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Summary
The characteristics of acoustic waves propagating in the atmosphere are mainly determined by the environment.
Acoustic signals vary both in space and time, and the dominant source of this variability is the turbulence of the
atmospheric boundary layer. The influence of temperature and velocity random fluctuations have been demonstrated
in many experimental studies. During the last decade significant progress have been made in the modelling of sound
propagation over distances ranging from hundreds meters to kilometers, and the agreement between calculated and
measured fields have been greatly improved. New developments appear in two domains: the numerical simulation of
random fields and the parabolic-equation method. We will evaluate these new wide-angle parabolic equations through
a series of numerical experiments. Different types of velocity fields will be used in these evaluations: a profile of sound
speed combined with a velocity distribution, and a velocity field having random spatial fluctuations over a range of
spatial scales. The objective is to determine the effect of using a more accurate PE in modelling acoustic propagation
in inhomogeneous moving media.

PACS no. 43.20.Bi,43.20Fn,43.20

1. Introduction

Sound waves propagate through a material medium and are
influenced by two principal characteristics: the sound speed
(celerity) of the medium, and the velocity of the medium.
Variations in sound speed across the medium, for example,
can create focusing and defocusing and affect the entire sound
field. If the medium is not stationary, i.e., it exhibits mean
motion or velocity fluctuations, sound waves are convected
by the mean motion of the field and scattered by veloc-
ity gradients. For numerical simulations of outdoor sound
propagation, parabolic equations have been derived using the
approximation of the effective sound speed. In this conven-
tional approach the real moving atmosphere is replaced by
a hypothetical motionless medium with the effective sound
speed ceff � c � vx, where vx is the wind velocity com-
ponent along the direction of propagation between source
and receiver. When the source and receiver are close to the
ground, the preferred direction of sound propagation is nearly
horizontal, and standard parabolic equations can be used to
predict sound pressure levels. However, in many problems
of atmospheric acoustics, refracted sound waves and those
scattered by turbulence propagate in directions which may
significantly differ from the horizontal axis. Recently Os-
tashev et al. [1], Dallois et al. [2], Dallois [3] derived new
wide-angle parabolic equations which do maintain the vector
properties of the velocity of the medium.

2. Parabolic equations for moving media

A rigorous way to incorporate the effects of a velocity field is
to begin with the fundamental equations of fluid mechanics
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and derive a wave equation which includes the velocity. In the
limits of linear acoustic theory, such a wave equation can be
derived as the sum of a d’Alembertian operator and additional
terms depending on the nature of the velocity field. From such
a wave equation, a corresponding parabolic equation can be
derived for monochromatic sound waves. An exact equation
for sound propagation in a homogeneous medium with a
uniform velocity v is [4]:�

�

�t
� v � r

��
P �r� t� � c��P �r� t�� �	�

where c � c �r� is the local sound speed, P �r� t� is the
pressure acoustic field, � is the Laplacian operator and r
is the nabla operator. If the characteristic scale of velocity
variations, L, is large in comparison with the acoustic wave-
length �, it is still reasonable to use equation (1) to evaluate
the sound pressure field in the presence of a non uniform
velocity. In the limit ��L� 	 the operator �v �r�� can be
replaced by vivj rirj (with the Einstein summation con-
vention). For a monochromatic sound field P��r� equation
(1) becomes [2]:h
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where k � ��c� (� is the radian frequency of the sound
source), � � �c��c�

� � 	 is the variation of the standard
refractive index, and ri � �

�xi
. The 0 subscribing vari-

ables correspond to constant mean values. When v � �, this
equation reduces to the Helmholtz equation:�

��k� �	 � ��
�
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The additional terms in equation (2) compared to equation
(3) contain the effects of the moving medium. The leading
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term is 
ik
p
	 � � vi

c riP
�. It is proportional to the Mach

number and the spatial derivative of the pressure. Its maxi-
mum occurs when the direction of the sound wave is aligned
with the velocity vector. This term represents the convec-
tion of the sound by the velocity field. The second additional
term vivj

c� rirjP
� is second order in Mach number and is

proportional to the second spatial derivative of pressure. In
inhomogeneous moving media, where both velocity and ve-
locity gradients exist, the sound pressure field is the solution
of the following equation [4]:�
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When comparing with the Helmholtz equation (3), the new
terms represent the wave scattering by dipoles through the
wind terms ��� and by quadrupoles through the gradient terms
���. Therefore, for sound propagation through turbulence, this
equation will describe more accurately scattering effects. The
relative magnitude order of gradient terms ��� in equation
equation (4) with respect to the wind term ��� is ��L. In the
following part of the paper we assume that the density 	 is
uniform, so the term ��� disappears in equation equation (4).
The previous wave equations were reduced to wide-angle
parabolic equations by Ostashev et al. [1] and Dallois et
al. [2]. The first step is to write the equation for forward
propagation:�

�

�x
� ik

pQ
�
P � � �� ���

From here, the
pQ is simplified using a Padé approximation

to yield:

pQ �
	 � pL
	 � qL � ���

whereL � Q�	, p � ��
 and q � 	�
. Finally, represent-
ing P � in the form P ��r� � eikx 
�r� we obtain the equa-
tions for the complex amplitude 
. The numerical simula-
tions presented in this paper deal with two dimensional (2D)
geometries. If the procedure is applied to equation (2), the
parabolic equation becomes (MW-WAPE, i.e. Mean Wind
Wide Angle Parabolic Equation):�
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Similarly, if the procedure is applied to equation (4), the
parabolic equation (TW-WAPE, i.e. Turbulent Wind Wide
Angle Parabolic Equation) becomes:
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We note that if all the velocities in equation (7) and equation
(10) are zero, these equations reduce to the classical Pad́e(1,1)
PE derived from the Helmholtz equation (3). In contrast to
these wide-angle parabolic equations, we can produce a PE
using only an effective index of refraction [5, 6]. In this case,
the parabolic equation (WAPE, i.e. Wide Angle Parabolic
Equation) becomes:

�	 � qLc� � 
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� ik ��p� q�Lc�
� �	��

where:
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��
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with

�e� � n�e� � 	� �	��

Here, n�e� � c�
��ce�

�, and ce� is the effective sound
speed. In this paper we report on a series of numerical
experiments which compares sound propagation predicted
from the standard PE using an effective index of refraction
with sound propagation predicted from these two PEs (equa-
tion (7) and equation (10)) incorporating the velocity of the
medium as additional vector terms (for simplicity note that in
the following sections of the paper, the Turbulent Wind Wide
Angle Parabolic Equation and the Mean Wind Wide An-
gle Parabolic Equation could be referred as “vector” PEs).
In section 4 we study sound propagation through moving
media without random fluctuations. In section 5 we com-
pared sound propagation through turbulent velocity fields
with sound propagation through turbulent temperature fields.
We also simulate a velocity field having random spatial fluc-
tuations over a range of length scales and could be suggestive
of atmospheric turbulence. Celerity inhomogeneities are fi-
nally included to create an acoustic shadow zone and to study
the sensitivity of the numerical simulations to the length scale
of the dominant scattering random inhomogeneities.
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3. Simulation of inhomogeneous “scalar” and “vector”
random fields

The classical method of handling the propagation of waves
through random media relies on a statistical approach. Start-
ing from a parabolic approximation of the Helmholtz equa-
tion with a random refraction index, equations are deduced
for the various statistical moments of the field: mean in-
tensity, spatial coherence function, etc. . . However, to ob-
tain equations in closed forms, a priori hypotheses have to
be made about the correlation of the field (delta-correlation
along the mean direction of propagation). To overcome these
limitations we have suggested a different approach. We solve
a deterministic wave equation for a series of realizations
of simulated turbulent fields. Statistical results are then ob-
tained through ensemble averaging. Currently, we generate
the turbulence using a Time evolving Random Fourier Modes
(TRFM) technique [7], such that the turbulent fluctuation at
any point in the medium (either scalar or vector in nature) is
calculated from the sum of a chosen number of modes. The
RFM technique models the frozen turbulent fluctuations at
any point in the medium from the sum of a limited numberN
of time-independent random Fourier modes. The mode orien-
tations and phases are independent random variables chosen
to yield homogeneous isotropic fields. The RFM technique
has led to accurate quantitative predictions of average sound
pressure level [8]. Most of the computations have been con-
ducted in 2D, but some results are also available for the 3D
case ([9] and [10]). Bailly et al. [7] added a time dependence
and successfully applied the unfrozen RFM technique to the
study of noise generation by turbulent flows. For atmospheric
propagation studies, in which the statistical characteristics of
the turbulence change with altitude [11], we seek to relax the
homogeneity condition by allowing the modal amplitudes
and the energy spectra that define them to vary with distance
z from the ground plane. The random turbulent fields are hor-
izontally stratified and locally isotropic and homogeneous in
the stratum located at z, but the turbulence statistics vary
from one stratum to the next [12]. We simulate the velocity
at point r as:

u �r� t� � 

NX
n	�

�un cos �kn � �r�Uct�

�
n � �nt��n� �	��

To promote incompressibility the wave vectorkn is normal to
its associated Fourier contribution �un. A similar expression
is used for temperature fluctuations:

T ��r� t� �
NX
n	�

�Tn cos �kn� �r�Uct�

��n � �nt� � �	��

Figure 1 illustrates the spectral description of a 2D Fourier
velocity mode. In generating a two-dimensional field, the
orientation of the wave vector kn is fixed by the angle �n.
In the case of the velocity, the unit vector �n is determined

n

k1

k2

nk

nσ

θ

O

Figure 1. Sketch of the geometry for the nth Fourier random mode.
The orientation of the wave vector kn is fixed by the angle �n and
the unit vector�n is perpendicular to the wave vector kn.

