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The aim of this work is to develop a new solver for the Stochastic Noise Generation and
Radiation (SNGR) model. This solver of the linearized Euler’s equation is obtained by
using a dispersion relation preserving (DRP) scheme in space combined with a fourth-order
Runge-Kutta algorithm in time. The one-dimensional, linearized and full Euler’s equations
are integrated to test the numerical dispersion and dissipation properties of the solver.
Some test cases from workshops in computational aeroacoustics are investigated. The two-
dimensional linearized Euler equations are then solved with the same numerical algorithm,
and the radiation boundary conditions of Tam & Webb are implemented. Finally, the case
of an acoustic source in a sheared mean flow is computed and the numerical solution is
compared to ray tracing and to the results predicted by the inviscid linear instability
theory.

1 Introduction

The Stochastic Noise Generation and Radiation (SNGR) model is an alternative way to compute
turbulent mixing noise*!®: Linearized Euler’s equations are solved with a stochastic turbulent source
term generated by a sum of random Fourier modes. As a consequence, all the mean flow effects are
taken into account in the acoustic propagation,? and complex aeroacoustic configurations such as noise
generated in a duct obstructed by a diaphragm can be treated.® The aim of this study is to improve
the solver of the SNGR model. In the previous method a directional splitting was applied, and the
one-dimensional solver was based on a weak formulation of the linearized Euler equations'® in order
to calculate two-dimensional and axisymmetric solutions. There are some difficulties in applying this
formulation to a three-dimensional calculation.

In the present paper, the numerical solution of the linearized Euler’s equations is obtained by

using the 7-point stencil, dispersion relation preserving (DRP) scheme of Tam & Webb'? in space
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combined with a fourth order Runge-Kutta scheme in time. The second section describes the one-
dimensional solver. The radiation of an acoustic source in a subsonic and a supersonic mean floy is
then investigated in section 3. Section 4 deals with the full Euler’s equations, which are integrated
with the same space-time scheme, and a test case of a workshop in computational aeroacoustics!? ig
studied. This method is then applied to the two-dimensional linearized Euler equations in sectjop 5.
Finally, the radiation of an acoustic source in a sheared mean flow is treated in section 6, and the

numerical solution is compared to a ray-tracing.

2 One-dimensional solver

The one-dimensional Euler equations, linearized around a stationary mean flow, can be written ag

follows: by op
5t T TH=S M

where U is the vector of unknows, E a flux vector and H a vector which is equal to zero when the

mean flow is uniform:

0
PI pluo T Poul / / / 8u0
U= | pou E= Uppott + p’ H= (Pott + p uo) oz
P uop' + pou’

O, ,0po
(v—l)paz (v l)u%

The density p’, the velocity u’ and the pressure p" designate small perturbations superimposed on a
mean flow of density p,, velocity u, and pressure p,. 7 designates the ratio of specific heats, vy = 1.4
for air. The vector S represents possible unsteady sources. All the variables are nondimensionalized
with the following scales: Az for the length scale, ¢, for the velocity scale, Az /e, for the time scale, p,
for the density scale and p,c? for the pressure scale, where Az is the mesh step size and c, the ambient
sound speed. The 7-point DRP scheme of Tam & Webb!3 is used for the spatial discretization. The

first derivative of any quantity f at the ith node of a uniform grid writes:

of 2
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The authors chose the coefficients'3*® a; of their spatial discretization by requiring that the wave
number & provided by the finite difference scheme be a close approximation to the expected wave
number. This optimized fourth-order scheme is better than a non-optimized sixth-order scheme using
the same 7-point stencil. Figure 1 illustrates the characteristics of the DRP scheme in comparison
with some standard central finite differences (CFD). Using the criterion |k — k| < 0.005, the resolution

for these schemes in terms of points per wavelength is:
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CFD second-order kAz < 0.30 AJAz > 21.3
CFD fourth-order kAz < 0.67 AAz > 9.3
CFD sixth-order kAz <0.96 A/Az > 6.6
7-point DRP scheme kAz < 1.16 AAz > 5.4
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Figure 1: Wave number of the scheme kAz as a function of the wave number Az, and dk/dk versus
kAz for the DRP scheme of Tam & Webb —— | and some standard central difference schemes: - - -
second-order, — — — fourth-order and — - — - sixth-order.

