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Stochastic Approach to Noise Modeling for
Free Turbulent Flows
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and
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A new approach to noise modeling for free turbulent flows is presented. The equations governing the sound
field are obtained in two steps. The first step consists of treating the mean and turbulent components of the flow
while the acoustic perturbations are neglected. In the second step, a set of equations is derived for the acoustic
variables. On the left-hand side of this system, one finds the linearized Euler equations, whereas the right-hand
side exhibits source terms related to the turbulent fluctuations and their interactions with the mean flow. These
terms are modeled using a stochastic description of the three-dimensional turbulent motion. This is achieved by
synthesizing the velocity field at each point in space and for all times with a collection of discrete Fourier modes.
The synthesized field posesses the suitable one- and two-point statistical moments and a reasonable temporal
power spectral density. The linearized Euler equations including a stochastic description of noise sources are
solved numerically with a scheme based on a fractional step treatment. Each one-dimensional problem is solved
with a weak formulation. A set of calculations are carried out for a simple freejet. Comparisons between
calculations and experiments indicate that a spatial filtering of the source terms is required to obtain the expected
level in the far field. Realistic pressure signals, power spectral densities, and sound field patterns are obtained.
It is indicated that the stochastic neise generation and radiation (SNGR) approach may be applied to more
complex flows because the numerical codes used to calculate the mean flowfield and the wave propagation are
not specific of jet configurations. The limitations of the present model lie in the statistical properties of the

synthetic turbulent field and in the use of an axisymmetric modeling of the acoustic propagation.

1. Introduction

IGHTHILL’S theory! of acoustic radiation from a lim-

ited volume of turbulent fluid embedded in an infinite
homogeneous medium at rest uses an analogy between the
acoustic fluctuations generated by the turbulent perturbations
and the acoustic fluctuations which result from a quadrupole
distribution of strength T} in a fictitious equivalent domain at
rest. The source term Tjcontains the instantaneous Reynolds
stress tensor puu; of the turbulence and, if there is a mean
flow as in a jet, a cross product term of mean flow and
turbulence.?® Because the governing wave equation is so sim-
ple, the instantaneous sound pressure at a point may be ex-
pressed as an integral in terms of 7}; in retarded time over the
source region. But the T} tensor is stochastic and can normally
be defined only in a statistical sense. This leads to the determi-
nation of mean square sound pressure in terms of a double
integral of two point space-time correlations of T;; (Refs. 2-8).
Using assumed correlations in an approximate form of T
(Ref. 9), (variants of this procedure), Ribner,? Pao and Low-
son,'% and Goldstein and Rosenbaum’ found predictions of jet
noise directivity in good agreement with those obtained in the
experiment. Closely related to this approach, we have also
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tried to bring the modeling a step further by determining all of
the local properties of the noise source terms from a numerical
solution of the mean flow equations coupled with a turbulence
closure model.!1> A single adjustable factor remains in the
formulation which may be determined once. It is then shown
in Refs. 11 and 12 that the model has predictive capabilities
and may be used to study different jet configurations. The
good results obtained demonstrate the value of the Ribner and
Goldstein models.

Over the years different methods have been devised to di-
rectly include the flow effects of sound propagation (and also
its generation). In the development due to Phillips,'? the
Lighthill equation is replaced by an inhomogeneous wave
equation for a moving medium with the flow effects appearing
in the wave operator rather than in the T source term. Mani'4
obtained comparably good agreement by, in effect, moving
part of T}; to the left-hand (operator) side of the Lighthill wave
equation. This equation was modified by Lilley! to further
separate propagation terms and source terms. Much work has
been expended to solve Lilley’s equation for uniform and
nonuniform mean flows. Analytic solutions have been pro-
posed for the high-frequency range®!¢-18 and for the low-fre-
quency propagation.®1416.19.20 Numerical calculations of the
three-dimensional axisymmetric refraction of sound waves by
jet flows were performed by Schubert?!:22 whereas three-di-
mensional refraction effects were studied by Candel® using
geometrical methods. Exact numerical solutions of source ra-
diation in shear flows were obtained with Fourier methods by
Candel and Crance.?*

In general, these studies deal with the propagation of acous-
tic waves due to monopolar or quadrupolar source points. The
analytical solutions derived are rather sophisticated and lack
generality. The sound generation models are also rather
specialized. Being analytically and numerically much more
difficult to apply than the Lighthill-based formalisms, the
added labor has not yet paid off in predictive capability.
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However, the work done on this problem has enhanced the
current understanding of aerodynamic noise generation and
propagation.

