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Numerical Simulation of Sound Generated
by Vortex Pairing in a Mixing Layer

Christophe Bogey,¤ Christophe Bailly,† and Daniel Juvé‡

École Centrale de Lyon, 69131 Ecully, France

A numerical code solving the � ltered Navier–Stokes equations is developed using special techniques of compu-
tational aeroacoustics. This approach allows a direct determination of the compressible � eld on a computational
domain including the acoustic far � eld. A two-dimensional mixing layer between two � ows at M1 = 0:12 and
M2 = 0:48 is simulated. The Reynolds number built up from the initial vorticity thickness and the velocity differ-
ence across the mixing layer is Re! = 1:28 £ £ 104 . An appropriate forcing of the mixing layer is de� ned to have only
one pairing in the computational domain at a � xed location. The sound generation pattern for a single pairing
displays a double spiral structure, corresponding to the rotating quadrupole associated to two corotative vortices.
Successive pairings produce an acoustic radiation at the frequency of this mechanism. The directly computed
far-� eld sound is then compared to the prediction of Lighthill’s acoustic analogy (Lighthill, M. J., “On Sound
Generated Aerodynamically—I. General Theory,” Proceedings of the Royal Society of London, Vol. 211, Series A
1107, 1952, pp. 564–587) based on the aerodynamic � uctuations provided by the large-eddy simulation code. Two
integral formulations of the analogy, based on spatial derivatives and time derivatives, respectively, are tested.
Results are in good qualitative agreement with the results of direct simulation. The accuracy is, however, greater
with the formulation using time derivatives instead of spatial derivatives.

I. Introduction

T HE aim of computational aeroacoustics (CAA) is to calcu-
late acoustic � uctuations generated by � ows, to provide re-

liable predictions to reduce noise radiation. CAA imposes strong
requirements,1,2 which have led to the developmentof speci� c tech-
niques,as comparedwith more classicalcomputational� uiddynam-
ics (CFD) methods. The challenge is to compute the small acoustic
� uctuationsvery accurately to understand the mechanisms of noise
generation.

Lighthill’s analogy,3 in 1952, was the starting point of modern
aeroacoustics. In this approach, the acoustic � eld is obtained via
a volume integral over the turbulent � ow. The source terms can
be built up from aerodynamic data determined by solving Navier–
Stokes equations2,4 or by generating a stochastic turbulent � eld.5

In this method, the effects of � ow on the propagation of acoustic
waves, namely, convectionand refraction, are neglected.Moreover,
the explicitknowledgeof the Green functionis needed,which limits
the application of this method to simple geometries.

The direct calculation of the acoustic � eld is an alternative and
attractive method.1,2 The compressible unsteady equations of � ow
motion are solved to provide both aerodynamic and acoustic vari-
ables, without restricting hypothesis and without modeling. Nev-
ertheless, the direct approach has to face serious dif� culties linked
to the great disparity of scales and levels between the acoustic and
aerodynamic � elds. Acoustic perturbations are several orders of
magnitude smaller than aerodynamicperturbations,and the ratio of
aerodynamic disturbances to acoustic disturbances increases when
the � ow Mach number decreases. Characteristic length scales are
also very different, for example, between the thickness of a mixing
layer and the acoustic wavelength of the emitted sound. Finally, di-
rect exploitationof thecomputedcompressible� eldalso requiresthe
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use of accurate arti� cial boundary conditions to minimize acoustic
re� ections at the limits of the computational domain.

Direct simulation of noise can be based on each of the three
CFD methods used to solve Navier–Stokes equations:direct numer-
ical simulation (DNS), large-eddy simulation (LES), and unsteady
Reynolds-averagedNavier–Stokes (RANS). These approacheshave
been adapted to exploit directly the compressible � eld by using
CAA numerical techniques.For example, Colonius et al.,6 Mitchell
et al.,4,7 Freund et al.,8 and Freund9 have performed DNS to com-
pute the sound generated by a two-dimensional mixing layer, by
axisymmetric jets, and by full three-dimensional jets, respectively.
Mankbadi10 has investigatedsupersonicaxisymmetricjets using the
large-scaleequations,and Shen and Tam11 have studied the genera-
tion of screech tones in axisymmetric jets with an unsteady RANS
code. In LES, only larger scales are calculated, the smaller ones are
modeled, whereas in DNS, all turbulent structures are described.
Computation cost is then decreased compared to DNS, and LES is
less limited to canonical � ows at low Reynolds number. It is then
natural to use LES to perform direct acoustic simulations.

