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Abstract

Explicit numerical methods for spatial derivation, filtering and time integration are proposed. They are developed

with the aim of computing flow and noise with high accuracy and fidelity. All the methods are constructed in the same

way by minimizing the dispersion and the dissipation errors in the wavenumber space up to kDx ¼ p=2 corresponding to
four points per wavelength. They are shown to be more accurate, and also more efficient numerically, than most of the

standard explicit high-order methods, for uniform and slowly non-uniform grids. Two problems involving long-range

sound propagation are resolved to illustrate their respective precisions. Remarks about their practical applications are

then made, especially about the connection with the boundary conditions. Finally, their relevance for the simulation of

turbulent flows is emphasized.
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1. Introduction

The need of highly accurate numerical methods was recognized from the earliest stages in the develop-

ment of Computational AeroAcoustics [1]. The propagation of sound waves in far-field requires long-time
integration with minimal dissipation and dispersion, and this cannot be done using the schemes generally

used in Computational Fluid Dynamics. Therefore, new schemes with higher accuracy were proposed. The

first ones were relative to the spatial derivation with finite-difference schemes showing dispersive properties

optimized in the wavenumber space: among them, the explicit Dispersion-Relation-Preserving (DRP) [2],

implicit compact [3–7], and ENO schemes [8]. The filtering which must be used to ensure numerical stability

was then improved to decrease the dissipative effects on the resolved wavenumbers, and both explicit [9,10]
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and implicit selective filters [3,11] were provided. Finally, time integration was also optimized for noise

computation, and low-dissipation and low-dispersion Adams–Bashforth [2] and Runge–Kutta algorithms

[4,12–14] were formulated. The list just drawn above is not exhaustive, and other numerical methods were

improved, such as the MacCormack schemes [15], for instance.

The present work is in keeping up with the more general pattern of computing noise directly from the

unsteady compressible Navier–Stokes equations. This approach is very attractive, since both the flow and

the sound field are intended to be calculated with a high precision by the same computation. In this way, not

only the sound propagation but also the noise generation must be taken into account numerically, and the
turbulent flow must be correctly described to provide the physical acoustic sources. Thus, the use of accurate

schemes is crucial as much for the flow simulation as for the sound propagation itself. This issue is of great

importance using the Large Eddy Simulation (LES) approach [16,17], where the turbulent scales are cal-

culated up to the grid cut-off wavenumber, whereas effects of the unresolved scales are modelized [18]. In

LES, the numerical algorithm must account for the spectral cut-off properly [19], by introducing negligible

dissipation and dispersion on the resolved scales, and this requirement is still more acute with the modelings

based on dynamic procedures [20] which evaluate the subgrid terms from the smaller resolved scales. It has

been recently demonstrated that numerical errors can exceed the magnitude of the subgrid terms [21], and
that a poor calculation of the smaller scales can significantly modify the contribution of these terms [22].

The motivation of the present work is to provide the numerical methods necessary for an explicit al-

gorithm, following the requirements listed above. Schemes are developed in the same way as those specific

to Computational AeroAcoustics. However, instead of demanding an accuracy limit for about seven points

per wavelength such as the DRP scheme [2], the spatial-discretization methods must calculate the waves up

to four points per wavelength with the aim of dynamic LES subgrid models. The time-integration methods

must also have better stability properties than those found in the literature [4,12,13]. In the present work,

central finite-difference schemes for spatial-derivation, selective filters for removing grid-to-grid oscillations,
and low-storage Runge–Kutta algorithms for time advancement are optimized by minimizing their dis-

persion and dissipation errors for the same range of wavenumbers. Test filters with characteristics improved

in the wavenumber space are also proposed for LES. Great attention is drawn to develop formulations with

a high accuracy, but also with a high numerical efficiency to decrease their computational costs. Systematic

comparisons with standard explicit methods are made, and two basic test problems are solved. The first one

is a long-range propagation problem, and the second one is devoted to LES since waves with four points

per wavelength are involved. The connection of the optimized schemes with boundary conditions and their

properties for non-uniform grids are then discussed, and the issue of their applications for simulating
turbulent flows, especially using LES, is addressed.