A possible advance has been explored by Berman and
Ramos.? It consists of numerically solving a third-order Lil-
ley’s equation transformed into a system of first-order, time-
dependent partial differential equations. Numerical results
from a K-¢ turbulence code are used to determine the velocity
field of the mean flow and to simulate the turbulent fluctua-
tion involved in the source term. The numerical solution is
effected for one test case with an overly simplified description
of turbulence, and the validations presented in his paper are
insufficient, but the idea merits further attention.

The present article explores a novel approach to noise mod-
eling for free turbulent flows. In essence, we are going to
derive a system of first-order equations describing the propa-
gation of the acoustic field and containing the source terms
related to the turbulent fluctuations. These terms are modeled
using a stochastic description of the three-dimensional turbu-
lent motion. A stochastic noise generation and radiation
(SNGR) model is derived on this basis. The noise source terms
are defined by synthesizing the velocity field at each point in
the flow with a discrete set of Fourier modes. The synthetic
turbulent field possesses the proper one- and two-point statis-
tical spatial moments and an acceptable temporal spectral
density. In practice the flowfield is subdivided in a collection
of independent source regions with longitudinal and lateral
dimensions defined by the local correlation scales of turbu-
lence. Although this synthetic representation has many of the
characteristics of real turbulence, it is not perfect. It exhibits
the expected correlation lengths and, in particular, the re-
quired ratio of length scales but does not feature the convec-
tive properties of shear flow turbulence. Under these circum-
stances one cannot expect to obtain a definitive model for
aerodynamic noise radiation. In particular, the convective
amplification that is typical of the radiation process when the
sources are convected at high speed will be missing from the
model. This effect was not included in this first attempt at
stochastic modeling of the noise generation process because it
would have required a much more complex numerical imple-
mentation. Although we are aware of the limitations of the
model, we also note that it is worth exploring the SNGR
concept even with some simplifications and later proceeding
with a full implementation. Another limitation of the present
study lies in the propagation step. In principle, a three-dimen-
sional computational method would be needed to propagate
acoustic waves from the noise sources. This would require a
very large grid and unacceptable computational loads. For
these reasons, it was decided that an axisymmetric propaga-
tion scheme would be used to calculate the radiated field. This
choice reduces the calculation to a two-dimensional problem
and allows a description of refraction effects. It also has an
influence on the spatial radiation of acoustic waves from the
noise sources. The related error is accepted in the present
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Fig.1 Wave vector geometry for the nth Fourier velocity mode; the
unit vector o, lies in the (k{,k;) plane perpendicular to k, and its
polar angle «;, has an arbitrary orientation.

study because we wish to test the concept but improvements of
this aspect will also be needed in future studies.

Finally, as in most aeroacoustic studies, we neglect the
viscous sources which are believed to be less important at high
Reynolds numbers, and we also use the linearized approxima-
tion, which is not completely justified. Indeed, amplitudes
may be quite high in the vicinity of the sound emitting volume,
but the linear treatment is commonly used in practice.

We begin by establishing the basic equations of the SNGR
model (Sec. II). In Sec. IIT we show how one may synthesize
a turbulent flowfield using stochastic principles. The statistical
characteristics of the flow are first determined with a K-¢
turbulence model and used to scale the simulated fluctuations.
Section IV describes the different steps of a typical calcula-
tion. The simple case of a turbulent freejet is treated as an
example in Sec. V, which also contains comparisons between
calculations and experiments of Lush.26

II. Basic Formulation of the Stochastic Noise
Generation and Radiation Model

Although the tendency has been to set noise problems in
terms of second-order or even higher order wave equations (of
which Lilley’s equation is typical), this is not appropriate for
a numerical solution. In fact, it is more adequate to use a
formulation in terms of first-order partial differential equa-
tions. It is of course possible to start from a third-order
equation and go back to a first-order system as was done by
Berman and Ramos,?® but it is more natural to start directly
from the basic equations of fluid mechanics.

