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Abstract

An isothermal circular jet with a Mach number of M = 0.9 and a Reynolds number of ReD = 4 · 105 is computed by compress-
ible large eddy simulation (LES). The LES is carried out using an explicit filtering to damp the scales discretized by less than four
grid points without affecting the resolved large scales. The jet features are thus found not to appreciably depend on the filtering pro-
cedure. The flow development is also shown from simulations on different grids to be independent of the location of the grid bound-
aries. The flow and the sound field obtained directly by LES are compared to measurements of the literature. The acoustic radiation
especially displays spectra and azimuthal correlation functions which behave according to the observation angle as expected for a
high Reynolds number. Furthermore the two components of jet noise usually associated to large structures and to fine-scale turbu-
lence, respectively, are apparently found.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Direct noise computation (DNC) consists of calculat-
ing the sound field directly by solving the unsteady com-
pressible flow equations [1]. It is intended to allow
investigations of noise generation mechanisms by pro-
viding both flow and sound fields. This motivation is
strong for flows such as subsonic jets where noise
sources are still not clearly identified. For performing
DNC, direct numerical simulation (DNS), which in-
volves the full resolution of the Navier–Stokes equa-
tions, can be used [2] but its applications are limited to
low Reynolds number flows displaying a small range
of turbulent scales. Such a restriction does not exist with
large eddy simulation (LES) which can theoretically deal
with flows at any Reynolds number by calculating only
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the scales larger than the grid size. For this reason, LES
appears to be an appropriate tool to investigate realistic
turbulent flows. It has been tested over the last few years
to study the noise radiated by supersonic [3] and sub-
sonic [4–8] round jets. The latter simulations demon-
strated the feasibility of DNC for subsonic jets using
LES, but moderate Reynolds numbers were often in-
volved. For example, the first jet simulated by the
authors [4] was for a Mach number of M = uj/ca = 0.9
and for a Reynolds number of ReD = ujD/m = 6.4 · 104

(uj is the jet nozzle exit, ca the ambient sound speed, D
the jet diameter, and m the molecular viscosity). To dis-
cuss the full physics of jet noise, dealing with higher
Reynolds numbers now appears necessary.

With this aim in view, the LES of a high Reynolds
number, subsonic circular jet, developing in an air at
standard conditions, is carried out. The jet is isothermal
with a jet centerline temperature Tj = Ta (Ta is the ambi-
ent temperature). The Mach number is M = 0.9 and the
Reynolds number is ReD = 4 · 105. Two simulations are
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carried out using grids of different size, one extending
far away downstream and one including a part of the
acoustic field. They are performed with a high accuracy
using a Navier–Stokes solver (ALESIA [4,9]) developed
for DNC using non-reflecting boundary conditions [10]
and updated with new low-dispersive and low-dissipa-
tive numerical schemes [11]. The first motivation is to
show that the flow development is not dependent on
the location of the grid boundaries. The second is to ob-
tain by LES flow and sound field properties in agree-
ment with those typically found for jets with similar
high Reynolds numbers. This would indicate that the
effective Reynolds number of the simulated jet is pre-
served by the numerical resolution, i.e. that it corre-
sponds to the Reynolds number ReD defined by the
flow initial conditions, which is one key point in the
development of reliable LES for realistic flows.

In the present work involving a high Reynolds num-
ber jet, the simulations are based on the LES approach
consisting of taking into account the effects of the turbu-
lent-energy dissipating scales, not resolved by the grid,
through a filtering applied explicitly to the flow variables
instead of an eddy-viscosity model as usually. This ap-
proach is recent but successful applications to isotropic
turbulence and channels flows have now been presented
[12–14]. Its original feature is to use selective/compact
filtering, designed to eliminate short waves such as the
grid-to-grid oscillations without affecting the large re-
solved scales unlike an eddy viscosity. Thanks to this
selectivity, the LES results are expected to be indepen-
dent of the filtering. To assess this original LES ap-
proach, the jet features obtained from the present
simulations are systematically compared to correspond-
ing measurements. The sound field properties are espe-
cially investigated since typical properties are observed
experimentally for high Reynolds number jets, with for
instance broadband sound spectra [15] in the sideline
direction. The final purpose of this work is to provide
a numerical database for further investigations dealing
with the influence of different simulation parameters
on the radiated noise [16,17] or with noise generation
mechanisms [18].

The present paper is organized as follows. The gov-
erning equations and the numerical procedure are pre-
sented in Section 2. The simulation parameters, and
snapshots of vorticity and pressure are shown in Section
3 where the independence of the results from the filtering
procedure is also studied. The flow field and the sound
field provided directly by LES are then investigated in
Sections 4 and 5, respectively. The flow fields obtained
on the two grids are compared to each other, while all
flow and acoustic results are examined with respect to
measurements in the literature. Concluding remarks
are then given in Section 6. Finally, a selective filter
implemented in the present simulations is provided in
Appendix A.
2. Governing equations and numerical procedure

2.1. Governing equations

For LES of compressible flows, the basic governing
equations are the filtered Navier–Stokes equations,
which can be written as [19]:
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where the flow variables q, ui and p are the density,
velocity and pressure. The overbar denotes a filter oper-
ation, which commutes with the partial derivatives. The
tilde indicates that the quantity is based on filtered vari-
ables, e.g. for the velocity ~ui ¼ qui=q (Favre filter oper-
ator), and for the total energy q~e ¼ p=ðc� 1Þþ
q~uk~uk=2 where c is the specific heat ratio.