Optimized finite-difference schemes, selective filters, low-storage Runge–Kutta algorithms and test filters

are presented in Sections 2–5 respectively. Dispersive and dissipative properties are shown, and both nu-

merical accuracy and efficiency are reported. In Section 6, the test problems are solved using the optimized

and standard methods. Informations on the practical applications of the optimized schemes are given in

Section 7. Concluding remarks are drawn in Section 8. Finally, the coefficients of the schemes are provided

in appendices A, B, C and D.
2. Finite-difference schemes for spatial derivation

The spatial derivative ou=ox at x0 can be approximated by a central, 2N þ 1 point stencil, finite-difference
scheme as

ou
ox

x0ð Þ ¼ 1

Dx

XN
aju x0ð þ jDxÞ; ð1Þ
j¼�N
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where Dx is the spacing of a uniform mesh, and the coefficients aj are such as aj ¼ �a�j, providing a scheme

without dissipation. For standard schemes, the coefficients aj are determined to cancel the terms of the

Taylor series of (1) so that the maximum order is reached. Thus, the standard schemes using 9, 11 and 13

points, hereafter referred to as FDs9p, FDs11p and FDs13p, are of order 8, 10 and 12, respectively. Their

coefficients are reported in Appendix A.

In this work, following Tam and Webb [2], schemes are constructed from their dispersion properties. By

applying spatial Fourier transform to (1), the effective wavenumber k� of the scheme is given by

k�Dx ¼ 2
XN
j¼1

aj sinðjkDxÞ:

The dispersion error is the difference between the effective and the exact wavenumbers k� and k. Finite-
difference schemes using 9, 11 and 13 points, referred to as FDo9p, FDo11p and FDo13p, are developed so

that the dispersion error is small for a large range of wavenumbers up to kDx ¼ p=2. They are of fourth

order, and their coefficients aj are defined to minimize the integral errorZ lnðkDxÞh

lnðkDxÞl
jk�Dx� kDxjdðlnðkDxÞÞ;

where the wavenumber limits are ðkDxÞl ¼ p=16, and ðkDxÞh ¼ p=2 for FDo9p and FDo11p, but 3p=5 for
FDo13p. The coefficients aj thus determined are provided in Appendix A.

The relation between the effective and the exact wavenumbers for the optimized schemes is shown in

Fig. 1 for 0 < kDx < p. The schemes are low dispersive as long as there is a good superposition with the line

k�Dx ¼ kDx. Increasing the number of points, from N ¼ 3 to 6, allows apparently to decrease the dispersion

error for short waves. One must also note that the grid-to-grid waves with kDx ¼ p are never resolved.

The error between the effective and the exact wavenumbers, EkðkDxÞ ¼ jk�Dx� kDxj=p, is represented in

Figs. 2(a) and (b) for the standard and the optimized schemes, respectively, for p=86 kDx6 p and in

logarithmic scales. The optimized schemes are clearly less dispersive than the standard ones for short waves
with kDx > p=4. The reduction of the error is particularly important for the wavenumbers near kDx ¼ p=2,
with at least one order of magnitude between the optimized and the standard schemes. The optimized

schemes are also more dispersive for long waves because of their lower formal order, but the dispersion

error is then very small, about or less than 10�5.
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Fig. 1. k�Dx versus kDx for the optimized finite-difference schemes: - - -, FDo9p (N ¼ 4); —, FDo11p (N ¼ 5); � � � �, FDo13p (N ¼ 6)

and -�-�-� for the DRP scheme of Tam and Webb [2] (N ¼ 3).



 π/8  π/4  π/2   π 
10

−5

10
−4

10
−3

10
−2

10
−1

|k
∆x

k*
∆x

|/
π

 π/8  π/4  π/2   π 
10

−5

10
−4

10
−3

10
−2

10
−1

|k
∆x

–k
*∆

x|
/π

Fig. 2. Dispersion error, in logarithmic scales, for: (a) -�-�-� the three standard schemes FDs9p, FDs11p and FDs13p; (b) the optimized

schemes - - -, FDo9p; —, FDo11p and � � � � FDo13p.
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To compare quantitatively the finite-difference schemes, two accuracy limits are estimated from the

arbitrary criteria Ek 6 5� 10�4 and Ek 6 5� 10�5. The first limit indicates the maximum wavenumber

properly calculated and is expressed in term of number of points per wavelength, by kp=Dx. The second one

indicates the maximum wavenumber accurately calculated and is given by ka=Dx. They are reported in

