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A numerical solution of a g-e turbulence model is used to provide local and statistical properties 
throughout simple and coaxial round jets. These are inserted into predictive formulas for jet noise 
based on Lighthill's theory: Ribner's formalism postulates locally isotropic turbulence superposed 
on mean flow; Goldstein and Rosenbaum's formalism generalizes this to accommodate the more 
realistic assumption of axisymmetry. Numerical jet noise predictions via the Ribner/g-e model 
(designated R o) and the Goldstein/g-e model (designated Go), and some variants, are compared with 
experiment. Only a single empirical factor is used. The G o model, with its threefold longer axial 
scale, shows closer agreement with experiment than the R o model. The predictive capacity of the G a 
model is demonstrated by further calculations for coaxial jets. The results confirm the experimental 
observation of a minimum of acoustic radiation when the outer flow has 0.4 the velocity of the inner 
flow. An advantage of the K-e method is that it yields information on the spatial and spectral 
distribution of the acoustic sources. 

PACS numbers: 43.28.Ra, 43.50.Nm 

INTRODUCTION 

Current formulations of the generation of aerodynamic 
noise by turbulence all require statistical information with 
regard to the turbulent flow field. The most popular of these, 
based on the general theory for flow noise of Lighthill, •'2 are 
the specialized formulations for jet noise of Proudman, 3 
Lilley, 4 Ribner, 5'6 Pao, ? and Goldstein et al. 8 The specialized 
formulations provide a framework for estimating the source 
terms (via correlations) required by the general theory. Under 
certain simplifying assumptions, all specialized theories lead 
to analytical expressions which allow a prediction of the 
noise radiation from a fairly small number of local turbulent 
quantities. To estimate these quantities, the tendency has 
been to use various similarity arguments which allow a 
proper description of the turbulence characteristics of free 
jets. However, these similarity arguments may not be appli- 
cable for more complex ejection configurations due to the 
modification of the turbulent flow characteristics. For ex- 

ample, the similarity approach has difficulties in handling 
coaxial jets. A more general approach, using second-order 
closure turbulence theory was explored by Bilanin et al. 9 In 
this approach, an early model of Ribnet 5 for noise generation 
was coupled with the predictions of a g-l turbulence model 
to estimate the noise radiated from standard and swirling 
jets. Looking back at this contribution, one may say that it 
was not fully successful because the noise model was too 
crude and as a consequence the scaling factor was not con- 
stant. 

In the present paper, we follow a similar strategy, but we 
use more advanced versions of noise formulations (Ribner, 6 

•)Present address: Centre de Recherche Claude Delorme de l'Air Liquide- 
BP126 78350 Les Loges en Josas-France. 

Goldstein etal. s) in association with Reynolds average 
Navier-Stokes computations based on a g-e turbulence 
model. Our purpose is to devise a predictive package which 
provides the main acoustic characteristics. 

This paper is organized as follows: 
In Sec. I, the noise generation models due to Ribnet 6 and 

its generalization by Goldstein et al. s are reviewed and the 
modifications and assumptions required to utilize predictions 
from the g-E model are provided. In Sec. II, computations of 
the acoustic properties are given for a simple cold round jet. 
These computations are compared to the experimental data 
of Lush. m In Sec. III, we check the generality of the present 
formulation, by carrying out a parametric study of the noise 
radiation from two coaxial jets. The effect of velocity ratio is 
specifically considered and the results are compared with the 
experimental data of Juv• et al. • 

I. THEORETICAL BACKGROUND 

In this section, we briefly review Lighthill's theory of 
noise generated by turbulent flows and its application to the 
case of turbulent jets. We also present the theoretical models 
of Ribner 6 and Goldstein et al. s We will focus on assump- 
tions utilized and on adaptations required by these descrip- 
tions. 

A. Application of Lighthill theory 

Lighthill •'2 has shown that the density fluctuations de- 
tected at a point x in the far field and originated from a 
localized turbulent region (V) is given by 
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Co ! 

(l) 
Tij= puiuj + [ (P-Po)-Co•(P- Po) I Sij + 

where Tij is the instantaneous Lighthill tens(,r, 7ij the viscous 
stresses tensor, p and p are the local pressure and density, P0, 
P0, and c o the ambient pressure, density, an( speed of sound, 
u i is the velocity, t is the time variable, an:l 8ij--O or 1 as 
i%j or i-j; i,j = 1,2,3, and repeated indices are summed 
over. The origin of the x,y coordinates is :aken within the 
flow. In isothermal turbulent flows at high Reynolds number, 
the source term Tij is dominated by the in :ensity of turbu- 
lence puiu j . If the Much number is not to) large, then 
can be approximated by pouiuj. In such lows where it is 
reasonable to suppose that Tij is a stafiona'y random func- 
tion of time, one can define the density auto :orrelation func- 
tion by 

Observer 
Nozzle ' -• xt.•y I 

FIG. I. Turbulent jet flow configuration. (x. 0,,/• are the spherical coordi- 
nates of the point of observation x, D is the diameter of the nozzle and y is 
the midpoint of the two soutee points y' and 3/'.) 

[p(x,t-I- •) -- pO][p(x,t) -- p ,] 
Coo (x, 7) = - 3 (2) 

poco 

It follows from Eq. (1) that this functior is related to the 
source term by 

account for source convection. Alternatively, the nozzle-fixed 
axes may be retained and source motion allowed for in the 
form of the R•jkl. Ribher 5 employs the latter and demon- 
strates the equivalence. Thus upon introducing the moving- 
frame correlation tensor, Rijkl(y',•,•')=]lijkl(y',•,r), Eq. (4) 
becomes after eliminating retarded time effects: 

_ poXiXjXl•Xl 
16 •a C •o X 6 

X •-• u;u)(y',t') •-• u•u't'(y',t")dy' dy", 
(3) 

two running poin• in the source dom•n (V). This domain 
(• is identified to the one occupied by •e iet flow. Ffowcs 
Willies • shows •at •. (3) can be c•t n •e following 
fo•: 

( ) xixjX•l Y' •. X C'p(x'r)=Pø 16•lc•x 6 • RiJ•t '•'• • c• 
• dy' d•, 

paxixjx•x t 1 Cøø(x'•')=16•r2c5ox• f fv • 

( 84 R ' )•=•,,cd' - ' X •4 ijttt(Y ,•,•') dv' (6) 

where C is the convection factor C=l-M•cos0;, 
cos O=xi/.r, 0 is the angle between the direction of mean 
flow and the direction of observation x (see Fig. 1), and M c 
designates the convection Mach number. Following Ribnet 6 
we let Coo(x/y',r) denote the autocorrelation function at the 
point x due to the sound emitted from a unit volume at y'. 
Then 

