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ABSTRACT:
This paper investigates the performance of one-eighth Spherical Fraction Microphone Array through experimental

measurement to analyze acoustic scenes in one-eighth of space. The array geometry is designed to be placed in a

room corner at the junction of three acoustically rigid walls. Two prototypes are built with 8 and 16 microphones,

respectively. The sampling strategy is discussed and a spatial aliasing analysis is carried out both analytically and by

numerical simulations. The array performances are evaluated through Spherical Fraction Beamforming (SFB). This

approach is based on the decomposition of the acoustic pressure field in a rigid bounded domain. The localization

angular error and Directivity Index criterion are evaluated for both arrays. In a first experiment, the arrays are

mounted in an eighth of space built inside an anechoic room. The results are compared with simulation and show

consistency. The theoretical limitations of SFB in a rigid bounded one-eighth of space are retrieved experimentally.

These limitations are also observed in a real configuration: an office room. Further investigations on SFB are also

conducted in the case of a virtual scene constructed with two sound sources. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

Microphone arrays are widely used in multiple scenarios

such as sound field analysis,1 sound enhancement,2 or source

localization.3,4 In particular, Spherical Microphone Arrays

(SMA)s have been widely studied for their ability to capture or

to represent the acoustic pressure field with Spherical

Harmonics (SHs). The analysis performance of the sound field

captured by the SMA depends on the degree of the expansion

over a SH basis5,6 based on the Spherical Fourier Transform

(SFT). The projection of the sound field on this basis is particu-

larly of interest for beamforming applications due to its rota-

tionnally invariant beamforming property.7

More recently, the use of Spherical Fraction Microphone

Arrays (SFMAs) was shown to be relevant for sound field

analysis when the acoustic sources are located within a limited

angular sector. For example, Li and Duraiswami8 proposed

the use of an hemispherical-shape array of microphones to

focus the sound capture on a half space bounded by a rigid

plane for an usage in conference rooms. Their approach relies

on the use of source and microphone images obtained from

the rigid plane to form a virtual SMA. Another way to con-

sider this task is to build a new basis of orthogonal functions

onto the spherical sector domain where the sources are

located. This new basis can be built either by orthogonalizing

the actual SH basis yielding to spherical Slepian functions9 or

by scaling and shifting the associated Legendre polynomials

and exponentials (respectively, cosine/sine) functions of com-

plex (respectively, real) SHs.10,11 Another approach is to take

into account the spherical sector boundary conditions in the

Helmholtz equations12,13 to obtain a different orthogonal basis

of harmonics for modal sound field decomposition within a

limited range of directions.14–16

In Ref. 16, a theoretical study of Spherical Fraction

Beamforming (SFB) has been conducted in the case of

one-eighth, quarter, and half of spherical domain with

acoustically-rigid boundary conditions. These domains can

be easily approximated in common situations where a corre-

sponding SFMA can be used. For instance, in a corner of a

room for a one-eighth SFMA, at the junction of a wall and

the ceiling for a quarter SFMA and either on a wall, ceiling,

or floor for a half SFMA. The room walls and ceiling are

therefore considered acoustically-rigid. The limitation of the

4p-steradian solid angle to a smaller spherical sector of

interest among 1/8, 1/4, or 1/2 sphere implies the extraction

of a specific SH sub-basis from the SH basis to take into

account the rigid boundary conditions. These functions are

called Spherical Fraction Harmonics (SFHs).

In the present study, experimental characterizations of

two rigid one-eighth SFMAs for SFB are carried out. A

preliminary study has been presented in Ref. 17. Here, two
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one-eighth SFMAs with different radii and number of

microphones are studied. First, a study of spatial aliasing is

proposed, through numerical simulations and analytical

analysis. Then, the beamforming performance of SFMAs

is evaluated with Direction of Arrival (DOA) angular error

and Directivity Index (DI). Measurements are performed

both in one-eighth of an anechoic room and in a conven-

tional office room for which the SFMAs are mounted at a

room corner. The Impulse Responses (IR)s are measured

for each microphone of the SFMAs and for different

source locations, and are used to create virtual acoustic

scenes where spatial filtering is applied. The ability of the

beamformer to extract the acoustic signal coming from

each source is evaluated by estimating the correlation

amount between each spatially filtered signal and the orig-

inal ones.

This paper is organized as follows: In Sec. II the SFB

theory is recalled for one-eighth of a sphere domain with

rigid boundary condition. The corresponding SFHs are pre-

sented as well as the performances criteria employed to

characterize the SFMAs. In Sec. III, the SFMAs design and

building are presented. In particular, the spatial aliasing

errors are considered. The SFB results, both for DOAs esti-

mation and signal audio extraction are presented and dis-

cussed in Sec. IV. Finally, the paper is concluded in Sec. V.

II. THEORETICAL BACKGROUND

A. SFH

This section briefly outlines the main results from Ref.

16 that are called to conceive the proposed application. In

this work, one-eighth of the unit sphere S is considered as

shown in Fig. 1. This domain is defined by its azimuth and

elevation angle ranges, / and h respectively, as

F1=8 ¼ ðh;/Þ 2 S j 0 � h � p
2
; 0 � / � p

2

� �
: (1)

The one-eight of Euclidian space of radius r is noted O1=8,

with

O1=8 ¼ fðh;/; rÞ 2 F1=8 �Rþg: (2)

Acoustically-rigid boundary condition is imposed on the

planes x ¼ 0, y ¼ 0, and z ¼ 0 as shown in gray in Fig. 1. In

Ref. 16, it was shown that the angular part of the solution of

the homogeneous spherical Helmholtz equation in O1=8 are

the SFHs noted Yl;m;1=8ðh;/Þ and defined by

Yl;m;1=8ðh;/Þ ¼ 2
ffiffiffi
2
p

Yl;mðh;/Þ for ðl;mÞ 2M1=8: (3)

In Eq. (3), / 2�0; 2p� and h 2 ½0; p�, l is the degree, m is the

order with jmj � l. The real SHs, Yl;mðh;/Þ, are given by

Ylmðh;/Þ ¼Nl;jmjP
m
l ðcoshÞ�

cos ðjmj/Þ for m� 0

sinðjmj/Þ for m< 0
;