The resolved viscous stress tensor ~sij is defined
by ~sij ¼ 2lðeS ij � eS kkdij=3Þ where eSij ¼ ðo~ui=oxjþ
o~uj=oxiÞ=2 and l is the molecular dynamic viscosity.
The heat flux is given by ~qj ¼ �koeT =oxj where the tem-
perature eT is deduced from the filtered density and pres-
sure using the state equation p ¼ qreT , and k = lcp/r is
the thermal conductivity (r is the Prandtl number, and
cp is the specific heat at constant pressure). The filtering
of the Navier–Stokes equations makes different terms
appear [19]. These terms are referred to as subgrid terms
since they cannot be directly calculated from the re-
solved variables. Among them, the two following ones
are usually kept: the subgrid turbulent stress tensor
Tij ¼ q~ui~uj � quiuj and the pressure–velocity subgrid
term Qj ¼ �ðp~uj � pujÞ=ðc� 1Þ.

The modelling of the subgrid stress tensor has been
debated for a long time, see discussions in recent reviews
[20–23]. Since the energy-dissipating scales are not
resolved, it is generally agreed that the addition of an
artificial damping is required. This is classically done
through subgrid models based on an eddy-viscosity
hypothesis and designed from physical considerations
to express the Tij, such as for the famous Smagorinsky
model [24]. However, since the eddy viscosity has the
same functional form as the molecular viscosity, it is
difficult to define the effective Reynolds number of the
simulated flows [17,25]. An alternative to the eddy vis-
cosity is to damp the turbulent energy using numerical
dissipation. This is the case in the MILES approach
[26] where the dissipation is provided implicitly by the
numerical scheme. Successful applications of this ap-
proach have been shown [27] but the question about
the damping effects on the resolved scales remains as
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long as dissipative numerical methods such as shock-
capturing schemes [28] are used.

In the present LES, a numerical approach different
from MILES is followed. The Navier–Stokes equations
are solved using low-dissipative schemes while a selec-
tive filtering is applied explicitly to the density, the
momentum qui and the pressure, to remove the high
wave numbers close to the grid cut-off wave number.
The two subgrid terms are taken to be Tij ¼ 0 and
Qj ¼ 0. The selective filtering is optimized to eliminate
grid-to-grid oscillations without affecting significantly
the scales discretized by more than four grid points. It
is thus useful to distinguish two cut-off wave numbers
in the present LES: the grid cut-off wave number for
two points per wavelength, kg

c ¼ p=Dx (Dx is the grid
size), and the filtering cut-off wave number
kf

c ¼ p=ð2DxÞ. The resolved, the filtered and the subgrid
scales can then be defined as in Fig. 1. The resolved
scales here do not denote all the scales discretized by
the grid as usual, but those calculated accurately by
the numerical algorithm and not appreciably affected
by any artificial dissipation. To demonstrate the effi-
ciency of the LES approach based on explicit filtering,
simulations of well-documented configurations such as
isotropic turbulence and channel flows [12,13] have been
carried out. The present work is an extension of these
works for a flow at a high Reynolds number. Theoretical
developments have also been proposed to bring support
to this approach [14]. Finally note that there is no
opportunity for backscatter, the transfer of energy from
the unresolved to the resolved scales, using this method.
This can be considered of little importance for free shear
flows such as the jet presently simulated, but this issue
will need further investigations for bounded shear flows.

2.2. Numerical methods

The discretization of the flow equations is performed
with a 13-point stencil finite-difference scheme for the
Fig. 1. Schematic representation of the spectrum of turbulent kinetic
energy E(k) with the wave numbers associated to the integral, Taylor
and Kolmogorov scales, L, k and g, and with the filtering and grid cut-
off wave numbers, kf

c and kg
c . The resolved and the filtered scales are the

scales supported by the grid.
spatial derivation and with a six-stage low-storage
Runge–Kutta algorithm for the time integration. Both
schemes [11] have been developed to display optimized
properties in the Fourier space so that fluctuations dis-
cretized by more than four points per wavelength are
neither distorted nor dissipated.

Selective filterings designed to eliminate grid-to-grid
oscillations without affecting the resolved scales are used
to ensure numerical stability and to take into account
the subgrid dissipation as discussed in the previous sec-
tion. They are applied explicitly to the density, momen-
tum and pressure every two iterations, sequentially in
the x, y and z Cartesian directions and in the diagonals
of the xy, xz and yz sections. In the Cartesian directions,
the filtering is performed using a 13-point stencil filter
[11] optimized up to four points per wavelength. For
instance, the filtering in the x-direction writes

U f
i;j;k ¼ U i;j;k � rd

X6

l¼�6

djU iþl;j;k

where U = {q,qu,qv,qw,p}, Uf is the filtered variable, dj

are the filter coefficients and rd = 2/3, arbitrarily. In the
diagonals, the filtering is carried out using the filter
described in Appendix A. Thus in the xy-direction

U f
i;j;k ¼ U i;j;k � rd

X10

l¼�10

dd
j U iþl;jþl;k

with the coefficients dd
j provided in Appendix A and

rd = 2/3 as previously. Note that this diagonal filtering
is not applied near the boundaries. It is moreover not
strictly necessary for stability and it is not used in the
latest LES performed in our group. The value of rd

and the frequency of filtering are arbitrary but they
are expected to have a negligible influence on the flow
results thanks to the selectivity of the filters. This impor-
tant point is addressed in Section 3.4.

The implementation of the spatial schemes was dis-
cussed in a previous paper [11]. The high accuracy of
the schemes was shown to be preserved for the stretch-
ing rate of 2% applied to the mesh spacing in the present
LES in order to use different discretizations inside and
outside the jet flow. Their connection with the boundary
conditions was also described. It consists of decreasing
progressively the size of the scheme stencil from the inte-
rior to the boundary points where standard fourth-order
non-centered schemes are used.
3. Simulation parameters and results

3.1. Jet inflow

A circular isothermal jet developing in an air at stan-
dard sea level temperature and pressure is investigated.
The jet Mach number is M = uj/ca = 0.9, which is of
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interest for aeronautic applications, and is also appro-
priate to keep the computation at an affordable cost.
It corresponds also to a value found in a large number
of experimental studies of the literature, providing both
aerodynamic [29–32] and acoustic [15,33,34] results. The
jet Reynolds number is ReD = 4 · 105 which is quite
high with respect to the range of Reynolds numbers
usually considered in LES (103