In some cases it is necessary to remove spurious numerical oscillations due to non linearities or
mismatches with the boundary conditions, for instance. These short waves can be filtered by an
artificial selective damping proposed by Tam & Shen.!* For the system (1), the spatial discretization
is then given by:

oU; 2 1
5 =~ 2 WBii -7 3 Ui —Hi+ S (3)
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where R; is the mesh Reynolds number, which is usually taken on the interval [5 ; 10]. The notation
R; = oo will designate a calculation without artificial damping. The coefficients!*!® d; are chosen
to damp only the short waves and not the long waves corresponding to an accurate resolution of
the DRP scheme. The Fourier transform of the damping function collapses to the Gaussian function
exp [— In2((kAz — ) /0)2] with a half-width of o = 0.27 for the linearized Euler’s equation.

~ In this work we don’t use the time advancement proposed by Tam & Webb!3 because of the low
Courant-Friedrichs-Lewy (CFL) number corresponding to the stability limit, i.e. CFL < 0.228 without
mean flow. A four step Runge-Kutta algorithm is chosen for its high stability limit and its low storage

requirement. The solution at time step n 4 1 is obtained by the following algorithm:

Ul = U? 4 o AtK?

U? = U?+ ayAiK} (4)
U? = U?+ asAtK?

UM = U+ auAt (KP + D7)

with:
3
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The coefficients a; are chosen to obtain a fourth-order accuracy in time when the spatial operator

is linear.® In this case, the stability limit corresponds to a CFL < 1.73, and the accuracy limit is CFL
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< 0.73. Two other time integrations have been investigated, and a numerical result is given in the
section dealing with nonlinear propagation.

The boundary conditions are very important in computation aeroacoustics!® (CAA). Indeed, be-
cause of the high quality of the solver, any disturbance of small amplitude can be propagated in the
computational domain, and the numerical solution is then contaminated. For the present applications,

a linear version is implemented based on the general solution of the linearized Euler’s equations!S-

1 1 1
T z T
. 14 Z_lol|+H )] -
v =) . +6(57-1) il (T +) . (5)

where F', G and H represent respectively the outgoing acoustic wave, the entropy wave and the
incoming acoustic wave. M = U,/¢, is the Mach number of the mean flow at the boundary of the
computational domain. Two systems can be derived by differentiation’? for the inflow condition and
the outflow condition. The one-dimensional problem is easier to study since the velocity disturbance

is purely of an acoustic nature.

3 Source radiation in one-dimensional flow

Several test problems can be found in the literature!? to evaluate algorithms in CAA. We propose
in this paper to compute the radiation of a source in a subsonic mean flow at M = 0.5 and in a
supersonic mean flow at M = 1.5. The time step is At = CFL/ (1 + M) with a CFL number of 1 and
a mesh Reynolds number R, = 10. The source is implemented by using the vector S in equation (1)
with:

S (z,y) = 0.5sin (wt) e~z
1
where @ = In (2) /9. The source is located at 2, = 200 over the domain 0 < z < 400 and its wavelength
is A = 40. In figure 2 the iso-contours of the pressure are plotted for the subsonic and the supersonic
case. We can observe the two acoustic waves which propagate at the velocity 1+ M with an apparent
wavelength A. = (14+ M) A. Two profiles of the pressure are displayed in Figure 3 and are compared
to the analytic solution derived from the elementary Green function given in appendix A. The two
acoustic waves which propagate upstream and downstream in the subsonic case, and only downstream
for the supersonic case, are calculated very accurately, without spurious oscillations near the source.
The artificial selective damping is not necessary in subsonic flow but improves the results in supersonic

conditions.

