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Abstract. A numerical technique for simulating the propagation of high-frequency acoustic waves 
through turbulent fields is introduced. The technique involves two elements: the generation of a 
random isotropic scalar or vectorial field in terms of a superposition of discrete random Fourier 
modes; and the integration of the ray-trace equations of geometrical acoustics to describe the 
trajectories of rays and their distortion. For each realization we compute the ray trajectories and 
the evolution of the cross section of an elementary ray tube. We then accumulate statistics over 
an ensemble of realizations to estimate the probability of occurrence of the first caustic. Our 
results demonstrate that the position of caustics is governed by universal parameters related to 
the derivatives of the correlation function of the fluctuating components of the turbulent medium. 

1. Introduction 

The propagat ion of acoustic waves through turbulent media is a topic of great interest with a wide 
variety of applications in underwater or in atmospheric acoustics. For  example, fluctuations appear  
in the phase pattern of the transmitted waves leading to noise in the imaging process of arrays. 
Intensity fluctuations are also present and all the perturbations grow substantially as the waves 
propagate further in the medium. Even if the turbulent fluctuations are weak in the random medium, 
the cumulative effects over long distances may be great. Similar problems exist in optical propagation 
of laser beams in atmospheric turbulence. 

The theory of wave propagat ion in random media has been developed by a number of authors and 
extensive reviews are given in Tatarski (1971), Strohbehn (1978), and Ishimaru (1978). The usual 
procedure relies on a statistical approach. As a first step, making use of several hypotheses, a wave 
equation (Helmholtz or parabolic) is obtained in which the interaction between the wave and the 
medium is expressed in terms of a random refractive index related to the fluctuations of the medium. 
In the case of a monochromat ic  incident sound field propagating in a time-independent medium with 
temperature and velocity fluctuations, the pressure field is governed by the Helmholtz equation: 

{A + ko2(1 + e(£))}p(£) = 0, (1) 

T ' (~)  2v~(Z) 
e(~) = - - ,  (2) 

To Co 

1 Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday. 
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where p(Y) denotes the space dependence of the pressure, ko is the acoustic wave number, and e(£) is 
the fluctuation of the index of refraction. Here e(E) is related to the fluctuation T' of the temperature 
and to the component v~ of the velocity fluctuation in the direction of the propagation of the incident 
wave. To and c o are respectively the temperature and the sound speed without turbulence. Indeed, it 
can be shown that for small turbulent Mach numbers, and monochromatic waves, the forward 
propagation of sound in turbulent fluid can be adequately represented by (1) if the acoustic wave- 
length ), does not exceed a typical length scale of the turbulent field (Neubert and Lumley, 1970; 
Candel, 1979). The second step of this statistical approach is to generate equations which govern the 
second and higher moments of the transmitted sound pressure field. Then, using a closure hypothesis 
for the index fluctuation e(E), solutions may be obtained either by some analytical developments or 
by numerical integration (Whitman and Beran, 1985; Uscinski, 1985). 

It is only recently that studies have made use of computer-generated fields to simulate wave 
propagation in random media, but they are still limited. Hesselink and Sturtevant (1988) computed 
the ray trajectories of weak shock waves in a random Gaussian correlated field obtained by the 
filtering of a white noise. Martin and Flatte (1988) characterize the intensity statistics using a 
phase-screen description of the medium. In these works the index of refraction exhibited only the 
scalar part of the random field. However, in acoustics, the presence of velocity components introduces 
additional effects of wave convection which cannot be described a priori by such a simplified 
approach. Truman and Lee (1990), who used a direct numerical simulation to generate the index 
fluctuation e, have studied the propagation of optical beams through a homogeneous turbulent shear 
flow for which the paraxial approximation is well suited. Juv6 et al. (1990) made use of a similar 
technique to investigate the transmission of acoustic waves through mixing layers and two-dimen- 
sional isotropic turbulence. 

