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Abstract In this paper we derive expressions for the probability densities for the appearance 
of the first caustic for a plane sound wave propagating in moving random media. Our approach 
generalizes the previous work by White er a1 and Klyatskin in the case of motionless media, 
It allows us to calculate analytically the probability density functions for two- and three- 
dimensional media and to express these functions in terms of the diffusion~mefficient. Explicit 
equations are given for Gaussian and von Karman specm of velocity Ructu~ons. If the random 
scalar or vectorial fluctuations of the medium have the same contribution to the refractive-index 
Auctllations, we demonstrate that in a moving medium caustics appear at shorter dismces than in 
a non-moving one. The two-dimensional venion of the theory is tested by numerical simulations 
in the w e  of velocity fluctuations with Gaussian spectra. Numerical results are in very good 
agreement with the theoretical predictions. 

1. Introduction 

If a wave propagates in a random medium, at some distqce x from the source caustics 
appear. The information about this distance, which is conveniently described mathematically 
by the probability density P ( x )  for the distance to the first caustic, is important in many 
problems. For example, this information gives the range of validity of many tomography 
methods [l ,  2.1, currently used for remote sensing of the atmosphere and the ocean, because 
they are valid only in the approximation of geometric optics or'acoustics. Furthermore, the 
distance x of caustic formation is closely connected [3, 41 to the distance at which the mean- 
square intensity fluctuation of a wave propagating in a random medium has a maximum. 
Using the parabolic fourth-moment equation, various authors have performed 'analytical 
and numerical calculations for the normalized variance of the intensity fluctuations, i.e. the 
scintillation index 15-71, Their results show that the range dependence of the variance of the 
intensity exhibits a maximum. Moreover, this peaked evolution of the scintillation index is 
due to the focusing effect of the medium which depends on the characteristic length of the 
inhomogeneities. Finally, the behaviour of the function P(n) is of interest for the theory 
of wave propagation in random media [8-12]. 
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For an initially-plane wave propagating through two-dimensional isotropic turbulence, 
the probability density Pz(x) of the distance x to the 6rst caustic is obtained theoretically 
in [SI and justified numerically in [9, 101. The analogous function S ( x )  for the three- 
dimensional isotropic turbulence differs from i'*(x) and is determined theoretically in 
[ll]. For a plane wave propagating through random inhomogeneities delta-correlated in 
the direction of propagation, the functions S(x) and P&) are calculated in [12]. 

In the aforementioned papers [&12], the probability densities P z ( x ) ~  and & ( x )  are 
studied for the case of an initially-plane wave propagating in a motionless random medium. 
The primary aim of the present paper is to calculate these probability densities for sound- 
wave propagation in a moving random medium. Such calculations are important for 
the study of sound propagation in the atmosphm where velocity fluctuations are always 
noticeable and very often dominate temperature fluctuations, in the upper-mixed oceanic 
layer and in turbulent currents where current fluctuations may be comparable with sound- 
speed fluctuations, in the turbulent flows of gases, and so on. 

In section 2, the probability densities 9 ( x )  and P3(x) obtained in [8, 11, 121 =E 
presented. In section 3, the probability density 4 ( x )  for a sound wave propagating in a 
moving random medium with the Gaussian correlation function of random inhomogeneities 
is calculated. The analogous function S ( x )  for the von Kannan spectrum of random 
homogeneities is also derived in section 3. In section 4, the probability density &(x) for a 
sound wave propagating in a two-dimensional moving random medium with the Gaussian 
correlation function of random inhomogeneities is calculated and compared with a numerical 
experiment. In the concluding section, section 5, the main results obtained are discussed. 