Let us now consider the generation of noise by a stationary
turbulent flowfield. One may distinguish mean, turbulent, and
acoustic components in each flow variable (pressure p, veloc-
ity u;, and density p) and write these variables as follows:

p=P+p +p,
u=U +u; + uy 0y

pP=p+pr+pa
In general, the acoustic fluctuations are small compared to
the mean and turbulent variables, so that one may assume that

the following relations are satisfied:
Pa/ P <<1,
pP/P<<l,

Ug/ Uy <<1, a0 < <1

(2)
llg,'/U,‘<<1, p,,/[)<<1

One may then formulate the governing equations for the
acoustic variables by proceeding in two steps.

In the first step one considers the evolution of the mean and
turbulent components of the flow by neglecting the acoustic
perturbations. This step is similar to the classical Reynolds
decomposition of turbulent flows. Because we are interested in
noise radiated by subsonic flows, it is reasonable to assume
that the mean density is constant and the density fluctuations
are negligible (o, = 0). The Reynolds averaged equations of
motion are:

2
ay;
_UaU,-+3P
U—+—+5p
Ty, Ay ay;

=0 3

_ Ouguy

=0 1G]

Note that the turbulent velocity u, is also divergence-free:
du,;/dy; = 0. In the system of equations (3) and (4), the viscous
terms may be neglected because the viscous stresses are much
smaller than the Reynolds stresses in free-shear flows. Of
course, the viscous dissipation is retained in the turbulence
closure model which is added to Egs. (3) and (4) to determine
the Reynolds stresses. On the other hand, if we limit the
analysis to the case of turbulent flow at ambient temperature,
the heat generated by the viscous dissipation may be neglected
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d) Variation of the longitudinal correlation function f(r) with the
distance variable: o, theoretical; A, simulated before convolution and
+ , simulated after convolution

Fig. 2 Simulated turbulent velocity u#, before and after filtering.

and the isentropic flow assumption is reasonable in the sub-
sonic range. Under these conditions, we can rewrite the conti-
nuity equation in terms of pressure and velocity variables.
Substituting p = P + p, and u; = U; + u,;, and averaging the
resulting equation, one obtains:

apP uy; ap,
U—+vyp,— +tu;— =0 5
ay; P ay; . ay; ®

where we have used the relation (dp/dp); = yp/p for an ideal
gas where vy represents the ratio of the specific heats at con-
stant pressure and volume.

In the second step we consider the acoustic component and
assume that mean and turbulent components of the flow are
known. It is convenient to start from Euler’s system in which
the continuity equation is also written in terms of pressure and
velocity variables:

Y vpayi uayi )
ou; ou; 129
u u _p:0 )

—— t+u— +-
ot jayj p ay,

Inserting the decomposition of variables (1), neglecting the
turbulent density fluctuations p, = 0, and considering that the
acoustic perturbations are isentropic p, = c?p, in Egs. (3-5),
one finds:

a a ai Ui
Py vPaL + vpaa— + uaia_l)
ay; ay; oy

g
W,
at ayl

e 0P ap o

i

®

- —— — Uy Uy + Uy
ot v ey oy " dy;
aua,- auﬂ,- 19, a aU, " P
+Ui—— 4oy u,,j—fp—_—
ar ay;  p dy; prer oy
ou,; oU; ou,; 19, ouy; 9 ____
S i et %P PO e (9)

. At
9y Y ay; v dy; pady; ot dy;

In Eq. (8), the term vyp,dU;/dy; is retained to obtain a set of
expressions (8) and (9) featuring a left-hand side which is
identical to the linearized Euler equations.® This is purely
formal as the divergence of U; vanishes according to Eq. (3).
To simplify the analysis, terms describing effects of turbu-
lence-acoustic interactions and of nonlinear acoustics are
neglected.

