used to remove

them, as proposed in Bogey and Bailly (2002a) for

instance. For a time-harmonic response, Agarwal et al.

(2003) have proposed to filter out the instability waves by

solving LEE in the frequency domain.

Just as for Lighthill’s analogy, statistical models based

on Lilley’s equation have been developed, such as those

derived by Goldstein and Howes (1973) or by Balsa and

Gliebe (1977). Tam and Auriault (1999) recently

developed another approach from the system (13) in

which the source term is taken to be s ¼ 27ð2rks=3Þ;
where ks is the time-dependent part of the turbulent kinetic

energy. Unlike in previous semi-empirical models, the

source correlations are estimated in a fixed frame and

the Green function is obtained from the adjoint solution of

Eq. (13) by following the method elaborated in Tam and

Auriault (1998). This approach was extended by Tam et al.

(2000a) to take into account effects of forward flight on

jet noise.

Role of Instability Waves in Supersonic Jet Noise

It is now well established both experimentally and

theoretically that instability waves play a very important

role in supersonic jet-noise generation. Responsible for

the principle analytical and numerical results in this area,

Tam (1995b) and Morris (2001) have provided two

complementary reviews.

Transition to turbulence and mixing in free shear flows

are driven by large-scale or instability wave structures

even at high Reynolds numbers. These structures were

identified experimentally in the seventies by Crow and

Champagne (1971) among others. From an analytical

point of view, features of these large-scale structures are

well described by the in-viscid linear instability theory.

The linear evolution of small compressible perturbations

is actually governed locally by the homogeneous equation

L½p 0� ¼ 0 where L is defined by Eq. (11) in a parallel

mean flow approximation. The pressure perturbation is

assumed to take the form:

p 0ðx1; r; u; tÞ ¼ Re p̂ðrÞe iðkx1þnu2vtÞ
� �

ð14Þ

and satisfies the compressible form of Rayleigh’s

equation:

d2p̂

dr 2
þ

1

r
2

1

r

dr

dr
2

2k

kU1 2 v

dU1

dr

� �
dp̂

dr

2 k 2 þ
n2

r 2
2

ðkU1 2 vÞ2

c2

� �
p̂ ¼ 0 ð15Þ

written in cylindrical coordinates, with, in this case,

Ui ¼ u1ðrÞd1i: In the spatial theory, well suited to treating

convective instabilities, Eq. (15) with appropriate

boundary conditions at r ¼ 0 and r !1 defines an

eigenvalue problem for the complex axial wavenumber

kðvÞ ¼ kr þ iki:
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For supersonic jets, the size of the large-scale structures

is of the same order as the acoustic wavelength. Thus, a

fraction of the near pressure field generated by instability

waves is expected to radiate into the far field. To determine

this acoustic field, a global solution in which the instability

wave amplitude grows and decays spatially is necessary,

and the expression obtained for the pressure fluctuations

associated with the instability waves must be valid far

from the jet flow. The method was presented in Tam and

Morris (1980) and in Tam and Burton (1984). Considering

a locally parallel flow approximation in which the

characteristics of instability waves with angular frequency

v are governed by the local wavenumber kðv; x1Þ; the

lowest-order pressure perturbation outside the jet associ-

ated with the nth azimuthal mode takes the form:

p 0ðx1; r; u; tÞ ¼

ðþ1

21

ĝðjÞHð1Þ
n ðiljrÞ e iðjx1þnu2vtÞdj ð16Þ

where lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2 2 v2Þ=c2Þ;

p
Hð1Þ

n is the nth-order Hankel

function of the first kind, and the Fourier transform of

g is given by:

ĝðjÞ ¼
1

2p

ðþ1

21

A0e
i
Ð x1

0
kðv;x 0

1
Þdx 0

1

n o
e2ijx1 dx1

where A0 is the initial amplitude of the perturbation at the

nozzle exit. The acoustic far field is then obtained with

the stationary phase method. Only wavenumbers lower

than kc . ðr1=rjÞ
1=2v=cj can contribute to the radiated

acoustic field, which corresponds to the contribution of

components with phase velocities that are supersonic

compared to the relative ambient speed of sound.