from �n: �n � � sin��n�er � cos��n�ez. er and ez are
unit vectors in the r and z directions, respectively. Local
isotropy and homogeneity in 2D is obtained by selecting
three random variables �n, 
n and �n from independent
uniform p.d.f between � and 

. The modal amplitude �un is
such that:

�un �
p
E�kn� z��kn with kn �jkn j � �	��

E�kn� z� is the altitude-dependent 2D kinetic energy spec-
trum, which is approximated by a von Karman expression:
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with ke � ������Li�z�. The velocity variance ��u�z� and
integral length scale Li�z� vary with altitude z, and k� is
the Kolmogorov wavenumber. For temperature, the modal
amplitude �Tn is such that:

�Tn �
p
G�kn� z��kn with kn �jkn j � �
��

G�kn� z� is the altitude-dependent 2D spectrum, which is
approximated by a von Karman expression:
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with km � ���
�lo. The temperature variance ��T �z� and
outer turbulent length scale Lo�z� vary with altitude z,
and lo is the inner turbulent scale. The temporal evolution
of each mode is governed by the convection of the tur-
bulence by the mean flow Uc, and a circular frequency
�n, which is based on a large scale sweeping time. This
frequency is a random variable whose mean value is re-
lated to the wave number through the Heisenberg formula:



��
 Blanc-Benon et al.: Long range sound propagation in turbulent atmosphere
acta acustica � A C U S T I C A

Vol. 87 (2001)

�o � k � u� where u� is the rms value of the velocity fluc-
tuations; the p.d.f. of �n is chosen as a Gaussian according

to: g ��� � 	��o
p
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. Recently,

Juvé et al. [13] introduced Large Eddy Simulations (LES),
when examining propagation through a temporally evolving
medium. In LES only the largest, most energetic scales of
the flow are resolved via filtered Navier-Stokes equations; the
cutoff wavenumber kc defining the smallest resolvable scales
is determined by the grid spacing. The effects of unresolved
scales (k � kc) are incorporated via a subgrid closure model,
but at present no acoustic modelling exists for including these
subgrid scales in propagation calculations. To ensure that
our field-generation technique produced reasonable results,
we used an ensemble of 5000 velocity fields corresponding
to the experimental data of Comte-Bellot and Corrsin [14].
From this ensemble we calculated the first four single-point
moments for the three components of the velocity and the
nine components of velocity derivative (for details see [10]
and et al. [15]). Our technique compares favorably with the
experiment of Comte-Bellot and Corrsin. In the case of tem-
perature fields our modelling technique is in good agreement
with experimental data obtained in a large anechoic chamber
in Ecole Centrale de Lyon [16]. One of the advantage of this
modelling technique is its abiblity to generate random fields
with prescribed spectra. In addition, since the random fields
have been modelled in terms of a fixed number of discrete
Fourier modes, we can derive analytically the fields and their
spatial derivatives at every point of the physical space. The
index of refraction n is then expressed in terms of a mean
part n � c��c and a fluctuating part � � �T ��
T��u � �,
where � is the direction of propagation of the acoustic wave
(in this paper the vector � correspond to the horizontal axis
and u � � � vx).

4. Sound propagation in a moving atmosphere

In this section we compare differences in predictions of sound
transmission losses derived from the use of equation (13)
based on the approximation of the effective sound speed ceff
and correct wide-angle parabolic equations equation (7) and
equation (10). First we present numerical simulations that
validate the numerical schemes of solving new parabolic
equations (equation (7) and equation (10) by comparing in-
tegrations of WAPE (equation (13)) , MW-WAPE (equation
(7)) and TW-WAPE (equation (10)) with known solutions.
Second we carry out a series of numerical experiments in
which we compare results of TW-WAPE vs. WAPE and MW-
WAPE vs. WAPE, depending on the moving medium. In all
cases, we restrict ourselves to two-dimensionnal problems
which are representative of outdoor sound porpagation. We
consider the two-dimensional propagation of sound from a
point source located at x � � and z � hs (see Figure 2). Nu-
merically, each of previous parabolic equations (equation (7),
equation (10) and equation (13)) is discretized on a uniform
mesh �i�x� j�z� using a standard finite difference method.
z-derivatives are evaluated with centered difference approx-
imations, and Crank-Nicholson scheme is implemented as a
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Figure 2. Geometry of the two-dimensional problem.
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Figure 3. The geometry of the problem which includes the image
source.

marching algorithm. The horizontal step �x and the vertical
step �z are much smaller than the sound wavelength �. Typ-
ically �x, �z are ��	� ��
�. The ground is modelled as a
perfectly reflecting plane by introducing a source at z � hs
and its image at z � �hs. The source is initialized by a
Gaussian starter. A non reflecting boundary condition is im-
posed at the top of the computational domain by adding an
absorbing layer of several wavelength thickness (see [3]).

