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ABSTRACT 
The need of accurate and efficient numerical solvers in computational aeroacoustics has 
motivated the development over the last two decades of low-dispersion and low-dissipation 
schemes as an alternative to standard methods of computational fluid mechanics. These 
numerical methods have now reached maturity, even if progress is still necessary to take 
account of specific configurations. The present paper provides a short overview of some 
recent developments and applications of these methods, and is organized as follows. 
Motivations and numerical advances are first considered. Then the paper focuses on the 
use of direct noise simulations to improve our understanding of sound generation by 
turbulent flows. Applications to subsonic and supersonic jet noise are presented. 

1 INTRODUCTION 
The spectacular development of computational aeroacoustics since the early nineties has 

allowed the emergence of the direct computation of aerodynamic noise. There is still a lot of 
scope for progress, in particular for the numerical methods and for the applications to more 
complex configurations, but Direct Noise Computation (DNC) is currently a reliable and 
accurate tool, which can reproduce studied physics with high fidelity. DNC consists in 
solving the compressible Navier-Stokes equations to determine simultaneously the 
aerodynamic field and the acoustic field in a same domain. This approach is quite different 
from more classical modellings in which aerodynamics and acoustics are decoupled, such as 
the Lighthill analogy. It is consequently rather natural to apply this approach for studying in 
great detail noise mechanisms and modellings, and for evaluating noise reduction solutions. 
The resolution of more theoretical problems concerning aeroacoustics and propagation in the 
presence of a flow can also be performed by this way. Recent excellent technical reviews on 
computational aeroacoustics have moreover been written by Colonius and Lele [1], Wang et 
al. [2] or by Colonius [3] for the key problem of non-reflecting boundary conditions.  

In the present paper, the constant progress in numerical methods is outlined in section 2 
by the presentation of an optimized low-storage 4th-order Runge-Kutta scheme for which the 
dissipation error is significantly reduced. Section 3 is devoted to noise radiated by round 
subsonic jets, and thus to broadband noise associated with high-Reynolds-number turbulent 
free shear flows. The analysis of noise sources by a causality method is illustrated. In section 
4, the noise radiated by a planar imperfectly expanded supersonic jet is discussed. In this case, 
the presence of a feedback mechanism introduces a frequency selection. The involved scales, 
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namely the scales associated with shocks, turbulence and acoustics are also strongly disparate. 
Concluding remarks and works in progress are finally provided. 

2 NUMERICAL METHODS 
The algorithms used for Direct Noise Computation require a continuous effort of 

development to improve numerical efficiency, allowing us to deal with more complex 
physical and geometrical configurations. A review of the use of finite-difference schemes is 
for instance available in Bailly & Bogey [4]. 

As an example of recent development which could significantly improve the accuracy of 
numerical simulations, the optimized Runge-Kutta scheme developed by Berland et al. [5] is 
now presented. This point illustrates the effort made in the development of low-dispersion 
and low-dissipation schemes for solving unsteady problems in fluid mechanics. 

Consider the following semi-discrete differential equation 
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by comparison between the exact amplification factor given by Re = exp(-iω∆t) and the 
effective amplification factor of the scheme, which takes the following form 
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Stability requires an amplification rate so that |Rs(ω∆t)| < 1, and the integration errors are 
measured by comparing Rs = |Rs| exp(-iωs∆t) with the exact amplification factor Re in terms 
of dissipation error with 1 - |Rs|, and of phase error with |ωs∆t-ω∆t|/π. 

The amplification rates of some classical schemes are reported in Figure 1 as a function 
of the normalized angular frequency ω∆t. For waves up to four points per wavelength, i.e. for 
ω∆t ≤ π/2, there is more than three orders of magnitude between the dissipation of the 
classical Runge-Kutta scheme and the optimized low-storage scheme of Berland et al. [5],  
both providing a formal 4th-order integration. Note also the good behavior of the optimized 
scheme for the phase error, and the large time-step range of stability, ω∆t < 3.82, with respect 
to the classical Runge-Kutta scheme yielding ω∆t < 2.83. 
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Figure 1: Modulus and phase error of the amplification factor (1) as a function of the angular frequency, in 

logarithmic scales: ––– standard 4th-order RK algorithm, –o– standard 8th-order RK, + LDDRK46 Hu (1996),  
x LDDRK56 Hu (1996), –●– 4th-order 2N-RK Carpenter (1994), –◊– optimized. 4th-order 2N Stanescu (1998), 

▬ ▬  optimized 2nd-order RK Bogey (2004),  ▬▬  optimized 4th-order 2N-RK Berland (2006).  