Noise generation by vortex pairing in a medium at rest has been
studied both theoretically12 and numerically.13 Colonius et al.6 have
investigated this noise mechanism in a two-dimensional mixing
layer using DNS. The � ow was forced at its fundamental frequency
and its � rst three subharmonic frequencies so that two vortex pair-
ings occurred at � xed streamwise locations. The acoustic radiation
generated by the � rst pairings was found by � ltering the compress-
ible � eld at the pairing frequency.

In this paper, the noise radiated by vortex pairings in a subsonic
bidimensionalmixing layer is investigatedusingLES. Large, persis-
tent, two-dimensional rollers have been observed in mixing layers
byBrown andRoshko14 andWinantandBrowand.15 These bidimen-
sional structuresare mainly found in theearly stageof turbulent� ow
development.Three-dimensional effects appear downstream of the
� rst few pairings. Experimentally, to isolate these two-dimensional
structuresand to study their role,16,17 the mixing layers can be forced
at the frequency corresponding to their natural rollup and its sub-
harmonics.

In the same way, our two-dimensionalmixing layer is forced at its
fundamentalfrequencyand at its � rst subharmonicfrequency.Thus,
a � xed source correspondingto the � rst pairing is obtained.The aim
of our work is then not to calculate a full developed mixing layer,
but to provide directly noise generated by vortex merging without
� ltering the sound � eld and to better understand this typical noise
mechanism. The compressible � eld given by LES is also used as
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reference solution to valid hybrid approaches.Two formulationsof
Lighthill’s3 analogyare appliedusing the velocity � eld providedby
LES. This point is importantbecausein many practicalapplications,
only the aerodynamic velocity � eld is available using LES.

In this paper, we present the simulation techniques, as well as
the results of acoustic radiation in a mixing layer. An LES code,
ALESIA, is developed. Numerical techniques, and particularly the
discretization scheme and boundary conditions, are introduced in
Sec. II. Flow characteristics and simulation speci� cations are de-
scribed in Sec. III, and the whole compressible � eld computed by
LES is shown in Sec. IV. The noise mechanism associatedto vortex
pairing is described and discussed in relation to works on the noise
generated by corotative vortices.12,13 Two integral formulations of
Lighthill’s analogy3 are applied in Sec. V. Concluding remarks are
given in Sec. VI.

II. Numerical Simulation Algorithm
A. Governing Equations

The full Navier–Stokes equations for two-dimensional � uid mo-
tion are written in conservative form. In Cartesian coordinates, we
have
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The variable vector U is given by

U =

q
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where q , u1 , u2, and e are the density, the axial and radial velocity
components, and the total speci� c energy, respectively. Fluxes are
split into Euler � uxes Fe and Ge and viscous � uxes Fv and Gv.
System (1) is completedby the de� nition of the total speci� c energy
for a perfect gas
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where c is the speci� c heat ratio and p the pressure. Thus, Euler
� uxes are written as
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and viscous � uxes as
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The viscous stress tensor s i j is de� ned by s i j = 2l Si j , where l
is the dynamic molecular viscosity and Si j the deviatoricpart of the
deformation stress tensor given by
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B. Numerical Scheme
Euler � uxes are primordial in acoustic phenomena because they

supply both the nonlinear generationand the propagationof sound.
As a result, they need to be discretized by an accurate numeri-
cal scheme, here we use the dispersing relation preserving (DRP)
scheme of Tam and Webb18:

@Fe

@x
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=
1

D x

3

l = ¡ 3

alFei + l , j

Tam andWebb18 chosethecoef� cientsal of their spacediscretiza-
tion by requiring that the effective wave number provided by the � -
nite difference scheme be a close approximation to the actual wave
number. This optimized fourth-orderscheme displaysvery low dis-
sipation and dispersion rates and allows acoustic propagation over
largedistances,with only six points per wavelength.The spatialdis-
cretization is combined with a fourth-order Runge–Kutta method19

for time integration.This algorithmrequires low storage and is sta-
ble up to a Courant–Friedrichs–Lewy (CFL) number