Coo(x,r')= ,tCoo •,•' dy' 
R ' '-' "''" ...... +r)-g/•t(y',•/), (4) ijkl(Y ß tl, 7) -- u i Uj [y ,t )UkU I ty ,t 

where R•p t represents the two-point time-delayed fourth- 
order correlation tensor. It is found conveni mt to introduce 

an arbitrary time-independent tensor •nt which is eventu- 
ally chosen to simplify fu•er algebr•c calculations of the 
integrand. •uation (4) uses the v•tor sepmation O=y"-y ' 
and •e rended time x •xc o observed at th• point x for two 
acoustic waves emitted at •e same time at joints y' and y" 

Now, m expl•ned by Lighthill 2 and Ffowcs Willies, •2 
one can in•oduce •e moving-axis •ansfom ation 

iUcr (5) 

(where Ulc is •e axi• eddy convection ve •i• in the di- 
rection of the unit vector i which is •e meat flow direction) 
into •. (4) in o•er to neglect ret•ded tim• effects. Notice 
ß at this moving axis •ansfo•ation is • oF•onal choice to 

and 

d•. (7) 

B. Ribner model 

In his two first models, Ribner •'•3 rewrites Eq. (7) in a 
•2 n2 form inspired from Proudman 3 where u• u x governs the 

acoustic emission in the x direction (the x index indicates 
that the velocity is projected in the observation direction). 
This Proudman form is by far the simpler: The single corre- 

•2 it2 
lation u• u• replaces some 36 correlations ' ' ""In a u i uj UkU 1 . 
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later model, Ribnet 6 reformulates the model so as to calcu- 
late the relative contributions of all the different correlations. 

The assumptions made are the following: 
(A1) The noise pattern of the round jet considered is 

axisymmetric, so that the autocorrelation function Coo is in- 
dependent of •b (see Fig. 1). 

(A2) The mean flow is nearly parallel and in that case, it 
is of interest to decompose the instantaneous local velocity 
as a sum of a parallel mean flow and turbulent fluctuations 
with zero mean so that 

ui(y,t ) = Ui(y) t•l i + uti(y,t ). (8) 

Introducing this decomposition into Rijkl and assuming 
that the turbulence is locally homogeneous, gijkl can be writ- 
ten in the form [for Riøjkt(y,0=0]: 

q- (•lj(•lllttiUtk q- (•ljt•lkUtiUtl 

+ $,i rS, tu,'• u['k). (9) 
The noise associated with the first term is called "self- 

noise." It represents the contribution arising from turbulence 
alone. The other terms represent components due to the in- 
teraction between turbulence and mean flow. These contribu- 

tions form the "shear noise." 

(A3) The joint probability of u[i and u't' • is assumed to 
be normal, thus it follows that: 

tt[ittttjtt;;tt;tl(y, •, T) = gij(y,O,O )Rtcl(y,O,O ) 

+(Ri•Rjt+gilRjl:)(y,•,r), (10) 
where 

g ij(Y, •, •') = tl [ilitt'j( y, .•, 3'). 
(A4) The two-point correlation Rij(y,•,r) is factorable 

into a space factor and a time factor. If these two parts are 
assumed to be Gaussian and the turbulence is isotropic, this 
correlation takes the form: 

Rij(y, •, r) = Rq(y, •) exp( 
1 

Ri.i(Y,•)=U•m[ (f + • •f •-•f•) •i• 
f(•) = exp( - •r•2/L•2), 

(11a) 

1 o•f •i•j] (lib) 2 as c ' 

(llc) 

where f is the longitudinal correlation function, O)f is a typi- 
cal angular frequency of the turbulence, L1 designates the 

2 repre- longitudinal integral scale of the turbulence and utm 
sents • of the kinetic turbulent energy •c. 

(A5) Finally, one has to evaluate the two point function 
U'•(y')U'((y") in terms of U•2(y) where y is the midpoint of 
y' and y". The modeling proposed by Ribher 6 is a Gaussian 
expression U•2(y)exp(-o'•r•/L•), where cr is a local coef- 
ficient equal to 0.07. However this modeling is not well 
adapted to real situations. In fact, based upon a given veloc- 
ity field, we have recalculated the coefficient cr for different 
points at the axial position y•/D = 4 and for four positions in 
the transverse direction (y2/D=0, 0.5, 1, and 3). The nu- 
merical calculations TM show that cr is not constant, and fur- 

thermore we notice a considerable divergence when 
y2/D•>l, between the exact and modeled values of 
U'•(y')U'((y"). 

To avoid this modeling, we perform a Taylor expansion 
of ' ' " " U•(y )Ui(y ) to the first order around the midpoint y and 
obtain 

= U•2(Y)- T o•y 2 (y) ' (12) 
Inserting all these assumptions into Eq. (7), the expres- 

sions of the acoustical directional intensity for the shear and 
self-noise per unit volume of the jet, are simply obtained 
from the corresponding autocorrelation function for r=0: 

,--Se.N.• 0/y, r= 0) ISe'•'(x,O/y) = c•p •x, 

• ,,3 2 2 D/Se.N. 3 X/ZpoLllttm 

-- 4 7r2cgx2 to) C5 , (13) 
ISh'•'(x, 0/y): c pShp'S'(x, O/y, r= O) 

' ( ou, l _ 3 poLltrim tO} CS , (14) 8 7r3Co5X 2 8y 2 ] 

where D• h'N'= l/2(cos 2 0+cos 4 0) and D• e'N'= 1 are the in- 
trinsic directivities of the shear noise and self-noise. One 

may note that the isotropic directivity of self-noise is a nec- 
essary consequence of the isotropy of the turbulence. 