(

(4)

where Pm
l are the associated Legendre polynomial of the first

kind of degree l and order m, with jmj � l, and Nl;jmj is a

normalization factor given by

Nl;jmj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dmÞð2lþ 1Þ

4p
ðl� jmjÞ!
ðlþ jmjÞ!

s
; (5)

where dm stands for the Kronecker delta function and ! indi-

cates the factorial operator. The set M1=8 is defined by

M1=8 ¼fðl;mÞ 2N�Z j l mod 2 ¼ 0

� m mod 2 ¼ 0 � m � 0g; (6)

where ½:� and � are the modulo and logical and operators,

respectively. The basis of SFHs Yl;m;1=8 is derived from the

SH basis by selecting the functions which present even sym-

metry with respect to the planes x ¼ 0; y ¼ 0, and z ¼ 0

simultaneously. The set of indices M1=8 allows to select

these SHs: their degree l is even and their order m is positive

and even. The factor 2
ffiffiffi
2
p

in Eq. (3) ensures the orthonor-

mality property of the SFH basis on L2ðF1=8Þ, the space of

square-integrable function in F1=8.

Up to a degree L, the number of SFHs Yl;m;1=8 is denoted

Q(L) with

QðLÞ ¼ 1

2

L

2

� �
þ 1

� �
L

2

� �
þ 2

� �
; (7)

where b�c is the floor operator. The number Q(L) represents

the minimum number of microphones for an accurate

decomposition, i.e., N1=8 � QðLÞ,14 where N1=8 is the num-

ber of microphones that constitute the one-eighth SFMA.

This number converges to 8 times less the number of SH,

ðLþ 1Þ2, as L increases.16

B. Representation of acoustic pressure field
with SFHs

The acoustic pressure in the domain O1=8 can be

expressed with SFHs Yl;m;1=8 as
FIG. 1. (Color online) One-eighth of the unit sphere F1=8, with acoustically-

rigid boundary conditions on the planes x ¼ 0, y ¼ 0, and z ¼ 0 (in gray).
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pðk; r; h;/Þ ¼
X1
l¼0

Xl

m¼�l
ðl;mÞ2M1=8

pl;m;1=8ðkrÞYl;m;1=8ðh;/Þ: (8)

In Eq. (8), pl;m;1=8 are the acoustic pressure field coefficients

obtained with the SPHT,16

pl;m;1=8 ¼
ð

F1=8

pðk; r;h;/ÞYl;m;1=8ðh;/Þ sin ðhÞdhd/: (9)

C. Estimation of acoustic pressure coefficients

In this paper, the acoustic pressure is measured on the

surface of a rigid one-eighth of a sphere of radius ra. In this

case one has5

pl;m;1=8 ¼
il�1

ðkraÞ2h0lðkraÞ
bl;m;1=8; (10)

where i is the imaginary unit and h0l are the first derivative,

with respect to its argument, of the spherical Hankel func-

tions of second kind and degree l. The terms bl;m;1=8 are the

radius-independent acoustic pressure field coefficients. For a

plane wave with DOA (hs;/s), they are expressed as16

bl;m;1=8 ¼ Yl;m;1=8ðhs;/sÞ: (11)

The estimation of the acoustic pressure coefficients bl;m;1=8

can be retrieved from the pl;m;1=8 coefficients with Eq. (10).

In practice, this is unfeasible at low kra where excessive

amplification due to Hankel functions occurs. Therefore, a

Thikhonov regularization is used and the estimated coeffi-

cients ~bl;m;1=8 are given by5

~bl;m;1=8 ¼
1=ElðkraÞ�

j1=ElðkraÞj2 þ k2
pl;m;1=8; (12)

where ElðkraÞ ¼ i1�lðkraÞ2h0lðkraÞ are the inverse of radial

function in Eq. (10), � is the conjugate, and k is a regulariza-

tion parameter.

D. SFB

The acoustic pressure energy in F1=8 can be visualized

using the Steered Response Power (SRP) of a SFB. The

SFB output signal yðk; h;/Þ is computed up to degree L
with

yðk; h;/Þ ¼
XL

l¼0

Xl

m¼�l
ðl;mÞ2M1=8

wl;mbl;m;1=8; (13)

where wl;m are the beampattern weights. For a regular beam-

pattern with steering angle ðh;/Þ one has16

wl;m ¼ Yl;m;1=8ðh;/Þ: (14)

The beamformer SRP is given by the square magnitude of

yðk; h;/Þ for all possible ðh;/Þ.

E. Array performances

1. Source localization

The DOA of a sound source is estimated through SRP

maximization of the beamformer output as given in Eq.

(13) on a given discrete grid. The error with respect to the

true direction is given by the angle difference H between

the estimated DOA and the true one. This angle is given

by

cos ðHÞ ¼ sin ðĥÞ sin ðhsÞ cos ð/̂ � /sÞ

þ cos ðĥÞ cos ðhsÞ; (15)

where ðĥ; /̂Þ is the estimated DOA.

2. DI

The performance of the array is also evaluated using the

Directivity Factor (DF) adapted for the case of a one-eighth

of sphere

DFðk; ĥ; /̂Þ ¼ jyðk; ĥ; /̂Þj2
2

p

ð
F1=8

jyðk; h;/Þj2 sin ðhÞdhd/
: (16)

Note that the integral in Eq. (16) is restricted to F1=8, i.e.,

the angular sector viewed by the one-eighth of sphere.

The DI is then computed from Eq. (16) into decibel scale

with

DIðk; ĥ; /̂Þ ¼ 10 log10ðDFðk; ĥ; /̂ÞÞ: (17)

III. DESIGN AND REALIZATION OF ONE-EIGHTH
SPHERICAL FRACTION MICROPHONE ARRAYS

In this section, the choice of microphone numbers and

positions, the spatial aliasing study, and some building

details for two one-eighth SFMAs are reported.