2. The probability density for the distance to the first caustic in a motionless medium 

Let random inhomogeneities of a motionless medium be located in the half space x > 0 
and suppose an initially-plane wave propagates in the direction of the x-axis incident on 
this half space from the region x < 0. We also suppose that random inhomogeneities are 
statistically homogeneous and delta-correlated in the direction of the x-axis: 

m1 + x ,  11 + M X I ,  TI)) = B&, T )  = W U T )  (1) 
where the function E describes fluctuations in the dielectric constant of a medium and is 
proportional ( E  = 2n) to refractive index fluctuations n. In (1) T = (y. z) is given in 
transverse coordinates, B, is the correlation function, S is the delta function, and b, is the 
mnsverse correlation function given by: 

b,(r) = 2rr 1" [" Qp,(O, K l ) e x p ( i K l .  T )  d2K, (2) 

where Qp,(Kz ,  Kl) is the three-dimensional specfml density of the random field E .  We 
recall the well-known fact [13] that for geometric-acoustic, Rytov and parabolic-equation 
methods, the Markov approximation (1) is only a suitable and convenient mathematical 
approximation of the correlation function B&, T )  which has kite scales 1, and I ,  in the 
direction of the x-axis and the yz-plane, respectively. We also recall that these scales, I ,  
and I , ,  may be different. 

Using the Markov approximation (1) and assuming that the random field E is isotropic 
in the yz-plane, for the problem considered in this section, Klyatskin 112.1 derived the 
probability distribution 4 ( x )  for the distance x to the first caustic: 

-m 

(Y 
&(x) = - (3) 
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where (Y and p are numerical constants, and D3 is the diffusion coefficient, given by: 

Note that this probability density function and the numerical values of (Y and p were first 
obtained by White [l 11 using a scaling parameter y defined in a non-Cartesian system of 
coordinates by 

with R = m. The diffusion coefficient D3 introduced by Klyatskin [I21 depends on 
cmesian coordinates. Taking into account the fact that 

the coefficients (Y and ,6 in (3) must have the values 0.87 and 0.33, respectively, to be in 
agreement with the results obtained previously by White [ll]. 

Now let us consider our problem for the two-dimensional case when the dependence of 
all functions on the coordinate z may be omitted. For two-dimensional turbulence, equations 
(1) and (2) take the form: 

(5) 

(6) 

(4x1 + x ,  Y1 + Y ) & %  Yl)) = &(x, Y) = S(x)b,(y) 

'bc(y)  = 2n 1 Op,(O, K,) exp(iK,. y)dK,. 
+m 

-m 

These equations also allow us to consider the case when the scales lX and 1, of the correlation 
function €I&, y) are different. Using the Markov approximation (5), the probability 
distribution E'&) is calculated in [8-12]1: 

where U = K(1 /2 )  N 1.85, K is the complete elliptic integral, and 732 is the diffusion 
coefficient given by: 

CO 

732 = n K;Q,(O, KY)dKy. (8) 

Note that (3) and (7) were first derived in [8] and [ 111, respectively, for the case of isotropic 
turbulence where I ,  = I ,  and 1, = lr. The limit of validity of (3) and (7) is given by the 
inequality Dx3 << 1 [12]. 

3. Three-dimensional moving random meeum 

In this section we assume that an initially-plane sound wave incidents on the half space 
x z 0 where the adiabatic sound speed c(R)  and medium velocity v(R) are random 
functions of the coordinates R = (x, T ) ,  (c) = CO and (v) = 0. If v = 0, the probability 
density 4 ( x )  of the distance x to the first caustic for this wave is given by (3) and (4) 
where Oe is the three-dimensional spectral density of the random field 

. 

- 
(9) 

C 
E = 2n =~-2-. 

CO 

t In [U] we interpret the additional factor of 3 on the right-hand side of equation (7) as a misprint. 
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Here E = c - CO denotes the sound-speed fluctuations. It is our aim to generalize (3) and 
(4) to the case v # 0. 