The angle of maximum emission occurs at cos u . kp=kc

where kp corresponds to the maximum of jĝj: In this

approach, a direct link is established between the large-

scale structures of the flow and the radiated sound field.

Since the initial amplitude A0 is unknown for each angular

frequency v, only relative levels are obtained, but

comparisons with experimental data by Tam and Burton

(1984) for supersonic jets and by Dahl and Morris (1997)

for supersonic coaxial jets are favorable. For more

complex mean flows, a direct numerical approach

based on linearized Euler’s equations is also possible

(see Mankbadi et al. (1998) for instance).

Connections with Numerical Simulations: from CFD to

CAA

It is worthwhile to review the different strategies available

to connect the acoustic modelings with CFD. The CFD

methods fall usually into one of the three following

categories: direct numerical simulation (DNS), large eddy

simulation (LES) or Reynolds averaged Navier–Stokes

(RANS). In DNS, the Navier–Stokes equations are solved

for all the scales of the flow, without any turbulence

model. In LES, the governing equations are the Navier–

Stokes equations explicitly filtered in space, and a

turbulence model is used to represent the subgrid-scale

stress tensor. In the last category, the RANS, equations are

solved to obtain the mean flow and some statistical

quantities such as the turbulent kinetic energy and the rate

of dissipation. Moreover, unsteady RANS simulation or

semi-deterministic modeling can provide a weakly time-

dependent solution in the sense that only the largest scales

are calculated. For aeroacousticians, another kind of

classification is the compressible nature of time-dependent

simulations, which can directly capture the noise

associated to the resolved part of turbulence if precautions

are taken in the resolution to preserve the sound waves.

This approach is highlighted in the next part of the paper,

and corresponds to the upper part of the sketch in Fig. 1.

The RANS simulations are now an engineering tool in

CFD, and a first reasonable idea is to introduce some data

provided by a k 2 e turbulence closure in statistical

models. Béchara et al. (1995), Bailly et al. (1996, 1997) or

Khavaran (1999) developed such applications to jet noise.

An interesting analysis was developed in Morris and

Farassat (2002) to compare these methods based on

Lighthill or Lilley’s acoustic analogy with the approach

developed by Tam and Auriault (1999) which gives better

predictions. Morris and Farassat showed that, at 908 to the

jet axis, the two kinds of statistical methods yield identical

predictions if the same assumptions are made in the

statistical description of turbulent sources. Again from a

RANS calculation, a stochastic space–time turbulent field

can be synthesized to calculate the source term s in

the LEE (13), e.g. see Bailly et al. (1995, 1999) but the

generation of a suitable random inhomogeneous turbulent

field is a difficult task.

When a time-dependent solution is available, velocity

fluctuations can directly be introduced into Lighthill’s

integral (2) to estimate the radiated acoustic field.

FIGURE 1 Computational aeroacoustics: some methods used for
predicting aerodynamic noise. In the direct noise calculation, the
aerodynamic field and the acoustic field are obtained in the same
computation from DNS, LES, NLDE or URANS, and a wave
extrapolation method (WEM) may be used to obtain the far field.
In hybrid methods, generation and propagation are split into two distinct
steps.
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One of the first applications to jet noise was performed by

Bastin et al. (1997). Application of an integral formulation

requires some numerical precautions, and 3-D calculations

are a costly way of testing different assumptions and

formulations. CAA needs simpler test cases and should

take its inspiration from the evolution of CFD with

reference configurations such as the periodic channel flow.

For aerodynamic noise, sound generated by a plane

mixing layer has turned out to be a very useful model

problem. Colonius et al. (1997) computed the noise

produced by a mixing layer using a DNS with

a computational domain including a portion of the

acoustic field. They also applied Lilley’s analogy with

the acoustic source terms (12) calculated from the

aerodynamic field, and obtained a good agreement with

their DNS.