A. Microphone positions

In order to estimate the coefficients pl;m;1=8 in Eq. (10)

from discrete measurements with microphones, a quadrature

rule working on F1=8 is used for the microphone positions.

To find such quadrature, one starts with a Gauss-Legendre

quadrature rule on the whole sphere6 and the symmetries of

the problem are used.

1. Gauss-Legendre quadrature

The Gauss-Legendre quadrature on the whole sphere

samples equally along the azimuth angle and the zenith

angles correspond to the roots of the Legendre polynomial

PLþ1ðcos hÞ where L is the maximum degree of decomposi-

tion. The total number of nodes for this mesh is

N ¼ 2ðLþ 1Þ2. The node positions and weights are given

by the following formulas:18
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/n ¼ nþ 1

2

� �
2p

2Lþ 2
; n 2 0;…; 2Lþ 1f g

PLþ1ðcos ðhqÞÞ ¼ 0; q 2 f0;…;Lg

aq ¼
p

Lþ 1

2ð1� cos ðhqÞ2Þ
ðLþ 2Þ2ðPLþ2ðcos ðhqÞÞ2

; q 2 0;…;Lf g:

8>>>>>>><
>>>>>>>:

(18)

2. Mesh symmetry for odd degree L

From Eq. (18), for an odd degree L, there are Lþ1 even

number of roots for PLþ1ðcos ðhÞÞ ¼ 0. The corresponding

directions hq, are grouped by pairs, which are symmetric to the

plane z ¼ 0 without possibility of north and south pole direc-

tions. In addition, there are an even number of azimuth direc-

tions /n, which are symmetrical with respect to the x ¼ 0 and y
¼ 0 planes. Note that the starting angle for n ¼ 0 in Eq. (18)

ensures that no nodes will be on the planes x ¼ 0 or y¼ 0. This

choice is made to facilitate the mounting of microphone during

the prototype building. Finally, the resulting mesh presents

symmetries with respect to the planes x ¼ 0, y ¼ 0, and z ¼ 0.

Then, by retaining only the nodes belonging to one-eighth of a

sphere, the total number of nodes is reduced to N1=8 ¼ N=8,

where the quadrature rule of Eq. (18) is suitable in the domain

F1=8 to estimate the coefficients pl;m;1=8 as

pl;m;1=8 ¼
XðL�1Þ=2

n¼0

XðL�1Þ=2

q¼0

aqpðk; r; hq;/nÞYl;m;1=8ðhq;/nÞ:

(19)

The demonstration of Eq. (19) is done with the image source

principle and provided in Appendix A. The summations up

to ðL� 1Þ=2 are explained using the symmetrical properties

of the SFHs.

B. Prototype building

Two one-eighth SFMA prototypes are built. They are

shown in Fig. 2. The first prototype possesses eight micro-

phones [Fig. 2(a)], while the second prototype inludes 16

microphones [Fig. 2(b)]. To allow the instrumentation assem-

bly inside the prototypes, a spherical shell geometry is chosen.

It is realized by Fused Deposition Modeling three-dimensional

(3D)-printing in PolyLactic Acid plastic. The shell thickness

is 15 mm with an external radius ra. The microphones are

omnidirectional digital Micro-Electro-Mechanical System

(MEMS) microphones Knowles
VR

SPH0645LM4H for the

8-microphone array and InvenSense
VR

ICS-52000 for the

16-microphone array. The MEMS microphones are presol-

dered on Printed Circuit Boards (PCB) and clipped on the

shell. The wiring to a MiniDSPTM USBStreamer sound card

place inside the shell is ensured using Dupont
VR

prototype

cables connected to a custom-made PCB.

In the following paragraphs, specific details are given

on each SFMA.

1. 8-microphone SFMA

For this array, a Gauss-Legendre quadrature on the whole

sphere is chosen with L¼5.17 In this case, the number of micro-

phones on the one-eighth of sphere should be N1=8 ¼ 9.

However, the size of the MEMS microphone PCBs used for

the prototype building limits their assembly on the prototype

shell. Moreover, the soundcard available for connecting the

microphones allows only eight channels when using I2S

(Integrated Interchip Sound) protocol. Therefore, it was chosen

to remove a node [in red on Fig. 3(a)] and the number of micro-

phones is reduced to N1=8 ¼ 8. Thus, the quadrature rule given

in Eq. (19) is no longer suitable. Estimation of coefficients

pl;m;1=8 in Eq. (8) is therefore achieved by an inverse problem

approach5 as a solution in a least-square sense given by

pL;1=8 ¼ Y
†
Lp; (20)

where pL;1=8 2 C
QðLÞ�1 is the vector of SFH coefficients up

to degree L, p 2 C
N1=8�1 is the vector of acoustic pressure at

the microphones, YL 2 RN1=8�QðLÞ is a matrix containing the

SFHs evaluated at the nodes directions up to degree L, Y
†
L

¼ ðYT
LYLÞ�1

YT
L 2 RQðLÞ�N1=8 is the Moore-Penrose pseudo-

inverse of YL. Note that this approach can be used as long as

the number of nodes is superior or equal to Q(L).5 The

radius of this prototype is ra ¼ 10 cm.

2. 16-microphone SFMA

The second prototype is designed from a Gauss-

Legendre quadrature rule working up to degree L ¼ 7. Here,

N1=8 ¼ 16 microphones are mounted on the shell of the one-

eighth of sphere. The mesh for this prototype is shown in

Fig. 3(b) and Eq. (19) is used to compute the SFH coeffi-

cients. For this prototype, the Time-Division Multiplexing

(TDM) protocol is used in order to allow the synchroniza-

tion of 16 TDM MEMS microphones. The radius of this

array is ra ¼ 17 cm.

C. Spatial aliasing study

1. Orthonormality error

As the acoustic pressure field coefficients pl;m;1=8 in Eq.

(8) are not null for degree l> L, spatial aliasing occurs when

using Eq. (19) or Eq. (20). Spatial aliasing errors are driven

by the orthonormality errors when integrating a product of

FIG. 2. (Color online) (a) 8 MEMS microphone one-eighth SFMA with

external radius ra ¼ 10 cm. (b) 16 MEMS microphone one-eighth SFMA

with external radius ra ¼ 17 cm.