3.1. Basic equations 

This generalization technique is described in [14-161: in the geometric-acoustic, Rytov and 
parabolic-equation methods, the statistical characteristics of a sound wave propagating in a 
moving random medium are given by equations for analogous statistical characteristics for 
the sound wave propagating in a motionless random medium, where in the latter equations 
the correlation function B&, T )  or its threedimensional spectral density KL) is 
replaced by the effective correlation function Be&. T )  or its spectral density @ e f f ( K , , ~ K ~ ) ,  
respectively, given by: 

, 4  

CO 
Be&, TI = Be(x, T )  + ~ B I I ( ~ ,  7 )  

(10) 4 

CO 
%f(Km Kd = OP,(Kx, Kd + 3@1l (KX.  KL). 

Here B11 and @ 1 1  are the correlation function and its three-dimensional spectral density for 
fluctuations of the medium-velocity component u1 in the direction of the x-axis; they are 
connected by the following equation: 

J-m J-m J-m 

It should be noted here, that even for isotropic turbulence, the functions Bll(x,r), 
Oll(Kx, KL) and, hence, the functions Beff(x. T) ,  Op,(Kx, KL) are anisotropic [16]. 
Therefore, when calculating the probability density P3 in a statistically isotropic moving 
random medium we must use (3) and (4) which are valid for an anisotropic motionless 
random medium. When deriving equation (lo), the terms of the order of u2/cz are neglected 
and it is assumed that V.v = 0 (this assumption is usually valid for turbulent fields). In the 
Markov approximation, we may put Kz = 0 in (10) (see [15-161). Moreover, for locally 
homogeneous and isotropic turbulence (10) takes the form [14-16]: 

4 

CO 
(12) 

Here, F ( K )  is the tbree-dimensional spectral density of the isokopic and solenoidal random 
vector field v, related 1171 to 411 by: 

@eff(O, K d  = QdO,  Kd + T-F(KJ.1. 

where K = dTK:$.K:). Replacing @< by Qefi in (3) and (4) yields the probability 
density for the distance to the first caustic for  an^ initially-plane wave propagating in a 
moving G d o m  medium: 
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Comparing these equations with (3) and (4), we observe that the probability density 
P~(x) is given by the same function for a moving and a motionless medium, but with a 
different diffusion coefficient 'Ds. Now we calculate this diffusion coefficient for a Gaussian 
correlation function of random inhomogeneities and for the von Karman spectrum. 

3.2. Gaussian correlation function 

The Gaussian correlation function B,(R) of the statistically homogeneous and iso@opic 
scalar random field E(R) and its three-dimensional spectral density Q,(K) are widely used 
in the literature and are given by: 

B, (R)  = u:exp(-RZ/12) 

Here CT: is the variance of the random field E ,  1 is the scale of inhomogeneities. 
As for the medium-velocity component u l ( R ) ,  we may not prescribe a Gaussian form 

for its correlation function B I I  and its three-dimensional spectral density @11 (K)  because, 
as previously mentioned .for the statistically homogeneous and isotropic vector random field 
w, the functions B I I ( R )  and QII(K) must be anisotropic. Therefore, following [I@, we 
prescribe the Gaussian correlation function for the longitudinal correlation function of the 
velocity field v: 

B R R ( R )  = (IJR(RI + R)UR(RL)) = u:exp(-R2/12) (18) 
where U R  is the component of the vector v in the direction of vector R, U,' is the variance 
of the~random field U R .  If the random field w is additionally solenoidal (V . U = 0). the 
functions and BRR are related by: 

This equation may be easily obtained from well-known equations (see, for example, [16- 
181) for the correlation tensor of a statistically homogeneous and isotropic field w and 
for the relationship between transverse and longitudinal correlation functions of this field. 
Substituting (18) into (19) yields: 

From this equation we see that B11 is an anisotropic function. Furthermore, from (ZO), 
it follows that the variance of the random field vI is U,,*. Using (Il), (13) and (20), we 
calculate the three-dimensional spectral density F ( K )  for the vector random field w with 
the Gaussian longitudinal correlation function: 

u~zK21s 
321r3I2 

F ( K )  = ~ exp(- K '12/4). 