4 Nonlinear acoustic propagation

As suggested by Tam,'*!? we use the same method to calculate the nonlinear wave propagation
from the full Euler equations:

p e
8U+§—E—:0 with U= | pu and E=| pu’+p (6)

ot oz . u(es + p)
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Figure 2: Source radiation in a subsonic and supersonic mean flow. Instantaneous contours of the
logarithm of the pressure log;o |p|, isolines from -1.4 to 0.2 (increment 0.4).
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Figure 3: Profile of the pressure for source radiation in a mean subsonic flow at M = 0.5 and supersonic
mean flow at M = 1.5. —— numerical solution, ----- analytical solution.

)



600

where the total specific energy is e, = pe + pu2/2 = p/ (v = 1) + pu?/2 for a perfect gas. In the
numerical integration, only the formulation of the damping is modified.’® The mesh Reynolds number
is now calculated as R, = u; where Us = |Umaz — Umin| is the difference between the maximum and
the minimum velocity in the 7-point stencil. We use the value R, = 0.05 as suggested by Previous
numerical studies.'®®*'? This numerical integration is applied to the following initial value problem 12
At time ¢ = 0 the velocity profile is u (z,0) = 0.5 exp (—az?) with:
2 24
:(1-&71—_1£>7Tl and p:l<1—}-7*_1£>7——T
: Y 2 o

where a = In (2) /25. An approximate analytical solution can be found by considering the simplified
wave equation obtained by assuming isentropic fluctuations:
ou < v+ 1 > ou

g T\t 5, =0

and by the use of Whitham’s equal area rule!™!! to determine the location of the shock. Pigure 4 shows
the evolution of the velocity in time. We observe the shock formation and at time ¢ = 200, see Figure
5, the velocity profile is triangular in shape. The approximate analytical solution matches well with
the calculated solution: As pointed out by Tam, the Whitham’s method produces a shock at a slower
velocity, and the numerical solution is usually more accurate. The artificial damping eliminates most
of the oscillations near the leading edge. Three time algorithms have been used for this calculation?:
the non optimized fourth-order, four-stages Runge Kutta scheme:; the optimized sixth-order, six-stages
Runge-Kutta scheme; and the optimized third-order; four-levels DRP scheme of Tam & Webb. The
differences between these time integration schemes are too small to be noticed. However, a Runge-
Kutta method requires a stability CFL number of 0.40 rather than 0.05 for the DRP scheme. The
combination of the 7-point stencil DRP scheme in space with a standard fourth order Runge-Kutta
algorithm in time seems an interesting compromise for computing linear and weakly nonlinear acoustic

propagation based on its high stability CFL number, good accuracy and low storage.

5 Two-dimensional solver

We consider now the two-dimensional Euler equations linearized around a stationary mean flow.

The components of the velocity are denoted u = (u,v) and the system corresponding to (1) is:

0U QE QF
—+—+—+H=0 7
ot * Oz + dy T B (M)
where the unknown vector U and the flux vectors E and F are written:
P’ P'uo + pou’ p'v6 + pov’
7 / 7 I3
T = pou/ E= UoPoU +,P Fs vgp,ou ,
Po? UoPoV UoPo¥ + p
v uop’ + 7pou’ voP' + 7pov’

The vector H contains mean flow gradient terms, which are equal to zero when the mean flow is
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Figure 4: Evolution of the velocity at times ¢ = 0, ¢ = 40, ¢t = 80, t = 120 and ¢ = 160 with
R, = 0.05. — fourth-order Runge-Kutta scheme (CFL=0.40), ----- sixth-order Runge-Kutta scheme
(CFL=0.40).
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Figure 5: Velocity profile at time ¢ = 200, with R, = 0.05. —— fourth-order Runge-Kutta scheme
(CFL=0.4), ----- optimized fourth-order, six-stages Runge-Kutta scheme (CFL=0.40), — - — - space-

time DRP scheme (CFL=0.05). - approximate analytical solution.
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The computational method (4) is used with the following expressions for the spatial derivativeg

when the computational domain is discretized on a regular mesh:

2 I .
Kii=-> a (Ef‘lz,y‘ + Ff,j+z) - Hj; +Sf; and D}, = T 2. % (Ui"+1,j + Uffj+z)
|==3 I=-3

The boundary conditions of Tam and his colleagues!3'5 have been implemented. Without a mean
flow, we use a radiation Boundary condition for outgoing acoustic waves, based on an asymptotic
solution of the linearized Euler’s equations. For an outflow condition, the pressure disturbance is
an acoustic fluctuation, which is not the case for the velocity and density disturbances. For these
last two variables, Euler’s equations are used.!3 F inally, a set of compatibility first-order differential
equations is solved. To demonstrate the performance of the numerical method, the following initia]

value problem has been solved:

2 2
f(:‘v’yat:O):GeXp —In2 (.T .'ES) —;—(y ys)

where the function f described the three initial perturbations:

perturbation f € ) % Ys
acoustic 0.01 9 0 0
entropic 0.001 25 33 33
vorticity 0.004 25 33 33

For the vorticity disturbance, the function f is the stream function. The mean flow at Mach
M = 0.5 is in the direction of the diagonal of the computational domain: —100 < z < 100 and
—100 < y < 100. Radiation boundary conditions are imposed at the bottom and left boundaries of
the domain, and the outflow boundary conditions are applied to the two other sides of the domain.
The density contours are plotted in Figure 6. The three perturbations arrive at the same time to the
upper right-hand corner of the domain. The density profile along the diagonal line z = y is plotted in
Figure 7 for several times and for two values of the CFL number: CFL =1 and CFL = 0.5. To get an
accurate numerical result, the CFL number must be smaller to take into account the effective space
step v/2Az on the diagnonal line. In this last case, the difference between the exact solution!®'? and

the numerical one is less than 10~6. There is no added damping in these calculations, i.e. R, = co.

6 Source radiation in the Bickley jet

The two-dimensional solver of the linearized Euler equations is applied to calculate the source
radiation in a sheared mean flow. We use the Bickley jet for the mean axial velocity:

Uy 1
(y) = oy (8)
Ugpe cosh” g
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Figure 6: Iso-contours of the density at times ¢t = 0, t = 20, t = 40 and ¢ = 60. —— isolines 1072,
1073, 1074, 1073, ----- isoline 1078, — - — - isoline 1077.
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Figure 7: Profiles of the density along the line ¢ = y, there is a time interval of 10 between each profile.
—— numerical solution, ----- exact solution. The left and right figures correspond to a numerical
solution with a CFL number of 1 and 0.5, respectively.
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source high frequency | low frequency
wavelength A=9 A'=50
Strouhal number Ste=422 St = 0.76
convected wavelength Az = 1305 X: =75
wave number a = 5.01 a = 0.90

Table 1: Characteristics of the two acoustic sources. The Strouhal number is defined as St = (c/A) x
26 /ugze. The convected length wave is A, = (14 M)A, and the normalized wave number is & =

27/ (BAc)-

where 7 is the normalized transverse coordinate, § = By with 8 = cosh™! (\/5) / (3@) ~ 0.0929
and %gze = 0.5. The value of B is chosen such that the velocity profile’(8) collapses to a Gaussian
profile u, (y) = 0.5¢™*¥" with a = In (2)/90. The half-width is then b = 3v/10. The Bickley profile
has an inflexion point at § = tanh™? (1/\/§>, and as a consequence, this profile can be unstable for
inviscid linear disturbances.