4.1. Validation and comparison with an analytical solution

In order to validate the sound pressure levels predicted by the
use of new PEs (equation (7) and equation (10)), we consider
a simple model of a moving atmosphere in which the wind
velocity vector is constant and parallel to the horizontal axis
(i.e. vx � v� vz � �). In the presence of a perfectly reflecting
plane boundary, it is possible to evaluate the sound pressure
field using the method of image source (see Figure 3). Using
the analytical solution of Ostashev [4], we obtained:

P �r� �

�X
j	�

	p
rj

exp

�
ik�rj

M cos�j
M� � 	

�ik�rj

q
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M� � 	
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where j � 	 and j � 
 correspond to the source and its
image, respectively, � is the angle between the horizontal
axis and the line-segment connecting source and receiver,
and rj is the distance between the receiver and the source or
its image. Note that in this solution, the phase is calculated
to any order of the Mach number M to preserve possible
changes in the interference pattern due to the effects of the
wind velocity.

In Figure 4 we compare the transmission loss evaluated
with the PEs equation (7) and equation (10) to the trans-
mission loss given by the analytical solution equation (22).
Note that the relative acoustic pressure level is defined as

� log��

p
r
p
� P � P �� ��jP �

�j where r is the distance be-
tween the source and the receiver,P�� is the reference pressure
at one meter from the source in free space and � P� P �� �
is the mean square of the acoustic pressure. The horizontal
velocity is constant and equal to 	�ms��. The acoustic fre-
quency is � � �
�Hz. The vertical positions of the source
and the receiver are: hs � �m and hr � �m. The agree-
ment between the analytical and new parabolic solutions is
excellent.

Figure 5 presents the results obtained with the new PE’s
equation (7) and equation (10) and the standard PE equa-
tion (13). The sound frequency � is ���Hz, the wind ve-
locity vector is parallel to the x axis, vx � 
�ms�� and
vz � �ms��. The height of the source is �m and the receiver
is located at 	�m from the ground. As expected, the predic-
tion obtained with the standard parabolic equation equation
(13) is different from the two other predictions based on the
new parabolic equations. This difference increases with the
distance of propagation. In terms of geometric acoustics, the
receiver is reached by two different paths: a direct ray and a
reflected ray. The sound speed, c � v cos �, varies on each
ray with � and the use of the effective sound speed, c� vx,
introduces a cumulative phase error in standard parabolic
equation. This error increases with the receiver height, the
distance of propagation and the wind velocity.

4.2. Effects of a mean vertical wind gradient

Now we consider the sound propagation in an inhomo-
geneous medium with a constant vertical wind gradient
d vx�d z. The wind profile is the linear wind profile used
in [17]: vx � ��	 � z for z � 
��m, vx � 
�m.s�� for
z � 
��m, and vz � �. This downward propagation ge-
ometry is very sensitive to the wind velocity. First, for long
distances, because of the occurrence of caustics, when more
than two rays reach the receiver. Secondly, the paths are
curved downward so directions of sound propagation differ
from the horizontal axis.

In Figure 6 we compare the transmission losses obtained
with the standard PE (equation (13)) and new wide-angle
PE (equation (10)) for three different heights of the receiver
(hr � �m, 10 m, 50 m). We present results for a frequency
� � ���Hz. We notice significant differences between two
predictions. Again, as expected the difference depends on the
receiver height and the distance of propagation. For exam-
ple with a receiver located at the altitude of �� m when the
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Figure 4. Comparison between analytical solution and the results
obtained with new parabolic equations: ��� equation (7), ��� equation
(10). The horizontal velocity is constant and equal to ��ms��.
� � ���Hz, hs � �m and hr � �m.
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Figure 5. Acoustic pressure level versus distance of propagation: (
) WAPE results, ( ) MW-WAPE and TW-WAPE results. Uni-

form horizontal velocity field: v � vx � 	�ms��. � � 
�� Hz,
hs � � m and hr � �� m.

distance of propagation is greater than 	���m, the positions
of interference maxima and minima are totally shifted and
the difference in the transmission loss level is of the order
of � dB. For large distances (here r � 	���m), a shift ap-
pears between the interference patterns of the WAPE and
MW-WAPE results. As in the previous case, the motion ef-
fects progressively increase with the distance of propagation.
These effects are more important for the higher elevation
when the direction of propagation significantly differs from
the horizontal axis. For a propagation distance of 
 km, the
displacement of the interference location is about 
� m at
z � 	� m and about 	
� m at z � �� m and the difference
in the acoustic pressure level is respectively �dB and 	� dB.
As expected in the WAPE predictions the phase errors in the
sound field dramatically increase with range.