Now we substitute (17) and (21) into (12) and determine the effective spectral density 
0,s. Substituting the function obtained Qee into (15).and calculating the integral on the 
right-hand side of this equation yields the diffusion coefficient 'Dj in a moving random 
medium: 
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We denote the variance of sound-speed fluctuations ? by uc2.'Then from (9) it follows that 
U," = 4uz/c,2. Using this equation, we may represent (22) in the form: 

'D3 ='D3,,+'03.. = g ( u : + 3 u : )  1 CO 

where 

are the contributions to the diffusion coefficient 'D3 due to sound-speed and medium-velocity 
fluctuations, respectively. 

It is known (see, for example, [16, 171) that fluctuations n in the refractive index of a 
moving medium in the direction of the x-axis are given by: 

.: (25) 

It should be noted here that (10) and (12), which are used to derive equations (14) and (15) 
for P3 and 'D3, are obtained on the basis of (23) (see [14-16]). We also note that from (24) 
it follows that E and U, give the same contribution to n, and, hence, U," and U,' give the 
same contribution to the variance of n: 

On the other hand, from (24) it follows that the contribution to the coefficient D3 from U"' 

is three times greater than that from uc2. This result will be explained below. Replacing 
'D3 in (14) first by 'DS,~ and then by D3,", we obtain the probability densities 4,,(x)'and 
& ( x )  for the distance x to the first caustic for a plane sound wave in purely motionless 
and purely moving random media, respectively. 

The functions P3,Jx) and P3,u(x) are shown in figure 1 for u:/ci = u,'/G = 3 x lo-' 
and I = 1.25 m (according to [19] these values of u:/ci, u,"/c,' and I are typical for the 
atmospheric turbulence near the ground). From figure 1 it foUows that & ( x )  and P3,&) 
have maxima at the distances ~ 3 , ~  and x3,", respectively. These distances may be determined 
from (14): 

113 113 

x3.c = ("") 4D3.e x3.u = (g-) . 
These equations are valid for arbitrary values of D3,c and 'D3,". Substituting (24) into (27) 
yields two distances x3,c and x3," for the given case of Gaussian correlation functions for 
random inhomogeneities: 

The distances x3,= and x3," are associated with the space regions where caustics appear 
most likely, and therefore they are important for the study of sound propagation in random 
media. From figure 1 and (28) we observe that the distance x3." is shorter than the distance 
x ~ , ~  by a factor 3'1' if u2 " = U' C '  

The main result obtained in the present paper is that for the same variances of sound- 
speed and medium-velocity fluctuations (U"' = uc2), caustics appear in a purely moving 
random medium at shorter distances than in a purely motionless medium. This is due to 
the fact that, even for isotropic turbulence, the correlation function Bll(x, r )  (see (20)) 

. 
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Figure 1. Probability densities for the distance x to the first caustic for a plane sound wave 
propagating in three-dime&ional random media with Gaussian correlation functions: comparison 
of a purely moving medium and a p w l y  motionless medium. The functions are represented for 
$1~; = U ? I ~  = 3 x IO@ and 1 = 1.25 m. The distances qC and qU associated with the 
space regions where caustics appear most likely are indicated by dotted vertical lines. 

is anisotropic, and therefore moving inhomogeneities disturb the phase front of a sound 
wave to a greater extent than motionless inhomogeneities which have isotropic correlation 
function B, (R)  (see (16)). It is also well known that the more disturbances there are in 
a wave front, the shorter the distance of caustic formation is. This also explains why the 
contribution to D3," from uu2 is greater than the contribution from 0;'. 