Table 1 for the standard and the optimized schemes. For the same 2N þ 1 stencil, the optimized schemes

have generally better accuracy limits than the standard ones. Furthermore, waves with about four points

per wavelength are taken into account only by FDo11p and FDo13p. Using these two optimized schemes,
even the short waves are calculated very accurately since ka=Dx ’ 4:6.

The numerical efficiency is now investigated through the product of the accuracy limits by the number of

points 2N þ 1. This quantity, corresponding to a ratio between computational cost and accuracy, must be

small. Values for the standard and the optimized schemes are given in Table 1. For the standard schemes,

they are very similar showing that cost and accuracy vary proportionally. The optimized schemes, especially

FDo11p and FDo13p, appear to be more efficient. For the same computational cost, they are more precise

than any standard scheme.
Table 1

Accuracy limits of the standard and optimized FD schemes for N ¼ 4, 5, 6; and products by the number of points p ¼ 2N þ 1 of the

stencil

kp=Dx ka=Dx pkp=Dx pka=Dx

FDs9p 6.09 7.97 54.8 71.4

FDs11p 5.25 6.58 57.7 72.4

FDs13p 4.72 5.75 61.4 74.7

FDo9p 4.22 11.84 38 106.6

FDo11p 3.93 4.65 43.2 51.2

FDo13p 3.36 4.66 43.7 60.6

For comparison, with the DRP scheme [10] for N ¼ 3: kp=Dx ¼ 5:8 and ka=Dx ¼ 13:1.
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3. Selective filters

The grid-to-grid oscillations are not solved by central finite-difference schemes, as illustrated in Fig. 1,

and must be removed because they can lead to numerical instabilities. Practically, the elimination of these

spurious short waves is obtained by introducing artificial dissipation through additional damping terms in

the equations [23] or, more efficiently, through filtering [11,24] without affecting the physical long waves.

Applying a central, 2N þ 1 point stencil filter to variable u on a uniform mesh provides

uf x0ð Þ ¼ u x0ð Þ � rdDu x0ð Þ; with Du x0ð Þ ¼
XN
j¼�N

dju x0ð þ jDxÞ; ð2Þ

where the coefficients dj are such as dj ¼ d�j, ensuring no dispersion, and rd is a constant between 0 and 1.

The standard approach [19] for determining dj consists in cancelling the terms resulting from the Taylor

series of (2) for kDx ! 0. In this way, the standard selective filters using 9, 11 and 13 points, referred to as

SFs9p, SFs11p and SFs13p, are of order 8, 10 and 12, respectively. Their coefficients are reported in

Appendix B.

To develop selective filters in the present work following the idea of Tam et al. [9,10], the spatial Fourier

transform of (2) is considered,

DkðkDxÞ ¼ d0 þ
XN
j¼1

2dj cosðjkDxÞ; ð3Þ

where DkðkDx ¼ 0Þ ¼ 0 and DkðkDx ¼ pÞ ¼ 1 for normalization. This damping function DkðkDxÞ shows the
amount of dissipation for any wavenumber. Filters SFo9p, SFo11p and SFo13p, on 9, 11 and 13 points,

respectively, are built up by imposing small values to DkðkDxÞ in the range p=166 kDx6 p=2. The filters

SFo9p and SF13p are of fourth order and the filter SFo11p of second order, and their coefficients dj are
optimized to minimize the integral dissipationZ lnðp=2Þ

lnðp=16Þ
DkðkDxÞdðlnðkDxÞÞ:

Two conditions must also be met for 0 < kDx < p. The filters must exclusively be dissipative, implying
Dk > 0, and to limit the variations of the damping function, we impose o lnðDkÞ=o lnðkDxÞP � 5 for SFo9p

and SFo11p, and o lnðDkÞ=o lnðkDxÞP � 10 for SFo13p. The coefficients dj thus determined are given in

Appendix B.