J. Acoust. Soc. Am. 151 (1), January 2022 Blanchard et al. 183

https://doi.org/10.1121/10.0009230

https://doi.org/10.1121/10.0009230


two SFHs using Eqs. (19) or (20).19 The orthonormality error

matrix D allows to quantify such errors. It is defined by

D ¼
YT

LWYL0 � I when using Eq: ð19Þ
Y†

LYL0 � I when using Eq: ð20Þ
;

(
(21)

where I 2 RQðLÞ�QðL0Þ has 1 on its diagonal and 0 elsewhere,

W 2 RN1=8�N1=8 is the matrix of quadrature weights given in

Eq. (18) and YL0 is the SFH matrix of dimension N1=8

�QðL0Þ with L0 � L.

The corresponding numerically-calculated orthonormal-

ity error matrices are plotted in Fig. 4(a) for the 8-

microphone array and in Fig. 4(b) for the 16-microphone

array. The matrices are computed with L¼ 4 for the 8-

microphone SFMA and L¼ 6 for the 16-microphone SFMA.

For both arrays, the orthonormality errors are shown up to

degree L0 ¼ 12. The value Dij located at the ith row and jth
column indicates the aliasing error value between the ith
SFH and the jth SFH, where the indices i and j increase as

l2 þ lþ m and l02 þ l0 þ m0, respectively. The indices (l, m)

and ðl0;m0Þ in M1=8. The higher the value is, the greater the

aliasing is. It can be observed that the orthogonormality errors

are negligible up to degree L¼ 4 for the 8-microphone array

and up to L¼ 6 for the 16-microphone array. For higher

degrees, high errors emerge.

2. Aliasing function study

The aliasing function obtained when using the Gauss-

Legendre quadrature of Eq. (18) on a one-eighth of sphere is

investigated. In fact, using Eq. (19) with a function Yl0m0;1=8

instead of pðk; r; hq;/nÞ leads to

XðL�1Þ=2

n¼0

XðL�1Þ=2

q¼0

aqYl;m;1=8ðhq;/nÞYl0;m0;1=8ðhq;/nÞ

¼ dl�l0dm�m0 þ �ðl; l0;m;m0Þ; (22)

� represents the aliasing function. Following the study in

Ref. 20, explicit formulas are given on the indices

ðl; l0;m;m0Þ for �ðl; l0;m;m0Þ to be null. Note that in the pre-

sent study, real SFHs are used on a one-eighth of a spherical

mesh instead of complex SHs on the whole spherical mesh

as done in Ref. 20, which brings different results. It is shown

that for l � L;

�ðl; l0;m;m0Þ ¼

0 for lþ l0 � 2Lþ 1

0 for ðmþ m0Þmod ð4Lþ 4Þ ¼ 0 � ðm� m0 þ 2Lþ 2Þmod ð4Lþ 4Þ ¼ 0

0 for ðmþ m0 þ 2Lþ 2Þmod ð4Lþ 4Þ ¼ 0 � ðm� m0Þmod ð4Lþ 4Þ ¼ 0

0 for ðmþ m0Þmod ð2Lþ 2Þ 6¼ 0 � ðm� m0Þmod ð2Lþ 2Þ 6¼ 0:

8>><
>>: (23)

These relationships help to predict the orthonormality error,

as in Fig. 4(b).

IV. ARRAY CHARACTERIZATION

A. Measurement set-up

In order to assess the array performances both in the

anechoic condition and a more realistic scenario of a

conventional office room, a loudspeaker is used as an acous-

tic source at a known DOA. A 2-in. and a 3-in. AuraSound
VR

loudspeakers are used in the anechoic room and the

conventional office room, respectively. The IRs between the

driving voltage signal of the loudspeaker and the micro-

phone signals are measured with exponential swept sine

method. The starting and ending frequency are

fstart ¼ 200 Hz and fend ¼ 8 kHz, respectively. The excitation

FIG. 3. (Color online) Sampling schemes of the two one-eighths of sphere where blue nodes are the real microphone positions. (a) Mesh of the first one-

eighth SFMA with N1=8 ¼ 8 where the red node has been removed. (b) Mesh of the second one-eighth SFMA with N1=8 ¼ 16.
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signal duration is 8 s with a sampling frequency of 44.1 kHz.

Based on the IRs, the coefficients pl;m;1=8 are estimated with

Eq. (20) for the 8-microphone array and with Eq. (19) for

the 16-microphone one. Then, the coefficients ~bl;m;1=8 are

estimated with Eq. (12), where the regularization parameter

k is chosen to a corresponding signal to noise ratio of gs

¼ 50 dB.5 The SRP is computed with the regular beampat-

tern weights given in Eq. (14). The SRP maps are computed

with angular resolutions of Dh ¼ D/ ¼ 0:9	.

B. Anechoic room

1. Measurement conditions

For this experiment, a one-eighth of anechoic space is

constructed using three 2� 2 m2 wooden panels assembled

in a corner at which the SFMA under test is mounted. This

set-up can be shown in Fig. 5. The loudspeaker is fixed at

RLS ¼ 1 m radial distance from the corner, on a metal hoop,

such that it can be moved over each node of a one-eighth

spherical grid as shown in Fig. 6. The mesh is sampled into

17� 17 nodes at angles ranging from 5	 to 85	 equi-spaced

in azimuth and zenith with 5	 steps.

2. Beamforming result

The experimental normalized SRP maps, calculated for

kra ¼ 4:5 both for the 8-microphone array (2nd column) and

for the 16-microphone one (4th column), are shown in

Fig. 7 for three positions of the loudspeaker. The first posi-

tion (1st row) is (45	, 45	), the second one (2nd row) is

(30	, 20	) and the third one (3rd row) is (60	, 60	). The two

last positions are chosen to be close to the wall while the

first one is taken in the center of the spherical grid. Note that

the boundaries that form the corner are located at / ¼ 0	,

/ ¼ 90	, and h¼ 90	, respectively. Note also that the position

(20	, 30	) is closer to the boundary than the position (60	,
60	). The theoretical SRP maps given both for the 8-

microphone array (1st column) and the 16-microphone one

(3rd column) are computed for a plane wave source [Eq. (11)].