��
 Blanc-Benon et al.: Long range sound propagation in turbulent atmosphere
acta acustica � A C U S T I C A

Vol. 87 (2001)

0 500 1000 1500 2000 2500 3000
-15

10

-5

0

Distance of propagation (m)

R
el

at
iv

e
so

un
d

pr
es

su
re

le
ve

l (
dB

)

0 500 1000 1500 2000 2500 3000
Distance of propagation (m)

R
el

at
iv

e
so

un
d

pr
es

su
re

le
ve

l (
dB

)

-20

-18

-16

-14

-12

-10
-8

-6

-4

-2
0

0 500 1000 1500 2000 2500 3000
Distance of propagation (m)

R
el

at
iv

e
so

un
d

pr
es

su
re

le
ve

l (
dB

)

-50
-45

-40

-35

-30

-25

-20

-15

-10

-5
0

�a
 hr � �m

�b
 hr � ��m

�c
 hr � ��m

Figure 6. Acoustic pressure level versus distance of propagation: (
) WAPE results, ( ) MW-WAPE results. Horizontal velocity

field: v � vx�z
 � ��� z ms��. Parameters: � � 
�� Hz,
hs � � m and hr � � m, �� m or �� m.

4.3. Effects of a mean vertical wind

We consider the sound propagation in an inhomogeneous
medium with a constant vertical wind, vx � � and vz �
v. In Figure 7 we compare predictions of the transmission
losses using three PEs. The frequency of the source is � �

��Hz. The heights of the source and receiver are hs �
�m and hr � 	�m, respectively. As expected, standard PE
(equation (13)) does not take into account the vertical wind
velocity and the phase errors in the sound field dramatically
increase with range. For example at a distance of 

� m
the use of standard PE equation (13) results in destructive
interference while new PEs equation (7) and equation (10)
do not reveal it. We also plotted on Figure 7 the transmission
losses calculated using a ray tracing algorithm. There is a
concern whether the geometric acoustics method is able to
include the velocity vector in exact way [10]. One of the
difficulties of this method is related to the finding out of
all eigenrays, which are necessary for computation of the
transmission losses. Of course, this approach will fail in a
shadow zone. Nevertheless up to a distance of propagation
of 200 m, the comparison is in favor of new PEs which
rigorously incorparate the wind velocity.
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Figure 7. Comparison between results obtained by the ray tracing
program [ ], the TW-WAPE equation (10) ��� and MW-WAPE
equation (7) ���. Standard WAPE equation (13) solution is plotted
with [�]. The vertical velocity is constant and equal to v z � �ms��.
� � ���Hz, hs � �m and hr � ��m.

5. Sound scattering in a shadow zone by turbulence

We consider now the propagation of acoustic waves in an
upward-refracting atmosphere. For outdoor sound propaga-
tion near the ground, the combined effects of air temperature
and wind speed typically produce an effective sound speed
that decreases with altitude. This has the effect of bending
sound upwards such that a deterministic shadow zone ap-
pears at a short distance from a near-ground source. For a
receiver located in this region there is no direct ray coming
from the source; sound energy can only penetrate the shadow
zone due to diffraction and turbulent scattering. In a first se-
ries of numerical experiments, using the standard “scalar”
wide-angle parabolic equation (WAPE) we examine the in-
fluence of scale resolution on numerical simulation of long
range sound propagation through the atmosphere. Specifi-
cally, we seek to answer the questions: How does the inclu-
sion/exclusion of turbulent field statistical inhomogeneity af-
fect our results, what portion of the u and T� spectra must be
adequately resolved, and, given the current limitations on grid
size (kc), is the LES approach alone viable for atmospheric
propagation simulations? The objective of the second series
of numerical simulations is to determine the benefit of us-
ing a more accurate “vector” wide-angle parabolic equation
(TW-WAPE) in determining acoustic propagation in moving
media.

5.1. Modelling of an upward-recfracting turbulent
atmosphere

Our inputs to the propagation model were as follows. The
mean sound speed profile, was calculated from [18]:

c�z� �

��
�

c� �A ln�z�d� z � z�

c� �A ln�z��d� z � z�

�
��
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where c� � �
�m/s, z� � ���	m, A � 
m/s and d �
� � 	��� m. When random inhomogeneities, either vector
or scalar, are added to a sound speed field that generates
a shadow zone, acoustic pressure will leak into this zone
through scattering [19]. We assume that the time variation
of the turbulent medium is much greater than the acoustic
travel time between the source and receiver. So the turbulent
medium is considered as frozen. However, we are interested
in a velocity field that is consistent with that of an atmospheric
boundary layer above a rigid surface, i.e. one whose energy
spectrum depends on height z. Several models have been
proposed for this height dependency — B. A. Kader and
A. M. Yaglom [20], S. Khanna [21] and D. K. Wilson et
al. [22]. Scaling of the surface layer is normally based on
the premise that the turbulence structure depends entirely
on the surface Reynolds stress � , the surface heat flux Q,
and the buoyance � � g�Ts, where g is the gravitational
acceleration, and Ts is the surface temperature. From these
parameters one can derive representative scales for velocity
u� �

p
��	, where	 is density, temperatureT� � �Q�u�,

and length Lmo � �u �� ��Q. Like the temperature scale
T�, the Monin-Obukhov length Lmo is negative when the
ground is being heated (statically unstable condition as on a
sunny day) and positive when the ground is cooling (statically
stable condition as on a clear night). In this paper we only
consider the former case, T� � �. We adopt the Kader
and Yaglom model which divides the boundary layer into
three sublayers according to the dimensionless vertical scale
� � z�Lmo. The normalized altitude � � z�Lmo represents
the ratio of buoyant to inertial forces acting in the surface
layer. For the standard deviation of the temperature we have:

�T �

��
�

�
��T � � � �� � ��	

�	�
T � ��������
��� � �� � �

�	��T � ��������
� � ��

�

�

For the standard deviation of the wind (velocity), we can
make use of the relations for only one component (horizon-
tal longitudinal, horizontal lateral, or vertical) because our
modified RFM scheme is based on an isotropic formulation.
We opt for the horizontal longitudinal component (in the di-
rection of the mean wind) and note that the longitudinal and
lateral components differ by less than 	��. We have:

�u �

��
�


��u� � � �� � ��	

	��u� �������� ��� � �� � �

���u� ��������
� � ��

�
��

As with the wind components, the isotropy of the model
forces us to select a single integral scale. We select the rela-
tions for the horizontal scale:

Li �

��
�

z��� � � �� � ��	

��fc ��������
z ��� � �� � �

z���fc � � ��
�
��

� � ��
 is the von Kármán’s constant, and �fc � 	�
.
For further details regarding turbulence modelling, refer to

[11]. For the RFM turbulence model, we logarithmically dis-
tributed 400 modes between 	��� m�� and 	�� m��. A Kol-
mogorov microscale of 5 mm was assumed for the inner
turbulent length scale. The altitude-dependent outer turbu-
lence scale and variances were calculated for: u� � ��� m/s,
T� � ���
K,Lmo � �
�m,Uc � �m/ser,�u � 	m/s.
Means were calculated by ensemble averaging over twenty
realizations.

5.2. Wind velocity versus temperature fluctuations

The scattering properties of a vectorial random medium are
different from those of a scalar medium [23] [4]. In consider-
ing sound propagation through an upward-refracting turbu-
lent atmosphere, Juvé et al. [24] compared the pressure fields
for a scalar and vectorial case using the same variance of the
fluctuations, the same integral scale and gaussian correlation
functions. The authors found that, relative to the scalar case,
scattering was more intense for the vectorial fluctuations,
which produced a 10-12 dB greater mean relative sound pres-
sure level (SPL) in the shadow zone. We now compare the
results obtained with our inhomogeneous “scalar” and “vec-
tor” random fields. The velocity and temperature fluctuations
were generated using the technique outlined previously using
the same variance and the same integral scale.

Figure 8 presents the results obtained with the standard PE
(equation (13)). We consider two frequencies � � 


Hz
and � � �
�Hz. The height of the source is ��� m and
the receiver is located at the same altitude. The difference
in mean relative sound pressure level (SPL) in the shadow
zone is much greater than 25 dB. Since the variances and
outer length scales are the same order of magnitude, this is
attributed to the behavior of the energy spectra, equations 21
and 19, in the inertial subrange. As wavenumber increases,
the energy in the inertial range of the temperature spectrum
decreases as k���� while for the kinetic energy spectrum the
decrease is much slower, k����. Thus, for the range of scales
that most influences scattering into the shadow zone, the
velocity fluctuations are significantly more energetic. This
suggests that scattering by wind velocity fluctuations is the
dominant mechanism allowing acoustical energy to penetrate
the shadow zone. The results presented in the remaining sec-
tions pertain to scattering by turbulent velocity fluctuations.

5.3. Effects of the wavenumber cutoff kc

Using the inhomogeneous turbulence model, calculations
were performed to determine the sensitivity of our results
to the cutoff wavenumber kc. Figure 9 presents the re-
sults obtained with the standard PE equation (13). Normally,
the largest wavenumber considered in the calculations was
kc � 	�� m��, which allowed us to resolve eddies down
to the Kolmogorov microscale, 5 mm. We now consider four
cases for which kc � 	�m��� �m��� 	m��, and ��
m��.
We accomplished this by removing modes having k � kc
from the respective calculations. This is the only difference
between the cases; all other factors (mode amplitudes and
orientations, variances, length scales, etc�) were the same.
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Figure 8. Mean relative sound pressure level due to temperature (�)
and wind velocity (——) fluctuations.hs � hr � ��� m.