The right-hand side of system (8) and (9) exhibits the source
terms responsible for the noise generation. The identification
of the principal terms which contribute to the noise emission is
not a simple matter. However, we know from previous
works?? that the main sources of sound generated by turbu-
lence are the first terms of the right-hand side of Eq. (9). This
reasoning based on previous knowledge is essentially con-
firmed by an order of magnitude analysis. In particular, the
first two terms represent the interaction between the mean and
turbulent components of the flow. The third term represents
turbulence-turbulence interactions. The noise associated with
the first two terms is usually called shear noise whereas that
due to the third term is denoted as self noise. These three terms
are the main sources of the sound generated aerodynamically
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and one may neglect the other contributions. After simplifica-
tion, the system of equations becomes

ap,, apa 6ua,~ BU, aP

*+Ui +yP—— + a +U7—=0 10

at y; K ay; E i ay; (10)
Ouy du, 19p, oU;  p. oP

J S gy, | Ha =252 3y,
at ay; b Ay oy;  p*c? oy

u, aU; du,;
= —U—— —y,;— — U;;—— (11)
/ ay] v ayj b 6yj

To estimate the source terms it is necessary to calculate the
mean flow and simulate a space-time turbulent velocity field.
For this we use a standard K-¢ code that supplies mean quan-
tities and second-order moments, in combination with a
stochastic method providing the space-time turbulent velocity
fluctuations. The determination of this field is described in the
next section.

III. Stochastic Simulation of a Turbulent
Velocity Field

The spatial velocity field is synthesized with a method de-
vised by Kraichnan?’ and improved by Karweit et al.?®? In
this method, one generates a random velocity field which is
defined as a finite sum of discrete Fourier modes. This turbu-
lent three-dimensional field is isotropic and homogeneous and
considered to be frozen. The method provides a random veloc-
ity field having the proper spatial characteristics. It has been
used in the past to study the behavior of acoustic waves
propagating through a turbulent medium. We use this same
approach for simulating a turbulent velocity field having the
turbulent kinetic K energy and the dissipation rate ¢ obtained
from a standard K-e¢ code. In addition, it is necessary to
deduce a time series from the stochastic velocity field. This
item will be described later.

Consider first a three-dimensional Fourier decomposition
of a turbulent homogeneous isotropic field at given point y

u(y) = Sﬁt(k)ejk " dk (12)

where k is the wave vector and j is the complex number
(/2= —1). By transforming this Fourier integral into a limited
sum of N modes, one may write

N
ut(y) =2 E ﬂmCOS(k,, cy + \I’,,)lf,, (13)
n=1

where 4,,,%,, and g, are the amplitude, phase, and the direc-
tion of the nth mode associated with the wave vector k,.
Moreover, for an incompressible turbulent field, the relation
du,;/dy; = 0 requires that

k,-0,=0, n=1,...,N (14)

This indicates that in the spectral space, the unit vector g, is
always perpendicular to the wave vector k, and its position is
determined by its polar angle «,, (see Fig. 1). The wave vector
k, may be characterized by its spherical coordinates (k,, ¢,
6,). The isotropic and homogeneous random field is obtained
by choosing probability density functions for the random
variables ¢,, 0,, ¥,, and «,. It may be shown that P(e,),
P(x,), and P(¥,) should be uniform densities: P(g,) =
P(a,) = Vaw, and P(¥,) = 1/x. On the other hand, the distri-
bution of 6, is given by a sine function: P(f,) = Y2 sin §,,.
For a complete description of the field (13), one has to
determine the amplitude #,, for each Fourier mode. The statis-
tical mean (noted < >) of Yau,u,; is the turbulent kinetic en-
ergy K, and according to Eq. (13), this quantity takes the form

K=Y (15)

n=1

An homogeneous isotropic turbulence is characterized by a
three-dimensional spectrum E (k) (Ref. 30) which is such that

S Ek)dk =K (16)
o

24 k*E(k) dk =€ amn
0

The amplitude #,, of each mode is equal to VE(k,)Ak,, and
one uses the modified Von Karman spectrum E (k) to simulate
the complete spectral range:

K (k/k.)*
ke 1+ (k/k)H17®

E(k)=A exp[ — 2(k / kxo)? (18)

The two parameters 4 and k, are determined from relations
(16) and (17), whereas kg, is the Kolmogorov wave number
defined by (e/»*)*. The spectrum reaches its maximum for k..