As an illustration of CAA’s contribution towards better

understanding the previous discussion about Lighthill’s

source term (6), we consider the noise generated by a plane

mixing layer formed by two isothermal streams at Mach

M1 ¼ 0:12 and M2 ¼ 0:48 in the lower and upper parts

respectively. Referring to Colonius, a direct calculation

based on a compressible LES was performed by Bogey

et al. (2000) to obtain the aerodynamic field and a portion

of the acoustic field. The flow development is driven by

forcing the mixing layer at discrete frequencies so that

only the sound generated by the first vortex pairings is

observed in the computational domain. Vortex pairings

occur at x . 70dvð0Þ and the frequency of the radiated

field is l . 51dvð0Þ where dvð0Þ is the initial vorticity

thickness. Figure 2(d) shows a snapshot of the dilatation

field Q ¼ 7·u; which is directly linked to the fluctuating

pressure field in the present case. Mean flow effects on

propagation are well marked especially in the rapid stream

region. For the sake of discussion, the decomposition of

Lighthill’s tensor (6) is repeated here:

Tij . ru 0
iu

0
j þ ruiu

0
j þ ru 0

iuj þ ruiuj: ð17Þ

The acoustic field predicted by Lighthill’s analogy with

the quadratic term T
f
ij ¼ ru 0

iu
0
j is shown in Fig. 2(a), and is

compared in Fig. 2(b) with the solution obtained by LEE

(13) with a free mean flow u ¼ 0 and with the quadratic

source term s given by Eq. (12). This is the self-noise

component. The acoustic field predicted by Lighthill with

the full tensor Tij is displayed in Fig. 2(c). This source term

Tij including all interactions between the flow and the

acoustic waves, the solution is in agreement with the direct

FIGURE 2 Dilatation fields obtained from Lighthill’s integral with (a) T
f
ij and (c) Tij as source terms, (b) from the LEE without mean flow, (d) directly

from the Navier–Stokes equations. All the calculations are 2-D, and quantitative comparisons can be found in Bogey et al. (2003b).

FIGURE 3 Noise generated by the mixing layer. Snapshots of the
dilatation field obtained simultaneously: (a) from the LEE (13) with
source terms (12), (b) directly from the Navier–Stokes equations. All the
calculations are 2-D and quantitative comparisons can be found in Bogey
et al. (2002a).
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noise solution 2(d). As pointed out before, this problem is

academic since the evaluation of Tij requires the

calculation of the acoustic field. The result obtained by

applying the LEE (13) with the source term s given by

Eq. (12) is shown in Fig. 3, and is in good agreement with

the reference solution. Coupling with instability waves is

discussed in more detail in Bogey et al. (2002a). In this

case, we have an acoustic analogy of practical interest

since only the aerodynamic velocity fluctuations are

needed to evaluate the source term, and mean flow effects

are fairly well calculated by the resolution of the LEE.

DIRECT COMPUTATION OF JET NOISE

Specific Numerical Issues for Jet Noise

As illustrated in the previous section, turbulence and

acoustics are inextricably linked. Some strategies

connecting CFD results to different acoustic theories

represented in Fig. 1 have been briefly described in

the previous section. An alternative to these methods is the

DNC, where the aerodynamic field and the sound field are

determined in the same computation using a mesh

including a part of the acoustic field. This approach was

introduced by the Stanford group with the work of

Colonius et al. (1997). The DNC solution can be used as a

reference solution to support the validity of hybrid

methods as shown previously. But this kind of calculation

also allows for the improvement of our knowledge of

noise generation mechanisms by showing links between

turbulence dynamics and the acoustic waves.

There are some important key issues specific to

DNC, reviewed by Tam (1995a) and Lele (1997).

Aerodynamic noise is characterized by small amplitude

fluctuations, typically u 0
acous=u 0

aero , 1023 to 1024 and

p 0
acous=p 0

aero , 1022 for a jet at M ¼ 0:9; and by large

length scales with an acoustic wavelength l=du , 102;
where du is the shear-layer momentum thickness of the

velocity profile at the nozzle exit. Low dispersive and low

dissipative numerical schemes must be used to preserve

acoustic waves propagating in the computational domain.

Inflow boundary conditions must seed the transition of the

jet flow without producing spurious noise, and what is

more, non-reflecting and outflow boundary conditions must

be implemented. The exit of subsonic vortical disturbances

from the computational domain is also a crucial point, and

there is no exact way to deal with this problem but only

practical approaches involving sponge or buffer zones, as

explained in Colonius et al. (1993), in Freund (2001) or in

Bogey et al. (2002b, 2003a) for instance.