Let us denote by Ax3 = qC -qU the difference in the distances of most likely caustic 
formation in purely motionless and moving random media. Using (28). we find: 

Ax3 = ~ 3 , ~  [I - (3) '"1 
If ~2 =U,", from this equation it follows that Ax3 N 0.307~3,~ 

3.3. von K a m n  spectrum 

Now we calculate the values of the diffusion coefficients D3.c and D3," and distances ~ 3 , ~  

and x3," for the von Karman spectrum of random inhomogeneities. For this spectrum, the 
three-dimensional spectral density @,(K) is given by the well-known equation [13]: 

where A = 5dr'(2/3)/36z2 N 0.033, r is the gamma function, C," is the structure 
parameter for fluctuations of the random field e, KO = 2z/Lo and K,,, = 5.92/10, Lo and 
lo are the outer and inner scales of turbulence. The variance U," of h e  random field E is 
given by: 

O6 (K) d3 K .  (3 1) 
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Substituting into this equation the value of @e given by (30), calculating the integral with 
respect to K and assuming that KO << K,, we obtain: 

Note that the inequality KO << K, is always valid because in turbulent media Lo >> lo .  
Equation (32) relates U: and C: which characterize the intensity of the random fieid E .  As 
for the three-dimensional spectral density F ( K )  of the random field U, its value is given by 
[20]: 

(33) 

where C: is the structure parameter for medium-velocity fluctuations. The variance U,' of 
the random field V I  is given by: 

11 2 -1716 F ( K )  = xAC:K2(K2+ KO)  exp(-K2/K:) 

When deriving this equation, we use (13). Substituting into (34) the value of F given by 
(33) we obtain: 

This equation i s  also valid~for KO << K,. Equation (34) relates U"* and C.* which 
characterize the intensity of the vector random field U. 

Substituting (30) and (34) into (12) yields the effective spectral density for the von 
Karman s p e c m :  

If KO + 0 and K, + CO, (36) becomes an equation for the effective spectral density 
QP,e(O, K L )  for the Kolmogorov spectrum, which is obtained in [1&16] and is proportional 
to the effective structure parameter C$ given by: 

Substituting (36) into (15) and calculating the integral on the right-hand side of the latter 
equation, we find the diffusion coefficient 'D3 in a medium with the von b a n  spectrum 
of random inhomogeneities: 

where Y is the confluent hypergeometric function. Replacing in (38) the functions Y by 
their asymptotics for K:/Ki + 0, we obtain: 

H Z  
'D3 = - 

32 x 4 (39) 

Note that from (37) and (39) it follows that 'D3 is proportional to C&. Substituting the 
values of C: and C," given by (32) and. (33, respectively, into (39) and using the equality 
Ct = 4C:/c,2, we obtain: 

5ir3l2 KL1'KiP ( 'Q 2) 
'D3 = 'D3.C + 273," = 2432r(1/3) uc + -U" 4 
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where 

are the contributions to the diffusion coefficient V 3  due to sound-speed and medium- 
velocity fluctuations, respectively. From (40) i t  follows that the contribution to the diffusion 
coefficient 0 3  from the medium-velocity fluctuations exceeds that from the sound-speed 
fluctuations by a factor 11/6. We recall that for the Gaussian correlation function this 
factor is 3, see (24). 

For the von K&man spectrum, the probability densities P3&) 'and P&) have an 
analogous form to the probability densities for the Gaussian correlation function considered 
above, see figure 1. The distances ~ 3 , ~  and x3+ at which P3&) and &(x) are maximal 
may be found if we substitute (41) into (27): 

From these equations it follows that the distance Ax3 = ~ 3 , ~  - x3+ between the maxima of 
the probability densities P3.,(x) and P3,,(x) is given by: 

If U,' =U:, from (43) it follows that Ax3 N 0.183~3,~ .  

4. 'bo-dimensional moving random medium 

In this section we calculate analytically the probability density & ( x )  for the distance x to the 
first caustic for an initially-plane sound wave incidenting on the two-dimensional half space 
x >: 0 with random inhomogeneities of F~ and U. These calculations are of interest because 
we are able to compare them with analogous results obtained by numerical simulation [lo]. 

4.1. Basic equations 

Let us introduce the effective spectral density: 

(44) 

By analogy with [14-161, it may be shown that statistical characteristics of a sound wave 
propagating in a two-dimensional moving random medium are the same as the corresponding 
characteristics in a motionless medium with Oe in the latter replaced by Qef. 