To assign the spectral power to a finite number of N modes,
it is adequate to use a logarithmic distribution of the N wave
numbers. This provides a better discretization of the power in
the lower wave number range corresponding to the larger,
energy-containing eddies. The logarithmic step Ak; of this
distribution is given by

log kn—1
Ak, = 08 Ky — 108 k1 (19)
N-1
and
k, = exp[log k; + (n — Dlog Ak;] 20)

The wave number k; = 2%/L corresponds to the largest eddy
(L is the largest eddy scale), whereas ky = (e/v°)" = kg, desig-
nates the Kolmogorov wave number.

One has to verify that this procedure yields a turbulent field
featuring the required one-point first-, second-, and third-
order statistical moments. For an isotropic homogenous tur-
bulence the following equalities apply:

<UD = <Up> = <ug> =0

<ul> = <upt> = <u?> = %K
2n
<ul> = <ul> = <uyt> =0

<UgUp> = <Uplp> = <uguz> =0

As the mode number N is increased and as the number of
samples N, is augmented, the difference between theory and
simulation diminishes. With N fixed to 200 Fourier modes and
N, = 1000, the simulation is quite satisfactory.'? In addition,
one wishes to obtain the correct longitudinal and lateral corre-
lation functions f(r) and g(r). Using the spectrum E (k) for an
isotropic homogeneous turbulence, one can determine an ana-
Iytic expression for f(r) and g(r) (see Ref. 30). On the other
hand, it is known from an analysis of the two points cor-
relation tensor, that f(r) is equal to <u,(0,0,0)u,(r,0,0)>/
<un?(0,0,0)>, and g(r) is equal to <u,,(0,0,0)uu{(r,0,0)>/
<u,*(0,0,0)>. These identities are verified in Ref. 12.

In a first step, one calculates a collection of spatial turbulent
fields without temporal correlation. At given point in space,
one may then consider that each independent realization pro-
vides a velocity sample. The successive samples may be used to
form a time series. A typical sequence of samples is displayed
in Fig. 2a for one turbulent component u,; (here, the mean
velocity is equal to U; = 300 m/s and the local kinetic energy
is equal to 1714 m?/s?). The velocity fluctuations are of the
order of 0.17U,. The power spectral density of this signal
represented in Fig. 2b is that of a white noise because each
sample in the time series is independent. However, the real
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turbulent signal is characterized by a dominant frequency that
is modeled by e/K. The correct temporal correlation of the
turbulent velocity signal is obtained through filtering in the
frequency domain. The initial time series is bandpass filtered
with a linear phase finite impulse response filter, having a
transfer function which may be described by a Gaussian
entered on the frequency fy = /K ({H(f)| =expl— (f —fo)¥/
a*f3] where Jo=26 kHz and @ = ¥ in the example shown in
Fig. 2. The convolution of the signal u, with the inverse
Fourier transform of H(f) yields a suitable temporal signal as
indicated by Fig. 2c which displays the power spectral density
of the filter output signal. The power distribution is now
centered on the frequency ¢/K, and it has a finite bandwidth.
As indicated in the Introduction, the present process of
noise source generation does not account for the convection
effects that are found in typical shear flows. Consequently, we
expect that the convective amplification that characterizes
moving sources will not be retrieved. However, effects of the
flow on the propagation from the sources will be well de-
scribed in the computation. Although this is a definite weak-
ness of the present model, it may be corrected in future studies
by applying a more elaborate stochastic synthesis method.

IV. Application of the Stochastic Noise Generation
and Radiation Model

The successive steps in applying the model are now de-
scribed in the six following points.

1) An aerodynamic flowfield calculation is first carried out
to determine the mean and turbulent quantities of the flow.
The equations solved in this step are the Reynolds-averaged
Navier-Stokes equations, and the turbulence closure is the K-¢
model. We use the Ulysse code, developed in the Laboratoire
National d’Hydraulique of the Direction des Etudes et
Recherches d’Electricité de France.?!

2) The turbulent region which contributes to the acoustic
emission is identified in the second step. In theory all of the
flowfield contributes to the acoustic emission. However, if
one examines the local acoustic power, one finds that for a
free turbulent jet,!! the source domain may be limited to the
initial mixing layer and the transition region.