CFL = min
c

1 + M

D t

D x
,

c D t

D y

equal to 1.73, where c is the speed of sound, M is the axial Mach
number, and D t, D x , and D y are the time and space discretization
steps. The viscous � uxes are discretized with a centered second-
order � nite difference scheme. They are integrated in the last step
of the Runge–Kutta algorithm. This temporal discretization is suf-
� cient for the mixing layer Reynolds number studied in the present
study (see also Ref. 20). The viscous terms are very small compared
to the convective terms. The CFL criterion for the viscous terms is
alsomuch higherthan thecriterionrequiredfor theconvectiveterms.
Thus, the time step is small enough so that the � rst-order temporal
integrationof the viscous terms is fairly accurate.Finally, Eq. (1) is
advanced in time in the following way:
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where Ke and Kv are the integration terms of the Euler and viscous
� uxes de� ned by
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The selective damping of Tam1 is used to � lter out numerical os-
cillationsdue to shortwaves not supportedby the numericalscheme
and generated by boundary conditions or grid stretching.As an ex-
ample, the damping term added to system(1) in the axial direction is
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where Rs is the stencil Reynolds number, usually1 Rs =5, and Ū is
the mean � ow value. The coef� cients dl are chosen to damp only
the short waves and not the long waves resolved accurately by the
DRP scheme. These terms are integrated at the fourth step of the
Runge–Kutta method, in the same way as the viscous terms.

C. Boundary Conditions
The formulation of precise boundary conditions is very impor-

tant for acoustic computations.1,2 Spurious waves produced when
� uctuations leave the computational domain must be minimized.
Great care has then to be taken when using directly the acoustic
� eld provided by Navier–Stokes calculations.Various formulations
of boundary conditions and sponge zones have been tested before
choosing the most accurate methods. Figure 1 shows the boundary
conditions used on each side of the computational domain.

The nonre� ecting boundary conditions of Tam and Dong21 have
been implemented. A better accuracy is obtained with this formu-
lation than with the various approaches essentially based on char-
acteristic equations.22 Tam and Dong boundary conditions are built
from the asymptotic expressions of Euler’s equations in the acous-
tic far � eld. They are applied to three points, with DRP decentered
schemes and are integrated with the Runge–Kutta algorithm.

When only acoustic � uctuations reach the boundary, that is, for
in� ow and lateralboundaries, the following radiationconditionsare
applied:
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Fig. 1 Boundary condition con� guration for mixing layer simulations.
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where Vg is the acoustic group velocity.21 The mean density ¯q ,
velocity components ū1 and ū2 , and pressure p̄ are computed at
each time step of the simulation. These quantities converge quickly
to the steady-state solution. The mean velocity � eld of our forced
mixing layer is displayed in the next section.

Out� ow boundary conditions are also necessary when aerody-
namic � uctuations have to leave the domain:
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where c̄ =
p

( c p̄ / ¯q ) is the mean sound velocity.
These boundary conditions were successfully validated with the

Institute for Computer Applications in Science and Engineering
test cases,23 that is, acoustic pulse and vortex convected by an uni-
form � ow. However, the exit of vortical structures generates weak
spurious acoustic waves, typically a few percent of the incoming
perturbations. Unfortunately, these small parasitic waves are not
negligible with respect to the sound � eld because of the difference
of magnitude between aerodynamic and acoustic perturbations. A
spongezonehasbeenbuilt to dissipateaerodynamic� uctuationsbe-
fore they reach the out� ow boundary. Two methods are combined
following Colonius et al.24 First, the mesh is stretched in the axial
directionso that the turbulent structuresare not supportedby the nu-
merical scheme. Second, a damping term is added in the equations
to avoid the upstream propagation of spurious re� ections produced
in the sponge region. Many damping terms have been introducedin
CAA, and one of the most popular is the perfectly matched layer
proposed by Bérenger.25 In the current study, � uctuations and re-
� ected waves are damped by using the following additional term in
system (1):
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with
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where r max = 0.15 and xo and xmax are the locations of the begin-
ning and of the end of the damping zone. Viscous � uxes are also
integrated in in� ow and out� ow boundaries, to avoid discontinuity
in the viscous terms.

D. Subgrid Scale Model
In DNS, all turbulent scales have to be calculated. This is often

dif� cult with the computer resources available and restricts DNS
applications to low Reynolds number � ows.