The SRP maps obtained from the experimental mea-

surements are similar to those simulated when compared to

the aforementioned performance criteria. In all instances,

the mainlobe is larger with the 8-microphone array with a

smaller DI. The larger mainlobe obtained with the 8-

microphone array is explained by a smaller maximum

degree of decomposition. The estimation of the source posi-

tion is accurate for both arrays when the source is located in

the center of the grid [position (45	, 45	)]. However, accu-

racy can deteriorate when the source is close to the one-

eighth space boundary. This can be explained by the fact

that the beampattern shape is changed due to the presence of

the rigid boundaries. According to the image source princi-

ple, the beampattern obtained in F1=8 is the same as adding

FIG. 5. (Color online) Experimental set-up mounted in the anechoic room

where a one-eighth SFMA (here the 16-microphone array) can be placed at

the corner formed by three 2� 2 m2 wooden panels. A loudspeaker is fixed

on a metal hoop at RLS ¼ 1 m from the corner.

FIG. 6. Mesh for the measurement of impulse responses from a loudspeaker

(LS) positioned at each node of the mesh.

FIG. 4. (Color online) Orthonormality error matrices D up to degree L0 ¼ 12

for the two prototypes composed of (a) 8 microphones with L ¼ 4, (b) 16

microphones with L ¼ 6.
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the beampatterns calculated with a rigid full-sphere micro-

phone array in the absence of reflecting walls with additional

sources. The DOAs of the additional sources are symmetrical

to the actual source DOA with respect to the planes forming

the one-eighth of space. As a consequence, the closer the

source DOA is to the boundary, the more the beampattern

shape in F1=8 is modified. The modification of the beampat-

tern shape is such that for a source with DOA closer to the

boundary than a specific angle Hlim, the maximum of the SRP

is located at the boundary. This angle is defined as the full-

width at maximum half (FWMH) of the mainlobe of the

beampattern calculated with a rigid full-sphere microphone

array in the absence of reflecting walls.16

From the reading of Fig. 6 in Ref. 16, the angle Hlim is

approximately equal to 50	 for L ¼ 4 (which is the maxi-

mum degree of decomposition to avoid orhonormality errors

in the case of the 8-microphone array). However, the source

positions are at 20	 and 30	 to the closest boundary in posi-

tion (20	, 30	) and (60	, 60	), respectively. Therefore, the

mainlobe and its image overlap to form a lobe of greater

amplitude where the maximum is located at the boundary.

In the case of the 16-microphone array, Hlim ’ 35	. The

superposition effect is significantly reduced for the position

(60	, 60	) but remains dominant for the position (20	, 30	).
For further investigation, the DIs for the three positions

of the loudspeaker are plotted as a function of the dimen-

sionless spatial frequency kra in Fig. 8. The results show a

working frequency range with almost constant DI values

between 6.5 and 10.6 dB from approximately kra ¼ 4:5 to

kra ¼16:1 for the 16-microphone array, or equivalently

from f ’ 1466 to f ’ 5214 Hz, i.e., a frequency bandwidth

of Df ¼ 3748 Hz. In contrast, the working frequency range

of the 8-microphone array starts from approximately kra

¼ 3:2 to kra ¼11:4, or equivalently from f ’ 1753 to f
’ 6261 Hz, i.e., a frequency bandwidth of Df ¼ 4508 Hz,

with almost constant DI values between 2.9 and 5.9 dB. For

high frequencies, spatial aliasing strongly degrades the

performance for both arrays which results in a drop in DI

values. The 16-microphone array performs better within the

working frequency range with higher DI values than the

ones calculated with the 8-microphone array. It is also worth

noting that for both arrays higher DI values are calculated

FIG. 7. (Color online) Comparison of the beamforming results with regular beampattern for three source DOAs both from simulation (1st and 3rd columns)

and experimental measurements (2nd and 4th columns) conducted in anechoic room. The normalized squared beamfomer output jyðk; h;/Þj2=jyðk; hs;/sÞj2
is plotted over the steering directions ðh;/Þ 2 ½0	; 90	� � ½0	; 90	� for kra ¼ 4:5. The cross-and circle symbols represent the estimated and the theoretical

source positions, respectively.
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for the source with DOA of ð30	; 20	Þ. This is explained by

the superposition of the lobe images with the mainlobe lead-

ing to a higher lobe amplitude. The effect of this phenome-

non is less signifcant for the other source directions.

3. Frequency response function (FRF) study

In addition to the beamforming results given in Sec.

IV B 2, a FRF analysis is performed. The FRF jyðk; h;/Þj is

displayed along the zenith parameter, with a fixed azimuth

angle / ¼ /s, as a function of the dimensionless spatial fre-

quency kra. The FRFs for the arrays and for the three DOAs,

as already proposed before, are given in Fig. 9. The zenith

angle h ¼ hs is highlighted with a solid line. The beam pat-

terns show the presence of a well-defined mainlobe, in a spe-

cific range, approximately centered around the angle h ¼ hs,

except in the case of the source with a DOA of ð30	; 20	Þ, for

which the shape of the mainlobe is more extensive. In

accordance with the DI results, the 8-microphone array has a

well-defined mainlobe over a range of about kra ¼ 3 to

kra ¼ 11 against kra¼ 4 to kra¼ 16 in the case of the

16-microphone array. The performance of the arrays is clearly

limited at high frequencies where several lobes, related to spa-

tial aliasing, emerge.

C. Two source scenario

A virtual acoustic scene is built using the IRs measured

in the anechoic room. The IRs estimated from the positions

(30	, 20	) (source S1) and (60	, 60	) (source S2) are convo-

luted to two linear chirp signals with same amplitude.