The damping functions of the optimized filters are displayed in Fig. 3. As expected, the dissipation is

small for long waves and is significant for the wavenumbers near kDx ¼ p. Increasing the number of points,

from N ¼ 3 to 6, allows to construct more selective, spectral-like filters.

The damping functions of the standard and the optimized filters are represented in logarithmic scales in

Figs. 4(a) and (b), for p=86 kDx6 p. The optimized filters are less dissipative for short waves with about
kDx > p=4, the difference being considerable for kDx close to p=2. Because of their second or fourth order,

they are more dissipative for long waves but the amount of dissipation remains very small.

The two criteria rdDk 6 5� 10�4 and rdDk 6 5� 10�5 are now used to determine the wavenumbers

dissipated by the selective filters in a small or in a negligible way, respectively. Since filtering is applied at

every iteration, it is not necessary to set rd ¼ 1, and values of rd between 0.1 and 0.2 are usually convenient

for numerical stability. A value of rd ¼ 0:2 is chosen in the present analysis, which provides the two criteria

Dk 6 2:5� 10�3 and Dk 6 2:5� 10�4. The two corresponding accuracy limits are expressed in terms of

number of points per wavelength, by kp=Dx and ka=Dx. These limits are given in Table 2 for the standard
and the optimized filters. The optimized filters take into account short waves in a better way than the
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Fig. 4. Damping functions, in logarithmic scales, of: (a) -�-�-� the three standard filters SFs9p, SFs11p and SFs13p; (b) the optimized

filters - - - SFo9p, — SFo11p and � � � � SFo13p.
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Fig. 3. Damping functions of the optimized selective filters: - - -, SFo9p (N ¼ 4);—, SFo11p (N ¼ 5); � � � �, SFo13p (N ¼ 6) and -�-�-� of
the optimized filter proposed by Tam et al. [9] (N ¼ 3).

Table 2

Accuracy limits of the standard and optimized selective filters for N ¼ 4, 5, 6; and products by the number of points p ¼ 2N þ 1 of the

stencil

kp=Dx ka=Dx pkp=Dx pka=Dx

SFs9p 6.38 8.67 57.4 78

SFs11p 5.4 6.96 59.4 76.6

SFs13p 4.82 5.99 62.7 77.9

SFo9p 4.7 15.81 42.3 142.3

SFo11p 4.17 6 45.9 66

SFo13p 3.74 4.08 48.6 53

For comparison, with the filter of Tam et al. [9] for N ¼ 3: kp=Dx ¼ 6 and ka=Dx ¼ 48:6.
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standard ones. The products of the accuracy limits by the number of points 2N þ 1 are also provided in

Table 2 and present smaller values for the optimized filters. This demonstrates that the SFo11p and SFo13p

filters are more efficient numerically.
4. Runge–Kutta algorithms for time integration

We now consider the time integration using Runge–Kutta algorithms of the differential equation

ou
ot

¼ FðuÞ; ð4Þ

where the operator F is a function of u. Formulations of Runge–Kutta schemes have been proposed [14,25]

to improve accuracy while reducing storage requirements. It is the case for the low-storage, explicit Runge–

Kutta algorithms [23,26] using only two storage locations per variable. An explicit p-stage algorithm

advances the solution of Eq. (4) from the nth to the ðnþ 1Þth iterations as

u0 ¼ un;

ul ¼ un þ alDtF ul�1
� �

for l ¼ 1; . . . ; p;

unþ1 ¼ up;

where al are the coefficients of the algorithm and Dt is the time step.
For F ðuÞ linear, the algorithm is developed as

unþ1 ¼ un þ
Xp

j¼1

Yp
l¼p�jþ1

al

|fflfflfflfflffl{zfflfflfflfflffl}
cj

Dtj
ojun

otj
: ð5Þ

A p-stage algorithm of order p can be obtained by setting cj ¼ 1=j! for l ¼ 1; . . . ; p to match the Taylor

series of u tn þ Dtð Þ. The standard explicit four-stage Runge–Kutta algorithm RKs4s is defined by this way.

It is of fourth order in linear, but only of second order in nonlinear as any scheme of this kind.

