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Abstract The aerodynamic evolution and the acoustic radiation of elliptic vortices with various aspect ratios
and moderate Mach numbers are investigated by solving numerically the full compressible Navier–Stokes
equations. Three behaviours are observed according to the aspect ratio σ = a/b where a and b are the major
and minor semi-axes of the vortices. At the small aspect ratio σ = 1.2, the vortex rotates at a constant angular
velocity and radiates like a rotating quadrupole. At the moderate aspect ratio σ = 5, the vortex is initially
unstable. However the growth of instability waves is inhibited by the return to axisymmetry which decreases
its aspect ratio. The noise level becomes lower with time and the radiation frequency increases. For vortices
with larger aspect ratios σ ≥ 6, the return to axisymmetry does not occur quickly enough to stop the growth
of instabilities, which splits the vortices. Various mergers are then found to occur. For instance in the case
σ = 6, several successive switches between an elliptic state and a configuration of two co-rotating vortices are
observed. The present results show that the initial value of the aspect ratio yields the relative weight between
the return to axisymmetry which stabilizes the vortex and the growth of instabilities which tends to split it.
Moreover the noise generated by the vortices is also calculated using the analytical solution derived by Howe
(J. Fluid Mech. 71:625–673, 1975) and is compared with the reference solution provided by the direct compu-
tation. This solution is found to be valid for σ = 1.2. An extended solution is proposed for higher aspect ratios.
Finally, the pressure field appears weakly affected by the switches between the two unstable configurations in
the case σ = 6, which underlines the difficulty to detect the split or the merger of vortices from the radiated
pressure. This study also shows that elliptic vortices can be used as a basic configuration of aerodynamic noise
generation.
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1 Introduction

Two-dimensional flows such as simple vortices have been intensively investigated in the past. These configura-
tions seem elementary, but they are very useful to understand the evolution of coherent structures in numerous
flows. For instance, elliptic vortices allow one to consider vortical configurations encountered in geophysical
flows [19,20] or to model anisotropic effects of vortices [11,15].

The first works on elliptic vorticity distributions were analytical investigations of Kirchhoff’s vortex,
defined as an elliptical two-dimensional patch of uniform vorticity surrounding by irrotational fluid. Kirch-
hoff’s vortex can be interpreted as a perpendicular section of an infinitely rectilinear vortex tube. This top hat
vortex rotates about the center of the ellipse at a constant angular velocity Ω without change of shape [14].
The linear stability for aspect ratios σ = a/b < 3 was proven by Love [16], a and b being the major and minor
semi-axes of the ellipse. More recently, Wan [23] and Dritschel [8] have shown theoretically and numerically
that this vortex is nonlinearly stable only in the range of the linear stability σ < 3. Note also that the stability
of the vortex has recently been linked to the spatial distribution of the strain rate, which must be of lower
amplitude inside the vortex than just outside to ensure the stability, by Vosbeek et al. [22]. If σ > 3 the vortex
is unstable, and the growth of instabilities can dramatically alter the shape of the vortex and can split it into two
or more co-rotating vortices. The conditions for which the split generates two vortices have been investigated
from energetic considerations by Dritschel [7,8]. In particular, this case is preferentially observed for an aspect
ratio close to six. The time evolution can be also affected by the return to axisymmetry, namely the relaxation
of the elliptic vortex towards a circular shape. Melander et al. [17] have shown that a vortex with smooth
boundaries progressively sheds some vorticity with the formation of filaments, leading to a circular vortex.
This phenomenon has been studied for stable elliptical vortices and has also been observed for co-rotating
vortices [18]. However the circular state appears not to be obtained for vortices with sufficiently steep edge
gradients [10].

The growth of instabilities and the return to axisymmetry occur in the case of an unstable Kirchhoff vortex.
Instabilities may grow, and tend to split the vortex. At the same time, the return to axisymmetry takes place
when a stagnation saddle point lies within the vortex and can affect the growth of these instabilities. There-
fore, the evolution of the vortex depends on the process which will dominate the other one, and the dominant
process is usually determined during the first few revolutions. The vortex development during this step can
indeed change the relative weight of the two processes. Viscosity can also have some effects, as pointed out
by Melander et al. [17], especially when splitting and merging occurs.

The first objective of this paper is to study the competition between the return to axisymmetry and the
nonlinear evolution of instabilities, the effects of each process on the time evolution of the vortex, and the
range of σ in which each phenomenon dominates the other one. This work also complements and extends
the results obtained by previous numerical works mainly based on contour dynamics methods [7–10,22] or
spectral methods [17,18] for inviscid incompressible flows, see for instance the introduction of Dritschel [9]
and references herein. In the present simulations, the full 2D compressible Navier–Stokes are indeed solved
for configurations at moderate Mach numbers.

In the present paper, the behaviours of Kirchhoff’s vortices with initial aspect ratios σ = 1.2, 5, 6, 12.5
and 25 are calculated. In the first case σ = 1.2, the elliptic vortex is stable and very similar to a circular vortex.
For σ = 5, the return to axisymmetry is expected to occur. For σ ≥ 6 the vortex is strongly unstable and the
growth of instabilities may have a notable effect on the vortex evolution. The full compressible Navier–Stokes
equations are solved using high-order numerical schemes [1] developed for the direct computation of aerody-
namic noise [2,4,12]. Both the flow field and the acoustic radiation of the elliptic vortices are thus obtained
directly. This approach was for instance used to investigate the noise generated by two circular co-rotating
vortices [3,5].