1. 8-microphone array result

The SRP calculation result with the 8-microphone array

is given in Fig. 10(a) for kra ¼ 6. Two regions with high and

FIG. 8. (Color online) DI as a function of the dimensionless spatial frequency kra from 1 to 20 for the 8-microphone array (a) and the 16-microphone array

(b) for three source DOAs: ð45	; 45	Þ (blue solid line), ð30	; 20	Þ (red dashed line), and ð60	; 60	Þ (yellow dotted line).

FIG. 9. (Color online) Frequency response function jyðk; h;/Þj at fixed azimuth / ¼ /s of the 8-microphone and 16-microphone arrays as a function of the

dimensionless spatial frequency kra for three source DOAs. The solid line (cyan) gives the angle h ¼ hs.
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moderate energies around the direction of the sources

(pointed out by a blue cross) S1 and S2, respectively, are vis-

ible. One could expect two main lobes with the same ampli-

tude. However, the mainlobe in the direction of S1 is most

influenced by its closest symmetrical images. To better

understand it, the 4p-steradian directivity beampatterns cal-

culated for a plane wave [Eq. (11)] are plotted at the right of

the map for each direction where the one-eighth of space

O1=8 is delimited by the corner formed by the gray planes.

The beampattern for the direction of S1 is given on the top

while that of the direction of S2 is shown below. The plots

show a larger lobe in the first case. This is the result of the

superposition of the three image lobes, located on the upper

part, with the current lobe in O1=8, while only one image

lobe influences significantly the mainlobe in O1=8 in the sec-

ond case.

2. 16-microphone array result

The SRP map as well as the directivity beampatterns

obtained with the 16-microphone array are given in Fig.

10(b). As expected, the two lobes are narrower than the ones

of the 8-microphone array. As for the results with the 8-

microphone array, there is a difference in amplitude

between the two lobes that can be explained by following

the same approach. The beampattern shape when the array

steers in the direction of S1 shows four main lobes. They are

the result of a superposition of lobes two-by-two, while,

when the array steers in the direction of S2, four lobes are

clearly visible. In the latter case, the superposition effect is

less pronounced because the source is located far enough

from the boundary of the domain relatively to the FWMH of

its mainlobe.

D. Conventional office room

1. Measurement conditions

For complementary experiments, the SFMAs are tested

in a conventional office room as shown in Fig. 11. The hori-

zontal dimensions of the office room are shown in meters on

the plan in Fig. 12, where the positions of the loudspeakers

are represented by red circles and the position of the SFMA

by a blue square. The height of the room is approximately

2.5 m and a mean reverberation time of 0.4 s was measured.

The loudspeaker positions are chosen to mimic common

sound event positions, such as opening a door, talking while

sitting or standing. The loudspeaker position, with respect to

the center of the array as the origin, is estimated using a

laser telemeter. The ceiling of the room is composed of

absorbent tiles where the one at the corner of interest is

replaced by a wooden panel of the same dimensions on

which the arrays are fixed. Moreover, one of the vertical

walls forming the corner does not extend down to the floor.

The effective size of the rigid boundaries is therefore

limited.

2. Beamforming result

The SRP calculation results for two loudspeaker posi-

tions are presented in Fig. 13 for each array. The first posi-

tion is chosen to represent a sound event that takes place at

the entrance of the room [Fig. 11(a)]. From this position, the

acoustic sound impinges the array from the direction

ð/s; hsÞ ¼ ð44:5	; 48:4	Þ. The second position [Fig. 11(b)] is

located on the top of the closest desk to the array, in the

direction ð/s; hsÞ ¼ ð29:3	; 59:7	Þ. This position is chosen

FIG. 10. (Color online) Normalized directivity map for a regular beampattern obtained both from the 8-microphone (a) and the 16-microphone (b) spherical

fraction arrays for kra¼6 with two source DOAs (30	, 20	) (source S1) and (60	, 60	) (source S2) using the IRs calculated in the anechoic room. The true

source positions are indicated by a blue cross. The 4p-steradian associated beampatterns are given on the right in the direction of S1 (up) and in the direction

of S2 (down). The gray planes depict the corner where the one-eighth of sphere is placed.

FIG. 11. (Color online) Loudspeaker positions placed in a conventional

office room at the entrance (a) and on the closest desk from the array (b).
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to simulate the sound events produced by a person working

there. These positions are quite similar to positions (45	,
45	) and (60	, 60	), previously presented in the anechoic

room case.

The results show similar performance criteria to those

estimated experimentally in the anechoic room for the posi-

tions (45	, 45	) and (60	, 60	). It is worth noting that these

results are satisfactory with regard to the measurement con-

ditions. Indeed, on the one hand, the aforementionned rigid-

ity boundary conditions of the one-eighth of space are not

fully respected. On the other hand, the walls forming the

corner are not perfectly perpendicular with gaps between the

walls and the sides of the arrays on the order from 0.5 to

1 cm. Consequently, the sampling nodes of the one-eighth

sphere and its images do not constitute the sampling of a

perfect sphere and the actual SFH basis is not perfectly

suitable. However, one observes good perfomance in the

reported situation, which shows a certain robustness of the

method despite the violation of some assumptions: acoustic

rigidity and perfect geometry.

V. CONCLUSION

This paper investigated the performance of one-eighth

SFMAs to perform experimental acoustic scene analysis in a

one-eighth of space based on SFH projection of the captured

acoustic pressure. Two SFMAs with different radii and

number of microphones were presented. The arrays were

built using 3D printing where MEMS microphones were

mounted on their shell. A study of spatial aliasing was

investigated for both arrays through numerical simulations

and analytical analysis. Measurements were conducted both

in anechoic condition and in a conventional office room.

Localization results showed accurate performances, close to

the simulation ones, for both arrays, but with strong limita-

tion to estimate source DOAs close to the walls. The results

obtained in the conventional office room remain consistent

with those obtained in the anechoic room, despite the pres-

ence of strong experimental constraints such as the limited

zone in which the rigidity condition is respected.
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APPENDIX A: GAUSS-LEGENDRE QUADRATURE
RULE IN F1=8

This appendix demonstrates that a Gauss-Legendre

quadrature rule from Eq. (18) with odd degree L is suitable

in the one-eighth of a sphere F1=8 by retaining only the

nodes belonging to F1=8.

