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The influence of the filter shape on the effective scale separation and the numerical accuracy of large-
eddy simulations based on relaxation filtering (LES-RF) is investigated. The simulation of the turbulent
flow development of a high-Reynolds number low-subsonic compressible mixing layer is performed
using the LES-RF procedure, for discrete filters of order 2–10. A reference solution is first obtained using
high-order numerical algorithms and shows a good agreement with experimental data found in the lit-
erature. Discrete filters of order 2, 4, 6, 8 and 10 are then considered to study the influence of the filter
shape on numerical results. The 2nd-order scheme turns out to be too dissipative and prevents the emer-
gence of unsteady motions within the mixing layer. For higher order schemes, from 4th- to 10th-order,
the flow solutions are turbulent but exhibit mean flows and turbulent intensities depending on the filter.
The investigation of the one-dimensional kinetic energy spectra then shows that the 4th-order filter may
still be too dissipative whereas large scales remain unaffected using the 6th-, 8th- and 10th-order filters.
A further study of the kinetic energy spectra nonetheless demonstrates that the effective spatial band-
width of the LES increases with the order of the filtering scheme. Simulations using the 6th-, 8th- and
10th-order filters, with mesh sizes chosen to provide the same effective LES cut-off wavenumber, are per-
formed and yield similar results. It is hence found that the value of the effective LES cut-off wavenumber,
rather than to the filter shape itself, is mainly responsible for the discrepancies between the flow statis-
tics obtained using different filters. One may conclude that filter shape independence is consequently
achieved in the present LES of a mixing layer.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical simulations of turbulent motions are capable of pro-
viding comprehensive informations on flow fields [16,23]. The rel-
evance of the results obtained might however be affected by the
discretization methods, and therefore still has to be carefully
examined. Direct numerical simulation (DNS) is so far the most
reliable simulation method since the whole range of turbulence
scales is resolved and no a priori modeling is needed. The use of
sufficiently small time steps and mesh sizes ensures on one hand
the accuracy of the solution but concurrently dramatically in-
creases the computational cost. Therefore large-eddy simulation
(LES) remains to date the prevailing tool for studying realistic
high-Reynolds number flow configurations. Low-pass spatial filter-
ing of the turbulent motions allows the computational efforts to fo-
cus on the resolution of the largest and most energetic vortical
ll rights reserved.
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structures while the effect of the scales smaller than the mesh size
are taken into account through a subgrid-scale (SGS) model.

Since the early works of Smagorinsky [24], numerous SGS clo-
sures have been derived by applying physical assumptions to the
filtered Navier–Stokes equations [16]. Reference to the discretiza-
tion methods is seldom made even though evidences of intricate
couplings between the SGS model and the discretization tools have
been highlighted [5,17]. Alternatively, some authors, as for in-
stance Boris et al. [10], proposed to employ the truncation errors
of the discretization schemes as an implicit SGS model. Within this
modeling framework, the dissipation introduced by approximate
space differentiation operators is used as a functional model repro-
ducing small scale dissipation. Recent works on this topic include,
among others, the approximate local deconvolution model (ALDM)
designed by Hickel et al. [18]. For the ALDM, the dissipation intro-
duced by discretization algorithms is locally adjusted to obtain a
numerical viscosity consistent with the turbulent viscosity ob-
served for homogeneous isotropic turbulence.

One should nonetheless be very careful when using space
discretization schemes exhibiting dissipative properties. Flow
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Fig. 1. Sketch of the computational domain and of the coordinate system (the figure
is not to scale).

Table 1
Coefficients of the standard discrete filters of order 2, 4, 6, 8 and 10. Coefficients with
negative indices may be retrieved using the relationship d�j = dj.