This work also offers new applications of classical results in aeroacoustics since viscosity and compressibil-
ity effects are taken into account. The Kirchhoff’s elliptic vortex, in the same way as the case of two co-rotative
vortices, is an interesting configuration since noise is generated by the vortex itself without interaction with
solid boundary and without truncation of the source volume when an acoustic analogy is applied. The noise
generated by vortices with aspect ratios 1.2 ≤ σ ≤ 6 is presented with the aim of showing the influence
of the initial aspect ratio on the acoustic radiation and the effects of the return to axisymmetry and merger
processes on the pressure field. An analytical solution of the acoustic far-field derived by Howe [13] from the
Lighthill’s theory will be used to validate the computational results. This solution was, however, developed
for small aspect ratios, and its validity for the present computed vortices will have to be investigated. The use
of the Lighthill’s theory will also provide an explicit relation between the characteristics of the vortex and the
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radiated noise, and will make appear some key parameters of the sound generation. The study of the links
between the dynamics of the elliptic vortices and the generated noise will give basic information regarding the
description of the low-frequency noise radiated by large and persistent vortices, such as those produced in the
wake of an aircraft at takeoff for instance.

The paper is organized as follows. Section 2 describes the numerical algorithm and the initial conditions
used, whose expressions are detailed in Appendix A. The case of an aspect ratio close to unity, σ = 1.2, is
investigated in Sect. 3. Then, the case of the moderate aspect ratio σ = 5 is studied in Sect. 4. The acoustic
results are connected to the aerodynamic field and are also compared to the analytical solution [13] and pre-
sented in the Appendix B. Finally, Sect. 5 is devoted to three configurations with large aspect ratios σ = 6, 12.5
and 25. In particular, successive switches between an elliptic vortex and a configurations of two vortices are
shown in the case σ = 6.

2 Numerical method

2.1 Governing equations

The two-dimensional compressible Navier–Stokes equations are solved in the conservative form

∂U
∂t

+ ∂Ee

∂x1
+ ∂Fe

∂x2
− ∂Ev
∂x1

− ∂Fv
∂x2

= 0

where U = (ρ, ρu1, ρu2, ρet )
t is the unknown vector. The variables ρ, u1, u2 and et are, respectively, the

density, the two velocity components and the total specific energy. The subscripts e and v denote the Euler and
the viscous fluxes. For a perfect gas
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and viscous fluxes by Ev = (0, T11, T12, uiT1i )
t and Fv = (0, T21, T22, uiT2i )

t . The viscous stress tensor
is defined by Ti j = 2µSi j where µ is the dynamic molecular viscosity and Si j the deviatoric part of the
deformation stress tensor
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2.2 Numerical algorithm

Numerical schemes with low-dispersion and low-dissipation properties [1] are used. The spatial discretization
is performed by an eleven-point stencil finite-difference scheme optimized in the wave-number space ensuring
accuracy up to four points per wavelength. An optimized explicit six-stage Runge–Kutta algorithm is applied
for time integration. To ensure stability, grid-to-grid oscillations are removed thanks to an eleven-point stencil
selective filter without affecting the resolved scales, since only the short waves discretized by fewer than four
points per wavelength are damped. Note that in the present work, direct numerical simulations of the Navier–
Stokes equations are performed, without turbulence modelling. Moreover, the two-dimensional non-reflecting
boundary conditions [21] are implemented. They are derived from the asymptotic solution of Euler’s equations
in the acoustic far-field, and thus allow to minimize acoustic reflections. This point is crucial for the direct
calculation of the acoustic field.
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Table 1 Parameters of the vortex for the different simulations: Reynolds number ReΓ = Γ/ν, where Γ is the circulation and ν
is the kinematic viscosity; Mach number Me = Ue/c0 where Ue = aΩ is the velocity corresponding to the solid rotation of the
vortex at the edge of the major semi-axis a and c0 is the speed of sound

σ ε ReΓ Me

1.2 0.09 6.2 × 105 0.29
5.0 0.67 3.4 × 105 0.25
6.0 0.71 3.0 × 105 0.23

12.5 0.85 1.7 × 105 0.14
25.0 0.92 9.2 × 104 0.08
Note that the fluid particle velocity at the edge is 2Ue

2.3 Numerical specifications and initial conditions

The mesh used is a Cartesian grid with 381×381 points. The discretizations in the x1 and x2 directions are the
same and are symmetrical with respect to the centre of the grid. The mesh spacing is uniform for the first thirty
points close to the centre with a mesh spacing of ∆0 = 2 × 10−4 m. Then a stretching rate of 4% is applied
to the 95 next grid points to include a large part of the radiated acoustic field in the computational domain.
This stretching rate is small enough to keep the high accuracy of the numerical schemes [1]. The largest mesh
spacing is thus∆max = 41.5∆0. Finally, the mesh spacing remains uniform for the final 65 points. This mesh
grid is sufficiently fine to enable an accurate propagation of the waves in the cases studied in this paper. A case
has for instance been investigated with a mesh spacing twice as small and has demonstrated that the use of a
finer grid does not modify the results. The origin of the axes is taken at the centre of the grid. The computational
domain extends from −3.7 × 103∆0 up to 3.7 × 103∆0 in both Cartesian directions. All the simulations are
made with CFL = c∞∆t/∆0 = 1, where c∞ is the sound speed in the ambient medium and ∆t is the time
step.