In this paper we describe a different approach, which takes into account fluctuations in velocity 
fields and avoids purely statistical theory and not well-founded hypotheses. Assuming that the 
turbulent field is frozen during the transit time of the acoustic wave, the medium can be modeled by a 
sequence of independent realizations of a random field. Each realization of the field is generated by a 
superposition of a finite number of discrete random Fourier modes. The amplitude of these modes is 
chosen in order to obtain a predefined energy spectum. Isotropic fields with scalar or vectorial 
fluctuations can be obtained with roughly the same technique. Then we consider the deterministic 
propagation of acoustic waves (in the geometrical approximation) through individual realizations of 
the simulated turbulent field. We integrate the equations of geometrical acoustics to describe the 
trajectories of rays as well as the evolution of the cross section of an elementary ray tube. The points 
where this section vanishes define the position of caustics. We illustrate the focusing and defocus- 
ing effects of the inhomogeneous media by plotting the distorted rays. We accumulate statistics over 
an ensemble of realizations to estimate the probability density function (p.d.f.) of occurrence of the 
first caustic at a given distance from the source. Using initially plane waves propagating in two- 
dimensional Gaussian correlated temperature or velocity random fields, we interpret the formation of 
caustics and the differences between scalar and vectorial inhomogeneous media. The extension to a 
three-dimensional case presents no essential difficulties except the increase in computation time. 

2. Simulation of a Two-Dimensional Isotropic Random Velocity Field 

During the transit time of the acoustic wave the turbulent field is, as usual, considered to be frozen. 
The medium can then be modeled by a sequence of independent realizations of a random field. 
Following Kraichnan (1970), the velocity ~' at a given point E is simulated as a sum of N random 
incompressible Fourier modes: 

N 
= ,T__, + ,k'), (3) 

/=1 

~ ( / ~ ' ) - / ~ '  = O. (4) 
The direction of the wave vector/~z and the phase ~O t are independent random variables with uniform 
distributions. The amplitude I1~(/~)11 is a deterministic variable whose value is set according to a 
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given two-dimensional kinetic energy spectrum E(K) with K = H/(]I. In this paper we have used a 
field with a Gaussian correlation function f(r)= exp(-r2/L2). This simple form is often chosen for 
comparison with analytical developments (Kulkarny and White, 1982). Here L is related to the 
longitudinal integral length scale L I by L I = L ~ / 2 .  In two dimensions the spectrum E(K) is related 
to f(r) by the formula 

E(K) = ~ K (r2f(r))Jo(Kr) dr, (5) 

where Jo is the Bessel function of the first kind of order zero and v '2 is the mean square of the 
velocity fluctuations (v '2 = v~ 2 =/)~2) .  The Gaussian correlation function f(r) for the spectrum E(K) 
gives 

viE i / K 2 L 2 \  
E(K) = ~-K3L 4 e x p ~ - ~ ) .  (6) 

In our simulations this spectrum has been sampled with N = 50 modes linearly distributed between 
Kmi n -- O.1/L and Kma ~ = IO/L. The minimum number of realizations of the field is around 500 to get 
reasonable properties of the generated field as far as homogeneity, isotropy, and correlation lengths 
are concerned. However, for acoustic quantities the global trends are obtained with only around 100 
realizations, because of a further mean along the propagation path. 

3. Simulation of a Two-Dimensional Isotropic Random Temperature Field 

For a temperature random field we proceed in a similar way. The temperature T' is represented by 

N 

T'(Y) = ~' ~-(/(J) cos(/(J '£  + q~J), (7) 
j = l  

where the direction of / (~ and the phase ~pJ are independent random variables with uniform distribu- 
tions. The amplitude Y(/(J) is a deterministic variable whose value is set according to the two- 
dimensional spectrum G(K) of the temperature fluctuation T': 

-" .f~ G(K) dK, (8) 0 z 

again with K = JJ/(Jl. The spectrum G(K) is connected to the two-point temperature correlation re(r) 
b y  

G(K) = 02K Jo rm(r)d°(Kr) dr (9) 

which, with re(r) = exp(-rl/L2), leads to 

G(K) = ~ KL2 exp( K4L2 ) .  (10) 