6 ReD 6 105).
For high Reynolds numbers ReD P 105, the jet exit

boundary layers are very thin [35] with a momentum
thickness of the order of 10�3D, and the number of
points necessary for its discretization would be exorbi-
tant. Therefore in the present simulation, the jet inflow
conditions have been modeled by imposing mean flow
profiles while using a random excitation to seed the tur-
bulence. The inflow mean longitudinal velocity u0(r) is
given by the following hyperbolic-tangent profile

u0 rð Þ
uj
¼ 1

2
þ 1

2
tanh

r0 � r
2dh

� �

where uj is the inflow centerline velocity, dh the initial
momentum thickness of the annular shear layer, and
r0 the jet radius. Pressure is taken as the ambient pres-
sure, radial and azimuthal velocities are set to zero.
The inflow mean density profile is given by the
Crocco–Busemann relation

q0ðrÞ
qj
¼ 1þ c� 1

2
M2 u0ðrÞ

uj
1� u0ðrÞ

uj

� �� ��1

for an isothermal jet. The profiles of the inflow longitu-
dinal velocity and density thus obtained are represented
in Fig. 2. The ratio between the jet radius and the shear-
layer momentum thickness r0/dh is directly connected to
the number of grid points in the jet diameter, and is
therefore clearly limited in three-dimensional simula-
tions. The present ratio is chosen as r0/dh = 20, which
is large enough to allow the development of turbulent
structures in the shear zone.

To start the turbulent flow development, the jet is
forced by adding random velocity fluctuations to the
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Fig. 2. Transverse profiles of the inflow mean velocity
mean profile, in the shear zone for x ’ r0. The forcing
procedure applied is this described for an early jet sim-
ulation [4]. Two parameters are however modified with
respect to this simulation: the first 16 azimuthal modes
are involved in the forcing, and the amplitude coefficient
is a = 0.007. This excitation introduces solenoı̈dal veloc-
ity fluctuations with a low magnitude so that it does not
generate significant spurious sound waves. These fluctu-
ations are also poorly correlated azimuthally as shown
in Fig. 3.

3.2. Numerical specifications

The Cartesian grids used for the two simulations, re-
ferred to as LESaero and LESac in what follows, are
represented in Fig. 4, and contain, respectively, 16.6
and 12.5 million points. For the two grids, the discreti-
zations in the y and z directions are the same and are
symmetrical about the jet axis. The grids of LESaero
and LESac are identical in the inner zone defined by
0 6 x 6 25r0 and �10r0 6 y, z 6 10r0. The transverse
mesh spacing is uniform for y,z 6 2r0 with Dy0 =
Dz0 = r0/15, and then increases at a rate of 2% to reach
y,z = 13r0 in LESaero and y,z = 16r0 in LESac. The ax-
ial mesh spacing is constant with Dx = 2Dy0 for
0 6 x 6 25r0 and then increases progressively at a rate
of 0.4% in LESaero. The flow field is thus calculated
up to x = 60r0 in LESaero but only up to x = 25r0 in
LESac. The near acoustic field is only investigated in
LESac. In this case, the transverse mesh spacing reaches
a maximum value of Dy = 0.4r0 well outside the jet,
which corresponds to a cut-off Strouhal number of
about 2 for the sound field. With this cut-off Strouhal
number, the loss in total dB is expected to be less than
0.5 dB at every radiation angle, as suggested by experi-
mental sound spectra [36].

Parameters of the two simulations such as the time
periods used for computing flow and sound quantities
are presented in Table 1. The time step is Dt =
0.85Dy0/ca for the two simulations. The computation
time and consequently the different sampling times are
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and density, u0/uj and q0/qj, at x = 0 and z = 0.
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Fig. 3. Azimuthal cross-correlation of the forcing velocity
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(a) LESaero and (b) LESac. Only every 10th line is shown.
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long enough to achieve statistical convergence. To illus-
trate this, the sound field in LESac is for example
studied during a period Tac which can be associated with
a minimum Strouhal number of D/(Tacuj) ’ 1.2 · 10�3.
Table 1
Grid and time parameters of the simulations LESaero and LESac

LESaero LESac

nx · ny · nz 395 · 2052 255 · 2212

Sim. time T 7 · 104Dt 4 · 104Dt

T 3970r0/c0 2270r0/c0

D/(Tuj) � St 5.6 · 10�4 9.9 · 10�4

Flow for x 6 60r0 x 6 25r0

Mean flow s.t. 6.2 · 104Dt 3.6 · 104Dt

Turb. int. s.t. 4 · 104Dt 2.5 · 104Dt

u 0-spectra s.t. 6 · 104Dt 3.5 · 104Dt

Sound for – x 6 30r0

s.t. – 3.3 · 104Dt

CPU time (h) 200 90

sim. is used for simulation, s.t. for sampling time, turb. int. for turbu-

lence intensities, u 0 is the fluctuating axial velocity. The CPU time is for
a Nec SX5.
3.3. Boundary conditions

To minimize the amplitude of the acoustic waves re-
flected at the limits of the computational domain, non-
reflective boundary conditions are used. The radiation
and the outflow boundary conditions based on a formu-
lation of sound waves in the acoustic far-field [10] are
implemented in three rows of points, as shown in
Fig. 5. A sponge zone combining grid stretching and
Laplacian filtering [10] is added in the downstream re-
gion to dissipate flow fluctuations before they reach
the boundary.