The calculations are initialized by the Kirchhoff elliptic vortex. The expression of the initial velocity field
is given in the Appendix A. Pressure and density are, respectively, initialized by the ambient pressure and
density, p∞ and ρ∞. The notations used in what follows are also introduced in the Appendix A. The variable ω
is the vorticity and the quantity ε, called ellipse parameter, is defined by the relation σ = (1+ε)/(1−ε). Note
that ε is linked to the excentricity e by the relation e = 2ε1/2/(1 + ε). The radius re of the circle associated
with the ellipse is then connected to the semi-axes by a = re(1 + ε) and b = re(1 − ε). The subscript 0
denotes a quantity taken at t = 0. For example, a0 is the initial major semi-axis. The initial angular velocity
of the vortex is Ω0 and T0 corresponds to the initial period of rotation. In all simulations, re0 is set to 40∆0.
This ensures an appropriate discretization of the geometry and of the dynamics of the vortex for σ ≤ 25. The
initial vorticity is ω0 = 0.027/∆t , providing an accurate time discretization. The parameters of the different
vortices (aspect ratio σ , parameter ε, Reynolds number ReΓ , Mach number M) are collected in Table 1.

The values taken by a and b are computed at each time step. They are evaluated from the contour of the
vorticity with a threshold chosen arbitrarily as ωmax/2, where ωmax is the maximum of vorticity in the vortex.
The other parameters of the ellipse are then deduced.

3 Vortex with an aspect ratio close to unity (σ0 = 1.2)

The case of an elliptic vortex with a small aspect ratio is first investigated. The initial aspect ratio is σ0 = 1.2,
which yields for the ellipse parameter ε0 = 0.09 � 1. First, the aerodynamic behaviour is discussed and
compared to the theoretical results developed for the Kirchhoff elliptic vortex. Then the acoustic radiation
is shown and compared to the analytical solution (1). In this case, the analytical formulation reported in the
Appendix B is expected to be valid.

3.1 Aerodynamic results

Figure 1a shows isolevels of vorticity at time t/T0 = 16. No filamentation process is observed, even after 16
revolution periods. To understand this, the streamlines of the initial vortex in a rotating frame associated to its
angular velocityΩth = ω(1 − ε2)/4 are displayed in Fig. 1b. The streamline pattern keeps the same structure
during the whole evolution time. Melander et al. [17] pointed out that the return to axisymmetry can occur
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Fig. 1 Case σ0 = 1.2. a Isolevels of vorticity at time t/T0 = 16 . Levels: 1, 5%, and from 10 to 90% of the maximum of vorticity
with a 10% step. b Streamlines of the initial Kirchhoff vortex in a frame rotating with the angular velocity Ωth. Solid lines edge
of the vortex; dashed lines and dotted lines streamlines. The points A and B are the two saddle points
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Fig. 2 Case σ0 = 1.2. a Time history of σ . b Solid lines time evolution of the computed angular velocity normalized by its initial
value Ω/Ω0; dashed lines theoretical velocity Ωth/Ω0

only when the two saddle points A and B are located in the vorticity core. In that case, the vorticity around
these points is carried away from the core and follows the streamlines, beginning the filamentation process.
For a perfect top-hat vortex, the saddle points A and B are outside the patch of vorticity, as shown in Fig. 1b,
and thus the shedding cannot occur. In the present computation, the viscous diffusion at the vortex edge tends
to relax the gradients. However, the vortex does not become smooth enough to include the saddle points and
the filamentation cannot begin. As previously observed by Dritschel [10], vortices with sufficiently steep edge
gradient do not seem to return to axisymmetry. This point is also supported by the time evolution of the aspect
ratio σ in Fig. 2a. The aspect ratio remains practically constant for t < 15T0, indicating that the vortex rotates
without significant change of form.

In Fig. 2b, the time history of the normalized computed angular velocity Ω/Ω0 is shown to be constant
and in good agreement with the theoretical value Ωth/Ω0 given by Love [16] for Kirchhoff’s vortex. This
theoretical velocity is calculated at each time step from the values of ε and ω, where ω is estimated by the
mean integral level of vorticity inside the contour level ωmax/2. During the rotation, the vortex edge becomes
smoother due to viscous diffusion and the area of the vortex increases slightly. This implies a low decrease of
the mean integral level of vorticity and thus the small reduction of Ωth observed in Fig. 2b.

3.2 Acoustic radiation

The acoustic radiation of the vortex is now investigated. The elliptic vortex radiates like a rotating quadrupole
as shown with the pressure field in Fig. 3. The pressure along the line x = y, x > 0, at time t = 16T0, is dis-
played in Fig. 4a. The magnitude of the acoustic near-field is shown to decrease rapidly when the observation
point moves away from the vortex. In this figure, the computed acoustic field is compared to the analytical
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Fig. 3 Case σ0 = 1.2. Pressure field at time t/T0 = 16. Contour levels: p∞ − 10 Pa, p∞ and p∞ + 10 Pa
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Fig. 4 Case σ0 = 1.2. Comparison of the acoustic radiation with the analytical solution (1): solid lines analytical solution; filled
circle computation. d is the distance from the vortex centre. a Pressure along the line x = y, x > 0 at time t = 16T0. b Time
evolution of the pressure at the point x/a0 = y/a0 = 56

formulation derived by Howe [13]:

p(t, r, θ)− p(r, θ) ≈ −ε
8

(
2πre

r

)1/2

ρ∞U 2 M3/2 cos

(
2θ − ωtr

2
+ π

4

)
(1)

where U = reω/2 is the maximum mean flow speed reached at the edge of the core, M = U/c∞ is the
associated Mach number and tr = t − r/c∞ is the retarded time. Details can be found in the Appendix B.
This expression is appropriate for Kirchhoff’s vortices with ε � 1, for which viscous effects are neglected.
By considering only the first order in ε, Howe has thus obtained that the noise level is proportional to ε and
that the pulsation of the radiated noise does not depend on the aspect ratio. Note that the analytical solution (1)
does not provide the near-field contribution. In the present case, for d/a0 ≥ 80, the far acoustic field dominates
the pressure field and the computational result tends to the analytical formulation, with a good agreement in
frequency and level. In Fig. 4b, the comparison for an observation point in the far-field at d/a0 � 80 illustrates
this point. The computational and the analytical solutions (1) are therefore validated in the case σ0 = 1.2.