2N + 1 3 5 7 9 11

d3s
j

� �
d5s

j

� �
d7s

j

� �
d9s

j

� �
d11s

j

� �
d0 1/2 3/8 5/16 35/128 63/256
d1 �1/4 �1/4 �15/64 �7/32 �105/512
d2 1/16 3/32 7/64 15/128
d3 �1/64 �1/32 �45/1024
d4 1/256 5/512
d5 �1/1024
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anisotropy can indeed be artificially generated and a fine tuning of
the dissipation, as achieved by Hickel et al. [18], implies a drastic
increase of the complexity of the LES implementation. In addition,
the coupling between the numerical methods and the SGS closure
alleviates the control over the governing parameters of the LES
modeling procedure. This issue can be circumvented by taking into
account subgrid dissipation by using an explicit selective filtering
of the flow variables. Within the ILES domain, the subfield of
explicitly filtered LES is indeed a promising approach. The idea is
to minimize the dissipation at the larger scales while diffusing
through the smaller scales the drain of energy due to the turbu-
lence energy cascade. When using low-dissipation or even purely
dispersive schemes, such as centered finite differences, the filtering
alone is connected to the subgrid-scale activity and the modeling
efforts focus on the features of the filtering procedure only. Stolz
and Adams [25], Mathew et al. [20], Tantikul and Domaradzki
[27], Domaradzki [13] as well as Bogey and Bailly [7] designed such
SGS models. In the recent works of Bogey and Bailly [8], a detailed
description of the methodology, referred to as LES based on relax-
ation filtering (LES-RF) by the authors, can be found.

Since LES-RF requires to explicitly perform scale separation, it
raises the question of the choice of the filter. LES theoretical frame-
work imposes few constraints on its properties: its cut-off wave-
number should lie in the inertial range but its shape can be a
priori freely chosen. Some studies have been carried out to evaluate
the impact of the choice of the filter on SGS modeling [4,11,12,19].
In particular, Berland et al. [4] demonstrated by using the EDQNM
theory that filters with sharp cut-off are more appropriate for LES
since they result in a clear separation between resolved and unre-
solved scales. It was also shown that for the second-order filter,
which has a smoothly graded transfer function, the SGS tensor does
no longer truly represent interactions between scales of the inertial
range so that the universality assumption is no longer fulfilled.
Similar results, supporting the need of using sharp cut-off filters,
have been obtained by De Stefano and Vasilyev [12] for the filtered
Burger’s equation. These guidelines have been obtained from stud-
ies of incompressible canonical flows and it may be valuable to
now extend these observations to more realistic turbulent config-
urations. In particular, compressible flows are of special interest
as the use of LES-RF in this community is spreading
[3,8,9,15,20,22].

The aim of the present study is then to investigate the influence
of the filter shape on compressible LES based on relaxation filter-
ing. The flow configuration is a low subsonic shear layer. Plane
mixing layers have been greatly studied because of their relative
simplicity in one hand, and because their development are usually
characterized by a flow scenario occurring in many configurations,
consisting of a laminar breakdown, followed by the emergence of
large scale coherent structures then leading to a fully turbulent
state. The compressible LES-RF of a spatially developing turbulent
mixing layer, with Reynolds number Redx0

¼ dx0 Uc=m ¼ 5� 104

based on the convection velocity Uc and the initial vorticity thick-
ness dx0 , has been performed with this aim in view using the solver
Code_Safari [14]. Discrete filters of orders from 2 to 10 have been
implemented to describe the way in which they can affect the solu-
tion. Extensive comparisons have been carried out between the
mean flow, the turbulent intensities and the velocity spectra ob-
tained for each filter shape. The issue of scale separation, related
to the effective LES cut-off wavenumber, has also been studied
based on turbulent kinetic energy spectra. The result analysis has
been complemented by a discussion on the possibility of filter
independence in LES-RF with the aim of determining whether
the discrepancies observed between the simulations are related
to the filter shape itself or to the effective LES cut-off wavenumber.

The parameters of the simulation are first described in Section 2.
A reference mixing layer solution, obtained using high-order
numerical algorithms, is proposed in Section 3. An investigation
of the influence of the filtering shape is then carried out in Sec-
tion 4. Concluding remarks are finally drawn in Section 5.

2. Simulation apparatus

2.1. Numerical methods and subgrid-scale modeling

The compressible Navier–Stokes equations, as formulated by
Vreman et al. [29], are solved using high-order numerical schemes.
To take account of the dissipation provided by the unresolved
scales, a LES based on relaxation filtering (LES-RF) is performed
[8]. An explicit spectral-like filtering is therefore applied to the
conservative flow variables: the density q, the three components
of the velocity momentum qui and the total energy qe. The method
has been successfully used in various applications [3,7].

Approximate derivatives are evaluated using low-dispersion
4th-order 11-point explicit finite differences [6] whose properties
have been optimized in the Fourier space. Explicit filtering is per-
formed thanks to centered standard discrete filters [28] whose or-
der ranges from 2 (3-point stencil) to 10 (11-point stencil). Time
integration is carried out by an optimized fourth-order low-storage
Runge–Kutta scheme [2].

The calculation carried out using the 10th-order filter, which
exhibits the sharpest spectral cut-off, will be considered to provide
the reference solution.