Figure 9 shows how decreasing kc (neglecting the smaller
eddies that comprise the spectrum) reduces the predicted SPL
in the shadow zone. For 424 Hz one can neglect wavenum-
bers larger than � m��, and for 848 Hz one can neglect
wavenumbers larger than 	�m��. These roughly correspond
to eddies of size 1.2 m and 0.6 m, respectively, and define
the lower bound of the range of sizes principally responsible
for scattering into the shadow zone. A reasonable estimate
for these values can be calculated from the Bragg’s relation
� � 
L sin���
� which states that turbulent eddies of size
L scatter sound of wavelength � through the angle �. The
wavenumbers 

�L of the eddies scattering through this an-
gle � (about 10o) are 	�� m�� and � m�� for 424 Hz and
848 Hz, respectively. But these "critical" kc are significantly
larger than the cutoff wavenumbers currently achieved by
LES simulations of the atmospheric boundary layer. Even
using an embedded fine mesh near the ground, the vertical
grid spacings are at least 10 m, an order of magnitude larger
than the dominant scattering inhomogeneities.

5.4. TW-WAPE simulation versus WAPE simulation

In the numerical experiments which follow, we report on both
individual and ensemble results. In the individual cases, we
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Figure 9. Mean relative sound pressure level (SPL): Comparison
between a cutoff wavenumber of���m�� (solid line ——),��m��

(solid �), � m�� (solid �), � m�� (solid �), and ��� m�� (solid
�). In both cases hs � 	� m and hr � ��� m.

calculate acoustic propagation through a single realization
of the velocity field. In the ensemble cases, we report on
averages taken over 20 realizations ( for the average sound
pressure a fast convergence of the results is obtained with a
relatively small number of realizations [8] and for higher
statistics a detailed analysis can be found in [9] and [3]
where different probability disributions have been pointed
out depending on the scattering regime).

Figure 10 compares the relative pressure level of the
WAPE integration and the TW-WAPE integration at two dif-
ferent frequencies for the inhomogeneous turbulent velocity.
The frequency of the source is � � �
� Hz and � � 	�� Hz.
The source is hs � � m above the ground. The receiver is
hr � 	� m above the ground. The dashed lines are the
WAPE results and the solid lines are the TW-WAPE results.
The graphs display only the shadow zone region. The differ-
ence between the two curves (WAPE and TW-WAPE) varies
between 	 or 
 dB for the � � �
� Hz case and between �
or 
 dB for the � � 	�� Hz case. For lower frequencies, the
differences are increasing. It would appear that in the sub-
layer model, the vector terms in TW-WAPE make significant
contributions.
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Figure 10. Ensemble average of relative acoustic pressure level ver-
sus distance of propagation for inhomogeneous turbulent fields: (

) WAPE results and ( ) TW-WAPE results. Inhomogeneous
turbulence parameters: Lmo � �	
 m and u� � ��
 ms��.
hs � � m and hr � �� m.

An interesting observation is that, even if the average val-
ues of the pressure field are close, single realizations can dif-
fer between the WAPE integration and the TW-WAPE inte-
gration. Figure 11 presents relative acoustic pressure level for
a single realization of an inhomogeneous turbulent velocity
field. Two frequencies are investigated: � � �
� Hz (upper)
and 	�� Hz (lower). The receiver height is hr � 	� m. The
same realization of the turbulent field is used in both cases,
and the two figures show differences between the WAPE
(dashed line) and TW-WAPE (solid line) solutions. Again the
differences are greater for low frequencies. It is remarkable
that for the same realization, the behaviour of the acoustic
field could be so different from one frequency to the next. So,
even if mean results are not greatly affected by the use of the
TW-WAPE, single realisations are (cf.Figure 11, Figure 12)
. And, on Figure 12 we clearly note the influence of the
vertical position of the receiver. Finally we consider vertical
relative pressure level in the shadow zone (cf. Figure 13) for
a single realisation. The left curves correspond to a distance
of propagation x � 
�� m and the right curves to a distance
of propagation x � ��� m. The solid line represents the
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Figure 11. Relative acoustic pressure level versus distance of propa-
gation for inhomogeneous turbulent fields: ( ) WAPE results and
( ) TW-WAPE results. Inhomogeneous turbulence parameters:
Lmo � �	
 m and u� � ��
 ms��. � � ��� Hz, hs � � m,
A � 	 ms��, d � ���� m.

TW-WAPE results and the dashed line, the WAPE results.
First, we note that for altitudes greater than 
� m, there is
little difference between the “scalar” PE and the “vector” PE.
In the layer close to the ground (z � 
� m) the difference
is significant. This difference increases with the distance of
propagation (more details are available in [25]).

6. Conclusion

In this paper we have presented 2D numerical simulations of
sound propagation and scattering in random moving media.
We have shown that the use of the effective sound speed as-
sumption is not sufficient to describe accurately the effects
of mean and random wind velocity on sound propagation
through moving media. To summarize we considered two
wide-angle “vector” PEs designed to provide for the calcu-
lation of long range sound propagation in moving media: the
MW-WAPE and the TW-WAPE. Their derivations and con-
versions to numerical codes were validated by comparing re-
sults from a numerical experiment with an analytic solution.
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Figure 12. Relative acoustic pressure level as a function of the dist-
nace of propagation for � � ��� Hz and two receivers h r � � m
and hr � �� m: ( ) WAPE single realization results and ( )
TW-WAPE single realization results. Inhomogeneous turbulence pa-
rameters: Lmo � �	
 m and u� � ��
 ms��. � � ��� Hz,
hs � � m, A � 	 ms��, d � ���� m .