The expression of the acoustical directional intensity for 
the total noise per unit volume of the jet appears as the sum 
of the shear and self-noise contributions: 

I(x, 0/y) = ISe'N'(x, 0/y) + ISh'N'(x, 0/y). (15) 

This total intensity can be put in the form: 

[A+ B/2(cos 4 0+cos 2 0)] ß 1/C s (16) 
Self-noise Shear noise convection effect 

The self-noise contribution is radiated isotropically, 
while the shear noise has a dipolelike pattern. The combined 
pattern for A = B = 1 is a quasiellipsoid with the long axis in 
the direction of the jet axis. As a consequence of the convec- 
tion effect, the factor 1/C • enhances the intensity in the 
downstream direction and largely attenuates the sound radia- 
tion in the upstream region. This effect is more exaggerated 
at high Mach numbers. To avoid oversimplification in this 
range, Ribner 6 and Ffowcs Williams 12 found it necessary to 
allow for variation of retarded time with source position. 
This led to a modified convection factor 

Cm=[(1-M c cos 0)2+012Mc2] 112, (17) 

where oeM• = to•L•/(x/-'•Co). In Ribnet 6 the coefficient a is 
taken equal to 0.55 while experiments of Davies et al.•S in- 
dicate that a is closer to 0.3. 

C. Goldstein model 

The model devised by Goldstein 8 generalizes the Ribnet 
model which has just been reviewed. It is argued by Gold- 
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stein that it is more appropriate to assume that the turbulence 
in the jet is axisymmetric. In fact the mean flow introduces a 
preferred direction so that the isotropic tu'bulence descrip- 
tion is less adequate because it neglects intportant anisotro- 
pies such as the marked reduction in the t•ansverse integral 
scale. As pointed out by Davies etal. •5 and Grant? the 
large-scale eddies become mainly long cyli •drical structures 
having a longitudinal scale approximate15 three times the 
transverse scale. 

For brevity, we will only review in th s section the as- 
sumptions which differ from those of Ribne"s model and we 
will give the expressions of the acoustical tirectional inten- 
sity for the shear and self noise per unit v½lume of the jet. 

R ø (' . (AI) The arbitrary time-independent l:nsor ij•l Y 
is chosen as: 

R ø ....... 28 t• t"u"+ .... 2 ij•l[Y ,•'l)--Ul li ljltk tl UI Olk911blritltj 

-I-U I U OliOijtllkltll•-t'tttitjtltktitl . (18) 
(A2) To treat the axisymmetric turbuleJ•ce situation, it is 

necessary to introduce the point y defined t,y 

y,+ w Ys 

[ ' • ' - (19) Y= Y•' 2 ' ' 

According to this definition, y is not the midpoint of y' 
and y" as in the isotropic case. 

(A3) For axisymmetric turbulence, the two-point corre- 
lation R.j(y,•,-r) may be expressed in terms of two indepen- 
dent scalar functions:•V 

t9q im 

Rij-: Ejlrn 8• I , (20) 
where 

qim := •k[ Eirnl•QI -{- Eilk( t•ilnQ2 q- •mQ3)], (21) 

03= O•l •3 •3 Q1, (22) 
where •.llm is the antisymmetric symbol 1/2 (j- I)(l- m)(m 

Kinematically acceptable models for Q• and Q2 are 

1•- •2 sc•/1,21 __ __ [ S23 'k (23) utlf(y'r)exp I IL22 L•} 
Q:•(Y,•,r):-(u,Z•-ul)f(Y,r)exp[-(•+L• ] ], 

(24) 

where 

•2 _ 2 • -- •2+ •5. (25) 

2 (respectively, L 2 and u•22) are the longitu- Here, L• and 
dinal (respectively, transversal) integral scah', and kinetic en- 
ergy of the turbulence. The function f is not •pecified in Ref. 
8. It is consistent io adopt a temporal Gaus: ian function for 
.f(y,r) as was done previously in the isotrop c case: 

2 • 

•(y, •) = exp(- o• •-). (26) 

The y dependence is implicit in 

By assuming that the axis of symmetry coincides with 
the axis of the jet and after some tedious calculations, the 
following expressions are obtained for the acoustical direc- 
tional intensities per unit volume of the jet relative to the 
shear and sell:noise: 

12LjL2• -U2 4 (27a) !Se'•'(x, Oly)=pO 5•c•x2 u,i •o• C5 , 
where 

O/se'u ={1 +2(MI9-N)cos 2 0 sin 2 0+ «[M217+M 

- 1.5N(3-3N+ 1.51A2--A212}]sina 0}, 
(27b) 

24LlL2U• 
/ s• •'(x 0/y) = P0 5 • o• C-•-, (27c) ß •rcox- k•Y2] 

where 

D•'•'=cos • 0(cos 20+•l/A•-2N]sin 2 0). (27d) 
In these exp•ssions, the effect of the anisotropic st•c- 

ture of the turbulence appe•s through the following three 
p•ameters: 

2 2 
A=L2/Li, N = ] -ut2/utl, 

and (27e) 

M=[•.5(A-•/A)]L 

If one writes the expression of the total acoustical inten- 
sity in a fo• similar to relation (16), one finds •at the 
self-noise contribution is now directional. •e radiation pat- 
tern (for A= ] and N= •) has a dipol• shape where the di- 
pole axis is in the transverse direction (0=90ø). •e p•sent 
shear noise radiation paUem resembles that of the Ribher 
model. Notice that in the limiting case of isotropic turbu- 
lence (A=I and M=N=0) the directivity expressions of 
(27b) and (d) become identical to those of Ribher. 

D. Determination of the statistical properties of 
turbulence with a •-• model 

To obtain estimates of noise radiation, it is necessary to 
specify the many statistical variables that appear in the pre- 
vious models. In order to use the theoretical expressions 
(13), (14) and (27a) to (27d) of the direclionai acoustical 
intensity per unit volume l(x,0/y), one has to provide the 
following local quantities: 

U• axial mean flow velocity, 

2 , ut22 mean, u,,, UTl, and longitudinal, and 
transversal turbulent 

kinetic energy, 

L• and L2 longitudinal and transversal integral 
scale of turbulence, 

to! angular frequency of turbulence, 

Ul½ axial eddy convection velocity. 
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2 
The quantities U• and u,,, are directly determined from 

a numerical solution of Reynolds average Navier-Stokes 
equations associated with a tr-e turbulence model. Let us 
recall at this point that tr (dimensions of energy per unit 
mass) designates the turbulent kinetic energy of the flow 
while ß is the turbulent dissipation: 

(•l•l ti t•l•l ti 

e: ]tl, 8xj cJxj 

The dissipation ß has dimensions of energy per unit mass and 
per unit time. It is also worth remembering that the ratio Me 
provides a typical ti[ne of the local turbulence while K•/e 
yields a typical length scale. To evaluate the mean and tur- 
bulent aerodynamic variables, we use the axisymmetric ver- 
sion of the numerical code ULYSSE t8 developed by the "D•- 
partement Laboratoire National d'Hydraulique" of the 
"Direction des Etudes et Recherches d'Electricit• De 
France." Numerical results obtained for the mean flow ve- 