This example is reported to emphasize that new efficient algorithms have been developed 
over the last years, with the aim of controlling numerical dispersion and dissipation for 
solving unsteady nonlinear problems. 

3 SUBSONIC JET NOISE 
The prediction of subsonic jet noise is one of the oldest topics of aeroacoustics even if our 

understanding of noise mechanisms remains incomplete. The final goal of this research is the 
reduction of noise in urban environments. Indeed society cannot tolerate additional noise 
pollution, and traffic growth must be compensated by innovative noise reduction methods. 
This environmental challenge is also strategic for the economic development of the 
aeronautics industry. As pointed out in the introduction, the direct computation of 
aerodynamic noise using compressible large-eddy simulations is approaching maturity, and 
subsonic jet noise has been one of the first applications, with the direct numerical simulation 
(DNS) by Freund [6] of a jet at Mach number 0.9 and at Reynolds number based on the jet 
exit velocity and the jet diameter of 3600. The grid requirement of DNS is however difficult 
to satisfy for the computations of laboratory experiments with typical Reynolds number ReD 
between 1e5 and 1e6. In addition, flow and noise characteristics are no longer dependent on 
the Reynolds number roughly for ReD ≥ 2.5e5. This observation is directly linked to the 
laminar or turbulent state of the nozzle exit boundary layer. Therefore, compressible Large 
Eddy Simulations (LES) appear relevant to develop DNC and to reproduce Reynolds number 
effects. 

To illustrate this point, Figure 2 displays snapshots of the vorticity norm and of the 
fluctuating pressure for jets at Mach number 0.9 but at different Reynolds numbers in order to 
investigate the alterations on the flow development and on the radiated acoustic field. In the 
present work, the LES strategy is based on explicit selective filtering with spectral-like 
resolution combined with low-dispersion and low-dissipation numerical algorithms, see the 
discussion in Bogey and Bailly [7]. As the Reynolds number decreases, the jet flow changes 
significantly, and develops more slowly upstream of the end of the potential core, but more 
rapidly downstream.  
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Figure 2: Jets at Mach M=0.9 and different Reynolds numbers. Snapshots of the vorticity norm in the flow and 

of the fluctuating pressure p' outside, in the plane z=0. The pressure color scale is p'=[-70, 70] Pa.. 

 
The acoustic field radiated in the sideline direction appears to vanish progressively as the 

Reynolds number is decreased, which can be directly linked to the absence of fine scale 
turbulence in the shear layers. Quantities such as mean velocity, jet spreading, turbulence 
intensity, integral length scales, spectra, acoustic azimuthal correlations and power laws have 
also been investigated as a function of the observer angle for circular jets at Mach number 0.6 
and 0.9, with Reynolds numbers varying from 1.7e3 to 4e5 in Bogey and Bailly [8, 9]. The 
simulations suggest the presence of two sound sources: a Reynolds-number-dependent 



source, predominant for large radiation angles, connected to the randomly-developing 
turbulence, and a deterministic source, radiating downstream, related to a mechanism 
intrinsic to the jet geometry, which is still to be comprehensively described. This view agrees 
well with the experimental results displaying two distinguishable components in turbulent 
mixing noise. 

Furthermore for the acoustic spectra of both components, a frequency scaling by a 
Strouhal number, St = fD/uj, f being the frequency, D the jet diameter and uj the jet velocity, 
appears suitable. However, the evolution of the peak is clearly different in the two directions, 
namely in the sideline direction and in the downstream direction. For observation angles θ ≈ 
90 deg., the spectral peak is Strouhal number dependent, and should be connected to the 
turbulence development in the shear layers between the nozzle and the end of the potential 
core. This evolution is also clearly visible on the spectral shape. In the downstream direction, 
the frequency peak is weakly dependent on the Reynolds number, with St ≈ 0.25, and this 
radiation can be linked to the periodic intrusion of vorticity at the end of the potential core.  