Moreover, since the radiation and the outflow bound-
ary conditions rely on equations written for the fluctuat-
ing quantities alone, the mean quantities might drift.
Small adjustment terms have therefore been added to
impose their values at the boundaries. Practically, they
are integrated at every iteration, explicitly, in the follow-
ing way

U r ¼ ð1� rrÞU þ rrU ref

with U = {q,u,v,w,p}, Uref = Uinflow = {q0,u0,v0,w0,p0}
and rr = 5 · 10�2 at the jet inflow, U = {q,p}, Uref =
{qa,pa} and rr = 5 · 10�3 outside the flow, Ur repre-
senting the modified variables. In this way, all the mean
variables at the jet inflow are set to the initial flow
values, denoted by the subscript 0. Outside the flow,
only the mean density and pressure are imposed. They
are set to the ambient density and pressure denoted by
the subscript a. Furthermore the factor rr is small to
avoid sound reflections. Finally note that this method
is very similar to the methods proposed by Rudy and
Strikwerda [37] and by Poinsot and Lele [38] to specify
the steady-state solution at non-reflecting boundaries
in compressible simulations.

3.4. Instantaneous vorticity and pressure

Fig. 6 displays instantaneous snapshots of LES quan-
tities provided by the two simulations. For LESaero, the
axial section of the vorticity norm jxj is shown in
Fig. 6(a). For LESac, axial and transverse sections are
shown in Fig. 6(b), with the vorticity jxj in the turbulent
flow region and the fluctuating pressure p 0 outside.

The vorticity fields show a large range of vortical
scales, with the presence of a fine turbulence as expected
for a high Reynolds number. The axial sections illustrate
the flow development from shear layers to a turbulent
jet, with a jet spreading which is especially visible far
downstream for the LESaero simulation in Fig. 6(a).
The shear layers appear to interact in the vicinity of
x = 10r0. The length of the potential core is therefore
about 10r0, which is comparable to the values measured
on corresponding jets [29].

The snapshots of the pressure field in Fig. 6(b) dem-
onstrate that the noise generated by the jet is well taken



Fig. 5. Sketch of the boundary conditions.

Fig. 6. (a) LESaero: snapshot of the vorticity jxj. The color scale is
from 0 to 4 · 104 s�1. (b) LESac: snapshots of the vorticity jxj in the
flow and of the fluctuating pressure p 0 outside. Left: in the x–y plane at
z = 0. Right: in the y–z plane at x = 11r0. The grey scales are from 0 to
8 · 104 s�1 for the vorticity and from �70 to 70 Pa for the pressure.
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into account by the simulation. It is properly propa-
gated outside of the flow, and is contaminated neither
by the inflow forcing, nor by possible reflections at the
boundaries. The axial section shows sound waves origi-
nating from a region located in the vicinity of the end of
the potential core, in agreement with experimental
observations [36]. The acoustic radiation is also more
pronounced in the downstream direction, as expected.
The transverse section shows the structure of the sound
waves. Partially circular waves are found in the consid-
ered section at x = 11r0.

3.5. Independence from the filtering

The use of an artificial dissipation in LES is aimed at
dissipating energy which is transferred, following the
turbulent cascade process, from the large to the small
scales, and therefore might accumulate at the high wave
numbers, corresponding typically to the grid-to-grid
oscillations, and lead to the divergence of the simula-
tion. An important issue is to apply damping procedures
which do not dissipate the turbulence too much or, in
other words, to minimize their effects on the large scales.
To closely control the amount of dissipation, regulariza-
tion procedures [39] have then been proposed where the
parameters of the dissipation are adjusted from the tur-
bulence just enough to avoid growth of energy at high
wave numbers. Such procedures are similar to the dy-
namic procedures developed for the eddy-viscosity mod-
el and might be computationally expensive. Several
parameters are also to be fixed when compact/selective
filtering is used as artificial dissipation. The filtering
can indeed be applied every M iterations or m times
per iteration, with a coefficient rd between 0 and 1.
These parameters M, m and rd are likely to be deter-
mined by regularization, but practically they are arbi-
trarily chosen to ensure numerical stability, which
raises questions about the dependence of the results on
the filtering procedure.

The sensitivity of LES results to the filtering should
however depend on the filter properties. Visbal and Riz-
etta [12] have for instance shown that low-order filters
provide excessive dissipation for decaying isotropic tur-
bulence and that at least sixth-order is required to ob-
tain correct results. Another example of the effects of
filtering in LES is given by Uzun et al. [7] who reported
that the features of a circular jet can vary according to
the filters used. In the present simulations, the filters
are sufficiently selective that one can expect the filtering
to exert no significant influence on the resolved scales
discretized by more than four grid points. Energy is only
diffused when it is transferred from the resolved to the
filtered scales, represented in Fig. 1. The resolved scales
are the major energy-containing scales and determine
the amount of energy to be dissipated. The dissipation
rate, and consequently the LES results, should therefore
be independent of the filtering procedure.

To show the negligible influence of the filtering on the
LES fields, we can change the filtering coefficient or its
application frequency, obtaining similar results. Here a
simulation characterized by the parameters of the LE-
Sac simulation but where the filtering is applied every
three iterations instead of every two iterations is per-
formed. This simulation, referred to as LESac2, pro-
vides jet flow and sound fields with properties very
similar to those from LESac. For instance, an excellent
agreement is observed for the mean flow development,
the turbulence intensities, the velocity spectra and length
scales, and for the sound levels and spectra. Illustrations
are presented in Fig. 7(a) and (b) displaying centerline
profiles of the rms axial-velocity fluctuations and
sideline acoustic levels from LESac and LESac2. These
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results from simulations where the filtering is applied
quite differently support that the turbulence does not de-
pend much on the filter application parameters, and that
regularization procedures may appear unnecessary when
the filters are selective enough.
4. Flow field

In this section, the flow fields computed by the LES-
aero and LESac simulations are investigated. Compari-
sons between the two, and with experimental data, are
made.

4.1. Mean flow

Streamlines originating from the mesh boundaries are
presented in Fig. 8(a) for LESaero and in Fig. 8(b) for
LESac. They illustrate the entrainment of the surround-
ing fluid in the jet, and demonstrate that the boundary
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Fig. 8. Visualization of the mean velocity fields in the x–y plane at
z = 0 for: (a) LESaero, (b) LESac. (—) contour associated with the
mean axial velocity 0.95uj, (–––) contour associated with 0.03uc (uc is
the mean centerline velocity), (� � �) mean streamlines.
conditions are appropriate for the incoming of fluid into
the computational domain in both simulations. The
streamlines are fairly parallel to the jet near the inflow,
but more perpendicular to the flow direction as the axial
distance increases and as the jet becomes turbulent. This
is in good agreement with experimental observations [40].