LES is an alternative for computing � ows at higher Reynolds
number. In this technique, only the larger structures are computed,
and the effects of smaller scalesare taken into accountvia a subgrid-
scale model. A turbulent viscosity l t ensures dissipation of the
smaller unresolvedstructures.Basically, l is replaced by l + l t in
Eq. (1). Various models have been built to determine an expression
of this turbulentviscosity.To keep the problemas simple as possible
for aerodynamics,we choose Smagorinsky’s model26

l t = q (Cs D c)
2 2Si j Si j

where the Smagorinsky constant is taken to be Cs = 0.18, and the
characteristic grid length is D c =

p
( D x D y). More sophisticated

subgrid scale models could be used.27,28

III. Flow Simulation
A. Flow Parameters

A two-dimensional mixing layer is de� ned by the following in-
� ow hyperbolic-tangentvelocity pro� le, as shown in Fig. 2:

u1(y) =
U1 + U2

2
+

U2 ¡ U1

2
tanh

2y

d x (0)

where U1 and U2 are the velocities of the slow and rapid � ows,
respectively, and d x (0) is the initial vorticity thickness. One also
de� nes the convection velocity as Uc = (U1 + U2) /2 = 0.3c, where
U1 = 0.12c and U2 =0.48c. The velocity difference is moderate
between the two � ows becausethe relativeconvectionMachnumber
is Mc = (U2 ¡ U1) / (2c) =0.18.

The Reynolds number based on the initial vorticity thickness is
equal to Re x = d x (0)(U2 ¡ U1) / m =1.28 £ 104. With the computa-
tional mesh described in the next section, this Reynolds number
limits the subgrid-scale model viscosity to reasonably low values,
as shown in Fig. 3. This indicates that the large structures are then
well discretized and that their behavior is well represented by the
� ltered equations.

Fig. 2 Mixing layer con� guration.

Fig. 3 Ratio between turbulent viscosity and molecular viscosity at
Y = 0 in the axial direction; the mixing layer is forced at its fundamental
frequency f0 and its � rst subharmonic.
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B. Numerical Speci� cations
The computational mesh has 441 £ 441 points. Minimum mesh

spacing in the axial and radial directions are D x0 =0.32d x (0) and
D y0 = 0.16d x (0). Grid pointsare concentratedin the shearzone, and
mesh stretching is 1.8% on each side of this zone in the radial direc-
tion, up to the last 55 points,where D ymax = 3 d x (0). Mesh spacingis
constant in the axial direction, except for the last 100 points, where
a 2.8% stretching is applied to form the sponge layer. The damping
term (4) is added with a parabolic pro� le from X =130d x (0) to
the out� ow boundary at X =270d x (0). A radial weighting of this
term is also applied to make it zero outside the mixing layer. In this
way, the sponge zone dissipatesvortices in the mixing layer but not
the acoustic radiation outside because the acoustic wavelength is
large enough to be still supportedby the stretchedmesh. Finally, the
physical portion of the computational domain extends to 200d x (0)
in the axial direction and from ¡ 300d x (0) up to 300d x (0) in the
radial direction.

The time step is de� ned by D t = D y0 /c. The simulation runs for
104 iterations and is 1 h long on a C-98 Cray (1.6 £ 10 ¡ 6 s per grid
point and per iteration, and a CPU speed of 500 million � oating-
point operations).

C. In� ow Forcing and Aerodynamic Results
Several experiments have demonstrated the importance of large

coherent structures in turbulence,14,15,29 and this is particularly
true for � ows at low to moderate Reynolds number. Crow and
Champagne29 have also shown that large structures can exhibit or-
ganized behavior when subjected to a suitable excitation.

To govern the development of the mixing layer, an excitation is
introduced into the in� ow. The � ow is forced around the in� exion
point of the pro� le by addingvortical perturbationsto velocity com-
ponents at every iteration.An harmonic excitationwith pulsation x
is de� ned as

u1(x , y, t ) = u1(x , y, t ) + [(y ¡ y0) / D y0]E sin( x t )

u2(x , y, t ) = u2(x , y, t ) ¡ [(x ¡ x0) / D y0]E sin( x t )

where x0 and y0 are the location of the excitation, and E is the
Gaussian weighting de� ned by

E = a Ucexp ¡ (2) (x ¡ x0)
2 + (y ¡ y0)

2 D y2
0 (5)

Actually, the mixing layer � ow is forced at two frequencies: its
fundamental frequency f0 and its � rst subharmonic f0 /2. The fun-
damental frequencycorresponds to the most ampli� ed instabilities,
predicted by the linear theory of Michalke,30 and is given by

f0 = 0.132[Uc / d x (0)]

This kind of excitation allows us to control the pairing process
in the mixing layer6,20 by adjusting the relative amplitude of the
two coef� cients a in expression (5). The value of the coef� cient
a is around 5 £ 10 ¡ 4 for the fundamental and 2.5 £ 10 ¡ 4 for the
� rst subharmonic frequency, with a phase difference of p / 2. The
two amplitudes of the excitation are weak enough not to produce
signi� cant spurious acoustic waves.