2 
locity U• and for the turbulent energy ut, , were checked by 
comparing the numerical estimates with the data of Pao 7 and 
Davies et al. • These tests show that one can predict the 
self-similar behavior of the profiles of U• and u'•t2m, ex- 
pressed in normalized variables in the mixing and developed 
region of the jet. Figure 2(a) and (b), respectively, display the 
spatial distributions of Ui and •: for a nominal exhaust ve- 
locity U U equal to 195 m/s and for a nozzle diameter D of 
0.025 m. It is known that the potential core length It, (char- 
acterized by a constant axial velocity) extends over 4 to 
5.5 D depending on the exit characteristics of the turbulence. 
The mixing region is located between 0 to 4-5D, followed 
by a transition zone which terminates at about 8-9D. Be- 
yond that point, the turbulent jet may be considered as fully 
developed. A careful analysis indicates that the numerical 
value of lp is about 7D and thereby the mixing region is 
somewhat longer (extending to 7D) than in the experiments. 
This shifts the transition region down to 1 I D. This inaccu- 
racy is encountered in Ref. 19 whereas it is shown in Ref. 20 
that the standard to-ß model do not substantially overpredict 
the length of the initial region. This error in the potential core 
length will have an effect on the jet noise prediction. The 
noise sources are shifted downstream and their typical scale 
and intensity is altered. However these inaccuracies are com- 
pensated by the semiempirical procedure explained in Sec. 
II A. Using an adjustable coefficient to match acoustic data 
for one set of conditions, one essentially absorbs the error 
made in estimating the potential length core. In Fig. 2(b) one 
recognizes the two •nixing regions corresponding to the 
maximum of the turbulent energy g. In fact the production of 
this quantity is intimately associated with velocity gradients 
which reach a maximum in the mixing regions and are neg- 
ligible in the potential core. Due to the mechanism of turbu- 
lent diffusion, the thickness of the two mixing regions will 
grow and these two regions finally merge at about 10D. 

For the other aerodynamic and statistical quantities, we 
utilize the following closure relations: 

(1) Based on the concept of turbulent viscosity, the ex- 
2 and 2 pressions of bttl •t2 are 

8U• 2 
2 _ _2Pt -- + K, (28a) ut•- Oy• •- 

•U 2 2 
2 _ _ 2 v t + tr, (28b) /,t t2 -- c)'-•- 2 •- 

where vt= 0.09 K2/ß is the kinematic turbulent viscosity. 
(2) The integral scales should be in principle deter- 

mined from spectral considerations. However simulations in- 
dicate that suitable estimates of L• and L 2 the longitudinal 
and transversal integral scales of turbulence may be specified 
in terms of • and ß by: 

•3/2. .-•-3/2. L•=UH /• and L2=•,2- •e. (29) 

2 2 2 
Now the numerical calculation leads to ut• • ut2 • • 

and as a consequence the scale L 2 becomes identical to L 1 . 
This is so because the concept of turbulent viscosity is un- 
able to correctly represent the splitting of the kinetic energy 
between the longitudinal and transversal directions. 2•'22 In 
other words, the K-ß turbulence model cannot predict the 
anisotropic distribution of length scales in the Goldstein 
model. It is already mentioned that in experiments the ratio 
A=L2/L • is equal to 1/3. •5'16 This value is imposed in our 
calculations. In doing so, one accounts for the turbulence 
anisotropy (admittedly in a crude way) and one may then 
fully exploit the Goldstein model. 

(3) To model the angular frequency •of, it is natural to 
use 23 

cof = 2 ,re/•:. (30) 

The modeling adopted for L •, L 2 , and Of and relying on 
Eqs. (29) and (30) depends implicitly on proportionality fac- 
tors. However the available experimental data do not enable 
a precise determination of these factors. It is then necessary 
to introduce a global adjustment factor in the expressions of 
the total acoustical intensity (F• for Ribnet and F• for Gold- 
stein). The specification of these global factors is discussed 
in Sec. II A. 

(4) The g-ß model cannot provide the eddy convection 
velocity U•. In general, this velocity is considered constant 
throughout the jet and is equal to 0.6-0.7 of the value of the 
mean jet exit velocity. In order to take into account the varia- 
tion of this velocity is observed by Davies et al., • we utilize 
his experimental profile obtained in the mixing region and 
expressed in reduced variables: 

Uref 

where y I and Y2 are the axial and radial coordinates and the 
reference velocity is identified to the axial velocity 
U•(y2=0). To estimate the local value of U• over the 
whole jet, we also assume that this profile is valid in the 
transition and developed region. We will show in the next 
section the advantage of this modeling when compared to the 
crude assumption U • • = constant. 
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II. RESULTS AND COMPARISON FOR 1, SINGLE FREE 
JET 

It is still necessary to explain how we determine the 
global adjustment factors and how we find he optimal set of 
expressions for the convection velocity and the coefficient or. 
We will then compare numerical results with the data re- 
ported by Lush. m We will consider first the evolution of the 
total acoustical power W emitted by the je• as a function of 
the jet exit velocity Ul• and we will then e:.amine the distri- 
bution of acoustical intensity l(x, O) in terrr s of the observa- 
tion angle 0. Expressions relating I4/and II x, 0) to l(x, O/v) 
are as follows: 

l(x, O) = fvl(x, 0/y)dy, (31) 

where h,x,Oly) is obtained from Eq. (15) 

.• •' 0ma x 
W= 2rrx-[ l(x,O)sin 0 dO, (32) 

JOmm 

where {0min=7.5 ø, 0max = 105 ø} is the range of variation of O 
in the experiments. 

Theoretically, the acoustical power, must be integrated 
between 0 ø and 180 ø. However as noticed 1,y Lush, •ø !(x,OI 
y) is largely attenuated by the convectiot factor at large 
angles et by the factor sin 0 for the small an,;les (close to the 
jet axis). Thus the limitation of {0,,i,.0,•a,} to {7.5ø.105 ø} 
introduces a negligible error. As a matter of interest, in the 
experiments, the power attributed to the d•:leted 0rain=7.5 ø 
cone will be almost entirely refracted out ,ff this cone and 
thus be lneasured. It will, however. be small. 