The two-dimensional spectral densities QP,(K) and Q I I  (K) are related to the correlation 
functions B<(r)  and B I I ( T )  by: 

4 

CO 
Q e d K x ,  K y )  = Qs(Kx, K y )  + T Q I I ( K ~ ,  K y ) .  

+m +m 
Q,(K) exp(iK .'r) d2K (45) 

(46) 

Bf(T)=s__ +m 1, +m ~~ 

BII ( T )  = l, 1, QII (K) exp( ik .  dZK 
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where K = (Kz, Ky) and T = (x, y ) .  The function Bll may also be expressed in terms of 
the longitudinal B,, and transverse B,, correlation functions of the statistically homogeneous 
and isotropic vector random field z, = (U=, uy) (see, for example, 1181): 

(47) 
X 2  Y2  B i i ( r )  = -Brr(r) + ,&r(r). 
r 2  r 

If the field v is additionally solenoidal, the functions B,, and B,, are connected by: 
d 

&&) = B A 9  + r z B r r ( r ) .  

In the Markov approximation, (40) becomes: 

(49) 
- 4  

@d~(o. Ky) Ky) +-@11('2 Ky). 4 
4.2. Gaussian correlation function 

As in the three-dimensional case, we prescribe Gaussian correlation functions for the 
functions B,(r) and Brr(r):  

B,(r) = ~ : e x p ( - r ~ / l ~ )  
Brr(r) = ufexp(-r2/lz). 

Using (45) and (50), we calculate the two-dimensional spectral density @,,CO, K Y )  of 
the random field E :  

Making use of (46)-(48) and (51), it is a straightforward to calculate the two-dimensional 
spectral density @ , I  (0, Ky) of the random field U,: 

Substituting (48) and (49) into (45). we obtain the effective spectral density for the Gaussian 
correlation functions of random inhomogeneities: 

Substituting this equation into the right-hand side of (18), calculating the integral with 
respect to Ky and using (71, we find the probability density for the distance to the first 
caustic for an initially-plane wave propagating in a two-dimensional moving medium: 

where the diffusion coefficient 'Q is given by: 

T i  = 3J;? 13 (U," + 20$). 

As in the threedimensional case, in (56) we replace U," by 4u,'/c; and represent this 
equation in the form: 

(U'! + 5 4  
12fi 

D2,= D2,= + = - 
1 3 4  (57) 
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- 2 D motionless random medium 
--.-- 2 D moving random medium 

where 

Figure 2. Probability densities for the distance x to the first caustic for a plane sound wave 
propagating in two-dimensional ran do^ media with Gausshcomlation functions: compatison 
of a purely moving medium and a purely motionless medium. The functions are represented for 
a:/c$= U;/C$ = 3 x and 1.= 1.25 m. The dismces x2.< and x2," associated with the. 
space regions where caustics appear most likely are indicated by dotted vertical lines. 

Using (55) and (58), we obtain that Pz,,(x) and Pz.,(x) are maximal at the distances: 
113 

(59) 
113 v4c; 

and XZ," = 1 ( 3~7CilzU;) 
respectively. The difference'Ax2 = ' X Z . ~  - XZ," between these distances is given by: 

(60) 

If U,' = U:, from (60) it follows that Ax2 = 0.415x2,,, 

4.3.. Comparison with numerical simulations 

In [ZO], Blanc-Benon eral introduced a numerical technique to investigate the characteristics 
of acoustic-ray propagation through simulated turbulent velocity fields. The technique 
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involves two elements: the generation of a random isotropic vectorial field by means of a 
superposition of a finite number of discrete Fourier modes; and the integration of the ray- 
trace equations of geometric acoustics to describe the trajectories of rays and the evolution 
of the ray-tube area. Assuming that the turbulent field is frozen during the transit time of 
the acoustic wave, the medium can be modelled, as usual, by a sequence of independent 
realizations of a random field. The velocity v at a given point T is simulated as a sum of 
N random incompressible Fourier modes: 