To study the mean flow more quantitatively, the axial
profiles of the centerline velocity uc and of the jet half-
width d0.5 are represented in Fig. 9(a) and (b). The pro-
files obtained from LESaero and from LESac are fairly
superposed, which demonstrates that the mean flows
computed using computational domains of different
sizes are very close, and do not appreciably depend on
the location of the mesh boundaries. As expected
according to the vorticity snapshots, the velocity decay
starts at the end of the potential core for about
x ’ 10r0 in Fig. 9(a). The decay is successfully compared
with the one measured by Lau et al. [29] for a high-ReD

jet at Mach 0.9. A small deceleration of the centerline
velocity is also detected for about x = 5r0. It is interest-
ing to notice that this behaviour within the potential
core has been observed experimentally [41]. Moreover,
the evolution of the jet half-width in Fig. 9(b) shows that
the jet spreads slowly before the end of the potential
core, but quite rapidly and apparently linearly after.
There is also a fair agreement with measurements pro-
vided by Zaman [42] for a M = 0.5 jet in the region just
after the end of the potential core. Note that all mea-
surements are shifted in the downstream direction for
the comparisons, to deal with their different core lengths
which can vary according to their respective nozzle exit
conditions.

In the jet literature, the mean flow is usually investi-
gated far downstream from the nozzle, for x > 60r0 at
least [43], where the self-similarity of the mean profiles
is observed. In this zone, the velocity decay and the jet
spreading are characterized by two parameters: the
decay constant B and the spreading rate A, such as
uc/uj = B · (2r0/(x � x0)) and d0.5 = A · (x � x0). In
the present study, since the self-similarity may not be
reached owing to the limited size of the computational



0 10 20 30 40 50 60
0.25

0.4

0.55

0.7

0.85

1

x/r
0

u c/u
j

0 10 20 30 40 50 60
1

1.7

2.4

3.1

3.8

4.5

x/r
0

δ 0.
5
/r

0

(a) (b)

Fig. 9. Axial profiles, (a), of the mean centerline velocity uc/uj and (b), of the jet half-width d0.5/r0 for: (–––) LESaero and (—) LESac.
Measurements: (s) Lau et al. [29] (M = 0.9, ReD = 106), (h) Zaman [42] (M = 0.5, ReD = 3 · 105), shifted respectively by �4.7r0 and 2r0 in the axial
direction to match the different core lengths.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

y/δ0.5

Fig. 11. Radial profiles of the mean axial velocity <u>/uc: (—)
obtained from LESaero at x = 50r0, (*) measurements of Panchapak-
esan and Lumley [44] (M = 0.08, ReD = 1.1 · 104) in the jet self-
similarity region.

C. Bogey, C. Bailly / Computers & Fluids 35 (2006) 1344–1358 1351
domain, the local decay constant B = (1/2)[d(uj/uc)/
d(x/r0)]�1 and the local spreading rate A = dd0.5/dx

are calculated and they are given in Fig. 10(a) and (b)
for 20r0 6 x 6 60r0. The variations of B and A with
the axial distance indicate clearly that the self-preserving
jet zone is not reached and would require a mesh extend-
ing further downstream. However, it appears also that B

and A may tend to values of about 6 and 0.09, respec-
tively, as x increases. These asymptotic values are in
accordance with the values of B and A measured in
the jet self-similarity region [44,45]. This agreement with
the self-similarity constants near the end of the compu-
tational domain led us to plot the mean velocity profile
for x = 50r0 in Fig. 11. It compares well with that mea-
sured in experiments far downstream from the nozzle.
The mean flow obtained by LES is therefore in agree-
ment with experimental data both for the transitional
region after the end of the potential core and for the
self-similarity region likely to be found further
downstream.

4.2. Turbulence intensities

The centerline profile and the radial profile for
x = 20r0 of the turbulent axial velocity <u 0u 0>1/2/uj,
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Fig. 10. Axial profiles from LESaero, (a), of the local centerline velocity dec
rate A = dd0.5/dx.
where the prime denotes the fluctuating quantity and
<Æ> the time average, are plotted in Fig. 12(a) and (b),
for LESaero and LESac. Results provided by the two
simulations are in good accordance, and this is espe-
cially striking for the radial profiles in Fig. 12(b) which
are very close. As for the mean flow, the location of the
boundaries does not significantly affect the development
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of the turbulence in the jet. The axial profile in Fig. 12(a)
reaches a peak for about x = 14r0, slightly after the end
of the potential core, in the transitional region where the
turbulent shear layers merge. The increase and the peak
value are compared successfully to recent particle image
velocimetry (PIV) measurements on Mach number
M = 0.9, similar Reynolds number jets. These compari-
sons support that the jet transition is well described by
the simulation. This is of importance for the direct noise
computation, since the end of the potential core is
known to be a region of significant noise generation [4].

For the study of the zone downstream from the core,
the turbulence intensities are investigated. They are gi-
ven by the ratios between the fluctuating velocities and
the local centerline mean velocity. In a high Reynolds
number jet, experiments [43] have shown that they be-
come self-similar only around 100 radii downstream
from the nozzle, where for example <u 0u 0>1/2/uc ’ 0.25
on the jet axis [44,45]. In the present simulation, the
self-similarity plateau may therefore not be reached,
which is supported by the centerline profile of <u 0u 0>1/

2/uc presented in Fig. 13(a). This quantity increases reg-
ularly in the same way as in the experiment of Arakeri
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Fig. 13. Centerline profiles of the turbulence intensity <u 0u 0>1/2/uc:
(—) from LESaero, (+) measurements of Arakeri et al. [32] (M = 0.9,
ReD = 5 · 105) shifted by �7.1r0 in the axial direction as in Fig. 12.
et al. [32], and tends to a value in agreement with the
measured self-similar value of 0.25. The radial profiles
of the turbulence intensities for x = 50r0 are then repre-
sented in Fig. 14. They agree fairly well with experimen-
tal profiles measured in the self-preserving region.