2.2. Simulation parameters

A high-Reynolds number low-subsonic mixing layer is consid-
ered. As an illustration, a sketch of the computational domain
and of the coordinate system is provided in Fig. 1. The initial con-
ditions are defined by an hyperbolic-tangent velocity profile

uðyÞ ¼ U1 þ U2

2
þ U2 � U1

2
tanh

2y
dx0

� �
ð1Þ

where the two freestream velocities are given by U1 = 50 m s�1 and
U2 = 100 m s�1, so that the convective velocity is equal to
Uc = (U1 + U2)/2 = 75 m s�1, corresponding to a convective Mach
number Mc = 0.22. The initial vorticity thickness of the sheared



Fig. 2. Snapshot of the spanwise vorticity component xzdx0 =Uc in the whole computational domain obtained for the 10th-order standard filters. Colorscale from �0.5 (red) to
�0.2 (white). From top to bottom: isometric view, side view, top view (coordinates are normalized by the initial vorticity thickness dx0 ). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Mean streamwise velocity �u as a function of the transverse location y/dx

obtained for the 10th-order standard filters, for various streamwise locations. ——–,
x=dx0 ¼ 100; –––, x=dx0 ¼ 120; � � �� � �, x=dx0 ¼ 140; �, experimental data of Bell and
Mehta [1].
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region is equal to dx0 ¼ 10�2 m. The Reynolds number is then
Redx0

¼ dx0 Uc=m ¼ 5� 104.
The calculation domain is discretized using Nx � Ny � Nz =

950 � 261 � 101 ’ 25 � 106 nodes distributed on a structured
Cartesian grid and has physical dimensions of ½0;200dx0 � �
½�90dx0 ;90dx0 � � ½�10dx0 ;10dx0 �. Within the turbulent flow region
the mesh size is uniform with Dy ¼ dx0=8 and Dx ¼ Dz ¼ dx0=5. Fur-
ther away from the shear layer, the grid is stretched in the y direc-
tion to provide a large extent of the domain in this direction while
keeping the computational cost at a reasonable level. The calcula-
tion domain is periodic in the z direction. The non-reflecting bound-
ary conditions of Tam and Dong [26] are specified at the boundaries
of the domain. The time step Dt ’ 3 � 10�6 s corresponds to a Cou-
rant–Friedrichs–Lewy number equal to 0.8. To ensure statistical
convergence of the flow, the simulation is run over approximately
10 flow through times, corresponding to 105 iterations.

2.3. Turbulence ignition by flow excitation

To seed the laminar breakdown of the mixing layer, the flow is
excited at the upstream boundary of the calculation domain. An
harmonic forcing at the most unstable frequency fh of the mixing
layer is introduced, while random fluctuations are also added to
ensure a transition to a fully three dimensional turbulent regime
further downstream. Velocity fluctuations, referred to as ue, ve

and we, are hence artificially introduced at every time step in the
following way:

ue

ve

we

0
@

1
A ¼ Ureu

Urev þ Uh sinð2pfhtÞ
Urew

0
@

1
A � Sðx; y; tÞ ð2Þ
where S(x,y, t) is a shape factor which reads

Sðx; y; tÞ ¼ exp � logð2Þ ðx� x0Þ2 þ ðy� y0Þ
2

b2

" #
ð3Þ

The quantities eu, ev and ew are random variables uniformly distrib-
uted on the interval [�1,1]. These variables introduce random mo-
tions on the three velocity components. Their magnitude is given by
Ur so that Ur/Uc = 5 � 10�2. Concerning the harmonic forcing, it is
only applied to the transverse velocity component v. Its amplitude
is so that Uh/Uc = 10�3. The excitation frequency fh can be deduced
from a linear stability analysis [21] and is equal to



(a)

(b)

(c)
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fh ¼ 0:132
Uc

dx0

ð4Þ

Finally, the shape factor S allows to apply the excitation only over a
limited flow region. The magnitude is modulated in space by a
Gaussian function equal to 1 when ðx; yÞ ¼ ðx0; y0Þ ¼ ð5dx0 ;0Þ and
for any spanwise location z. Away from the line (x0,y0,z) the ampli-
tude decreases and eventually reaches zero. The half-width of the
shape factor is related to the parameter b, here chosen to be equal
to dx0=2.

2.4. Filter shape modification

Applying a central, 2N + 1 point stencil discrete filter on a uni-
form mesh in the x-direction reads as

�f ðxÞ ¼ f ðxÞ � r
XN

j¼�N

djf ðxþ jDxÞ ð5Þ

where dj are the scheme coefficients and Dx the mesh size [28]. The
same scheme is applied sequentially in the three directions x, y and
z. The filtering strength r is set to 0.4 in the present simulations.