As shown in Fig. 4, vortex pairings occur at a frequency equal
to f0 / 2 and at a � xed position around X =70d x (0). The numerical
solution is in agreementwith experimentalvisualizationsof Winant
and Browand,15 who have described the vorticity � eld associated

Fig. 4 Vorticity � eld computed by exciting the mixing layer at the two frequencies f0 and f0/2, levels given in s ¡ 1 .

with vortex pairing in a mixing layer. The sponge zone is effective
from X =150d x (0) and dissipates vortices before other pairings
happen downstream. There are then no secondary signi� cant sound
sources after the � rst pairing. Figure 5 shows the mean streamwise
velocity � eld calculated by LES and used in the formulation of
boundary conditions (2) and (3). Near the pairing location around
70 d x (0), the layer thickness d x doubles.

A broadband excitation has also been applied to simulate the
natural development of the mixing layer. The linear spatial growth,
turbulence rates, and spectra are not shown in this paper, but they
conform to previous similar studies.14,20,31

IV. Direct Calculation of the Acoustic Field
Vortex pairing can be describedas two structures rotating around

each other before sudden merger. Previous works15 suggested that
this typical nonlinear phenomenon constitutes a major acoustic
source in subsonic � ows, but there is no general agreement on this
point.32 However, in low Reynolds number � ows, � ne-scale turbu-
lence does not play a fundamental role, and vortex pairing can be
regarded as the dominant noise source.

The � rst simulationof noise radiatedby a mixing layer (U1 = c/4,
U2 = c/ 2, Re x =250) was carried out by Colonius et al.6 They have
shown that vortex pairing generates a downstream acoustic radia-
tion,with a wavelength in accordancewith the frequencyof pairings
f p = f0 /2. Therefore, we can expect in our simulation to � nd an
acoustic frequency of f p , corresponding to an acoustic wavelength
equal to k p =51.5d x (0) in a medium at rest.

Figure 6 shows the dilatation � eld H = r ¢ u calculatedby ALE-
SIA on the whole computationaldomain and related to the pressure
in the uniform � ows by

H = r ¢ u = ¡
1

q 0c2
0

@p

@t
+ Ui

@p

@x
, i 2 [1, 2] (6)

Wave fronts are observed coming from the location of the pair-
ings. The acoustic wavelength is comparable to k p , as expected.
However, this wavelength is modulated by convection effects in-
duced by the upper and lower � ows. The wave fronts have a typical
oval form, which is especially visible for the upper high-velocity
� ow. Acoustic radiation is well marked in the downstream direc-
tion and even more precisely for angles close to h 1 ’ 70 deg for the
lower � ow and h 2 ’ 50 deg for the upper � ow, as shown in Fig. 7.
The difference between the two directivities can also be attributed
to convection effects.

Levels of the dilatation � eld are around 2 s ¡ 1 , corresponding to
10 Pa for the pressure� eld.This valueis small comparedto the aero-
dynamic pressure � uctuations,which are greater than 1000 Pa. This
result validates the ef� ciency of the boundary conditions because
no spurious waves can be detected in the compressible � eld.

Figure 8 shows four views of the pairing zone. The vorticity � eld
is superimposedon the dilatation� eld on the shear layer. The views

Fig. 5 Isolines of the longitudinal mean velocity provided by LES,
de� ned for Mach 0.13, 0.15, 0.2, 0.3, 0.4, 0.45, and 0.47; in lower part,
slow � ow at Mach 0.12; and in upper part, rapid � ow at Mach 0.48.
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Fig. 6 Dilatation � eld H = r ¢ u computed on the whole calculation
domain, levels given in s ¡ 1 .

Fig. 7 Sound pressure directivity at a distance of 100±!(0) from the
noise source located at X = 70±! (0) and Y = 0: ——, direct calculation of
the sound,and – – – , time derivative formulationof the Lighthill analogy.
Levels provided by the Lighthill analogy are scaled to compare the two
patterns.

are regularly spaced over a period Tp = 1/ f p , de� ned as the time
between two subsequentvortex pairings, and the cycle Figs. 8a–8d
to Fig. 8adescribesa pairingperiod.Theseviewsallowus to propose
the noise generation mechanism associated to vortex pairing.