The MW-WAPE is used to predict sound wave propagation
in the presence of a mean wind which is not colinear to the
direction of propagation. The TW-WAPE is used when scat-
tering by a turbulent velocity field is considered. A series
of numerical experiments were then conducted on several
classes of two-dimensional inhomogeneous media with rigid
lower boundaries to evaluate the efficacy of these “vector”
PEs vis-a-vis the traditional “scalar” PE.

At large distances of propagation and from an ensemble
of statistically similar experiments, average interference pat-
terns obtained from the MW-WAPE are measurably different
than those obtained from the “scalar” WAPE. The cumula-
tive effect of more accurately representing acoustic phase
seems to become important. The standard PE is not accurate
to treat the effect of the mean wind on sound propagation.
And since the difference between scalar and vector represen-
tations of velocity effects would be more pronounced in a
three-dimensional case, it would appear that using the more
complicated MW-WAPE in lieu of the simpler WAPE is jus-
tified. Obviously, MW-WAPE equation should be used to
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Figure 13. Relative acoustic pressure level as a function of the altitude
along a vertical line for x � ��� m (left) and x � 
�� m (right):
( ) WAPE single realization results and ( ) TW-WAPE single
realization results. Inhomogeneous turbulence parameters: Lmo �
�	
 m and u� � ��
 ms��. � � ��� Hz, hs � � m, A �
	 ms��, d � ���� m .

compute the effects of a mean cross wind component vy on
sound propagation near the ground. On the other hand, en-
semble numerical experiments using the TW-WAPE did not
display significant differences from those using the WAPE—
at least on average. However, when results were compared
for individual experiments, significant differences appeared.
The TW-WAPE will be tested in more complex geometrical
configurations created by the presence of an acoustic barrier
along the sound wave path. In this case, especially behind
the barrier the scattering of sound is affected by all the com-
ponents of the wind vector and the associated gradients.

We also presented a technique for generating inhomoge-
neous “scalar” and “vectorial” random fields, allowing us to
simulate the effects of altitude-dependent atmospheric tur-
bulence statistics. We began by examining the relative im-
portance of scattering by wind and temperature fluctuations.
For the assumed wavenumber dependence of the tempera-
ture and kinetic energy spectra in the inertial subrange, wind
speed fluctuation is the dominant factor causing acoustical
energy to penetrate the shadow zone. Next we examined
the importance of spatial-frequency cut-off of the turbulent
field, this allow us to make clear what resolution is really
needed for atmospheric propagation studiese. A reasonable
estimate for these values can be predicted from the Bragg re-
lation. Because the eddies responsible for scattering into the
shadow zone are an order of magnitude smaller than current
grid sizes, LES is not by itself a viable turbulence model for
simulations of sound propagation from near-ground sources
in an upward-refracting atmosphere. It should, however, be
possible to develop an LES-RFM hybrid in which RFM is
used to fill in the subgrid scales.

The observations and interpretations in this paper were for
two-dimensional propagation. As noted above, a scalar repre-
sentation of the velocity effects may be marginally adequate
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in two-dimensions, but in three-dimensions a vector repre-
sentation will surely be necessary. Especially in the case of
multiscale velocity fluctuations, interference and scattering
are very sensitive to acoustic frequency, which would suggest
that wide-angle parabolic equations must be used—at least
over long propagation distances.
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parabolic equation for sound waves in moving media. Proc.
Eigth International Symposium on Long Range Sound Prop-
agation, Applied Research Lab, The Pennsylvania State Uni-
versity, 1998. 194–208.

[3] L. Dallois: Propagation des ondes acoustiques dans les milieux
en mouvement : extension grand angle de l’approximation
parabolique. Dissertation. Ecole Centrale de Lyon, ECL,no

2000-37, 2000.
[4] V. Ostashev: Acoustic in moving inhomogeneous media. E &

FN SPON, London, 1997.
[5] K. Gilbert, M. White: Application of the parabolic equation to

sound propagation in a refracting atmosphere. J. Acoust. Soc.
Am. 85 (1989) 630–63.

[6] D. Lee, A. Pierce: Parabolic equation development in recent
decade. J. Comp. Acoust. 3(2) (1995) 95–173.

[7] C. Bailly, P. Blanc-Benon:Stochastic turbulentfields for acous-
tic numerical simulation. Proceedings of the ASME , NCA-
Vol.2, 1998. 21–33.

[8] P. Chevret, P. Blanc-Benon, D. Juvé: A numerical model for
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