To avoid any interplay between the filter shape and the flow
excitation at the inlet, the 11-point 10th-order selective filter has
been used in all simulations in the upstream region of the calcula-
tion domain, for x=dx0 < 25. Further downstream, for x=dx0 > 50,
different filters based on 3-, 5-, 7- and 9-point stencils have been
employed. In the intermediate region, when 25 < x=dx0 < 50, a lin-
ear transition between the sets of coefficients used upstream and
downstream is achieved to provide a smooth transition between
the two filter shapes. The coefficients dj of the discrete filter are
therefore defined as

djðxÞ ¼ ½1� vðxÞ�dupstream
j þ vðxÞddownstream

j ð6Þ

where the function v(x) is given by

vðxÞ ¼
0 if x=dx0 < 25
ðx� 25Þ=25 if 25 < x=dx0 < 50
1 if x=dx0 > 50

8><
>: ð7Þ

Five calculations have been carried out. For all of them, the upstream
filter is the 10th-order 11-point scheme, so that dupstream

j ¼ d11s
j , which

are given in Table 1. The reference solution based on the 10th-order
filter is such as dupstream

j ¼ ddownstream
j ¼ d11s

j . The influence of the filter
shape has then been studied by modifying the set of coefficients used
for ddownstream

j . For the simulations with discrete filters of 2nd-, 4th-,
6th- and 8th-order, the coefficients ddownstream

j are respectively set
to the value given d3s

j ; d
5s
j ; d

7s
j ;d

9s
j , which are given in Table 1.

Remind that the finite difference scheme is the same for all the
calculations. Only the influence of the filtering is therefore investi-
gated in the present work.
Fig. 4. Turbulent intensities as functions of the transverse location y/dx obtained
for the 10th-order standard filters, for various streamwise locations. ——–,
x=dx0 ¼ 100; –––, x=dx0 ¼ 120; � � �� � �, x=dx0 ¼ 140; �, experimental data of Bell
and Mehta [1]. Turbulent intensities based on: (a) the streamwise, (b) the
transverse, and (c) the spanwise velocity components.
3. Reference simulation

3.1. Unsteady flow field

A snapshot of the spanwise vorticity xzdx0=Uc in the whole cal-
culation domain is provided in Fig. 2. The flow pattern is typical of
a spatially developing mixing layer. In the laminar flow region
ðx=dx0 < 5Þ, instabilities are growing, leading to the roll-up of the
mixing interface responsible for the emergence of large-scale orga-
nized structures, whose size are comparable with the transverse
length scale of the flow. Such vortices are for instance clearly visi-
ble around x=dx0 ¼ 50. Further downstream, for about x=dx0 > 100,
the flow reaches a fully turbulent state with a large range of
motion scales, especially fine structures characterizing high-Rey-
nolds number flows.
3.2. Mean flow results

The consistency of the mean flow field is now investigated.
Comparisons to experimental data are performed at three stream-
wise locations, x=dx0 ¼ 100; x=dx0 ¼ 125 and x=dx0 ¼ 150, in the
fully turbulent region.

The transverse profiles of the mean normalized streamwise
velocity (�u � U1)/Uc are plotted in Fig. 3 as functions of the trans-
verse location y normalized by the local vorticity thickness dx.
The experimental data of Bell and Mehta [1] are also represented.
It is seen that the LES velocity profiles perfectly collapse, demon-
strating that the mean flow is self-similar in the downstream re-
gion of the calculation domain. The agreement between
numerical and experimental data is in addition good.

Further comparisons are carried out in Fig. 4 where the turbu-
lent intensities, ½u0u0�1=2

; ½v 0v 0 �1=2 and ½w0w0�1=2 are represented as
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functions of the transverse location y, for the three streamwise
locations: x=dx0 ¼ 100; x=dx0 ¼ 125 and x=dx0 ¼ 150. The mea-
surements of Bell and Mehta [1] are also presented. The LES pro-
files all exhibit a Gaussian shape centered on the mixing layer
centerline (y/dx = 0) where turbulent activity is the most intense.
They are in rather good agreement with the experimental results,
despite few discrepancies in amplitude. The half-width of the
transverse profiles are in particular accurately reproduced by the
simulations.
4. Filter shape influence

4.1. Numerical results

4.1.1. Overview of the flow field
Snapshots of the modulus of the spanwise vorticity component

j xz j dx0=Uc taken in the central plane of the computational do-
main are presented in Fig. 5 for the 2nd-, 4th-, 6th-, 8th- and
10th-order discrete filters.