4 Vortex with a moderate aspect ratio (σ0 = 5)

In this section, an elliptic vortex with a moderate aspect ratio of σ0 = 5 is investigated. This aspect ratio
corresponds to the parameter ε0 = 0.67. The dynamics of the vortex should now be significantly affected by
the growth of instabilities and by the return to axisymmetry. Moreover the analytical solution (1) might not be
appropriate for describing the acoustic far-field.
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Fig. 5 Linear stability of the Kirchhoff vortex [16]. Frequency γr T in solid lines and growth rate γi T in dashed lines for the
azimuthal modes m = 3, 4, 5 and 6 versus aspect ratio σ . The complex angular frequency γ = γr + iγi is normalized by the the
rotation period T of the vortex, thus eγi T gives the amplification of the perturbation after one rotation period

4.1 Stability of Kirchhoff’s vortex

The linear stability of the Kirchhoff vortex was first studied by Love [16]. By noting δn the normal dis-
placement of the edge of the vortex, the eigenfunction of the small perturbation in a linear analysis writes
as δn ∼ exp

[
i(m(θ − β)− γ t)

]
where m is the azimuthal wavenumber, θ is the polar angle, β is a phase

coefficient and γ = γr + iγi is the complex angular frequency. Thus γi corresponds to the growth rate of
the instabilities and eγi T gives the amplification of the disturbance after one rotation period T = 2π/Ω . The
non-dimensional angular frequency reads:

γ 2T 2 = π2 (σ + 1)4

σ 2

[(
2mσ

(1 + σ)2
− 1

)2

−
(
σ − 1

σ + 1

)2m
]

(2)

The stability of the azimuthal modes m = 3, 4, 5 and 6 is illustrated in Fig. 5. The modes m = 1 and m = 2
are not of interest since the mode m = 1 is always stable and the mode m = 2 is neutral with γm=2 = 0 for all
σ . For m ≥ 3, γ is real for small σ , which implies linear stability. Above a critical value σmc, γ becomes purely
imaginary and the mode m is then linearly unstable. For the mode m = 3, equation (2) provides σ3c = 3, and
for m > 3, σmc > σ3c. As a consequence, the vortex is therefore linearly stable for σ < 3, and above this
value there is always at least one mode linearly unstable.

The nonlinear stability was investigated theoretically by Wan [23] and numerically by Dritschel [8], among
others. Wan proved that the vortex is nonlinearly stable for σ < 3. For 3 < σ < 4.61, i.e. when only the
mode m = 3 is linearly unstable, only the odd perturbations are nonlinearly unstable. In a case where the
initial disturbances are only even, there will be not growing instabilities. Dritschel shows indeed that even
perturbations can only generate even modes through nonlinear effects and in the considered range of σ , all the
even modes are stable. Finally, for σ > 4.61, at least one odd and one even mode are linearly unstable, m = 3
and m = 4 for example. Thus the vortex is nonlinearly unstable because the nonlinear effects will generate
from any disturbance at least either the mode m = 3 or the mode m = 4, which are both unstable.

4.2 Aerodynamic results

The vorticity field is plotted in Fig. 6. For this case with σ0 = 5, the filamentation process begins after about
one revolution. The aspect ratio then decreases, as observed in snapshots of Fig. 6c, d. Figure 7 shows the
computed streamlines leaded by the vortices in the cases σ0 = 1.2 and σ0 = 5. As discussed in the previous
section, the saddle points are initially far from the vortex in the case σ0 = 1.2. When σ0 is higher, the saddle
points are initially closer to the boundary of the vortex, as in the present case σ0 = 5 in Fig. 7b, and some
vorticity can reach them. Thus the filamentation process can take place.

The time history of the aspect ratio is shown in Fig. 8a. Two steps in the evolution of the vortex are visible.
The first step occurs from t = 0 to about t = 2T0. Since σ0 > σ4c, the vortex is initially nonlinearly unstable
and the initial perturbations are growing, as observed in Fig. 6a where the vortex is no more elliptic. In the
same time the shedding of vorticity begins. The vorticity field in Fig. 6a shows the first step of this process
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Fig. 6 Case σ0 = 5. Isolevels of vorticity at successive times: a t/T0 = 0.91; b t/T0 = 1.6; c t/T0 = 4.0; d t/T0 = 11. Levels:
2, 10%, from 20 to 80% of the maximum of vorticity with a 20% step
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Fig. 7 Computed streamlines of the vortex in a frame rotating with the angular velocity of the vorticity patch; solid lines contour
level of vorticity 0.1 × ωmax; dashed lines and dotted lines streamlines. a Case σ0 = 1.2 at time t/T0 = 12.6. b Case σ0 = 5 at
time t/T0 = 4.0

and the filamentation clearly occurs in Fig. 6b. As a result, the aspect ratio decreases down to the threshold
σ4c. Below this value, only odd perturbations are unstable. In the present simulations, the initial aerodynamic
field is even and developing perturbations are consequently even, thus the vortex becomes stable for σ < σ4c.
This first step illustrates the opposite effects of the return to axisymmetry and of the instabilities. The shedding
of vorticity stabilizes the vortex whereas the growth of instabilities tends to split it. In the present case, the
growth of instabilities is slow with respect to the period of rotation, therefore the return to axisymmetry is the
dominant phenomenon.