It is well known that the three modes supported by linearized Euler’s equations, namely the
acoustic waves, the entropy wave and the vorticity wave, are coupled for a nonuniform mean flow.
In particular for the present work, the vorticity mode can be excited by the sound waves and by the
acoustic source itself. Drazin & Howard” have studied the linear insvicid instability of the Bickley jet
(8). A linear velocity fluctuation described by the stream function % (z,y) = ¢ (y) e*(#=<1) ig yunstable
if the wave number « is such that 0 < a < 2 for the even mode (sinuous oscillations) and 0 < a < 1
for the odd mode (varicose oscillations); in these cases the wave speed c is written ¢ = ¢, + ic; with a
positive imaginary part ¢; > 0.

Two calculations have been performed for two frequencies of the acoustic source. The first one is
a high frequency corresponding to a stable response of the Bickley jet. The second case corresponds
to an unstable excitation of the vorticity mode. Table 1 gives the characteristics of the two acoustic
sources. The computational domain is rectangular, extending from -200 to 200 in z and in y. Thus,
the size of the regular mesh is 400 x 400 points. The acoustic source is located at z = —100 and y = 0.
All the calculations are performed with a CFL number of 1, without the artificial selective damping.

The acoustic source is implemented in the linearized Euler’s equations with:

In2

S(z,y) = esin (wt) e=o(="+4") where a = o and ¢=0.01.

O O =

Figure 8 shows iso-contours of the pressure for the two frequencies. The radiation pattern is
strongly modified by the mean flow. The acoustical intensity reaches a peak downstream near the angle
¢ given by cos@ = 1/ (1 + M). For smaller angles, the intensity decreases due to the refraction effects,
and a shadow zone is observed. These results are in agreement with the geometrical approximation
valid for high frequencies. A ray tracing is plotted in Figure 9 for the high frequency source. The

equations used are given in appendix B. The characteristics of the source radiation are well retrieved,
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Figure 8: Instantaneous contours of the pressure at time ¢t = 640 for the two source frequencies, 21
iso-lines on the [0 ; 0.02] interval.

and the wave fronts have the same oval pattern. The vorticity is displayed in Figure 10 for the two
frequencies. As predicted by the linear instability theory, vorticity disturbances appears downstream
of the location of the source, and do not decrease for the low frequency acoustic excitation. We can
observe vorticity upstream of the source, which is produced by interaction with acoustic waves in the
shear zome: this is the only way to get vorticity, because the vorticity fluctuations are necessarily
convected by the mean flow. We know” for the odd mode the expression of ¢ for the value o = 1
of the wave number. This eigenfunction associated with symmetrical oscillations of the velocity is
# (y) = tanh y/ coshy. Then the calculation of the vorticity leads to:
W= 3_12( e 3_u_' = [_dz_qs 4 a2q5:| eia(z—ct)
dz 0Oy dy?
which is an odd function of y. In the numerical simulation, the value of the wave number « is close

to unity, o = 0.9, and the calculated fluctuations of vorticity are an odd function of the tranverse

coordinate y too.

7 Concluding remarks

The linearized Euler’s equations govern propagation of acoustic fluctuations and the SNGR model
provides a means to generate the aeroacoustic sources. This alternative way with respect to a direct
numerical simulation for computing the turbulent mixing noise requires a good solver. The combina-
tion of the 7-point DRP scheme of Tam & Webb in space with a fourth order Runge-Kutta algorithm
in time leads to very good results in terms of accuracy, stability CFL number and low storage. The
source radiation in a shear flow shows that CAA allows us to improve our understanding of acoustic

— mean flow interaction and to be hopeful about good results for the three-dimensional SNGR model.
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Figure 9: Ray tracing for the high frequency source. The angle of the shadow zone given by cosf =
1/(1+ M), that is 6 ~ 48°, is well retrieved. The wave fronts are marked by the diamonds.
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Figure 10: Iso-contours of the vorticity for the low frequency source (a) and for the high frequency
source (b) at time t = 160, t = 320, t = 480 and ¢ = 640.
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