It is first observed that for the 2nd-order filter, turbulence igni-
tion is damped. The mixing layer indeed goes back to a laminar
state as the 2nd-order filter is applied, which indicates that the fil-
ter introduced far too much dissipation. This filter therefore seems
to be inappropriate for the simulation of the present turbulent
(a)

(b)

(c)

(d)

(e)

Fig. 5. Snapshot of the modulus of the spanwise vorticity component jxzjdx0=Uc in th
downstream of x=dx0 ¼ 50. Colorscale from 0 (white) to 0.5 (black). (a) 2nd-order; (b) 4t
indicate the transition region between the upstream and downstream filterings.
flow. In the remainder of the paper, reference to the data obtained
with the 2nd-order filter will then no longer be made.

For the filters of orders ranging from 4 to 10, turbulence is ob-
served to develop, leading to the emergence of unsteady motions.
As expected, the solutions determined using the different filters are
distinct since large-eddy simulations yield a filtered velocity field
which is intrinsically dependent on the choice of the filter. When
the order is increased from 4 to 10, from Fig. 5b to e, a broadening
of the resolved scale bandwidth is clearly visible. It is worth noting
that the four snapshots of the flow field show strong similarities. In
all cases, coherent vortical structures are generated around
x=dx0 ¼ 25, vortex breakdown and flow three-dimensionalization
is observed in the neighborhood of x=dx0 ¼ 80, and a fully turbu-
lent state is eventually reached for x=dx0 > 150. This suggests that
even though the solutions are different, the key elements of the
flow physics are reproduced in a similar manner using the 4th-,
6th-, 8th- and 10th-order filtering schemes.
4.1.2. Mean and turbulent flow quantities
To first check that the modifications of the filter shape in the

streamwise direction, as described in Section 2.4, has a weak im-
pact on the early development of the flow field, the turbulent
intensities ½u0u0�1=2; ½v 0v 0 �1=2 and ½w0w0�1=2 are represented as func-
tions of the streamwise location x in Fig. 6a, b and c. It is observed
e central plane of the computational domain obtained for various discrete filters
h-order; (c) 6th-order; (d) 8th-order; (e) 10th-order filter. The vertical dotted lines



(a)

(b)

(c)

Fig. 6. Turbulent intensities on the mixing layer centerline as functions of the
streamwise location x=dx0 for various discrete filters downstream of x=dx0 ¼ 50.
� � �� � �, 4th-order; –.–.–, 6th-order; –––, 8th-order; ——–, 10th-order. Turbulent
intensities based on: (a) the streamwise, (b) the transverse, and (c) the spanwise
velocity components. The vertical dotted lines indicate the transition region
between the upstream and downstream filterings.

Fig. 7. Mean streamwise velocity u as a function of the transverse location y=dx0 at
x=dx0 ¼ 175, for various discrete filters. � � �� � �, 4th-order; –.–.–, 6th-order; –––, 8th-
order; ——–, 10th-order.

(a)

(b)

(c)

Fig. 8. Turbulent intensities as functions of the transverse location y=dx0 at
x=dx0 ¼ 175, for various discrete filters. � � �� � �, 4th-order; –.–.–, 6th-order; –––, 8th-
order; ——–, 10th-order. Turbulent intensities based on: (a) the streamwise, (b) the
transverse, and (c) the spanwise velocity components.
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that the turbulent intensities indeed collapse well in the upstream
region of the calculation, for x=dx0 < 25, even though a slight over-
estimation of the streamwise component ½u0u0�1=2 is visible for the
6th-order filter.

In the transition area, for 25 < x=dx0 < 50, the turbulence levels
obtained for the 4th-order filter are underestimated and this trend
permeates down to x=dx0 ¼ 75. Further downstream, the turbulent
intensities predicted using the 4th-order scheme are larger than
those of the reference data obtained using the 10th-order filter.
The results corresponding to the 6th-order filter exhibit a similar
behavior, whereas smaller discrepancies can be seen between the
solutions calculated using the 8th- and the 10th-order filtering
algorithms.

Mean flow quantities obtained in the fully turbulent region are
now investigated. The transverse profiles of the mean streamwise
velocity at x=dx0 ¼ 175 are plotted in Fig. 7 for the various standard
filters. A good collapse of the profiles obtained using the 8th- and
10th-order filter is seen. Using the 4th- and 6th-order filters, the
velocity gradient in the sheared region is significantly smoother.