From about t = 2T0, the second step is observed. The vortex remains elliptic and sheds vorticity. The aspect
ratio decreases and this affects the angular velocity, which increases as reported in Fig. 8b. This demonstrates
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that the time variations of the aspect ratio now strongly modify the behaviour of the vortex. A good agreement
is found between the computed velocity Ω and the theoretical velocity. Moreover, a significant discrepancy
is observed between the theoretical velocity and the approximated velocity ω/4, used by Howe [13] in the
analytical formulation (1), showing that ε cannot be neglected if the aspect ratio is not close to unity.

The variations of the vorticity ω are directly connected to the evolution of the approximated velocity ω/4,
displayed in Fig. 8b. The level of vorticity inside the vortex is thus shown to decrease with time. This occurs
not only because of the slight viscous dissipation but also mainly because of the shedding of vorticity. Due to
the expression of the theoretical velocity of the Kirchhoff vortexΩth = ω(1−ε2)/4, the decrease of ω implies
a lowering of the angular velocity of the vortex. Thus, the filamentation tends to reduce the angular velocity
through the decrease of ω. The other effect of the return to axisymmetry is the decrease of the aspect ratio and
consequently of the parameter ε. The expression of the theoretical velocityΩth shows that this process implies
an acceleration of the rotation. Therefore, the shedding of vorticity has two opposed effects. According to
the increase of the effective velocity Ω observed in the Fig. 8b, the second effect is clearly dominant and the
variations of the angular velocity are mainly due to the decrease of the aspect ratio, and not to the lowering of
the vorticity level in the vortex core.

4.3 Acoustic radiation

Snapshots of the pressure field at times t = 4T0 and t = 11T0, and the corresponding profiles along the
line x = y, x > 0 are presented in Figs. 9 and 10. The return to axisymmetry is found to affect the sound
field radiated by the vortex significantly. The radiation frequency increases with time, as expected due to the
increase of the angular velocity.
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Fig. 10 Case σ0 = 5. Pressure profiles along the line x = y, x > 0 at two different times: solid lines t = 4T0; dashed lines
t = 11T0 (d is the distance from the vortex centre)
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Fig. 11 Case σ0 = 5. a Pressure profiles along the line x = y, x > 0 at time t = 11T0; and b time history of the pressure at the
point x/a0 = y/a0 = 37: solid lines analytical solution (3); filled circle computations (d is the distance from the vortex centre)

The classical analytical solution (1) is no more valid and, in what follows, the computed pressure field is
compared to the extended formulation:

p(t, r, θ)− p(r, θ) ≈ −εr

8

(
2πrer

r

)1/2

ρ∞U 2
r M3/2

r cos
(

2(θ − αr )+ π

4

)
(3)

taking into account the effective motion of the vortex for the radiation frequency, see the Appendix B for
details. The elliptical shape of the vortex now evolves with time, and parameters updated at the corresponding
retarded times are thus used in expression (3) for computing the radiated acoustic field, namely the ellipse
parameter ε and the angular position α of the vortex. The subscript r denotes the variable taken at the retarded
time tr .

Expression (3) takes into account the effective motion of the vortex and, in particular, the changes of the
angular velocity in the modelling of the noise frequency, whereas in expression (1) the angular velocity is
assumed to be constant. In the present case, the evolution of the radiation frequency is not negligible as shown
in Fig. 10, and has indeed to be considered to provide an accurate description of the sound field.

The computed pressure profile along the line x = y, x > 0 at t = 11T0 is plotted in Fig. 11a with the profile
given by expression (3). Near the vortex, the comparison is not relevant since expression (3) does not provide
the near pressure field. Farther from the vortex, a good agreement is observed between the numerical and the
analytical solutions. The time history of the pressure at the location x/a0 = y/a0 = 37 is also displayed
in Fig. 11b. The computed and analytical results are found to be very close. This shows that the radiation
frequency is accurately predicted by expression (3) taking into account the effective rotation of the vortex.
Moreover, since in expression (3) only the first order in ε is kept for the amplitude, this good agreement also
indicates that the level of the radiated noise is proportional to ε. This is remarkable in the present case where
the parameter ε0 = 0.67 is not negligible. The present results, therefore, demonstrate that expression (3) is
appropriate over a large range of aspect ratios.
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Fig. 12 Case σ0 = 6. Isolevels of vorticity at successive times. a t/T0 = 0.096; b t/T0 = 0.29; c t/T0 = 0.48; d t/T0 = 0.67;
e t/T0 = 0.87; f t/T0 = 1.2. Levels: 20, 40, 60 and 80% of the maximum of vorticity

5 Vortices with large aspect ratios σ0 ≥ 6

In this section, elliptic vortices with large aspect ratios σ0 ≥ 6 are investigated. For such values, the Kirchhoff
elliptic vortex is linearly and nonlinearly unstable for any perturbations. In this case, the growth of instabil-
ities is the dominant process and will cause significant deformations of the vortex. The case σ0 = 6 is first
considered. The splits of the vortex in the cases σ0 = 12.5 and σ0 = 25 are then computed.