A. Determination of Fa R, F•a, Ulc, and ot 

Let us recall (see Sec. l A). that one has to add the 
correction otM c to the convection factor C for high jet ve- 
locities [Eq. (20)]. However different choict s for ot and Utc 
are possible and one has to find the optimal :hoice. One also 
has to specify the global adjustment factor F• and Fn a for the 
two models. The procedure adopted is as follows: 

For each model and for a specified choice of a and U•½, 
the global adjustment factor is aleterminated so that the di- 
rectional intensity at 90 ø l(x, 0= 90 ø) coincides with the ex- 
perimental value of Lush for one single velocity U•i= 125 
m/s taken as reference. We then calculate tte deviation D w 
between the measured and numerical val•e of the total 

acoustic power W for U•j = 300 m/s and the optimal choice 
of rules is that which gives the minimum •f D w. Table I 
presents five possible choices, with the curre •ponding values 
of F a and D w for the two models. The optimal choice cor- 
responds to the fifth group of rules R s where the deviation 
D w observed is minimal. A close inspection of this table 
shows that much is gained by allowing for -riations of the 
convection velocity. Because Ui• is a function of y, the fac- 
tor 1/C,5,, calculated therefore is also a function of source 
position and the final outcome is a deri•ed jet-average 
(lIC,S,,). At high subsonic jet speeds, it is indicated by a 
reviewer that this should yield a big imptin ement over the 
constant .•emiempirical ( 1/C,5,,) factor. 

TABLE 1. Values of the adjustment faclor F. for the 2 models relative 
five different groups of rules. 

Ribnet model Goldstein model 

F• (dB) a O• (dg) h r• (dB)' O• 

R 1 Uic=O.67Uih -16.2 7.3 27.9 4.2 
or--0 

/?2 Uh-= 0-67U•t, -16.1 6.0 -27.8 3.1 
ce-0.3 

R• U•=0.67U•t, - 16.0 3.5 27.6 1.0 
ot-0.55 

R 4 U•=0.67U•t, -16.1 5.1 27.7 2.3 

ot -: o•tL• l • rrU•, 
R s U h. Davies et al. profile -16 I 2.5 27.7 0.2 

ot -- tofL• I qrrUh 

"F a =l(x. 0:90)L,,h--I(x, 0=90)•,,a• at 125 m/s. 
Ow- i•u,h-W•.,• at 300 m/s. 

Thus all the calculations presented in the next sections 
for these adapted models of Ribnet and Goldstein correspond 
to the fifth group of rules R s . These adapted two models will 
be, respectively, designated by R, and Go. 

B. Total acoustical power 

Numerical calculations correspond to four jet exit ve- 
locities: 90, 125. 195. and 300 m/s. Figure 3 shows that the 
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FIG. 2. Spatial distribution of the axial mean velocity U, and the Ivrbulenl 
kinetic energy g for U•t- 195 m/s. (a) Axial velocity U• (in/s). •b) Turbu- 
lent kinetic energy g (m'•/s2). The scale of gray levels shown on the right 
side of the figures is used to plot the distributions. For example. the darkest 
symbol on (a) corresponds to values between 176 and 204 •n/s. Nozzle lips 
are located at y•/D=O and y•lD= -+ 1/2. 
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HG. 3. Variation of the total acoustic power W as a function of jet exit 
velocity U U [O: Ula law, A: R a model, +: G,, model, X: Lush data, V: 
relation (33)]. The acoustic power is expressed in riB, re: 10 -•2 W. 

model Ga correctly predicts the evolution of the total acous- 
tic power and closely follows the data of Lush. The deviation 
D w at 300 m/s is about 0.2 dB, while this deviation is 2.5 dB 
for the R, model. 

The same figure also displays the standard U•i law. This 
scaling law initially proposed by Lighthill indicates that the 
acoustic efficiency defined as the ratio of the acoustic power 
to the mechanical power of the jet increases like M 5. The 
UsU law does not apply in the supersonic range. It is known 
for example that the sound power radiated from jets exhaust- 
ing from rockets increases like the third power of the veloc- 
ity. In the high speed range the acoustic efficiency is roughly 
constant (this efficiency is typically equal to 0.5%). One 
finds that the U•sj law closely follows the variation of the 
acoustic power for velocities less than 250 m/s. In the high 
subsonic range it appears that the acoustic efficiency is a 
function of the Mach number. In this range the effect of 
convection becomes important and according to m the dimen- 
sional relation U•8• is replaced by 

D 2 1 +M• 2 
W--pøU•SJ cg (1-M•2) 4' (33) 

This law is singular at Mc= 1 because it results from inte- 
grating the singular factor llC 5 of Lighthill over a unit 
sphere. By contrast, the corresponding integral of the non- 
singular factor IIC• of Ribnet and Ffowcs-Williams is itself 
nonsingular. Expression (33) is also plotted in Fig. 3 
(Mc=0.67 UuIc o, is used in the calculation). The experi- 
mental values are correctly predicted by this expression 
when the jet velocity exceeds 250 m/s (see Fig. 3). All the 
results are expressed in decibel units with a reference power 
of 10 -12 W. Intensity levels given below are also expressed 
in decibels with a reference intensity of l0 -•2 W/m 2. 

C. Acoustical directional intensity 

Relations (31), (15) together with (13)-(14) or (27) pro- 
vide the acoustical intensity l(x, O) due to the jet in the ob- 
servation direction 0. Figure 4(a), (b), and (c) display this 
intensity for the two models compared to the data of Lush 
and for three jet exit velocities 125, 195, and 300 m/s. The 

overestimation of the intensity l(x, O) by the R• model in- 
creases as the velocity increases and may reach up to 5 dB at 
the very small angles (0--20ø). However at these angles, the 
G a model yields suitable predictions of l(x, O) for the two 
velocities 195 and 300 m/s and underestimates the intensity 
level for 125 m/s. Later on we will explain the reason for the 
deficiency of the Ga model at this velocity. This model is the 
most accurate in the high subsonic range (typical exhaust 
velocities of about 300 m/s) when compared to others mod- 
els based on the Lighthill's theory. While this conclusion 
holds, it is also true that the R a model would have come 
closer to experimental points if we had matched at 45 ø and at 
the intermediate velocity of 195 m/s. Figure 4(d) includes, in 
addition to the R a and G a results. the predictions of l(x, O) 
obtained from the following models. 