The acoustic radiation by the turbulence developing in the shear layers seems partially 
understood, and active control or flow forcing by impinging micro-jets could be applied to 
achieve noise reduction. On the contrary, the noise mechanism at the end of the potential core 
is not well explained with our current knowledge of jet noise. Frequency selection of a global 
mode for subsonic cold jets is not predicted by the instability theory for instance, and is still 
to be clearly described. Based on this remark, it should be also underlined that there is still a 
role for theory, in particular to support the interpretation of these simulations. 

Another possible way to establish direct links between turbulent flow events and emitted 
sound waves and to help towards the identification of noise-source mechanisms, is to apply a 
causality method to LES data, as proposed in Bogey and Bailly [9]. For that, the normalized 
cross-correlation between the jet turbulence at ( )01,tx   and the radiated pressure at ( )ttx +02,   

is introduced 
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where the quantity f is any relevant calculated variable. Some results are reported in Figure 3 
where f is the norm of the vorticity along the jet axis. The particular role played by the flow 
dynamic at the end of the potential core is again emphasized for the noise radiated in the 
downstream direction whatever the Reynolds number may be. This kind of investigation 
clearly needs more work using advanced signal processing and alternative localization 
techniques such as antenna or conditional statistics. 
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Figure 3: Correlations between the vorticity norms along the jet axis at points + and the acoustic field at point 
M40 indicated by ●. Time delay tuj/D versus location x/r0 along the jet axis, ––– time of propagation along the 

acoustic rays,  ….. end of the potential core, color scale: [-0.14 0.14] (white: [-0.035 0.035]). 

 
 



To conclude and to provide a critical review, even if high-fidelity flow and noise 
simulations are now performed, it remains some difficulties such as the generation of 
artificial turbulence at the inflow boundary conditions to mimic the turbulent boundary layer 
or the thicker boundary layers used in numerical simulations, typically δθ/D ≈ 1e-2 instead of 
1e-3 in experiments, leading to some potential shifts with measurements for the potential core 
length or spectral peaks in the initial shear-layer. 

4 SUPERSONIC JET NOISE 
Additional noise components generated by supersonic jets, and especially screech tones, 

contribute significantly to acoustic fatigue of combat aircrafts. Shock-associated noise 
radiates primarily in the upstream direction and consequently increases also notably cabin 
noise of modern commercial aircrafts. Noise of imperfectly expanded supersonic jets has 
been studied experimentally and theoretically in order to identify the interactions between 
turbulence and the quasi-periodic shock-cell structure. These interactions generate upstream-
propagating sound waves. A resonant loop is then obtained when acoustic waves are 
diffracted by the nozzle lips and thus excite the initial shear layers. However, predictions are 
still qualitative and provide basically the fundamental frequency associated with the feedback 
loop. Further details can be found in the review paper of Raman [10]. The determination of 
the amplitude of the radiated acoustic field remains a difficult challenge, and is directly 
connected to a clear understanding of the shock - vortex interactions, as proposed by Suzuki 
and Lele [11] for the case of a planar shear layer. 

This issue has been recently investigated by Berland et al. [12] with the compressible 
large eddy simulation of screech tones generated by a three-dimensional planar 
underexpanded jet. The jet operates at fully expanded Mach number Mj = 1.55, with a 
Reynolds number Reh = 6e4 based on the jet exit velocity uj and of the nozzle height h. The 
ratio between the exit pressure and the ambiant pressure is pe/pamb = 2.09, corresponding to 
maximum screech noise generated by a rectangular nozzle with large aspect ratio, as shown 
experimentally by Krothapalli et al. [13]. Numerical parameters and validations can be found 
in the paper previously mentioned. The flow and especially the shock-cell structure are in 
agreement with the literature. Furthermore the upstream acoustic field exhibits harmonic 
tones that compare correctly to screech tones observed on rectangular jets in terms of 
frequency, amplitude and phase shift on both sides of the jet.  