A double spiral structure with four lobes is observed, in par-
ticular in Fig. 8b. The analytical work of Powell12 and numerical
simulations of Mitchell13 dealing with the noise generated by two
corotative vortices present a similar radiation pattern. Powell12 has
identi� ed this source as a rotating quadrupole.

We can detail the different steps of a pairing. In Fig. 8a, two
neighboring vortices begin to roll around each other: This is the
starting point of acoustic radiation. In Fig. 8b, a second radiation
lobe appearsperpendicularto the � rst one,which is now represented
as a single dark spiral. The � rst lobe stops emitting and is succeeded

by the radiationof the secondone in Fig. 8c. Finally, the secondlight
lobe also stops emitting in Fig. 8d, and in Fig. 8a the two vortices
are completely merged, while a new pairing process begins.

As shown by the simulations of Mitchell et al.,13 vortex pairing
generates sound during the rotation of the two vortices. A peak in
amplitude is reached when the two vortices coalesce, and the am-
plitude diminishes signi� cantly after merger. In our case, emission
time associatedto a vortex pair lasted for a pairing period Tp . Thus,
the subsequentpairing radiations are perfectly matched. Indeed, no
discontinuity can be observed between wave fronts produced by
successive pairings (there is discontinuity when emission time is
smaller than a pairing period), and the radiations of two pairings
cannot interfere (there is interferencewhen emission time is greater
than a pairing period).

This absence of interferenceis because sources travel over a very
small distanceduring thepairing.The two frontsradiatedby a vortex
pairing appear to come from two very close locations. In Fig. 6, the
darkerand lighter fronts are not exactly concentric,the darker fronts
being emitted a little upstream.

Furthermore, acousticwavelength is directly connectedto the ro-
tation speedof the two vortices.To produceacousticradiationwith a
wavelengthprovidedby the pairing frequency f p , the rotationspeed
must correspond to half this frequency because of the symmetry of
the quadrupolar source. In other words, vortices complete half a
revolution during the pairing period Tp . This is shown by Fig. 9,
representing the vorticity � eld, and more precisely the successive
orientations of the vortex pair at the four times de� ned in Fig. 8.
During the time Tp / 4 between two views, the vortex pair completes
one-eighth of a revolution. Figure 9d displays side by side, the two
opposite orientationsof the vortex pair before and after a period Tp .

The dynamics of pairings is then at the origin of the regular wave
front pattern with no interference.The acoustic wavelength is given
by the pairing frequency f p because the corotativevortex pair com-
pleted half a rotation during each pairing period. Refraction effects
can also be invoked to explain the radiation pattern. However, the
shear layer thickness is very small compared to the acoustic wave-
length, and we can therefore expect refraction to be of small impor-
tance.

V. Lighthill’s Acoustic Analogy
In this section, Lighthill’s3 analogy is applied using LES aero-

dynamic � uctuations. Two integral formulations of the analogy are
used to estimate their respective accuracies.

A. Theory
Lighthill3 rearrangesthe mass and momentumequationsto obtain

@2 q 0

@t2
¡ c2

0 D q 0 =
@2Ti j

@xi @x j

where c0 is the ambient sound speed and Ti j is Lighthill’s stress
tensor de� ned as

Ti j = q ui u j + p 0 ¡ q 0 c2
0 d i j ¡ s i j

which can be approximated for � ows at ambiant temperature by
Ti j ’ q ui u j . Outside the � ow region, q 0 = q ¡ ¯q reduces to the � uc-
tuating acousticdensity q 0 = p 0 /c2

0 , and Ti j is zero. Lighthill’s equa-
tion can be interpretedas a wave equation in a medium at rest with a
source term ofquadrupolarnatureand inducedby the � ow Reynolds
stresses.