(1) A first set of estimates is obtained from a simplified 
model based on dimensional considerations and providing an 
algebraic expression for the directional intensity: 

U•sj D 2 1 
l(x,O)--po C5o x2 (1-Me cos 0) s' (34) 

where M•=0.67 U•jlc o. This model is used by Lush tø in 
comparisons with experimental data. 

(2) A second set of predictions is generated with a 
model due to Bilanin et al. • based on the second version of 

Ribher's theory • including an improved formulation of 
U• U'• similar to the one adopted in our own R• model. The 
mean flow and the statistical turbulent properties are ob- 
tained from a ,-I turbulence closure, where 1 is a character- 

istic length of turbulence. The expressions for the acoustical 
directional intensity for the self- and shear noise are 

ß 3 22 4 
•0 I l•tm (Of 

lS•'•'(x, Oly) • K• s , 5 ß (35a) 
4 rrcox- C,,, 

ß 4 2 4 

U I -- ISh'N'(x'O/Y)=K2 4'rrc•o x2 C• Oy2 
X (cos 4 0+ cos 2 0), (35b) 

where K•, K 2 are numerical constants. Notice that expres- 
sion (35a) is identical to the expression of the self-noise in 
Ribner's model (13). However, expressions for the shear 
noise (35b) and (14) exhibit two important differences: 

(i) In the convection factor Cm, the axial convection 
velocity Ul• is approximated by the mean axial velocity U•. 

(it) The intensity of shear noise is now proportional to 
5 '• 14Ul(OUllOy2) in (35b) instead of ! (o9/.Jl/0Y2)' as in (14). 

We will show in this section that these differences restrict the 

predictive capability of this model. 
(iii) A third group of values is determined with a model 

due to Hecht et al. 24 In this model, the two-point correlation 
RU( •, •-) is directly calculated from the solution of an equa- 
tion governing this correlation in the case of an homoge- 
neous turbulence with a mean flow submitted to unidirec- 

tional constant shear. 

Figure 4(d) shows that Bilanin's model is no better than 
the simplified expression (34). Our R, model based on a 
more refined noise generation description is more accurate. 
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FIG. 4. Variation of the acoustic directional intensity of total noise as a function of the angle of observation 0 for the two models R• and Ga ß (a) Ulj = 125 
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the model due to Bilanin, V: estimates generated with th '• model due to Hecht. The meaning of the symbols in this figure differs from that used in Fig. 2. Note 
that the last three symbols are only used in (d). 

On the other hand, although the Hecht appro• ch looks prom- 
ising, the hypothesis of uniform shear and th.• use of a large 
set of closure assumptions of the govemi •g equation of 
Rij(•,r ) finally limits the performance of th s scheme. One 
finds in particular [Fig. 4(d)] that the Hecht -nodel underes- 
timates the intensity at small angles 0. 

In order to refine our analysis of the variation of l(x, O) 
as a function of 0, we have calculated the t•o contributions 
of self- and shear noise. The directional acou., tical intensities 

for these two contributions due to the whole jet are 

IS½'N'(x, 0) = fvlSe'N'(x, O/y)dy, (36a) 

lSh'S'(x, O) = fvlSh'S'(x, O/y)dy, (36b) 
where I sen' and ISh'N'(x, Oly) are given by Eqs. (13), (14) 
and (27a), (27c), respectively, for the two models R a and 
G,. As the expressions of the shear noise [see Eqs. (14) and 
27(c)] feature a cos 0 dependence, one finds •Figs. 5 and 6) 
that the self-noise intensity coincides with •he total noise 
intensity at 0=90 ø. In the case of the R, n odel, the sell'- 
noise intensity having basically a uniform dit:ctivity, shows 
an amplification at small angles due to the co wection factor 
l/C •. If one adds the shear noise contributiotl which is not 
negligible for 0<45 ø, the amplification beco nes more pro- 
nounced in the total intensity and this explai •s why the R a 

model overestimates the acoustical intensity in the range of 
small angles (Fig. 5). 

In contrast, the two contributions of self and shear noise 

are comple•nentary in the G, model. For angles 0>45 ø (re- 
spectively, 0<45ø), the self-noise (respectively. shear noise) 
dominates so that the total intensity comes close to the mea- 
surements (see Fig. 6) except for the lowest velocity 125 m/s 
at small angles. In fact we must recall that one has imposed 
a fixed value « to the ratio A of turbulent scales. While this is 
appropriate in the high velocity range, one expects that this 
ratio will tend to one for lower velocities because turbulent 

structures become more isotropic. If the variations of A were 
taken into account, the shear and self-noise directivities 

would approach those of the R a model and the predictions 
would be improved at these small angles. From here on, we 
only discuss the results of the G• model. 

D. Spatial and frequency distribution of acoustical 
sources 

In order to have a description of the spatial distribution 
of the acoustical sources in the jet, one has to invert the 
integration order. Starting from expressions {27) for the di- 
rectional intensity l(x,0/y) and integrating over 0, one ob- 
tains the acoustic power generated by the unit volume of the 
jet: 
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/'# max 

W(/y) = 2 •rX2 J o tin l(x, O/y)sin O dO. (37) 
It is obvious that the integral of W(/y) over the jet gives 

the total power W as given by expression (32). As a check 
we have tested this equivalence. Fig. 7, corresponding to an 
exit velocity of 195 m/s, provides a typical spatial distribu- 
tion of the acoustic power in a range extending from 
Wr, m(/Y)-15 dB to Wmax(/y). This figure indicates that the 
acoustic sources are localized between 0 and 12D, e.g., in 
the mixing and transition regions. In fact, the amplitude of 
self- and shear noise are proportional to the intensity of tur- 
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FIG. 6. Varialion of the acoustic directional intensity of self-noise and shear 
noise as a function of the angle of observation 0 for the G a model. (a) 125 
m/s, (b) 195 m/s, (c) 300 m/s (O: self-noise, A: shear noise, +: total noise, 
X: lush data). 

bulence and shear gradients which are important in these 
regions. This clearly shows that the noise contributions of the 
potential core and developed regions are not significant. 

To obtain the exact percentage of acoustic power gener- 
ated in each region of the jet, we have calculated a longitu- 
dinal distribution function F•(Yl) of the acoustic power de- 
fined as 

l •;ldy] fvW(/y)dy 2 (38) Fw(Yl) = • ay3. 

This function was determined for U1j= 125, 195, and 
300 m/s. Table II displays the values of Fw(y I) for yt/D=7 
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and 11. From these values, one may conclude that 60% of the 
acoustic power is emitted from the mixing region (y•<7D) 
and 30% originates from the transition regi>n. This confirms 
the Ribher, 5 Crighton, •5 and Goldstein 26 assertions that the 
two regions contribute the main part of tl:e jet noise emis- 
sion. 