5.1 Case σ0 = 6

For the case σ0 = 6, two stages can be distinguished in the time evolution of the vorticity field. In the first
stage, an even perturbation grows and splits the ellipse into two co-rotating vortices, as shown by the vorticity
snapshots in Fig. 12. The split is achieved in less than a half revolution. In this case, the growth of instabilities
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Fig. 13 Case σ0 = 6. Time history of σ calculated when the vortex has an elliptic shape during the sequences ellipse/co-rotating
vortices/ellipse

is very rapid and cannot be stopped by the return to axisymmetry. The flow configuration created by the two
vortices is itself unstable. They merge to form a new elliptic vortex with an aspect ratio which remains higher
than σ4c ≈ 4.61 as shown in Fig. 13. Therefore the new vortex is not stable, and a new switch between the two
configurations, elliptic vortex and two co-rotating vortices, occurs. Several successive switches are moreover
observed. The possibility of such switches has been mentioned by Dritschel [8], who showed, from energetic
considerations in the inviscid case, that they may occur more easily for an aspect ratio close to six [7,8]. Note
also that one sequence ellipse/co-rotating vortices/ellipse has been calculated by Vosbeek et al. [22] using the
contour dynamic method. The time evolution of the aspect ratio σ at each elliptic state is shown in Fig. 13.
The aspect ratio is found to decrease down to 4.8 but it remains larger than σ4c. The initial decrease could
be attributed to the filamentation process which is observed in Fig. 12e during the first switch. After three
sequences, σ remains around 4.8.

The second stage of the vortex evolution begins at time t � 5.5T0. The elliptic vortex definitively splits and
a stable configuration with two co-rotating vortices is obtained, as shown by the vorticity field in Fig. 14. Vis-
cous effects then slowly relax gradients making the vortices smoother, see for instance the vorticity snapshots
in Fig. 14c, d.

The time history of the pressure at the point x/a0 = y/a0 = 36 is displayed in Fig. 15. For t < 9T0,
the noise has been generated during the fist aerodynamic stage. Although the vorticity patch is significantly
distorted during the switches, the noise seems weakly affected by the successive splits. This result suggests
that it can be difficult to detect the split or the merger of vortices from acoustic measurements.

At about t = 9T0, the radiation level and the frequency suddenly decrease as the final stable configuration
is obtained. The sound frequency is then about half of the frequency in the first stage, and the noise level is
twice as small.

5.2 Cases σ0 = 12.5 and σ0 = 25

Two cases of very large aspect ratios, σ0 = 12.5 and σ0 = 25, are finally computed. The vorticity fields of
these two configurations are reported in Figs. 16 and 17 respectively. The present vortices are very unstable
and thus split very early.

In the case σ0 = 12.5, the vortex splits in less than one revolution and two co-rotating vortices are obtained.
The same evolution was found by Vosbeek et al. [22] numerically using the dynamic contour method. In the
case σ0 = 25, the initial vortex is very thin and splits even earlier, in a quarter of revolution, generating four
aligned vortices in Fig. 17c as described also in reference [22]. Then the two inner vortices merge and three
aligned vortices are observed in Fig. 17e. Finally, one vortex remains after the merging of these three vortices.
Note that in the simulations of Vosbeek et al. [22], the evolution of the four aligned vortices is quite different:
the two peripheral vortices merge with their closest neighbouring vortex, forming two co-rotating vortices. The
reason of this discrepancy is not clear but we can mention that Vosbeek et al. [22] used the contour dynamic
method and thus do not solve the full Navier–Stokes equations.

The present results show that when the initial aspect ratio is increased, the elliptic vortex splits more rapidly
and the number of created vortices is higher. Various merging can then be obtained before reaching a stable
state with two co-rotating vortices or with an elliptical patch of vorticity. Note that the acoustic field is not
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Fig. 14 Case σ0 = 6. Isolevels of vorticity at successive times. a t/T0 = 2.9; b t/T0 = 5.8; c t/T0 = 8.7; d t/T0 = 19. Levels:
20, 40, 60 and 80% of the maximum of vorticity
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Fig. 15 Case σ0 = 6. Time history of the pressure at the point x/a0 = y/a0 = 36

investigated in the two present cases because the aerodynamic evolutions of the vortices are too rapid to study
properly the acoustic radiations.

6 Conclusions

In this paper, the aerodynamic behaviours and the acoustic radiations of elliptic vortices with different aspect
ratios have been computed by solving the full 2D compressible Navier–Stokes equations. In agreement with
previous numerical studies [10,17,22], the evolution of the vortex is found to be strongly dependent on the
initial aspect ratio, which governs the relative weight of the return to axisymmetry and of the growth of
instabilities.

For σ0 close to unity, neither the filamentation nor the instabilities have a significant effect on the elliptic
vortex. The vortex rotates with a fixed angular velocity without notable change of shape, and generates a
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Fig. 16 Case σ0 = 12.5. Isolevels of vorticity at successive times. a t/T0 = 0.015; b t/T0 = 0.28; c t/T0 = 0.54; d t/T0 = 0.80.
Levels: 20, 40, 60 and 80% of the maximum of vorticity