Numerical constraints intrinsic to aerodynamic simu-

lations must also be satisfied. The ratio between the integral

longitudinal length scale L , D and the acoustic length

scale l is L=l , St £ M: For a DNS, the number of points

in one direction is nx , l=lh , Re
3=4
L =ðSt MÞ using the

relation L=lh , Re
3=4
L for isotropic turbulence where

ReL ¼ u 0L=n and lh is the Kolmogorov scale. The number

of mesh points is N , n3
x ; the time step isDt , lh=c and the

number of time steps is linked to nt , ðL=UjÞ=Dt; which

yields a cost of N £ nt , Re3
L=ðM

4 St3Þ: For an LES, the

number of points in one direction is given by nx , l=lg ,
Re

1=2
L =ðSt MÞ where lg is the lateral Taylor microscale and

L=lg , Re
1=2
L for isotropic turbulence. A similar reasoning

leads to a cost of N £ nt , Re2
L=ðM

4 St3Þ:
Thus, the grid requirements of both LES and DNS are

difficult to achieve, even just to simulate laboratory

experiments with typical jet exit Reynolds numbers of

about 106. The parameters of some recent three-dimen-

sional simulations of jet noise are provided in Table I. They

involve jets at low Reynolds number, ReD , 103; for DNS

and up to about ReD , 106 for LES, using grids of several

million points. Note that in supersonic, only very LES can

be done since large-scale structures are the essential

contribution to the radiated noise.

An alternative implementation of LES for noise cal-

culation has been proposed by Morris et al. (2002). The

resolved variables are split into a time-independent mean

value and a perturbation, and the assumed mean flow can be

based on a steady RANS solution. An increased accuracy is

expected with the nonlinear disturbances equations

(NLDE) in working on perturbations about a mean flow.

Direct Calculation of Subsonic Jet Noise

The choice of simulation parameters for a direct calculation

of subsonic jet noise is more ambiguous than for supersonic

TABLE I Parameters of some recent simulations dealing with the direct calculation of jet noise in 3-D

Authors Method M ReD Mesh points

Freund et al.(1998, 2000) DNS 1.92 2.0 £ 103 22.1 £ 106

Choi et al. (1999) LES 1.39 2.0 £ 106 2.16 £ 106

Morris et al.(1999) LES 2.1 ,106 1.03 £ 106

Freund (1999, 2001) DNS 0.9 3.6 £ 103 25.6 £ 106

Bogey et al.(2000, 2003a) LES 0.9 6.5 £ 104 6.05 £ 106

Zhao and Frankel (2000) LES 0.9 3.6 £ 103 2.05 £ 106

Constantinescu and Lele (2001) LES 0.9 7.2 £ 104 3.9 £ 106

Shen and Tam (2002) URANS 1.1–1.6 – –
Lupoglazoff et al. (2002) LES 0.7 1.2 £ 106 2.4 £ 106

Bogey and Bailly (2002a,b) LES 0.9 4.0 £ 105 16.6 £ 106

Uzun et al. (2003) LES 0.9 1.0 £ 105 12 £ 106

Bogey and Bailly (2003a,b) LES 0.9 4.0 £ 105 12.5 £ 106

This is absolutely not an exhaustive list of references on the topic
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jet noise. The dependence of jet noise with respect to the

Reynolds number is indeed controversial. Measurements

show a directivity well marked even at low Reynolds

numbers, but characteristic broadband acoustic spectra are

only obtained for large Reynolds numbers about ReD $

105; where a rapid transition of the shear layer occurs at the

nozzle exit. Such a Reynolds number corresponds also to a

Reynolds number based on the Taylor scale lg of Relg $

500;which is required to establish an inertial subrange after

Corrsin (see Gibson, 1963). Thus, convincing discussions

about noise mechanisms and noise predictions will be

achieved only by increasing the simulated Reynolds

FIGURE 4 Direct computation of noise from LES, circular jet at
M ¼ 0:9 and ReD ¼ 6:5 £ 104; see Bogey et al. (2003a) for details.
Snapshot of the dilatation field Q ¼ 7·u in the acoustic region, and of the
vorticity field vz in the aerodynamic region, in the x 2 y plane at z ¼ 0:
Note that D ¼ 2r0:

FIGURE 5 Direct computation of noise from LES, circular jet at
M ¼ 0:9 and ReD ¼ 6:5 £ 104; see Bogey et al. (2003a) for details.
Overall sound pressure level as a function of angle u measured from the
jet axis, at 60r0 from the jet nozzle, and comparison with experimental
data for different Reynolds numbers.