3) The source domain is divided into a finite number of
uncorrelated regions. The subdivision of the source region is
based on the local correlation scales /; and /,

—3/2 —3/2
11 = utzl /€; 12 = ut22 /e (223.)

where

ul = —2v,0U,/3y, + %K; -1;,72 = —2v,0U,/3y, + 3K (22b)

Fig. 3 Spatial distribution of the simulated turbulent velocity field at
a given time; velocity vector is plotted in the plane y1,)2; and K = 1714
m?/s?, e = 44.8 x 106 m?/s3, and I; = 8.6 x 104 m.

Table 1 Values of x/D which verify the three conditions
of Fuchs for different values of the Strouhal numbers S

x/D
St (wi; m/s)  1st condition  2nd condition  3rd condition
0.23 (125) 12.1 12.0 0.2
3.0 (125) 0.9 12.0 2.7
0.23 (300) 5.0 12.0 0.5
3.0 (300) 0.4 12.0 6.8

- In a plane containing the jet axis, the source domain is
divided in patches of area /, X [,. In practice, the K-¢ closure
provides very close estimates of /; and /,. As a consequence,
the source domains are square and have a typical size /;. In any
event, the result of the simulation is not sensitive to the exact
size attributed to each source domain.

4) The turbulent velocity field is generated in this step. One
assumes a homogeneous turbulence in each square source
domain, and one applies a stochastic method to synthesize the
turbulent field. For each source domain, and after a computa-
tion of the random field, one calculates the turbulent velocity
at all of the points using Eq. (13). In a second step and for
each point belonging to the given source domain, the velocity
time series are filtered numerically. The mean values of K and
¢ are utilized to define the filter transfer function H(f) and, by
a Fourier transform, the corresponding impulse response.

Figure 3 shows a realization of the random turbulent veloc-
ity field in a square domain of area 4/, X 4{,. Several eddies of
size /; are visible in this plot.

5) The source terms forming the right-hand side of Eq. (11)
are calculated in this step. The mean flow velocity U; and the
generated turbulent velocity field u,; are used to determine the
three noise source terms of Eq. (11). The spatial differentia-
tions of u,; are directly deduced from Eq. (13).

6) In this step the propagation equations are solved. These
equations have the linearized Euler form of Eqgs. (10) and (11).
The solution therefore accounts for effects of convection and
refraction by the mean flow. It is obtained with the Eole
code,® developed by the Departement Acoustique et Mécan-
ique Vibratoire of the Direction des Etudes et Recherches
d’Electricite de France. The source terms appearing on the
right-hand side of Eq. (11) are determined as indicated in the
previous steps.

The method used in Eole is based on a fractional step
scheme and relies on solutions of one-dimensional problems in
terms of a weak formulation.?? This is achieved with time-de-
pendent test functions. The formulation leads to a solution of
tridiagonal systems for each direction of propagation. The
Courant number is kept at less than unity to obtain an accu-
rate solution.

Theoretical analysis and numerical tests indicate that wave
propagation is calculated with little dispersion and dissipation.
Some applications to the propagation in hot jets show that the
effects of convection and refraction appear clearly in the
results.** As indicated in the Introduction, it is difficult to
carry propagation calculations in three dimensions. For this
reason we use an axisymmetric version of the code. This
reduces the computational requirements, but it also implies
that the noise sources in the jet have an azimuthal coherence.
In turn, this introduces a directivity factor which will modify
the spatial distribution of acoustic energy.

Numerical results obtained in this way for the acoustic
pressure and velocity are compared in the next section with
experimental data.

Y. Validation of the Stochastic Noise Generation
and Radiation Model

The SNGR model is now applied to the case of free turbu-
lent jets. As a first validation, we study the directivity of the
acoustic intensity /(x,#). This intensity has been measured by
Lush? in the far field at a distance x = 120D where D is the
exit diameter. In particular, we will verify that directivity
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effects associated with refraction are correctly predicted in the
downstream direction. The second validation consists of

checking the spectrum of the acoustic power at two angular -

positions: # = 15 and 6 = 90 deg.

The tests are carried out for two jet configurations
(U; = 125 m/s and 300 m/s). The wave propagation step is
effected with the axisymmetric version of Eole.?* Each source
point represents an annular set of points which are subjected
to the same turbulent fluctuations.