4. Ray-Trace Equations in the Geometrical Acoustic Approximation 

The geometrical acoustic approximation gives a clear visualization of the focusing or defocusing 
properties of an inhomogeneous medium. It is well suited to compute the ray trajectories and the 
exact position of caustics along the ray path. In this high-frequency approximation the acoustic 
pressure is written in the form 

p(£, t )  = A(~)eiS~)e -i't. (11) 

The amplitude A(~) and the local wave vector k'(~) = V(S) are assumed to vary slowly on the scale of 
a wavelength 2 = 2n Co~CO. An asymptotic expansion for CO --* oc of the exact linearized fluid mechanics 
equations gives the dispersion relation of acoustic waves propagating in an inhomogeneous medium 
in steady motion (Candel, 1977): 

o~ = kc + k" V,, (12) 
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where k is the modulus of the acoustic wave number k, V is the total velocity field, and c is the local 
speed of sound in the medium. 

The rays are the lines tangent to the group velocity ~g (3 s = c~ + V; 7 = k/k). They can be 
determined as the characteristic lines of the dispersion relation through the following Hamiltonian 
system (Whitham, 1974): 

dxi _ Co Pi 
+Vi, 

dt N N -- p~M~ 

dpi c o ON 1 8Fj 
dt - N dxi NPi~ixi' (13) 

N 
P l + ~ . v  

where i is a nondimensional wave vector ( i  = P~), N is the index of refraction Co~C, and 1Q is the 
Mach number V/co. The rays have been parametrized by the transit time t from the source to a given 
point. The position vector ~ = (x, y) and the wave vector i at a current point on the ray trajectory 
are completely determined by the value of t and the initial position along the incident wave front. For 
an incident plane wave the initial conditions are 

0, (0) yO , ff(t = O) - . (14) 
l + ~ . v  

Plotting the rays permits a clear visualization of the trajectories followed by the acoustic energy 
radiating from a source. The spatial distribution of rays is a qualitative indicator of the local intensity 
of the field, since the square root of the amplitude is inversely proportional to the cross-sectional area 
of a ray tube. In order to determine more precisely the caustics, which are defined as the envelopes of 
families of rays where the ray-tube section vanishes, we need additional differential equations. In two 
dimensions, for a plane wave, the two geodesic elements/~ = (&~/dy°)t and (~ = (di/ay°)r govern the 
evolution of the wave front along each ray and they permit the evaluation of the cross-sectional area 
of an infinitesimal ray tube: 

dR i c o dN Co R c~Mi 
-pU (°-'- + 

de, col aeN e=N a aM,) Co R eN(aN 
d t - N ~ R ' ~ j ~ x i  R ' ~  M k p k -  ' ~ x T , / - N  2 JOXi\C3xi--Pk-~x~,I " (15) 

0 These differential equations require appropriate initial conditions. If we expand x(t, y ) and if(t, yO) 
using a Taylor series near the origin (t + 0) for an initial plane wave, we get 

/~(t = 0) = , (~(t = 0) = d-d~°-\0]" (16) 

In this work we have considered two different random fields: 

(i) The case of an inhomogeneous medium exhibiting only temperature fluctuations, we called it 
the scalar case, hence (13) and (15) can be simplified making use of N 2 = 1 + T'/To, J~l = O. 

(ii) The case of a medium exhibiting only velocity fluctuations and (13) and (15) can be simplified 
making use of N = 1, we called it the vectorial case. 

In both cases we solved the differential system ((13)-(15)) by a Runge-Kut ta  fourth-order scheme. 
The time step is dt = 1.O/coKma~. It is important to note that the description of the temperature 
T'(Y) and the velocity ~'(Y) in terms of Fourier modes, allows us to obtain analytically all the spatial 
derivatives needed in the resolution of the differential system. Numerical errors are then reduced and 
computation time is saved in comparison with the usual finite-difference approximations. More details 
can be found in Blanc-Benon et al. (1990) and Karweit et al. (1991). 
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5. Results for the Random Temperature Field 