FIGURE 6 Circular jet at M ¼ 0:9 and ReD ¼ 6:5 £ 104: Snapshot of
the vorticity norm jvj in the plane z ¼ 0 (a), at t* ¼ 6:2; (b), at t* ¼ 7:5:

FIGURE 7 LES of a circular jet at M ¼ 0:9 and ReD ¼ 4 £ 105:
Snapshot of the vorticity jvj in the flow and of the fluctuating pressure p0

outside. Left: in the x 2 y plane at z ¼ 0: Right: in the y 2 z plane at
x ¼ 11r0: The color scales are from 0 to 8 £ 104 s21 for the vorticity and
from 270 to 70 Pa for the pressure. From Bogey and Bailly (2002c).
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number. LES should be the appropriate way, but the effects

of turbulence modeling on aeroacoustics must be carefully

evaluated beforehand.

In what follows, two configurations at different

Reynolds numbers involving a circular subsonic jet with

a Mach number M ¼ 0:9 and initially transitional shear

layers are shown. The noise generated by the jet is

obtained directly by LES in both cases.

Moderate Reynolds Number Jet

The first three-dimensional flow simulated by LES in our

group was a circular jet with a Mach number M ¼ 0:9 and

a moderate Reynolds number ReD ¼ 6:5 £ 104: The inflow

shear layer was forced with random velocity disturbances

to seed the turbulence and the Smagorinsky model

was used. The dimensionless simulation time was

TUj=D ¼ 300; which is long enough to achieve statistical

convergence both for the flow and the sound field. All the

parameters of the simulation, and also validations by

comparison with measurements, can be found in Bogey

et al. (2003a). Figure 4 displays, in the plane z ¼ 0;
the vorticity field vz in the flow and the dilatation field

Q ¼ 7·u: outside, both directly obtained from

the simulation. The acoustic wave fronts generated

by the jet are clearly visible, and they originate mainly

from the region where the mixing layers merge, around

x ¼ 11r0
ðD ¼ 2r0Þ:

The sound pressure levels, calculated by integrating the

sound spectra, are presented in Fig. 5. They are in good

agreement, for all observation angles, with experimental

data from jets with similar Mach numbers but varying

Reynolds numbers. As expected, the acoustic levels reach

a peak for an angle of about u ¼ 308. For higher angles,

the levels of the computed ReD ¼ 6:5 £ 104 jet stand

between the levels measured for the ReD ¼ 3:6 £ 103 jet

and those measured for the ReD . 5 £ 105 jets. This can

be attributed to a Reynolds number effect, since the fine-

scale turbulence, which becomes important at high

Reynolds numbers, generates sound which may be

predominant at large observation angles.

Animations of visualizations of both the flow and the

acoustic radiation suggested that the noise observed for an

angle of 308 comes principally from the region where the

shear layers merge, at the end of the potential core.

Thus, the downstream noise generation mechanism

appears to be associated with the sudden accelerations of

turbulent structures as they periodically enter the high-

speed jet core. To support this, looking at the dynamics of

vortical structures through the vorticity field, the shear

layers can be distinguished up to x ¼ 15r0 in Fig. 6(a), but

only up to x ¼ 11r0 in Fig. 6(b). Turbulent structures

originating from the shear layers have penetrated into the

jet core near x ¼ 10r0; and they have been suddenly

accelerated by the higher flow velocity. It can be shown

that this periodic phenomenon is correlated with the

pressure signal captured at u ¼ 308 for the simulated

moderate Reynolds number jet. For larger emission

angles, the acoustic field appears rather associated with

more random flow events, generating broadband

frequency noise. Among these sources radiating in the

sideline direction, some are likely to be located in

the turbulent shear layers where vortical structures interact

as suggested in Zaman (1986).