U(K'). K' = 0. (62) 
The direction of the wavevector K' and the phase @' are independent random variables 
with uniform distributions. For a wavevector K', the amplitude IlU(K')II associated with 
that mode is set according to a given two-dimensional kinetic-energy spectrum E ( K ) :  

IlU(K') II = (63) 
.where A K  is the distance in wavenumber to the next Fourier mode and K is the length of 
the wavevector K'. For a Gaussian correlation function Brr(r) (see (51)). we obtain: 

In our simulations, this spectrum has been sampled with N = 50 modes linearly distributed 
between K- = O.l/I and K,, = 1O/l. 

The geometric-acoustic approximation gives a clear visualization of the focusing or 
defocusing properties of an inhomogeneous medium. .It is well suited for computing the 
ray trajectories and the exact position of caustics along the ray path. In this high-frequency 
approximation, the acoustic pressure is written in the form: 

p(x, t )  = A(~)exp[iS(x)]exp(-iwt). (65) 

The amplitude A(x) and the local wavevector k(x) = V(S) are assumed to vary slowly 
on the scale of a wavelength .I. = ZSCCO/W. 'An asymptotic expansion-for w -+ 00 of the 
exact linearized equations from fiuid mechanics gives the dispersion relation for acoustic 
waves propagating in an inhomogeneous.medium in steady motion [21]: 

(66) 

where k is the modulus of the acoustic wavenumber k and c is the local speed of sound in 
the medium; in our case we have c = CO 

(cg = COY + v ;  v = k/k). They 
can be determined as the characteristic lines of the dispersion relation through the following 
Hamiltonian system [22]: 

w = kc + k . v  

The rays are the lines tangent to the group velocity 

~~ 

' = l + M . v  
where p is a dimensionless wavevector (p = pv) and M is the Mach number V/CO. The 
rays have been parameterized by the -sit time t from the source to a given point. The 
position vector x =. ( x ,  y) and the wavevector p at a current point on the ray trajectory are 
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completely determined by the value of t and the initial position along the incident wave 
front. For an incident plane wave the initial conditions are: 

p(r = 0) = 
l + M . Y  

x(t  = 0) = 

- Plotting the rays permits a clear visualization of the trajectories followed by the acoustic 
energy radiating from'a source. The spatial distribution of rays is a qualitative indicator of 
the local intensity of the field, since the square root of the amplitude is inversely proportional 
to the cross-sectional area of a ray tube. In order to determine more precisely the caustics, 
which are defined as the envelopes of families of rays where the ray-tube section vanishes, 
we need additional differential equations. In two dimensions, for a plane wave, the two 
geodesic elements R = (ax/ayo), and Q = . (ap/ayo),  govern the evolution of the wave 
front along each ray and permit the evaluation of the cross-sectional area of an infiilitesimal 
ray tube: 

These differential equations require appropriate initial conditions. If we expand z(t, yo) 
and p(r.  yo). using a Taylor series near the origin (t + 0) for an initially-plane wave, we 
obtain: 

We solved the system of differential equations (67)<69) by a Runge-Kutta fourth-order 
scheme. The time step is dr = l/cOK,,. It i s  important ti note that the description of 
the velocity V(T) in terms of Fourier modes, allows us to obtain all the spatial derivatives 
needed to resolve the differential system analytically. Numerical 'errors 'are then reduced 
and computation time is saved in comparison with the usual finite-difference approximations 
(see also [20, 231 for further discussions on the numerical scheme). 