(a)

(b)

Fig. 9. One-dimensional turbulent kinetic energy spectrum Eð1Þ11 ðkÞ, evaluated at
several streamwise locations on the mixing layer centerline for various discrete
filters. � � �� � �, 4th-order; –.–.–, 6th-order; –––, 8th-order; ——–, 10th-order. (a),
x=dx0 ¼ 75; (b), x=dx0 ¼ 175. The vertical dotted line represents the mesh cut-off
wavenumber kc = p/Dx in the streamwise direction.
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This trend is further confirmed by the transverse profiles of the
turbulent intensities ½u0u0 �1=2

; ½v 0v 0�1=2 and ½w0w0�1=2 measured at
x=dx0 ¼ 175 and presented in Fig. 8a, b and c. The 8th- and 10th-or-
der filters indeed exhibit very similar profiles whereas the lower
order filters overestimate the turbulence activity.
4.1.3. Velocity spectra
Using Taylor’s assumption of frozen turbulence, point-wise

measurements of the turbulent motions has allowed us to deter-
mine the one-dimensional kinetic energy spectrum Eð1Þ11 ðkÞ, in the
x direction, based on the streamwise velocity perturbations u0.
For the filters of order 4–10, spectra measured on the mixing layer
centerline (y=dx0 ¼ 0, where turbulence activity reaches its
maximum amplitude) are displayed in Fig. 9a and b for the two
locations x=dx0 ¼ 75 and x=dx0 ¼ 175, respectively. Remark that
because the present spectra are evaluated using point-wise
((a)

Fig. 10. (a) Effective LES cut-off wavenumber ks. (b) Normalized effective LES cut-off wa
filters as functions of the number of points 2N + 1 of the algorithm (cut-off wavenumb
wavenumber; N, j, 	, effective LES cut-off wavenumber for A = 10�4, A = 10�5 and A = 1
time-resolved data, the spectral content can lie above the grid
cut-off wavenumber kc = p/Dx which is represented in Fig. 9a and
b by a dotted line.

In the transitional flow region, for x=dx0 ¼ 75, the spectra all ex-
hibit a similar shape. A peak at kdx0 � 0:8, emerges and corre-
sponds to coherent vortical structures whose formations have
been triggered by the upstream harmonic flow excitation. For high-
er wavenumbers, above kdx0 ¼ 1, a strong decrease of the kinetic
energy is visible. As already pointed out in Section 4.1.1, a broad-
ening of the kinetic energy spectrum is observed when the order
of the filter increases.

Further downstream, at x=dx0 ¼ 175 in Fig. 9b, the spectra ob-
tained for the 6th-, 8th- and 10th-order filters exhibit a good col-
lapse for the large scales corresponding to wavenumbers
kdx0 < 1. At this location, where the flow field is fully turbulent,
a well-defined inertial range is also visible, with an extent increas-
ing with the order of the filter. The inertial range lies for instance
over the interval 0:1 < kdx0 < 2 for the 6th-order scheme whereas
it is observed up to about kdx0 ¼ 5 for the 10th-order filter. Above
these wavenumbers, small scales are dissipated by the filtering
procedure and a steep decrease of the energy is seen.

Concerning the spectrum provided by the simulation with the
4th-order filter, it is different from those obtained by higher-order
filters. In particular, a peak is visible for kdx0 � 0:2 and the slope of
the inertial range is higher. These modifications of the flow devel-
opment are probably due to the fact that the 4th-order discrete fil-
ter is more dissipative and then leads to a lower effective LES cut-
off. The dynamics of large-scale motions is also likely to be per-
turbed by the excessive unwanted dissipation introduced by the
filter. Note that the space and time discretization schemes may
have an influence on scale-separation but this point has not been
further investigated.

At this point, according to the kinetic energy spectra presented
here, it seems that varying the order of the filter from 6 to 10 has a
low impact on the dynamics of the larger scales. In that case,
increasing the order of the scheme indeed apparently mainly shifts
the effective cut-off wavenumber of the simulation towards the
grid cut-off. Based on these results, the discrepancies observed be-
tween the different filters may be mainly related to the effective
spatial bandwidth of the LES, rather than to the filter shape itself.
The validity of this assumption is discussed in Section 4.3 but the
effective cut-off wavenumber of the LES first needs to be defined
and evaluated.