High Reynolds Number Jet

Subsequently to the simulation reported in the previous

section, the LES of a jet at the same Mach number but at a

higher Reynolds number ReD ¼ 4 £ 105 yielding a jet

diameter of D ¼ 2 cm was carried out in Bogey and Bailly

(2002c). An explicit spectral-like filtering has been used for

modeling the dissipative effects of the unresolved scales.

Two simulations using mesh grids of different sizes, one

extending far away downstream, referred to as LESaero,

and one including a part of the acoustic field, referred to as

LESac, were performed to show that the flow development

is not dependent on the location of the grid boundaries.

Flow and sound features are in good agreement with the

measurements available in the literature for a high

Reynolds number, particularly regarding the changes in

the acoustic field according to the observation angle. A

view of the vorticity field in the jet and of the pressure field

outside is displayed in Fig. 7. The vorticity fields show a

large range of vortical scales, with the presence of a fine

turbulence in accordance with the high Reynolds

number. Two kinds of acoustic waves are again visible:

a low-frequency component with high amplitude propaga-

ting in the downstream direction, and a higher frequency

component for large angles appearing to come from the

turbulent axisymmetric shear layer around x . 8r0:Effects

of the inflow conditions as well as of the subgrid-scale

modelings on the jet properties have been investigated

recently in Bogey and Bailly (2003a,b). To exhibit again

links between the turbulence and the noise radiated

downstream, the sound pressure spectrum at u . 308 and

the centerline profile of the axial velocity fluctuations are

represented in Fig. 8. In addition to the LESac results,

results corresponding to three other simulations with

different inflow conditions are shown. With respect

to LESac, the amplitude of the forcing is divided by two

in the LESampl simulation, the shear layer is thinner in the

LESshear simulation and the first four azimuthal modes in

the forcing are removed in the LESmode simulation.

Despite the various in-flow conditions, the four acoustic

spectra are quite similar with a peak around St . 0:3 in

agreement with experimental observations. This suggests

the mechanism involved for noise generation is the same

for the different simulations and is identical to the one

described in the preceding section. For the four

simulations, the u 0
rms peak values are arranged in the

same order as the downstream noise levels. A smaller

forcing amplitude enhances the u 0
rms peak value while a

thinner shear layer reduces this peak in accordance with the

DNS results of Stanley and Sarkar (2000) for a low

Reynolds number plane jet. As reported by Bogey
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and Bailly (2003a) in a more detailed analysis, the most

important changes in the flow and sound properties are

obtained by removing the first azimuthal modes in

building the forcing. In this case, the jet develops later

and slowly, and turbulence and noise levels are signifi-

cantly reduced.

CONCLUSIONS

The direct noise calculation (DNC) is an outstanding

method to correlate turbulence events with the sound far

field. Such an analysis is necessary to improve our

knowledge of jet noise mechanisms and to understand

control of the optimizations of the turbulent flow with the

aim of reducing noise.

In conclusion, we have chosen to emphasize three

points among many others. First, turbulence is neither just

large-scale structures, nor just fine-scale structures.

Experiments indeed show that turbulence in jet flows has

broadband continuous spectra including coherent struc-

tures. This behavior is retrieved in the recent empirical

model of Tam and Zaman (2000b) involving similarity

spectra. The model is based on two spectral components.

One is associated to large-scale structures and dominates

for angles close to the jet axis with a sharp peak at

relatively low frequency, and the other one corresponds

to fine-scale structures with a broad spectral peak.

Experimental data are well approximated by the model.

Second, in the context of DNC, LES seems the better tool

to clarify Reynolds number effects on subsonic jet noise.

But subgrid-scale modelings must be seriously discussed

for LES, as suggested in Pruett (2001) for instance.

LES for high Reynolds flows raised some questions about

the influence of the turbulence closure on aeroacoustics.

The recent work of Bogey and Bailly (2002c), for

example, shows that the exit Reynolds number of the

simulated flow is recovered by using an optimized solver

with high-order explicit filters and no subgrid-scale

model. Third, numerical simulations need experimental

data in which turbulence and acoustics are measured

together. High Reynolds number flows must be charac-

terized in order to validate turbulence closures of LES.

Also, DNC must be used to guide experimentally

investigatations of noise source mechanisms. This synergy

between computation and experiments is a key point if

rapid advances are to be hoped for.
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