As an illustration, Figure 4 displays a snapshot of the direct noise computation. 
Compression shocks corresponding to high-density gradients are seen inside the jet plume. 

 

 
Figure 4: Computation of the generation of screech tones in an under-expanded supersonic jet, fully expanded 

jet at Mach number 1.55, Reynolds number 6e4.Snapshot of the density gradients, of the spanwise vorticity and 
of the near-field pressure, in a plane perpendicular to the spanwise direction. The nozzle lips are in black. 

 



Upstream-propagating wave-fronts associated with screech tones radiation are clearly 
visible on both sides of the jet. The Strouhal number corresponding to the screech frequency 
is equal to St = fs h / uj ≈ 0.126. A further study of the simulation data has permitted to locate 
the screech source near the third shock-cell, as noticed in the experiments of Krothapalli et al. 
[13] among others, and to provide evidences of the connection between the shock-leakage 
process, proposed by Suzuki and Lele [11] and the generation of screech tones. 

The far-field noise is extrapolated by using the linearized Euler equations in order to 
compute acoustic spectra. Power spectral densities of the pressure fluctuations are reported in 
Figure 5 for different observation angles θ with respect to the downstream direction. Three 
contributions can be found: screech noise, broadband shock-associated noise and mixing 
noise which has already been discussed in the previous section devoted to subsonic jet noise. 
For θ = 155 deg., the spectrum is dominated by the fundamental screech tone and its 
harmonics. For an observer in the sideline direction, θ = 80 deg., the fundamental screech 
tone is no longer visible whereas its first harmonic dominates the radiated field. Two 
broadband peaks can also be noticed, a low-frequency contribution at St ≈ 0.07 associated 
with the mixing noise and a higher frequency contribution over 0.1 ≤ St ≤ 0.2. In the 
downstream direction, at θ = 40 deg., the mixing noise becomes the principal noise source.  
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Figure 5: Computation of the generation of screech tones in an under-expanded supersonic jet, fully expanded at 
jet Mach number 1.55, Reynolds number 6e4. Far-field sound pressure spectra obtained at θ = 155 deg. (A), 80 

deg. (B) and 40 deg. (C) with respect to the flow direction (D=10dB between two Y-ticks) 

 
The present simulation is thus able to capture the three noise sources and to correctly 

reproduce broadband spectra as a function of the observer position, in agreement with the 
literature, as summarized by Raman [10] or by Tam [14]. 

5 CONCLUSIONS 
Over the last years, significant progress has been done to improve the accuracy of Navier-

Stokes solvers to perform Direct Noise Computation, in term of dissipation but also in term 
of dispersion for time-dependent simulations. It can be also observed that it is often easier to 
increase algorithm accuracy than the number of grid points of the mesh. And this 
recommendation also holds for commercial codes. DNC has also contributed to emphasize 
the role of silent boundary conditions combining non-reflecting outflow boundary conditions 
and sponge layers. 

 



Turbulence modelling in large-eddy simulations remains a open key-issue for DNC, and 
needs to be objectively examinated with the knowledge of the transfer function of the 
numerical algorithm, as suggested by Domaradzki and Adams [15]. Simulation of realistic 
transitional shear layers at higher Reynolds numbers is still problematic and often leads to 
amplified local turbulence and noise sources. The methodology to specify the inflow 
boundary conditions of turbulent boundary layers in the framework of DNC likewise remains 
a challenging task, the reader may refer to Xu and Martin [16] for a recent discussion. 
Finally, validation and analysis of unsteady results, convergence of statistics for signal 
processing or comparison with low-resolved PIV data require precaution. Moreover, two-
point space-time correlations are of particular importance for noise generation. 

Among different topics in progress that can be mentioned, numerical study of more 
complex geometries involving high-Reynolds number flows requires the use of high-quality 
block structured grids. Several research teams develop such techniques with the aim of 
aeroacoustic simulations, as in Sherer and Scott [17]. Efforts are also now provided to 
develop unstructured approaches for realistic applications, even if accuracy and robustness 
seem still difficult and costly to preserve. Accuracy is also difficult to retain for transonic and 
supersonic flows in the context of aeroacoustics applications. 
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