4.3. Integral length scales

The integral length scales on the jet axis are now
investigated. For this, the correlation function of the
axial fluctuating velocity Rð1Þ11 ðrÞ is calculated for points
located at (x,y = z = 0) by

Rð1Þ11 ðrÞ ¼
u0 xþ r=2ð Þu0 x� r=2ð Þh i

u02 xþ r=2ð Þh i1=2 u02 x� r=2ð Þh i1=2

and the longitudinal length scale is given by Lð1Þ11 ¼R1
0

Rð1Þ11 ðrÞdr.
The centerline length scales obtained for the present

simulated jet are presented in Fig. 15 in the turbulent re-
gion after the potential core, for 10r0 6 x 6 60r0. First,
there is no significant difference between the length
scales provided by the simulations LESaero and LESac.
Second, and this is an important key point, the length
scales increase apparently linearly as observed experi-
mentally, with a good agreement with the law measured
by Wygnanski and Fiedler [43]. This validates the two-
point correlations of the velocity field computed by
LES, and demonstrates that the jet spreading occurs
with a relevant increase of the size of the turbulent
scales. Note that slight differences are noticed with re-
spect to the linear increase of the length scales. They
might be generated by small oscillations shown by the
spatial correlation functions for large separation dis-
tances due to convergence issues.

4.4. Velocity spectra

The one-dimensional spectra of the u 0-velocity
Eð1Þu ðk1Þ are presented in Fig. 16 for x = 20r0 and
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c are the local filtering cut-off wave
numbers). Table 2

Wave numbers associated to the axial integral length scale, to the grid
cut-off, to the transverse Taylor scale and to the Kolmogorov scale, for
x = 20r0 and x = 50r0 on the jet axis

x = 20r0 x = 50r0

1=Lð1Þ11 160 50
kc 1100 700
1/kg 4800 2300
1/g 200000 110000
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x = 50r0 on the jet axis. They are obtained from the tem-
poral spectra Eu(f), using the Taylor hypothesis of a
frozen turbulence yielding k1 = 2pf/<u> and
Eð1Þu ðk1Þ ¼ Efðf Þ� < u > =ð2pÞ where k1 is the wave
number in the axial direction, f the frequency, and
<u> the mean axial velocity. The computations of
Eu(f) for the simulations LESaero and LESac involve
the final 6 · 104 and 3.5 · 104 iterations, as shown in
Table 1. The signal durations Tusp are chosen so that
D/(Tuspuj) = 6.5 · 10�4 and 1.1 · 10�3 in terms of
minimal Strouhal number. They are divided, respec-
tively, into 341 and 199 overlapping sections. The filter-
ing cut-off wave numbers kf

c, approximated by p/(2Dx)
where Dx is the local mesh spacing in the axial direction,
are also represented. As expected, the spectra collapse in
the vicinity of kf

c.
The two spectra from LESaero and LESac for

x = 20r0 are superposed. Their shapes are basically dif-
ferent from the shape of the spectrum for x = 50r0.
The latter spectrum displays a decrease possibly follow-
ing the k�5=3

1 dimensional law just before the grid cut-off
wave number, but such a behaviour is not observed for
the the two former spectra. Therefore an inertial zone of
turbulence where the energy is transferred from larger to
smaller scales seems to be found for x = 50r0 but not for
x = 20r0.

To discuss this, characteristic wave numbers of the
turbulence, corresponding to the axial integral scales,
to the transverse Taylor scales kg and to the Kolmogo-
rov scales g, are reported in Table 2 for the two points
where the u 0-spectra are considered. The Taylor and
Kolmogorov scales are calculated using the relations
of isotropic turbulence, i.e. kg ¼ ð15Lð1Þ11 m=u0Þ1=2 and
g ¼ ðLð1Þ11 Þ

1=4ðm=u0Þ3=4. There is a large difference between
the Taylor and the Kolmogorov wave numbers, which
implies that an inertial zone is likely to be found in
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the two cases. However, the grid cut-off wave numbers
are not located identically with respect to the integral-
scale wave numbers. For x = 20r0, the ratio between
kc and 1=Lð1Þ11 is about 7, whereas it is about 14 for
x = 50r0. Thus the inertial zone for x = 20r0 may not
be taken into account by the grid, whereas a part of
the inertial zone for x = 50r0 may be resolved.
5. Acoustic field

The pressure field provided directly by the LESac
simulation is now investigated to determine if it agrees
with that expected for a high Reynolds number, sub-
sonic jet.

5.1. Sound pressure spectra

Sound pressure spectra are presented in Fig. 17. They
are calculated at four locations, defined by (x = 29r0,
r = 11r0), (x = 29r0, r = 15r0), (x = 20r0, r = 15r0) and
(x = 11r0, r = 15r0), by averaging over 31 points equally
spaced azimuthally on half a circle. These locations are
subsequently referred to by angles h of 30�, 40�, 60� and
80�, respectively. The angles are taken from the jet axis
direction, with an origin chosen around the end of the
potential core where the dominant sound sources are
likely to be found. As shown in Table 1, the final
3.3 · 104 iterations of the simulation are used for com-
puting the spectra. The total time sampling Tac is di-
vided into 199 overlapping sections, and is such that
D/(Tacuj) = 1.2 · 10�3 in term of minimal Strouhal
number.