Choice of Step and Dimensions of the Mesh

To compare the numerical results with experimental data of
Lush, one needs a domain of area 120D x 120D. In theory,
the Eole code provides solutions to the far field since the set of
Egs. (10) and (11) govern the acoustic propagation in a
medium at rest. However, a practical problem arises. If one
wishes to propagate a signal of frequency 36 kHz (e.g., a
Strouhal number equal to 3 for an initial velocity U; = 300
m/s), one must choose a mesh size Ay, of the order of 1.56

|
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tal data of Lush, ¢ SNGR model, » Ribner model, and ¢ Goldstein
model.

mm (a size which corresponds to six points per wavelength).
A total mesh of 1923 X 1923 points would be required to
reach 120D (for D = 25 mm) and a memory size of 693 mega--
words would be necessary for the numerical calculation. This
is, for the moment, beyond the computer resources available
to us. It is more appropriate to choose a maximum frequency
which determines the mesh size and then select the computa-
tional domain size which is sufficient to obtain the far-field
radiation.

Three conditions stated by Fuchs** define the far field. If x
designates the distance required to be in the far field, one
should have

x/AN>>1 (23)
where X is the wavelength. To be in the geometric far field,
x/l;>>1 24

where [ is a typical length of the acoustic source domain. The
typical size of source region / is order of 12D (Ref. 11).

To assure that the directivity of acoustic intensity is inde-
pendent of x,

x/1>>1/\ (25)

where /is a characteristic turbulent scale. From the experimen-
tal data of Davies et al.,’® / = 0.13y, (¥, designates the axial
distance from the nozzle exhaust).

If one limits the Strouhal number St to the range 0.23-3.00,
some of the acoustic radiation will not be described. However,
one may show (see, for example, Béchara et al.!!) that about
90% of the power radiated by the jet belongs to this frequency
range. Table 1 gives the values x/D which satisfy the three
conditions (23-25). This table shows that the ratio x/D must
be greater than 12. As the maximum memory size accessible to
us corresponds to a grid of 400 x 400 points (in our case with
Eole) and the elementary grid size Ay; corresponding to the
Strouhal number 3.0 is equal to 1.56 mm, the grid dimensions
are 25D X 25D (and the ratio x/D is equal to 25). However,
one notices that the length of the source domain in the y,
direction is of order of 1D (Fig. 4). Thus, for the points
situated on the circle of radius x = 25D and near the y, axis,
the second condition yields the required ratio x/D > >1.
Finally, with the exception of points near the jet axis, in the
low-frequency range and for the first flow configuration (jet
velocity U; = 125 m/s), Table 1 shows that the acoustic far-
field hypothesis is verified for x = 25D.

Directivity of the Acoustic Intensity

Assuming that the far field is obtained on a circle centered
at the nozzle and taking a radius x = 25D, the directional
acoustic intensity is given by

2
I(x,0) = 2o (26)
PoCo

The mean time average computation is carried out over a
time interval which is at least three periods long for the lowest
frequency St = 0.23. To compare these calculations with the
results of Lush, it is necessary to account for the square of the
distance ratio (25D/120D).

The directional acoustic intensity 7(x,f) calculated for the
two velocities 125 m/s and 300 m/s show that the SNGR
model overestimates the data of Lush by about 50 dB at 125
m/s and by 30 dB at 300 m/s. One may recall at this point that
the synthetic turbulent field contains two types of fluctua-
tions: the first type does not produce propagating compo-
nents, and only generates pseudosound. The second type of
fluctuations generates acoustic waves which propagate to the
far field. Thus, it appears that the acoustic level deduced with
the model is overestimated because it contains a pseudosound
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Fig. 6 o, temporal evolution of the acoustical pressure for U; =
300 m/s.

component. It is then natural to identify and extract the prop-
agative part of the turbulent fluctuations of the synthesized
velocity before calculating the wave propagation with the Eole
code.