4.2. Scale separation

As shown by the velocity spectra presented in Section 4.1.3 the
various simulations provide solutions characterized by different
cut-off wavenumbers depending on the order of the filter. A
decomposition into filtered and unfiltered scales is performed here
b)

venumber ks=k11pt
s and filter cut-off wavenumber k�s=k�11pt

s for the standard discrete
ers are normalized by the value obtained for the 11-point scheme). �, filter cut-off
0�6.
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by introducing an arbitrary criterion on the amplitude of the ki-
netic energy spectrum: it is assumed that wavelengths having a
small contribution to the turbulent activity correspond to filtered
scales.

The effective LES cut-off wavenumber is here defined as the
wavenumber ks above which the kinetic energy spectrum Eð1Þ11 ðkÞ
is smaller than an arbitrary value A. Estimations of ks are made
at the location x=dx0 ¼ 175 where a fully turbulent state is ob-
served. For the amplitude threshold A, it seems reasonable to take
a value larger than the magnitude of the residual background
noise, seen for kdx0 > 10, and smaller than the amplitude of
well-resolved scales, typically with kdx0 < 1. For sake of complete-
ness, three thresholds have been tested: A = 10�4, A = 10�5,
A = 10�6. The resulting effective cut-off wavenumbers ks are plot-
ted in Fig. 10a against the number of points 2N + 1 of the filter.
As expected, the spatial resolution bandwidth increases with the
order of the filter. Another predictable result is that the values of
the cut-off wavenumber ks depend on the choice of the threshold
A. However, rather than using the value of ks itself, it may be more
relevant to evaluate the variations of the effective scale separation
from one filter to another. In Fig. 10b, the cut-off wavenumber ks

has been normalized by the value obtained for the 10th-order filter
(for the same threshold A). The LES effective cut-off wavenumbers
then almost collapse for the three threshold values of A, hence
demonstrating the robustness of the proposed indicator.

An a posteriori evaluation of the effective LES cut-off is a matter
of interest but it may also be interesting to have a priori indicators
that can be easily computed solely from the knowledge of the filter
shape. Bogey and Bailly [6] proposed to defined the filter cut-off
k⁄Dx using the following criterion on the transfer function: let k⁄Dx
be the smallest wavenumber such as 1 � G(kDx) P 2.5 � 10�3,
with the filter response G given by

GðkDxÞ ¼ 1� d0 �
XN

j¼1

2dj cosðjkDxÞ ð8Þ

where dj are the coefficients of the filter. The values obtained for the
cut-off k⁄Dx are compared in Fig. 10b to those deduced from the LES
kinetic energy spectra. Note that the results have been normalized
(a)

(b)

(c)

Fig. 11. Snapshot of the modulus of the spanwise vorticity component jxzjdx0 =Uc in the
adjusted mesh size to provide the same effective LES cut-off wavenumber. Colorscale from
10th-order (coarse mesh).
by the cut-off wavenumber of the 11-point algorithm. A good agree-
ment is found between the two sets of data. The effective scale sep-
aration is therefore clearly shown to be directly related to the
dissipation properties of the filter and relative increases or de-
creases of the LES cut-off wavenumber can be known using only
the filter transfer function.
4.3. Filter shape independence

The choice of the filter clearly has an influence on LES flow
fields. The investigation of the effective scale separation carried
out in Section 4.2 also demonstrates that the LES cut-off wavenum-
ber vary with the filter shape. Therefore, to truly verify whether fil-
ter independence is achieved in the present LES-RF of mixing
layers, comparisons must be made between calculations having
the same cut-off wavenumber. In that case, the comparisons of
the solutions obtained using different filters must be made for
mesh sizes adjusted so as to fix scale separation at the same wave-
number. Based on the criterion of Bogey and Bailly [6], the ratio be-
tween the cut-off wavenumbers of the 10th- and 6th-order filters
is equal to 1.51, and it is equal to 1.31 when considering the 8th-
and 6th-order schemes. Consequently a simulation performed
using a 6th-order filter on the reference grid used so far should
have the same effective LES cut-off wavenumber as the one ob-
tained using a 10th-order filter on a grid 1.51 times coarser or
using a 8th-order filter on a grid 1.31 coarser. The two latter calcu-
lations have been carried out, and their solutions have been com-
pared to the former simulation using 6th-order filtering. In these
calculations, since the mesh size changes, no attempt has been
made to ensure that the flow excitation is the same for all the sim-
ulations. The same filter is applied to the whole domain and the
procedure described in Section 2.4 is not implemented. Quantita-
tive comparisons are consequently only performed in the turbulent
region.