The spectra of Fig. 17(a) appear basically different
according to the observation angle. The downstream
spectra for h = 30� and 40� are dominated by a low-fre-
quency component with a peak for a Strouhal number
St ’ 0.3. The sideline spectrum for h = 80� displays a
more broadband shape with a maximum observed for
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Fig. 17. (a) Sound pressure spectra, in linear scales, as a function of Strouhal
r = 15r0, (� � �) x = 20r0 and r = 15r0, (–––) x = 11r0 and r = 15r0, i.e. for angl
spectrum, in logarithmic scales, for h ’ 30�. · measurements of Jordan et al.
amplitude for the comparison of the shapes.
St ’ 0.7. Finally, the spectrum for h = 60� is intermedi-
ary since its shape exhibits the properties of the two for-
mer shapes with two maxima for about St ’ 0.4 and
St ’ 0.75 which are however not very pronounced.
The variation of the sound spectra as a function of the
observation angle is in good agreement with the obser-
vations of the noise radiated by jets with high Reynolds
numbers [15]. The effective Reynolds number of the
computed jet therefore corresponds to the Reynolds
number given by the inflow conditions. This is impor-
tant to demonstrate the feasibility of computing high
Reynolds number flows by LES.

Moreover, the present results support the idea pro-
posed by Tam et al. [46] which evidenced two distinct
components in jet noise from a large database of spectra
for both subsonic and supersonic jets: the first compo-
nent radiates more strongly in the downstream direction
and could be associated with large scales/instability
waves, and the second one dominates in the sideline
and the upstream direction and could be attributed to
the fine-scale turbulence. The first noise mechanism
has recently been investigated by means of numerical
simulations of low or moderate Reynolds number jets,
and can be equally connected to the decay of instability
waves [2] or to the periodic intrusion of vortical struc-
tures in the jet [4] at the end of the potential core. The
second noise mechanism needs a sufficiently high Rey-
nolds number to be observed, and thus can be looked
into numerically only by an LES.

For a more quantitative comparison with experi-
ments, the downstream spectrum for h ’ 30� is repre-
sented in Fig. 17(b) with the corresponding data of
Jordan et al. [31] measured in the acoustic far-field
and arbitrarily shifted in amplitude for the comparison.
We can thus focus on the spectral shape, see in Section
5.3 for the discussion on the amplitude. The computed
and experimental spectral shapes are in good agreement.
The peaks are obtained for close Strouhal numbers of
St ’ 0.3 and St ’ 0.25, respectively. The decreases for
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number St = fD/uj for: (—) x = 29r0 and r = 12r0, (- � - �-) x = 29r0 and
es h from the jet axis of about 30�, 40�, 60�, 80� respectively. (b) Sound
[31] (M = 0.9, ReD = 106, for 30� and 60r0 from the nozzle), shifted in
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high Strouhal numbers are also quite similar. The com-
puted spectrum seems however slightly more marked for
high frequencies. This little discrepancy may be due to
the locations of the observation points: measurements
are made in far-field, typically in the cone of silence of
the jet where high frequency noise is lacking because
of refraction effects, whereas the computed spectrum is
only obtained for x = 29r0 and r = 11r0 where fine-scale
noise may not be completely negligible. The possible
presence of fine-scale noise is also illustrated by the spec-
trum for h ’ 40� where the high-frequency component is
clearly enhanced with respect to the spectrum for
h ’ 30�.

In the sideline direction, the pressure spectrum has a
broadband shape typical of a high Reynolds number,
and it reaches a peak for Strouhal St ’ 0.7 which ap-
pears higher than the peak at St ’ 0.4 usually displayed
by far-field sideline experimental spectra. This shift in
frequency may partially be due to the fact that the com-
puted spectrum is obtained only at x = 11r0 and
r = 15r0. Thus, the fine-scale noise generated in the shear
layers and at the end of the potential core is preferen-
tially observed, rather than the fine-scale noise radiated
downstream. However an extrapolation of the sound
waves in the far acoustic field, using for instance Kirch-
hoff method [47], is likely not to modify the sideline
spectrum sufficiently to recover a maximum around
St ’ 0.4. We rather think that the shift towards higher
Strouhal numbers with respect to measurements is a fea-
ture of the present calculation. Its origin may be found
in the shear-layer transition as also discussed in Section
5.3 for the sound pressure levels. Note finally that the
shape of the sideline spectrum calculated from similar
LES was recently found not to depend significantly on
the inflow conditions [16].

5.2. Azimuthal cross-correlations

The azimuthal cross-correlations of the fluctuating
pressure are now presented in Fig. 18(a). They are calcu-
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Fig. 18. (a) Azimuthal cross-correlations of the fluctuating pressure for: (—)
with measurements: (5) Maestrello [48] (M = 0.85, ReD = 5.1 · 105, h ’ 30�
lated for the four observation points defined in
Fig. 17(a) corresponding to h ’ 30�, 40�, 60� and 80�, by

Rppð/Þ ¼
p0 /0ð Þp0 /0 þ /ð Þh i

p02 /0ð Þh i1=2 p02 /0 þ /ð Þh i1=2

where / is the azimuthal angle, and /0 an arbitrary
reference angle.

The correlation functions differ greatly according to
the observation angle h, as for the sound spectra. The
correlation level decreases spectacularly as h increases,
as is found in experimental observations [48,49] on high
Reynolds number, subsonic jets. For h ’ 30� and
h ’ 40�, the correlation levels are very high, with for
example Rpp ’ 0.4–0.5 for / = 180�. For h ’ 60� and
h ’ 80�, the correlation functions decrease rapidly with
the azimuth, and the sound field is only correlated over
a range of about 30�. There is a good correspondence
between the changes in the spectra and in the azimuthal
correlations. This supports the presence of two noise
mechanisms: a first one associated to large scales within
the jet generating downstream a highly correlated sound
field, and a second one associated to turbulence and
responsible for a more isotropic and decorrelated sound
field.

Comparisons with experimental correlation functions
are shown in Fig. 18(b) for h = 30� and h = 80�. For
both angles, there is a good agreement with measure-
ments of Maestrello [48] conducted on high subsonic
jets. This validates the spatial structure of the sound
field computed by LES.