Now, we examine the expression of the acoustical power 
spectrum W•o(/y) per unit volume of the jc•t to describe the 
frequency distribution of the acoustical sot tees: 

f 0 max 

Wø'(/Y)=2•rx2Jo rain l•(x, 0/y)sin 0 (39) 

where 1o,(x, 0/y) is the directional acoustic •l intensity spec- 
trum obtained by taking a Fourier transform of the autocor- 
relation function Cpo(x,O/y,r) (see the Ap[ endix). The spa- 
tial distribution of Wo,(/y) is represented in Fig. 8(a) to (d) 
for Utj:= 125 m/s and for four frequencies corresponding to 
Strouha• numbers St=oD/(2rrUu)=O.OI, 0.3, 1.0, and 
3.0. At the low frequency (St=0.03), the s•urces are in the 
developed region, while at the high frequency (St=3.0) they 
are in the mixing region near the nozzle. In the intermediate 
frequency range (St=0.3 and 1.0) the sot.tees are located 
between the end of the mixing region and the beginning the 
developed region. In fact, the small eddies formed near the 
nozzle and convected at high speed in the initial shear layer 
are responsible for the high-frequency emission while the 
larger eddies which develop further downstream have a de- 
creasing typical frequency and therefore a lower emission 
frequency. Finally, if one defines a freqm:ncy distribution 
function Fw(S0 in terms of the Strouhal number, Table IlI 
indicates that about 40% of the power em tted is observed 
for St<•l.0 while 10% of the power is detected for Sty>3.0. 

TABLE [I. Values of the spatial distribution function, ?W(Yl ). 

Fw(%) 
y•lD 125m/s 195rn/s 300m/s 

7 57 60 59 

11 89 89 93 

III. PARAMETRIC STUDY OF TWO COAXIAL JETS 

In order to test the predictive qualities of the present 
approach. we now apply the G a model to the case of noise 
emission from coaxial jets. It is known that in such aerody- 
namic configurations, the noise emission depends on the sec- 
ondary jet velocity. The exact behavior is nicely character- 
ized in well-controlled experiments reported by Juv• et al. • 
Other experimental data are also available (for example, Reft 
27) but the aerodynamic field is not provided in that last 
reference while it is well documented by Juv6 et al. The 
experiment carded on two coaxial jets at subsonic velocities 
and ambient temperature shows that the acoustic emission 
first diminishes as the secondary jet velocity is increased, 
reaching a minimum and then increasing again as the jet 
velocity is augmented further. Our goal is to predict the mini- 
mum of the acoustic emission as provided by this experi- 
ment. 

A. Configuration studied 

Figure 9 gives a schematic representation of Juv6's con- 
figuration. The exit velocity Utv of the primary jet is held 
constant at 130 m/s, while the exit velocity Ui, of the sec- 
ondary jet is varied from 0 to 91 n-ds. Denoting by k the ratio 
U•IUiv, the selected values of this ratio are 0, 0.2, 0.4, 0.6, 
and 0.7. The diameters of the primary and secondary nozzles 
are, respectively, Dr,= 30 mm and D•= 100 mm. 

The method adopted to calculate the acoustic emission 
for each value of 3, is based first on a determination of mean 

and turbulent flow characteristics utilizing the numerical 
code ULYSSE. In a second step, using the G a model, we de- 
termine the directional intensity l(x, O) which is then com- 
pared to the experimental data of Juv6 et al. n This intensity 
is measured at 0=90 ø at a distance x=2.5 m from the pri- 
mary nozzle center. One may notice that for this particular 
angle the exact knowledge of the convection velocity profile 
Ul• is not crucial. The amplification Cm factor as shown by 
Eq. (20) becomes negligible for 0=90 ø. This is confirmed by 
the constancy of the adjustment factor F A in the case of a 
simple jet (see in Table I). 

B. Numerical results 

It has been verified •4 that the predicted aerodynamic re- 
sults closely follow the data of Juv6 et al. • Good agreement 
is obtained between numerical and measured transverse pro- 
files for the axial mean flow velocity U• and the longitudinal 
kinetic turbulent energy 2 Figure 10(a) to (d) shows the Utl . 

spatial distribution of the kinetic turbulent energy g for four 
ratios 0.2, 0.4, 0.6, and 0.7. For a velocity ratio X=0.2 the 
spatial distribution is essentially identical to the case of 
simple jet structure as may be seen by comparing [Figs. 2(b) 
and 10(a)]. but the maximum of • is lower as expected. 
Increasing the exit velocity U• of the secondary jet, one 
observes a shift of the maximum toward regions where the 
velocity gradients are the largest such as the primary- 
secondary mixing region and the zone located downstream 
of the primary jet potential core [Fig. 10(b)-(d)]. Notice that 
in Fig. 10(a), one cannot see the shear layer in the initial 
region between primary and secondary flows. This is due to 
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the fact that the level contours start from 50 to the maximum 

value 326. This means that the level of the turbulent intensity 
is below 50. This observation might be verified in Fig. 10(b). 
By increasing the secondary velocity (k=0.04), the intensity 
of turbulence increases to a level between 40 and 70 [Fig. 
10(b)]. 

The numerical calculations for l(x, O) were carried out 

for five velocity ratios (see Fig. 11). In the case of the simple 
jet (k=0) we observe a deviation of about 1.3 dB from the 
data. To interpret this finding it is worth comparing the ex- 
perimental data of Lush and Juv6 et al. This may be done by 
scaling one experiment (that of Lush Iø) to take into account 
the slight difference in diameter, jet velocity and distance of 
observation [In Lush: DL=25 mm, U]p = 125 m/s, x=3 m, 
0=90 ø, and lL(x, O) is 64.0 dB while in Juvg et al. D j= 30 
mm, Ulp=130 m/s, x=2.5 m, 0=90 ø, and lj(x,O) is 69.4 
riB]. To compare the two intensity values, we use the dimen- 
sional law U s D2/x 2 and obtain: 

TABLE III. Values of the frequency distribution function F•St). 