Let us consider an acoustic pressure field pðk; r; h;/Þ in

the domain O1=8 with acoustical rigid condition of planes

x ¼ 0; y ¼ 0, and z ¼ 0. For simplicity, it is assumed that

this pressure field does not have coefficients pl;m;1=8 beyond

degree L, that is to say,

pl;m;1=8 ¼ 0 for l > L: (A1)

This acoustic pressure field is sampled on the unit one-

eighth of a sphere F1=8 at the nodes corresponding to a one-

eighth of a Gauss-Legendre quadrature of odd degree L
belonging to F1=8. According to the image source princi-

ple,21 an equivalent-free field problem can be considered:

the planes x ¼ 0, y ¼ 0, and z ¼ 0 are even symmetry planes

for the acoustic pressure field and the nodes, as shown in

Fig. 14. In the latter case, a whole Gauss-Legendre

FIG. 13. (Color online) Comparison of the beamforming results with regu-

lar beampattern for two source DOAs from experimental measurements

conducted in conventional office room. The normalized squared beamfomer

output jyðk; h;/Þj2=jyðk; hs;/sÞj2 is plotted over the steering directions

ðh;/Þ 2 ½0	; 90	� � ½0	; 90	� for kra ¼ 4:65 for the 8-microphone array and

kra ¼ 4:87 for the 16-microphone array. The cross-and circle symbols rep-

resent the estimated and the theoretical source positions, respectively.

FIG. 12. (Color online) Plan of the conventional office room used for the

measurements where the loudspeaker positions are indicated by red circles

and the SFMA position by a blue square. The dimensions of the room are

given in meters.
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quadrature is obtained to sample a sound pressure field sym-

metric with respect to the planes x ¼ 0, y ¼ 0, and z ¼ 0.

For the Gauss-Legendre quadrature, the coefficients pl;m in

S are given by

pl;m ¼
X2Lþ1

n¼0

XL

q¼0

aqpðk; r; hq;/nÞYl;mðhq;/nÞ

¼
ð

S

pðk; r; h;/ÞYl;mðh;/Þ sin ðhÞdhd/: (A2)

According to Eq. (18), the zenith angles hq correspond to

the roots of the Legendre polynomial PLþ1ðcos ðhÞÞ. The

function PLþ1 being even, the corresponding zenith angles

hq are symmetrically distributed around the angle h ¼ p=2,

which corresponds to the plane z ¼ 0. The sum in Eq. (A2)

is then rewritten as follows:

pl;m ¼
X2Lþ1

n¼0

XðL�1Þ=2

q¼0

aqpðk; r; hq;/nÞYl;mðhq;/nÞ

þaq0pðk; r; hq0 ;/nÞYl;mðhq0 ;/nÞ; (A3)

with

q0 ¼ qþ ðLþ 1Þ=2

hq0 ¼ p� hq

aq0 ¼ aq

pðk; r; hq0 ;/nÞ ¼ pðk; r; hq;/nÞ
Yl;mðhq0 ;/nÞ ¼ ð�1ÞlþmYl;mðhq;/nÞ:

(A4)

Thus, Eq. (A3) can be simplified to

pl;m ¼ ð1þ ð�1ÞlþmÞ
X2Lþ1

n¼0

XðL�1Þ=2

q¼0

aqpðk; r; hq;/nÞYl;mðhq;/nÞ;

(A5)

where Eq. (A5) shows that if lþm is odd, pl;m ¼ 0 and if

lþm is even, the quadrature rule result is twice the result of

the quadrature rule applied on a half of sphere, i.e., only the

zenith angle hq for q 2 f0 � � � ðL� 1Þ=2g. Following the

same reasoning by exploiting the symmetry properties of

SHs16 and of the acoustic pressure field with respect to plane

x¼ 0 and y ¼ 0, it is shown that

pl;m¼
8
XðL�1Þ=2

n¼0

XðL�1Þ=2

q¼0

aqpðk;r;hq;/nÞYl;mðhq;/nÞ

for ðl;mÞ2M1=8

0 for ðl;mÞ 62M1=8:

8>>>>><
>>>>>:

(A6)

In the same manner as Appendix E of Ref. 16, one can show

as well that

pl;m ¼
8

ð
F1=8

pðk; r; h;/ÞYl;mðh;/Þ sin ðhÞdhd/

for ðl;mÞ 2M1=8

0 for ðl;mÞ 62M1=8:

8>>><
>>>:

(A7)

Using Eq. (3) in Eq. (A7) and identifying with Eq. (9), one

obtains

pl;m ¼
2
ffiffiffi
2
p

pl;m;1=8 for ðl;mÞ 2M1=8

0 for ðl;mÞ 62M1=8:

(
(A8)

Finally, using Eq. (3) in Eq. (A6) and identifying with Eq.

(A8), it is shown that

FIG. 14. (Color online) Image source principle for the F1=8 domain: a one-eighth SFMA (gray) with nine microphones (black nodes) is placed at a corner.

The acoustic pressure field in the F1=8 domain is derived from the unbounded space where phenomena are symmetrized with respect to the rigid (green)

planes x ¼ 0, y ¼ 0, and z ¼ 0.
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pl;m;1=8¼
XðL�1Þ=2

n¼0

XðL�1Þ=2

q¼0

aqpðk;r;hq;/nÞYl;m;1=8ðhq;/nÞ: (A9)

Equation (A9) shows that using the Gauss-Legendre quadra-

ture rule of degree L odd, retaining only the nodes belonging

to F1=8 and using SFHs Yl;m;1=8, it is possible to obtain the

coefficients pl;m;1=8.

APPENDIX B: ALIASING FUNCTION
DEMONSTRATION

In this appendix, the conditions on the indices ðl; l0;m;
m0Þ for the aliasing function �ðl; l0;m;m0Þ to be null in Eq.