5.3. Sound pressure levels

Contours of the overall sound pressure levels in dB
are presented in Fig. 19. They illustrate the strong direc-
tivity of jet noise in the downstream direction, and also
show that the inflow forcing near x = r0 has negligible
effects on the radiated sound field. To compare with
experiments, the 1/d decay law is used to extrapolate
far-field sound levels from these near-field levels. The
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h ’ 30�, (– �– �–) h ’ 40�, (� � �) h ’ 60�, (–––) h ’ 80�. (b) Comparison
), (4) Maestrello [48,49] (M = 0.7, ReD = 4.3 · 105, h ’ 90�).
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two points corresponding to radiation angles about 30�
and 80� are considered to evaluate both the downstream
and sideline sound pressure amplitudes.

The sound radiation at about 30� from the jet axis is
first studied. The sound level for the point x = 29r0 and
y = 12r0 (125.2 dB) is extrapolated to a distance of 60
radii from the source region assumed to be at x = 10r0

on the jet axis, at the end of the potential core [4]. The
extrapolated level is 116.7 dB, which is in good agree-
ment with measurements at h = 30� for cold (Mollo-
Christensen et al. [33]: 116.3 dB, Tanna [34]: 114.6 dB)
and isothermal (Jordan et al. [31]: 115.5 dB) jets at
Mach 0.9.

The sound radiation in the sideline direction is then
investigated. The sound level obtained at x = 11r0 and
y = 15r0 (124.1 dB) is extrapolated using the 1/d decay
law of acoustic waves, from a source region chosen to
be at x = 7r0 on the jet axis as suggested by the snap-
shots of pressure fields of Fig. 6(b). This defines an angle
of sound emission from the jet axis of h ’ 75�. The
sound level at 60 radii from the source region is found
to be 112.3 dB, which is 4 or 5 dB higher than the corre-
sponding experimental data at h ’ 75� (Jordan et al.
[31]: 106 dB, Mollo-Christensen et al. [33]: 108.2 dB,
Tanna [34]: 108.3 dB). The origin of this discrepancy is
still not clearly identified, but it is expected to be found
in the shear-layer turbulence which generates an impor-
tant part of the sideline noise [42]. This level overestima-
tion may result from the turbulent transition occurring
in the shear layer, which is likely to depend appreciably
on the jet inflow forcing. It was indeed very recently
found that removing the first four azimuthal mode from
the forcing can lead to a reduction of 2 dB in the sideline
noise levels [16]. However further investigations are
required to overcome this amplitude problem.
6. Conclusion

A circular isothermal jet with a Mach number
M = 0.9 and a Reynolds number ReD = 4 · 105 is com-
puted by large eddy simulation (LES) on two grids to
investigate both the flow and the sound fields. Instead
of an eddy-viscosity model, a filtering is applied explic-
itly to ensure the dissipation of the subgrid scales. The
filtering is selective enough so that the LES results,
related to the large-scale features, are not significantly
affected by the choice of its application parameters.

The flow fields provided by the two simulations are
very similar which shows the independence of the
numerical results regarding the location of the mesh
boundaries. The mean flow and turbulence properties,
as well as the sound pressure field, compare favourably
with experimental data on similar jets. The effective Rey-
nolds number of the simulated jet appears also to corre-
spond well to the high Reynolds number ReD defined by
the inflow conditions. This is particularly supported by
the behaviour of the sound spectra and azimuthal corre-
lations which vary strongly as a function of the observa-
tion angle. The present observations are also in
accordance with the theory suggesting that there would
be two components in jet noise: a first one associated to
large scales, radiating preferentially downstream, and a
second one usually associated to the fine-scale turbu-
lence. However there is a problem with the sideline
sound levels which are higher than expected and this
needs to be further investigated.

The present work is thus a necessary preliminary step
before using LES data to investigate noise generation
mechanisms [18], but subsequent works are required to
clearly understand what must be done to perform LES
of jets with full confidence. For this, the database pro-
vided by the present paper can be used as a reference
solution, to study for instance the effects on the jet devel-
opment and on its radiated sound of the jet initial
conditions [16] or those of the traditional subgrid
modellings proposed in the literature [17].
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Appendix A. A 21-point stencil selective filter

To remove grid-to-grid oscillations likely to appear in
the diagonals of Cartesian grid sections, a selective filter
was developed. It is fourth-order only, but its coeffi-
cients dd

j are optimized so that the dissipation is mini-
mized up to kD ¼ p=

ffiffiffi
2
p

, where D is the distance



Table 3
Coefficients dd

j for the selective filter on 21 points ðdd
�j ¼ dd

j Þ
dd

0 = 0.12254360
dd

1 = �0.11724974
dd

2 = 0.10266357
dd

3 = �0.08202111
dd

4 = 0.05939469
dd

5 = �0.03857436
dd

6 = 0.02209702
dd

7 = �0.01086446
dd

8 = 0.00436333
dd

9 = �0.00129033
dd

10 = 0.00020959
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Fig. 20. Damping function, in logarithmic scales, of the 21-point
stencil selective filter.
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between two points located in the diagonals of a section
of a uniform grid of size step Dx ðD ¼

ffiffiffi
2
p

DxÞ. The coef-
ficients dd

j of the filter are presented in Table 3 and the
corresponding damping function DkðkDÞ ¼ dd

0þP10
j¼12dd

j cosðjkDÞ is displayed in Fig. 20.
As for selective filters previously proposed by the

authors [11], the two criteria Dk 6 2.5 · 10�3 and
Dk 6 2.5 · 10�4 are used to provide kp/D and ka/D, i.e.
the accuracy limits indicating the waves, respectively,
properly and accurately resolved. The accuracy limits
are found to be kp=D ¼ 4.02=

ffiffiffi
2
p

and ka=D ¼ 4.76=
ffiffiffi
2
p

.
These values agree well with the accuracy limit of about
k/Dx = 4 imposed in the Cartesian grid directions.
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