Fw(%) 
St 125 rrds 195 m/s 300 m/s 

! 46 42 36 
3 89 89 91 

/130\ s /30\ 2 

/2.5\ 2 

where I• is the scaled Lush intensity and •e deviation 
(I•-1•) is 0.9 dB. One has to remember that the G• model 
uses an adjustment factor F• b•ed on the experiment of 
Lush. Hence it is suitable to diminish the ex•fimental val- 
ues of Juv• et aL by 0.9 dB. This colorlon is inco•orated 
in Fig. 11. • •is figure, one sees that the G• model •tdeves 
ß e value k=0.4 for which the acoustic intensity is mini- 
mum. •e attenuation wi• •s•ct to the single jet case, is 
6.9 dB, while the measured vflue is 7.9 dB. The differences 

U A primary potential core 

•'-•__•secondary potential core 
FIG. 9. Coaxial jet configuration. (Uiv and Uz, velocities of primary and 
secondary jets at the nozzle, D v and D s diameters of the inner and outer 
nozzles: 20A=Dt,, 20B=D• .) 
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which are observed for X=0.6 and 0.7 are dte to the fact that 

some of the acoustical sources are progressi,,ely located out- 
side of the computational domain. Indeed •.his domain ex- 
tends over 30 Dp but this length is somewh •t insufficient at 
the highe. r secondary jet velocities. This poi •t is apparent in 
Fig. 12 which provides the spatial distributicns of the acous- 
tic power W (/y) per unit volume. This figure shows that for 
k=0.6 and 0.7, a part of the acoustic power is still not rep- 
resented. The figure also shows that the spati;d distribution of 
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FIG. I 1. Comparison between numerical acoustic direc ional intensity (G o 
model) and experimental values of Juv6 er al. for 0-90 c and x=2.5 m {O: 
Juv6 data. œx: G. model, +: luv6 corrected data). 

sources re]nains similar to that of a simple jet up to X=0.4 
[Fig. 12(a) and (b)]. For k=0.6 and k=0.7 [Fig. 12(c) and 
(d)]. one may observe the attenuation of acoustic sources in 
the primary-secondary jet mixing region and the presence of 
sources in the secondary jet mixing region and in the down- 
stream region of the primary potential core. 

IV. CONCLUSIONS 

It is shown in this study that it is possible to estimate the 
noise emission of free turbulent jets from a numerical de- 
scription of the mean and turbulent characteristics of the 
flow. Using a g-e turbulence model associated with jet noise 
models based on Lighthill's theory, two formulations have 
been used: Ribner's formalism postulates locally isotropic 
turbulence superposed on mean flow while Goldstein/ 
Rosenbaum's formalism generalizes this to acco,nmodate the 
more realistic assumption of axisymmetry. The results have 
correctly reproduced the evolution of the total acoustic 
power as a function of the jet exit velocity and the variation 
of the directional acoustical intensity as a function of the 
angle of observation. It is shown that the acoustic model 
model) deduced from the work of Goldstein is more accurate 
than the model relying on Ribher's analysis (Ru model). Fur- 
thermore, we show that the G,• model provides the best es- 
timates of the directional acoustical intensity when compared 
to others models based on LighthiIl's theory. 
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FIG. 12. Spatial distribution of the acoustic power spectrum W,,(/y) per unit volume of the G,, model for UIp= 130 ntis. The acoustic power is expressed in 
dB, re: l0 -12 W Hz -1. (a) •.=0.2, (b) k:0.4, (c) h=0.6, (d) k:0.7. 

With this approach, we have obtained a complete picture 
of the spatial and frequency distribution of acoustical sources 
in the jet. We have shown in particular that the mixing and 
transition region are respoasible for 90% of the acoustic 
power emitted and that these regions correspond, respec- 
tively, to the high and intermediate frequency radiation of 
sound. 

This detailed description is useful in more complicated 
jet configurations. This point is illustrated in this study in the 
case of two coaxial jets. We have calculated the modifica- 
tions of the characteristics of turbulence due to the variation 

of the secondary jet exit velocity, and have shown how these 
modifications govern the distribution of acoustic sources. 
One may notice in this case that the Ga model is applied 
without any changes. This indicates the generality of this 
approach and the possibility of its utilization in others jet 
geometries. However the quality of the noise estimates es- 
sentially depends on a better determination of the flow char- 
acteristics. An improvement could be obtained by using more 
advanced turbulence closures such as the Reynolds stress- 
dissipation RiFe models, which in principle predict more 
precisely the distribution of the kinetic turbulent energy in 
the axial and transverse directions. With this kind of turbu- 

lence modeling, one may obtain better representations of the 
two parameters N and A of the Ga model. 

Finally we have to recall that this model is unable to 
represent the phenomenon of refraction due to mean flow 

gradients. This phenomenon is mainly observed for high jet 
velocities at angles which are close to the jet axis (0<25ø). 
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APPENDIX: DETERMINATION OF THE ACOUSTICAL 
INTENSITY SPECTRUM 

The acoustical intensity spectrum l,o(x) is obtained by 
applying the temporal Fourier transform of the density auto- 
correlation Cp•(x,r) defined in the relation (4): 

l,o(x) = • • Cpo(x,r)e]•* dr, (AI) 
where j2= _ 1 and to designates the angular frequency. Let 
us denote W, W,o(/y), l•(x, 0/y), respectively, the total acous- 
tical power, the acoustical power spectrum (emitted from a 
unit volume located at y), and the directional acoustical in- 
tensity spectrum: 

W = W•(ly)dy dto, (A2) 
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W,o(/y)=2*rx 2 i,,(x, Oly)sin 0 dO, (A3) 

l Z l•(x, 0/y) = • Coo (x, O/y)e • d r, (A4) 

where the autocorrelation function Cpp(X, fty) of the noise 
field radiated by a unit volume located at - is the axisym- 
metric version of the general expression given by Eq. (7). 
Using the various assumptions of the Ribm r and Goldstein 
models, Io,(x,O/y) may be expressed in terms of the statistical 
turbulent flow properties for the self- and st ear noise. 
Ribher model: 

( --3 2 2 604 Co C /F•Se.N. /S•e'N'(x,0/y)= poLll•tm exp -- -•] ]s_- i , 128'rrSt2c•x2 COf 
(A5) 

(A6) 

(A7) 

IS.,h'• (x, O/Y) = 24rr7ac•c2 \ OY2 ] 

Goldstein model: 

•4 L i L• •2 __ 
l•e'•'(x, Oly)=Po 40•3ac•2 Utl •[ 

' 

x xp( - (AS) 

where the directivity for self- and shear nois•: in each model 
is given, respectively, in Sees. Ill B and C. 
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