Figure 1 shows a typical example of ray-tracing through a random temperature field with a scale L of 
0.1 m and a fluctuating temperature level O/To of 1.176 x 10 -2. The initially linear trajectories are 
launched at regular-space intervals in the transversal direction (A r = 0.015 m; 161 rays). The rays are 
plotted in terms of the nondimensional variables x/L and y/L. During the first correlation lengths the 
rays are only slightly distorted and the initial plane wave structure is still apparent. Afterwards the 
deflections of the rays are amplified, neighboring rays begin to cross, and strong concentrations occur 
at different transverse positions y. Caustics appear in a concentrated zone x/L, 15 < x/L < 25. After 
passing through a focus the families of rays have large expansion fans in the y-direction. Locally the 
wave behaves like a spherical wave, and the initial plane wave structure is totally destroyed. It is 
possible to distinguish a second zone of ray crossing around x/L = 50, defining a new region of 
emergence of caustics. The process of formation of caustics can be clearly visualized by launching a 
family of rays greater by a factor of 15 (i.e., 2401 rays in the same realization). For  each ray the exact 
position of occurrence of a caustic (where the ray-tube section vanishes) is computed. In Figure 2 we 
have plotted the first set of caustics by marking the first point of zero cross-sectional area along the 
rays. The cusps which characterize the two-dimensional caustics are clearly visible. At increasing x/L 
the structure of the field becomes more complex with overlaping of caustics. 

To quantify this phenomena, we evaluate the probability of occurrence of the first caustic for a 
family of 81 rays over an ensemble of 200 realizations. With these 16,200 samples we evaluate the 
p.d.f., using 256 classes. In this calculation we have used three scalar fields with the same scale L and 
three different values of O/T o (2.352 x 10-2; 1.176 x 10-2; 5.882 x 10-3). The corresponding p.d.f.'s 
are plotted in Figure 3 as a function of the arc length s. For  each curve we notice that up to a certain 
length s along the ray there is no caustic. Then we observe a sharp peak at a fixed distance and an 
exponential decay at larger distances. If the level of fluctuations is higher, the first caustic appears at a 
shorter distance. 

These results confirm the theoretical analysis of Kulkarny and White (1982), and these also extend 
significantly the numerical simulation of Hesselink and Sturtevant (1988). 'These authors have studied 
the propagation of a plane wave through an isotropic random medium with weak fluctuations in the 
index of refraction (N = 1 + #; # = e/2), assuming that the fluctuations # are predominantly due to 
the inhomogeneity of the medium. Using a geometrical acoustic approach, they demonstrate that 
caustics occur along every ray. For  the first caustic, the p.d.f, of occurrence is given by a universal 
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Figure 1. Ray-tracing through a single realization of a two- 
dimensional isotropic scalar field (O/T o = 1.176 × 10 -2, L = 
0.1 m). 

Figure 2. Caustics formation in a single realization of a two- 
dimensional isotropic scalar field (O/T o = 1.176 x 10 -2, L = 
0.1 m). 
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Figure 3. Probability densities of distances to the first caustic 
for two-dimensional scalar fields (L = 0.1 m). 
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Figure 4. Rescaling of the probability densities curves in 
terms of the Kulkarny and White parameter a r for two- 
dimensional scalar fields. 

curve characterized by a single scaling factor related to the space correlation function of the medium: 

R~(F) = (/~(Y)#(~ + ~)).  (17) 

In Figure 4 we report this universal curve using the theoretical scaling factor a~/3 suggested by 
Kulkarny and White (1982): 

~ = ff~r~ R.(rl, O) d h.  (18) 

For  a Gaussian correlation function R~(r) = (/~2) exp(_r2/L2), it can be be shown that a2r/3 takes the 
form 

121/3 (/~2) 1/3~1/6 (19) 
a~'/3 = L 

with V/(-/~2> =O/2To. The data from our numerical experiments are in good agreement with 
Kulkarny and White's (1982) predictions. We note that the peak of the p.d.f, is obtained for a value 
of Sa  2/3 equal to 1.3, which permits an estimation of the distance at which the formation of the first 
caustic is most probable. 