constant and harmonic noise. When σ0 is larger but remains moderate (about 2 < σ0 < 6), the return to
axisymmetry is the main mechanism and stops the growth of instabilities by stabilizing the vortex. The fila-
mentation occurs and leads to a decrease of the aspect ratio and to an increase of the angular velocity. Then the
radiation frequency increases and the noise level decreases. For larger aspect ratios, the growth of instabilities
dominates, and the return to axisymmetry does not occur rapidly enough to stabilize the vortex. This causes
a split of the vortex in several vortices. For σ0 = 6, switches between the elliptic state and a state with two
co-rotating vortices first happen, before the vortex definitively splits. The sound field appears weakly affected
by these switches. Thus the competition between the return to axisymmetry and the growth of instabilities
can have notable effects on the evolution of elliptic vortices. The radiated noise then appears to be mainly
affected by the decrease of the ellipse aspect ratio and not by the presence of filaments. The ellipse parameter
ε is therefore the key parameter to describe the acoustic radiation of the elliptic vortex. Finally, the analytical
solution developed by Howe [13] from the Lighthill’s analogy for small aspect ratios has been shown to be in
good agreement with the computational solution in the case σ = 1.2. For higher aspect ratios, this solution
appears, however, not appropriate. An extended analytical solution for the far-field noise has been proposed,
which compares well with the calculated solution in the case σ0 = 5.

The validity of the present computational approach is clearly shown. The computations have been performed
by compressible direct numerical simulation and the acoustic radiation is obtained in the same calculation. This
enables one to take into account all effects, in particular compressibility and viscous diffusion. Compressible
effects at moderate Mach numbers and the presence of the generated acoustic field do not seem to modify the
relative balance between the return to axisymmetry and the growth of instabilities, and only one parameter, σ
or ε, appears relevant to define the flow.

This work provides also reference solutions that may be useful for the development of numerical methods
in aeroacoustics. The investigation of the links between the dynamics of the vortices and the acoustic field also
gives basic information about of the low-frequency noise radiated by coherent vortices. Finally, the present
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work shows the difficulty to detect the split and the merger of vortices from the radiated pressure, as illustrated
by the case σ = 6.

A Initial velocity field of the Kirchhoff vortex

An analytical expression of the initial velocity field of the elliptic vortex is required to initialize the computa-
tions. The initial vorticity distribution is an elliptic patch of uniform vorticity ω, known as the Kirchhoff vortex
(1876), which is an exact analytical solution of the two-dimensional Euler equations [14,16] . There is a dis-
continuity of vorticity at the vortex edge located at x2

1/a
2 + x2

2/b
2 = 1, where a and b are the major and minor

semi-axes of the ellipse. Two other quantities, noted re and ε, defined by a = re(1 + ε) and b = re(1 − ε) are
used, where re is the radius of the circle associated with the ellipse and ε is the ellipse parameter. For ε = 0, the
vortex is circular. The major-to-minor axes length ratio of the ellipse is denoted by σ = a/b = (1+ε)/(1−ε).
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The vortex rotates with the angular velocity Ωth = ωab/(a + b)2 = ω(1 − ε2)/4. The velocity field
is obtained by matching a vortical field inside the vortex with a potential field outside. Within the core, the
components of the velocity are, respectively in the x1 and the x2 directions:

u1 = − aω

a + b
x2 u2 = bω

a + b
x1

To obtain the velocity outside the vortex, Lamb [14] introduces the elliptic coordinates (ξ, η) defined by
x1 = c cosh(ξ) cos(η) and x2 = c sinh(ξ) sin(η), where c = (a2 − b2)1/2 is the focal distance. Using these
coordinates, the stream function is given by:

ψ = 1

4
Ω(a + b)2 exp(−2ξ) cos(2η)+ 1

2
ωabξ (4)

To write the external velocity in Cartesian coordinates, the following chain-rule form can be used:

u1 = − ∂ψ

∂x2
= −∂ψ

∂ξ

∂ξ

∂x2
− ∂ψ

∂η

∂η

∂x2
u2 = ∂ψ

∂x1
= ∂ψ

∂ξ

∂ξ

∂x1
+ ∂ψ

∂η

∂η

∂x1

The expression of the stream function (4) then yields

∂ψ

∂ξ
= −1

2
Ω(a + b)2 exp(−2ξ) cos(2η)+ ωab

2
∂ψ

∂η
= −1

2
Ω(a + b)2 exp(−2ξ) sin(2η)

The different terms exp(−2ξ), cos(2η), sin(2η), ∂ξ/∂x1, ∂ξ/∂x2, ∂η/∂x1 and ∂η/∂x2 need to be expressed
as functions of the coordinates x1 and x2. These quantities are then written as functions of sinh(ξ), cosh(ξ)
and their derivatives according to x1 and x2. It yields:

cos(2η) = cos2(η)− sin2(η) =
(

x1

c cosh(ξ)

)2

−
(

x2

c sinh(ξ)

)2

sin(2η) = 2 sin(η) cos(η) = 2x1x2

c2 sinh(ξ) cosh(ξ)

exp(−2ξ) = (cosh(ξ)− sinh(ξ))2

The calculation of the derivatives of ξ and η is straightforward:

∂ξ

∂x1
= 1

cosh(ξ)

∂ sinh(ξ)

∂x1

∂ξ

∂x2
= 1

sinh(ξ)

∂ cosh(ξ)

∂x2

∂η

∂x1
= 1

cos(η)

∂ sin(η)

∂x1
(5)

∂η

∂x2
= − 1

sin(η)

∂ cos(η)

∂x2
(6)

Removing cos(η) and sin(η) in relations (5) and (6), the following relations are obtained:

∂η

∂x1
= − x2

x1

cosh(ξ)

sinh2(ξ)

∂ sinh(ξ)

∂x1

∂η

∂x2
= x1

x2

sinh(ξ)

cosh2(ξ)

∂ cosh(ξ)