Qualitative comparisons between the three simulations are first
proposed in Fig. 11 where instantaneous vorticity field are plotted
in the central plane of the computational domain, for the 6th-order
filter (fine mesh) and the 8th- and 10th-order filters (coarser
meshes). The three calculations, even though they have been
central plane of the computational domain obtained for various discrete filters with
0 (white) to 0.5 (black). (a), 6th-order (fine mesh); (b), 8th-order (coarse mesh); (c),



Fig. 13. One-dimensional turbulent kinetic energy spectrum Eð1Þ11 ðkÞ, evaluated at
x=dx0 ¼ 175 on the mixing layer centerline for various discrete filters with adjusted
mesh size to provide the same effective LES cut-off wavenumber. –.–.–, 6th-order;
–––, 8th-order; ——–, 10th-order.
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performed on different grids with different filters, provide similar
turbulent mixing layer developments. In particular, in the devel-
oped flow region for x=dx0 > 150, the flow and the spatial band-
width seem to agree well in all simulations.

These observations are further supported by quantitative com-
parisons. The turbulent intensities ½u0u0�1=2; ½v 0v 0�1=2 and ½w0w0�1=2,
measured at x=dx0 ¼ 175 are presented in Fig. 12a, b and c, for
the 6th-order filter (fine mesh) and the 8th- and 10th-order filters
(coarser meshes). A satisfactory agreement is obtained for the
three turbulent intensity components given here even though vari-
ations are visible for the transverse intensity in Fig. 12b on the
mixing layer centerline. It should be noted that the resolution
bandwidth of the differentiation schemes is narrower using coarser
grids, which might lead to a loss of accuracy. The agreement re-
mains nonetheless very good for ½u0u0�1=2 and ½w0w0�1=2.

The investigation of the one-dimensional kinetic energy spectra
Eð1Þ11 ðkÞ confirms the present findings. The spectra Eð1Þ11 ðkÞ measured
(a)

(b)

(c)

Fig. 12. Turbulent intensities as functions of the transverse location y=dx0 at
x=dx0 ¼ 175, for various discrete filters with adjusted mesh size to provide the same
effective LES cut-off wavenumber. –.–.–, 6th-order; –––, 8th-order; ——–, 10th-
order. Turbulent intensities based on: (a) the streamwise, (b) the transverse, and (c)
the spanwise velocity components.
at x=dx0 ¼ 175 for 6th-order filter (fine mesh) and the 8th- and
10th-order filters (coarser meshes) is depicted in Fig. 13. They col-
lapse very well. For the unfiltered scales in particular, for kdx0 < 3,
the spectra exhibit similar magnitudes and the effective cut-off ap-
pears to be the same for all three calculations.

Consequently the present flow solutions seem to mainly depend
on the effective LES cut-off wavenumber rather than on the filter
shape itself, which indicates that filter shape independence is here
achieved for the 6th-, 8th- and 10th-order filters.
5. Conclusion

The influence of the filter shape on compressible LES based on
relaxation filtering has been investigated for a low-subsonic
high-Reynolds number mixing layer. A reference solution in good
agreement with experimental data found in the literature has first
been obtained using high-order numerical algorithms. The impact
of the order of the explicit discrete filter has then been studied by
considering filters of order 2, 4, 6, 8 and 10. It appears that the 2nd-
order filter is too dissipative and prevents the emergence of un-
steady motions within the mixing layer. For higher order schemes,
from 4th- to 10th-order, the flow solutions are turbulent, but exhi-
bit statistics, namely mean flow and turbulent intensities, depend-
ing on the filter. The investigation of the one-dimensional kinetic
energy spectra has demonstrated that the 4th-order filter may still
be too dissipative whereas large scales remain unaffected using the
6th-, 8th- and 10th-order filters. The simulation results therefore
seemed to depend on the filter shape. However, a further study
of the kinetic energy spectra has shown that the effective spatial
bandwidth of the LES increases with the order of the filter. It has
been claimed that an appropriate comparison between LES data
should be based on solutions having the same effective cut-off
wavenumber. It turned out that simulations using the 6th-, 8th-
and 10th-order filters, with mesh sizes chosen to yield the same
effective LES cut-off wavenumber, provide similar results. The dis-
crepancies between the flow statistics obtained using different fil-
ters are therefore found to be mainly related to the value of the
effective LES cut-off wavenumber rather than to the filter shape it-
self. Filter shape independence is consequently achieved in the
present LES of a mixing layer.
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