To solve this identification problem, one may use the work
of Ffowcs Williams®, who shows that the turbulent structures
characterized by their wave number k and angular frequency,
radiate noise, if the modulus of k is equal to w/cy. If one then
identifies the characteristic frequency of turbulence in each
subdomain with fy=e/K, the corresponding spatial wave
number will be k; = 2we/(Kco) and the associated turbulent
energy takes the form v E'(k,)Ak,. In the modal sum (13) used
to simulate the turbulent flow, one selects a single mode
corresponding to the wave number k, obtained by applying
this selection rule over all of the subdomains. The numerical
calculations carried out for 125 and 300 m/s show that one
correctly predicts the acoustic level in the two cases, see Figs.
5a and Sb. These figures also show predictions obtained with
the Ribner and Goldstein source models. The calculations
based on these models are explained in a companion paper.!!
All of the statistical quantities which are involved in the model
are deduced from calculations of a turbulent jet using a turbu-
lence closure model. Comparison of the predictive capabilities
of the three models is left to the reader. Of the three, only the
SNGR model allows for refraction effects. One finds that the
SNGR model correctly determines the attenuation of sound
emission due to refraction. However, the magnitude of the
predicted attenuation at low angles of observation (§< 15 deg)
is greater than that found in experiments, because convective
effects which compensate the refraction effect are not well-ac-
counted for by the present source model. For angles close to
90 deg, one finds an increase in the acoustic level. This behav-
ior is due to the proximity of the boundary which is not treated
as a perfectly absorbing one by the numerical procedure. One

also notices in this figure the influence of computational do-
main size on the directivity at angles which are too close to 0
deg. To explain this point, one may recall that the second
condition of Fuchs on the geometrical aspect is less well-satis-
fied because the source occupies about a half of the computa-
tional domain.
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Acoustical Intensity Spectrum

To verify the spectral content of the acoustic intensity calcu-
lated with the SNGR model, we now examine the computed
power spectral densities with the measured spectra reported by
Lush? for 6 = 15 and 90 deg for the two velocities 125 and 300
m/s. Figures 6a and 6b display the temporal evolution of the
acoustic pressure signal obtained at one point for a nominal
velocity U; =300 m/s. The signal generated by the model
resembles that recorded in experiments. A third octave spec-
trum calculated in the four cases is plotted in Figs. 7a-7d
along with experimental spectra for comparison. Note that for
frequencies which are less than 1500 Hz the numerical spectra
underestimate the values found by Lush especially at U, = 125
m/s. This underestimation is partly due to the reduced number
of samples obtained from the calculations, which does not
allow an averaging over a sufficient time period. In practice,
the time step is imposed by the computational requirements
associated with a high-frequency propagation. There is also a
CPU time limit that we cannot exceed. These two constraints
determine the amount of time samples available.

VI. Concluding Remarks

In this article we devise a new stochastic SNGR model for
noise generation and radiation from the turbulent flowfield.
The modeling consists of extending the linearized Euler equa-
tions of propagation to the treatment of noise generation.
Source terms of noise due to turbulence-turbulence and turbu-
lence-flow interactions are identified and modeled from a
knowledge of the mean flow in combination with a stochastic
simulation of the turbulent velocity. Spatial and temporal
scales are imposed on this simulation to obtain a realistic
space-time series. The SNGR model is developed and tested in
the case of free turbulent jets and the numerical results are
compared with the experiments of Lush. The results obtained
are quite encouraging. The model allows a qualitative estima-
tion of the directional acoustic intensity and of its spectral
content. To calculate the acoustic level, we assume that only
one part of the turbulence contributes to the acoustic emis-
sion, precisely, the turbulent structures characterized by a
wave number modulus k equal to w/c¢,. In addition, the SNGR
model allows an estimation of the sound refraction at angles
close to the jet axis, an effect which is especially important at
high velocities.

Comparisons between our calculations and experiments of
Lush indicate that the modeling strategy has a predictive po-
tential. Of course, the model requires a range of assumptions,
and we are aware that the choices made are not unique. There
are two important limitations of the present implementation.
First, the convective features of the turbulent fluctuations are
not represented in the model and, consequently, the convec-
tive amplification that is typical of moving noise sources is not
retrieved. In addition, the propagation is treated with an
axisymmetric code, and this modifies the spatial radiation
from the sources. It would be easy to introduce convective
features by simply moving the fluctuations in each source
volume with a given convection velocity. It will be more diffi-
cult to use a three-dimensional propagation scheme because of
current computer limitations. However, one may note that the
numerical codes used to calculate the flow and the wave prop-
agation are not specific to jet configurations and, hence, the
SNGR model could be applied to more complex flows. In this
case, where the analytical solutions are difficult to derive, this
model can be employed to perform parametric studies.
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