(22) are demonstrated. The equation Eq. (22) is rewritten

using the real SHs constrained to the indices ðl;mÞ 2M1=8

by replacing the SFHs expression given in Eq. (3)

8
XðL�1Þ=2

n¼0

XðL�1Þ=2

q¼0

aqYl;mðhq;/nÞYl0;m0 ðhq;/nÞ

¼ dl�l0dm�m0 þ �ðl; l0;m;m0Þ: (B1)

Replacing the expression of the real SHs16 in the latter equa-

tion leads to

8Nl;jmjNl0;jm0 j
XðL�1Þ=2

n¼0

cos ðm/nÞ cos ðm0/nÞ

�
XðL�1Þ=2

q¼0

aqPm
l cos ðhqÞ
	 


Pm0

l0 cos ðhqÞ
	 


¼ dl�l0dm�m0 þ �ðl; l0;m;m0Þ; (B2)

where Pm
l are the associated Legendre polynomial of the

first kind of degree l and order m and Nl;jmj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dmÞð2lþ 1Þðl� jmjÞ!=ð4pðlþ jmjÞ!Þ

p
; is a normali-

zation factor ensuring the orthonormality of the SHs on the

unit sphere. Note that Eq. (B2) is obtained for m � 0 as con-

strained by M1=8. From Eq. (B2), it can be seen that the

aliasing function is null if the Kronecker product is null, i.e.,

if l 6¼ l0 or m 6¼ m0, and if the left product is also null, i.e., if

at least one of the sums is null,

XðL�1Þ=2

n¼0

cos ðm/nÞ cos ðm0/nÞ ¼ 0; (B3)

or

XðL�1Þ=2

q¼0

aqPm
l cos ðhqÞ
	 


Pm0
l0 cos ðhqÞ
	 


¼ 0: (B4)

1. Solutions of Eq. (B3)

By replacing the expression of the azimuth angle given

in Eq. (18) and using trigonometric formulas, Eq. (B3) can

be rewritten as follows:

1

2

XðL�1Þ=2

n¼0

cos ðmþm0Þ nþ1

2

� �
p

Lþ1

� �

þ1

2

XðL�1Þ=2

n¼0

cos ðm�m0Þ nþ1

2

� �
p

Lþ1

� �
¼0: (B5)

The latter equation involves the sum of cosines with argu-

ments in arithmetic progression22 that can be reduced to

sin ðmþ m0Þp
2

� �

sin ðmþ m0Þ p
2Lþ 2

� �þ sin ðm� m0Þ p
2

� �

sin ðm� m0Þ p
2Lþ 2

� � ¼ 0

for
ðmþ m0Þp

2Lþ 2
6¼ kp �

ðm� m0Þp
2Lþ 2

6¼ kp � k 2 Z: (B6)

In order to solve Eq. (B6), let fL½n�; n 2 2Z, be the follow-

ing discrete function:

fL n½ � ¼
sin

np
2

� �

sin
np

2Lþ 2

� � : (B7)

The equation Eq. (B6) is therefore reduced to

fL mþ m0½ � þ fL m� m0½ � ¼ 0: (B8)

From the L’Hôpital’s rule, it can be shown that

lim
n!0 mod 4Lþ4

fL n½ � ¼ Lþ 1

lim
n!2Lþ2 mod 4Lþ4

fL n½ � ¼ �L� 1:

8<
: (B9)

As well, it can be shown that the function fL½n� is periodic of

period 4Lþ 4 and that fL½n� ¼ 0 for n mod ð2Lþ 2Þ 6¼ 0.

The discrete function f ½n� is therefore explicitly given by

fL n½ � ¼
Lþ 1 for n mod ð4Lþ 4Þ ¼ 0

�L� 1 for nþ 2Lþ 2 mod ð4Lþ 4Þ ¼ 0

0 for n mod ð2Lþ 2Þ 6¼ 0:

8><
>:

(B10)

Finally, from Eq. (B10), the solutions of Eq. (B8), i.e., Eq.

(B3), are

fL mþm0½ � þ fL m�m0½ �

¼

0 for ðmþm0Þmod ð4Lþ 4Þ ¼ 0

� ðm�m0 þ 2Lþ 2Þmod ð4Lþ 4Þ ¼ 0

0 for ðmþm0 þ 2Lþ 2Þmod ð4Lþ 4Þ ¼ 0

� ðm�m0Þmod ð4Lþ 4Þ ¼ 0

0 for ðmþm0Þmod ð2Lþ 2Þ 6¼ 0

� ðm�m0Þmod ð2Lþ 2Þ 6¼ 0:

8>>>>>>>>><
>>>>>>>>>:

(B11)

2. Solutions of Eq. (B4)

In Appendix A, it was shown for odd degree L, that the

Gauss-Legendre quadrature for the one-eighth of a sphere
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with rigid boundary conditions is equivalent to the Gauss-

Legendre quadrature on the whole sphere for a symmetric

function to integrate. However, Eq. (B4) adapted for the

whole sphere is solved in Ref. 20 when lþ l0 is odd. In the

present case, lþ l0 is never odd as ðl; l0Þ 2M2
1=8, which

ensures the symmetry of Yl;m;1=8 function. Therefore, Eq.

(B4) has no solutions for ðl;m; l0;m0Þ 2M4
1=8.

3. Aliasing function nullity conditions

The Gauss-Legendre quadrature of Eq. (18) guarantees

no aliasing when lþ l0 � 2Lþ 1.20 Finally, for a quadrature

working for l � L the aliasing function satisfies

�ðl; l0;m;m0Þ

¼

0 for lþ l0 �2Lþ1

0 forðmþm0Þmodð4Lþ4Þ¼0

�ðm�m0 þ2Lþ2Þmodð4Lþ4Þ¼0

0 forðmþm0 þ2Lþ2Þmodð4Lþ4Þ¼0

�ðm�m0Þmodð4Lþ4Þ¼0

0 forðmþm0Þmodð2Lþ2Þ 6¼0

�ðm�m0Þmodð2Lþ2Þ 6¼0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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