The solution of Lighthill’s equation is obtained by using the
three-dimensional free space Green’s function, G(x, t ) = d (t ¡
x / c0) / (4 p c2

0x) and takes the form of a retarded potential formu-
lation. A solution involving space derivatives of Ti j and valid both
in the near and far acoustic � eld is

p 0 (x, t ) =
1

4p V

1
r

@2Ti j

@yi @y j
y, t ¡

r

c0
dy (7)

wherer = j x ¡ yj . It is thenpossibleto computetheacousticpressure
� eld, if the aerodynamic � eld is known, by calculating this integral
over a volume V including all of the sources.
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a)

b)

c)

d)

Fig. 8 Four views of the vortex pairing zone: vorticity � eld in the mixing layer, surrounded by dilatation � eld; time step is Tp /4 between two successive
views. Cycle a)–b)–c)–d)–a) describes a pairing period.

Developments of the analogy have led to other expressions, de-
scribed,for example,in a classicalpaperbyCrighton.33 In particular,
a time derivative formulation can be written in the acoustic far � eld

p 0 (x, t ) =
1

4 p c2
0 V

rir j

r 3

@2Ti j

@t 2
y, t ¡

r

c0
dy (8)

This expression is more often used than expression (7) because it is
less sensitive to the precise evaluation of the retarded time. Sarkar
and Hussaini34 have found that the use of space derivatives induces
numerical errors of (1/ M2 ) with respect to formulation(8), where
M is the convection Mach number of the acoustic sources. Thus,
application of expression (7) to low Mach number � ows requires
a high-order scheme for interpolationof the retarded time value of
the source term.

B. Numerical Results
The two integral formulations (7) and (8) have been tested with

the mixing layer simulated in Sec. III. They can not be appliedwith-
out numerical adjustments, and storage and memory requirements
are signi� cant. Aerodynamic � uctuationsgiven by LES are used to
build the source terms. They are recorded every 10th aerodynamic

time step, which is equivalent to T0 / 16 = Tp / 32, where T0 =1/ f0.
The source terms are stored during 540 acoustic time steps, corre-
sponding to 16 pairing periods among the 36 pairing periods of the
whole computation. The storage of each source term needs around
250 megaoctets. The source volume extends from 3 to 229d x (0) in
the axial direction and from ¡ 53 to 53 d x (0) in the radial direction.

In Figs. 10 and 11, the terms @2Ti j / @yi @y j and @2T12 / @t 2 are rep-
resented at the location de� ned by X =70d x (0) and Y = 0, that is,
in the pairing zone. Both are periodic with a period of 2T0 = Tp .
They also show high-frequency oscillations, which are recurrent
and then correspond to physical mechanisms. The time recording
step is small enough to take into account these oscillations, but a
time interpolation is needed to minimize the error in the evalua-
tion of source terms at the retarded time. Interpolationis performed
with a fourth-order scheme using Lagrange polynomials. The two
source terms are also quite different. The spatial source is more
regular, whereas peaks in the temporal one are more pronounced.
Because formulation (7) builds the acoustic � eld only with the re-
tarded time, one can understand it is more sensitive than formula-
tion (8) to errors in retarded time. Indeed, the quadrupolar nature
of the source is only found through careful evaluation of retarded
time.



2216 BOGEY, BAILLY, AND JUVÉ

a) b)

c) d)

Fig. 9 Four snapshots of the vorticity � eld in the pairing region at the
four times of Fig. 8; � ve isolines of vorticity are de� ned from ¡ ¡ 250 to
¡ ¡ 4 £ £ 104 s ¡ 1 following a geometrical ratio of 2: ——±, orientation of
two corotative vortices and – – –±, orientation of the next vortices.

Fig. 10 Time evolution of the source term @2Tij /@yi@yj at the point
[X = 70±!(0), Y = 0]; time recordings are represented by crosses; dimen-
sional source term.

Fig. 11 Time evolution of the source term 1/c2
0@2T12 /@t2 at the point

[X = 70±!(0), Y = 0]; time recordings are represented by crosses; dimen-
sional source term.

Fig.12 Axialpro� le of thesource term: ——, source term @2Tij/@yi@yj,
and – – – , mean value of this term; dimensional source term.

Fig. 13 Pressure � eld calculated by the Lighthill spatial derivatives
formulation; arbitrary color scale.

The turbulent source volume is weighted to remove � uctuations
on the out� ow boundary,and to avoid discontinuityin source terms.
Figure 12 shows the axial weighted pro� le of @2Ti j / @yi @y j . The
doubling of the period appears clearly after the pairing mechanism.
It also appears necessary to calculateand subtract the averageof the
source term in expression (7) to obtain centered pressure � uctua-
tions. The space source term is then given by

@2Ti j

@yi @y j
¡

@2Ti j

@yi @y j

The mean value cannot be neglected, as shown in Figs. 10 and 12.
For formulation (8), time derivatives naturally remove the mean
source term.