∂x2
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Finally sinh(ξ), cosh(ξ), ∂ sinh(ξ)/∂x1 and ∂ cosh(ξ)/∂x2 need to be written as functions of the primitive
variables x1 and x2. The definition of the elliptic coordinates implies that the point (x1, x2) belongs to the
ellipse of semi-major axis c cosh(ξ) and semi-minor axis c sinh(ξ) defined by:

x2
1

(c cosh ξ)2
+ x2

2

(c sinh ξ)2
= 1 (7)

By replacing cosh2(ξ) by 1 + sinh2(ξ) or sinh2(ξ) by cosh2(ξ) − 1 in (7), one obtains two equations,
yielding

sinh(ξ) = 1

c
√

2

[
λ− + (

λ2− + 4c2x2
2

)1/2
]1/2

cosh(ξ) = 1

c
√

2

[
λ+ + (

λ2+ − 4c2x2
1

)1/2
]1/2

∂ sinh(ξ)

∂x1
= 1

c
√

2

x1
[
λ− + (

λ2− + 4c2x2
2

)1/2
]1/2

[

1 + λ−
(
λ2− + 4c2x2

2

)1/2

]

∂ cosh(ξ)

∂x2
= 1

c
√

2

x2
[
λ+ + (

λ2+ − 4c2x2
1

)1/2
]1/2

[

1 + λ+
(
λ2+ − 4c2x2

1

)1/2

]

where λ+ = x2
1 + x2

2 + c2 and λ− = x2
1 + x2

2 − c2.
All the relations needed to initialize the velocity field are now determined. Note that the expressions of

∂η/∂x1 and ∂η/∂x2 are singular in x1 = 0 and in x2 = 0, respectively. In these two cases, u2 = 0 or u1 = 0
is enforced.

B Analytical formulation of the noise radiated by the Kirchhoff vortex

In this Appendix, an analytical formulation of the far-field noise radiated by the Kirchhoff vortex is reported.
The way used to derive the solution has been presented in details by Howe [13] and Dowling [6]. The viscous
effects and the fluctuations of entropy are neglected. An incompressible vortical flow bounded by a volume V
is considered. According to the Powell analogy, the density fluctuations outside the flow can be expressed by:

ρ′(t, x) ≈ ρ∞
4πc2∞

∂

∂xi

∫

V

(ω ∧ u)i

(
y, t − |x − y|

c∞

)
dy

|x − y|

for a low Mach number flow, where ρ∞ and c∞ are respectively the mean density and the mean sound velocity
in the ambient medium at rest. By considering only the far-field noise, this expression becomes:

ρ′(t, x) ≈ − ρ∞
4πc4∞|x|

xi x j

|x|2
∂2

∂t2

∫

V

y j (ω ∧ u)i

(
y, t − |x|

c∞

)
dy (8)

This formulation is now applied to the Kirchhoff elliptic vortex. With the notations introduced in Appendix A,
the velocity distribution within the vortex is given, in polar coordinates, by:

u = −ωr

2

∣∣∣
∣∣
∣

sin(θ)+ ε sin
(
θ − 1−ε2

2 ωt
)

− cos(θ)+ ε cos
(
θ − 1−ε2

2 ωt
)

These expressions are valid for any values of ε. In what follows, it is assumed that ε � 1, and only the first
order in ε is kept. Within this restriction, the shape of the vortex in polar coordinates is r = re[1 + ε cos(2θ −
ωt/2)] and the angular velocity becomes Ω1 = ω/4. By using the method of the stationary phase and the
relation p(t, r, θ)− p(r, θ) ≈ c2∞ρ′(t, r, θ), the pressure field can be written as:

p(t, r, θ)− p(r, θ) ≈ −ε
8

(
2πre

r

)1/2

ρ∞U 2 M3/2 cos

(
2θ − ωtr

2
+ π

4

)
(9)
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with U = reω/2, M = U/c∞ and tr is the retarded time t −r/c∞. This expression applies only to the far-field
of a Kirchhoff elliptic vortex with an aspect ratio σ close to unity. The acoustic field decreases like r−1/2, as
expected for the far-field in a two-dimensional problem. Note that the amplitude is proportional to the ellipse
parameter ε, while the frequency of the noise is constant and does not depend on ε. Thus, the effect of ε on
the frequency is not taken into account in this expression.

As shown in the present paper, the vortices with an initial aspect ratio not close to unity do not keep a
uniform shape. The aspect ratio and the angular velocity evolve with time. In such cases, the quantities in
the expression (9) have to be considered at the retarded time tr , to take into account the propagation time
between the generation and the reception of the noise. Moreover, when the aspect ratio is not close to unity,
the approximated angular velocity Ω1 = ω/4 might significantly differ from the theoretical angular velocity
Ωth = ω(1 − ε2)/4 and, consequently, from the effective velocity. In this case, the expression (9) might
fail in providing the radiation frequency. An extended formulation, which includes the influence of ε in both
the amplitude and the frequency, can then be obtained by observing that ωtr/4 is the angular position of the
vortex, αr , at the retarded time tr . In the case of an elliptical vortex with an aspect ratio and an angular velocity
evolving with time:

p(t, r, θ)− p(r, θ) ≈ −εr

8

(
2πrer

r

)1/2

ρ∞U 2
r M3/2

r cos
(

2(θ − αr )+ π

4

)
(10)

where the subscript r denotes a quantity taken at the retarded time tr . This new expression is expected to
provide a better description of the radiation frequency than expression (9), because the frequency is directly
linked to the effective motion of the vortex.
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