6. Results for the Random Velocity Field 

Now we consider the case of an initial plane wave propagating through a turbulent velocity field 
(V = ~'), in order to develop a comparison with the previous scalar field and to examine the possible 
extension of the results from a scalar to a vectorial field. In our simulation we chose the following 
values of the length scale L (L = 0.1 m) and of the r.m.s, velocity v' (1 m/s; 2 m/s; 4 m/s). At this point 
we must recall that the fluctuations of the index e(~) in the Helmholtz equation may be obtained by 
the same value of T'(:~)/2To and v'l(~)/Co. Our choice of L, T', and v' satisfies this requirement. 

Figure 5 shows the behavior of a family of 161 rays propagating through one realization of a 
simulated velocity field with v' = 2 m/s. The ray distortion seems to be notably higher compared with 
a scalar field. In Figure 6, which concerns the same realization, we have reported all the points at 
which caustics occur. We note that the structure of the picture is again more complex than for the 
scalar field, and that the distance of formation of caustics is much shorter. 

Again using 200 realizations of a family of 81 rays, we have computed the p.d.f, of occurrence of 
the first caustic. In Figure 7 we compare the p.d.f, obtained with a scalar field and a vectorial field 
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Figure 5. Ray-tracing through a single realization of a two- 
dimensional isotropic vectorial field (v'/c o = 5.882 x 10 -3, 
L =0.1 m). 

Figure 6. Caustics formation in a single realization of a two- 
dimensional isotropic vectorial field (F/Co = 5.882 x 10 -3, 
L=O.1 m). 

with the same level for the index fluctuation, /~-/~2> = 5.582 x 10 -a, with either 0 = 3.447 K or 
v' = 2 m/s. The two curves exhibit the same trend, but the distance of formation of a caustic appears 
shorter for the velocity field. 

In Figure 8 we have introduced the scaling factor a~,/a, which deals with the component of the 
velocity field v~(~) in the direction of propagation. According to the Helmholtz equation, this 
component gives the most important contribution to the fluctuation of the index of refraction. We 
therefore define a~ as 

a2 = ~r24 R , , ( r ,  ' 0) dr,, (20) 

where Rl l  is the correlation function of v~ in the direction of propagation. With the Gaussian 
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function used previously, 

we obtain, after some computation, 

_ / . 2 )  
Rll(r) = v '2 exp ~ -  , (21) 

0 .2/3 = 601/3 ( p 2 )  1/3~1/6 (22) 
L 

with x / / ( ~  = v'/co. Together with our results, we have plotted in Figure 8 the universal curve of 
Kulkarny and White (1982). We note that our simulations are in very good agreement with these 
theoretical results. The scaling parameter 0.2/3 therefore seems to be very effective in predicting the 
occurrence of caustics in a larger variety of situations. 

7. Conclusion 

In this paper we have simulated the propagation of acoustic plane waves in two-dimensional isotropic 
random fields with either temperature fluctuations (scalar case) or velocity fluctuations (vectorial case), 
in the geometric acoustics approximation. We have characterized the region of random caustic 
formation. In the scalar case, our simulations confirm the theoretical analysis of Kulkarny and White 
(1982): the probability density of the distance along a ray to the nearest caustic is given by a universal 
curve with a single distance scale parameter. In the vectorial case we extend the results by defining the 
appropriate parameter, and we demonstrate that the representation of a velocity field by a refractive 
index such as in the Helmholtz equation requires special scrutiny. 

So far the turbulent fields have been assumed to have Gaussian correlation functions. Extensions of 
this numerical simulation to more realistic turbulent fields involving several characteristic length 
scales and three-dimensional aspects are therefore to be considered. They will permit us to analyze the 
validity limits of the Kulkarny and White parameter. In addition to the geometrical acoustics point of 
view, the parabolic approximation can be developed using the same numerical process to generate the 
turbulent fields. The main interest will be to analyse the influence of the wave frequency on the 
intensity fluctuations of the transmitted pressure field, in connection with the occurrence of caustics. 
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