Radiation predictions are presented in Figs. 13 and 14. Results
of the two integral formulations are quite similar in phase and in
level. However, formulation (8) seems more accurate than formula-
tion (7), as pointed out by Sarkar and Hussaini.34 With the spatial
formulation, errors are produced in the upstream direction.

Formulas (7) and (8) of Lighthill’s3 analogy are based on the
three-dimensionalGreen function ei k0r / r . However, in our case we
expect that the two-dimensionaland three-dimensionalsound � elds
will have the same radiation pattern and that only the levels will not
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Fig. 14 Pressure � eld calculated by the Lighthill time derivatives for-
mulation; color scale is the same as in Fig. 13.

Fig. 15 Dilatation pro� le at X = 70±! (0) in the radial direction pro-
vided by the direct calculation: – – – represents a 1/

p
Y decay; levels

given in s¡ 1.

Fig. 16 Dilatation � eld provided at the same time by a) LES and b) time-derivative formulation of the Lighthill analogy.

be signi� cant. Indeed, the two-dimensionalGreen function is given
in Fourier space by

G(r, x ) = (1/4i )H (1)
0 (k0r)

where k0 = x / c0 and H (1)
0 is the zeroth-orderHankel function. For

k0r ¸ 4, the Green function can be approximated as

G(r, x ) ’ (1/ 4i ) (2/ p k0r ) exp(ik0r ¡ i p /4)

The radiated acoustic � eld is basically harmonic at the pairing fre-
quency f p . Thus, k0r ¸ 4 with k0 = 2 p / k p and k p =51d x (0) corre-
spond to a distance r ¸ 32d x (0). Thus the two-dimensional Green
functionhas the samebehavioras the three-dimensionalGreen func-
tion with a phase delay and a decay of the acoustic � eld as 1/

p
r

instead of 1/ r in three dimensions, as shown in Fig. 15.
The two formulations (7) and (8) of Lighthill’s3 analogy provide

radiation patterns in good agreement with the direct calculation.
Refraction effects seems small in the direct calculation, and the
radiation pattern is mainly associatedto the noise generationmech-
anism. More precisely, Fig. 16 shows the dilatation � eld provided
by the direct computation and the dilatation � eld H obtained from
the formulation(8) of Lighthill’s analogyat the same time. Relation
(6) is used for a medium at rest to determine the dilatation � eld
providedby the Lighthill analogy.In the slow, lower � ow, dilatation
� elds are similar, whereas wave fronts are affected by convection
effects in the rapid, upper � ow. As pointed out in the earlier dis-
cussion on the two-dimensional Green function, a constant phase
delay is observed between the two calculations. Figure 7 compares
the associated sound directivities. The acoustic radiation predicted
by Lighthill’s analogy shows symmetrical lobes for angles close to
70 deg from the downstream direction. The direct calculation takes
into accountall mean � ow effects on sound propagation.As a result,
Lighthill’s analogy compares more favorably in the slow � ow than
in the rapid � ow, where the acoustic peak is shifted downstream in
the direct calculation.

VI. Conclusions
A two-dimensional subsonic mixing layer is simulated to inves-

tigate its acoustic radiation.Noise is computed from LES using two
approaches. In the � rst one, the sound � eld is provided directly by
solvingNavier–Stokes equations,and in the secondone,Lighthill’s3

analogy is applied to determine the acoustic radiation pattern from
the aerodynamicdata.
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Vortex pairings generate noise only with the frequency of pair-
ings. Furthermore, the successive pairing radiations are matched
without discontinuity and interference. The generation pattern is
typical of a rotating quadrupole. This noise mechanism has been
already shown in the case of two isolated identical vortices. Here,
vortices are embedded in an external shear � ow, which corresponds
to a more general con� guration.

Radiation patterns provided by Lighthill’s3 analogy are in good
qualitativeagreement with the directly computed acoustic far � eld,
despitethe absenceof convectionand refractioneffects.The integral
formulationusinga time derivativeis found to be more accurate than
the formulation using a spatial derivative.

Direct acoustic calculation is an attractive method to understand
noise generationbecause it supplies simultaneously turbulence and
sound � eld data. It allows also an estimate of the accuracyof hybrid
or analogical methods.
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