To evaluate the probability of occurrence of the first caustic we launch a family of 81 
rays equally spaced in the transversal hirection y between y,,in = -151 and ym =~+15I. 
For each ray, the integration of the ray-trace equations i s  stopped when the ray reaches the 
position of the caustics. Using an ensemble of 200 realizations, we evaluate the probability 
disbibution over 16200 samples with 256 classes. In these simulations we have used three 
velocity fields with the same scale I ( I  = 0.1 m) and three different values of U" (1 m s-'; 
2 m s-I; 4 m s-I). In figures 3-5 we compare the probability density function obtained in 
our numerical simulation with the theoretical prediction deduced from (55) with Dz = Dz,,. 
For each of these probability distributions we have similar trends. For short distances of 
propagation there are no caustics, then we observe a sharp peak at a fixed distance which 
corresponds exactly to the theoretical value xz,, deduced from (59). As noted by Klyatskin 
[12], the condition for application of (7) is in principle D2x3 (< 1. However, with our 
numerical modelling we demonstrate that expression (7) is valid up to the position of the 
maximum of the distribution XZ." for which DZx3 = 1. For larger distances, where OUT 

theoretical prediction is no longer valid, we observe an exponential decay of the probability 
density function with the distance of propagation. In [lo] we have shown that this decay is 
in agreement with the results of Kulkarny and White (see [IO] for comparison). 

Finally, the probability distributions obtained from our numerical simulations have been 
normalized and plotted in terms of the dimensionless distance t = Dz,. ' /~x. Using this 
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Figure 3. Probabiliry densities for the distance x to the first caustic for a plane sound wave 
propagating in two-dimensional Gaussian m d o m  moving media: comparison of theory and 
numerical simulation. The functions are represented for a, = 1 m s-' and 1 = 0.1 m. The 
theoretical distance x2," associated with the space regions where caustics appear most likely is 
indicated by a dotted vertical line. 
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Figure 4. Probabiliry densities for the distance x to the first caustic for a plane sound wave 
propagating in two-dimensional Gaussian random moving media: comparison of theory and 
numerical simulation. The functions are represented for 0; = 2 m s-' and 1 = 0.1 m. The 
theoretical distance xzv  associated with the space regions where caustics appear most likely is 
indicated by a dotted vertical line. 

scaled distance the probability density P2(r) is now given by: 

In figure 6 we note that all the data are in a very good agreement with the theoretical 
prediction for r < 2. In addition, the peak of the probability density function appears at a 
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Figure 5. Probability densities for the distance x to the first caustic for a plane sound wave 
propagating in hvo-dimensional Gaussian random~moving media: comparison of theory and 
numerical simulation. The functions are represented for ru = 4 m s-' and 1 = 0.1 m. The 
theoretical distance ~ 2 , ~  associated with the space regions where caustics appear m a t  likely is 
indicated by a dotted vertical line. 

Figure 6. Normalized probability densities for the occurrence of the first caustic for a plane 
sound wave propagating in two-dimensional Gaussian random moving media: comparison of 
theory and numerical simulation. The distances are represented in terms of the dimensionless 
distance i =U;!,'.. 

normalized distance 7 equal to ( ~ ~ / 5 ) ' ' ~  N 1.33. From this curve we can obtain an estimate 
of the distance at which the formation of the first caustic is most probable. We also observe 
that all the data of our numerical simulation are very well grouped together in terms of the 
dimensionless distance r. 
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5.  Conclusion 

In this paper we calculate the probability density functions for the occurrence of the first 
caustic for a plane wave propagating in a moving random medium. We demonstrate that 
these probability density functions are given by the functions already calculated for the 
case of plane wave propagating in a motionless random medium, with different expressions 
for the diffusion coefficient. The diffusion coefficient has been calculated for two- and 
three-dimensional random media with the Gaussian and von b m a n  spectra of random 
inhomogeneities. One important result is that for the same variance of sound-speed and 
medium-velocity fluctuations, caustics appear at shorter distances in a purely moving 
random medium than in a purely motionless one. Finally, a numerical experiment h& been 
performed in the case of a two-dimensional moving medium with the Gaussian correlation 
function of medium velocity. The results obtained are in very good agreement with the 
theoretical analysis. Our numerical modelling indicates that the theoretical expression 
derived for the probability density function is valid up to the distance of propagation 
corresponding to the maximum of this probability distribution. As a consequence, this 
distance, which is important in practical applications, is verf well predicted by our theory. 
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