In the present work, explicit algorithms are constructed by optimizing their dispersion and dissipation

properties following the idea of Hu et al. [13]. Assuming F ðuÞ is linear and applying temporal Fourier

transform to (5), the amplification factor of the algorithm is given by

GRKðxDtÞ ¼
ûnþ1ðxÞ
ûnðxÞ ¼ 1þ

Xp

j¼1

cjðixDtÞ
j
:

For comparison with the exact amplification factor eixDt, it is written as jGRKðxDtÞjeix
�Dt, where jGRKj is the

amplification rate and x� is the effective angular frequency. For the angular frequency x, the amount of

dissipation is then 1� jGRKðxDtÞj and the difference in phase is x�Dt � xDt.
Two explicit five- and six-stage Runge–Kutta algorithms referred to as RKo5s and RKo6s, respectively,

are built up by optimizing the dissipation and the dispersion errors up to the angular frequency xDt ¼ p=2.
Both are of second order and are defined by coefficients cl minimizing the following error:Z lnðp=2Þ

lnðp=16Þ
1ð � jGRK xDtð ÞjÞdðlnðxDtÞÞ þ

Z lnðp=2Þ

lnðp=16Þ
x�Dtjð � xDtj=pÞdðlnðxDtÞÞ;

with these two conditions for the dissipation rate

1� jGRKj > 0;
o½lnð1� jGRKjÞ�=o½lnðxDtÞ�P�5;

�

for 06xDt6 p, as for the selective filters. The coefficients cl are provided in Appendix C.
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The amplification rates and the differences in phase of the standard RKs4s and the optimized algorithms

are plotted in Figs. 5(a) and (b), respectively. The optimized algorithms are both less dissipative and less

dispersive than the standard RKs4s because their amplification rates are close to 1 and their differences in

phase are close to 0 in a larger range of angular frequencies.

The stability of the algorithms, detected for jGRKj < 1, appears higher for the optimized schemes. This is

demonstrated by the stability limits reported in Table 3 and expressed in terms of number of iterations by

Ts=Dt, where Ts is the period associated to the highest frequency ensuring stability for the time step Dt. The
products of these limits by the number of stages are also shown in this table and they are similar for the
three algorithms. Therefore, in the case of time steps only determined from stability, the computational

costs are the same. The stability of the optimized algorithms must also be compared to the poor stability of

the five- and six-stage algorithms proposed by Hu et al. [13].

The dissipation 1� jGRKj and the phase error ExðxDtÞ ¼ jx�Dt � xDtj=p of the Runge–Kutta algo-

rithms are now represented in logarithmic scales in Fig. 6. Both optimized algorithms are less dissipative

and dispersive than the standard RKs4s in the range p=86xDt6p, RKo6s also being significantly more

accurate than RKo5s. The improvement is spectacular for the dissipation with about one order of mag-

nitude of difference between RKs4s and RKo5s, and between RKo5s and RKo6s.
Two accuracy limits are provided in Table 4. For dissipation, the criteria 1� jGRKj6 5� 10�4 and

1� jGRKj6 5� 10�5 are used to determine T d
p =Dt and T d

a =Dt. For the phase error, the criteria Ex 6 5� 10�4

and Ex 6 5� 10�5 are applied to evaluate T x
p =Dt and T x

a =Dt. The RKo5s algorithm improves the accuracy

with respect to RKs4s both in dissipation and in phase, and in the same proportions. The RKo6s algorithm
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Fig. 5. (a) Amplification rate and (b) difference in phase of the Runge–Kutta schemes: - - -, the standard RKs4s (p ¼ 4); —, the op-

timized schemes; �, RKo5s (p ¼ 5) and þ, RKo6s (p ¼ 6).

Table 3

Stability limits of the standard and optimized Runge–Kutta algorithms, and products by the number of stages

Ts=Dt pTs=Dt

RKs4s 2.22 8.9

RKo5s 1.76 8.8

RKo6s 1.59 9.5

For comparison, with the five- and six-stage optimized algorithms of Hu et al. [13]: Ts=Dt ¼ 4:16 and 3.8, respectively.
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Fig. 6. (a) Dissipation and (b) dispersion error in logarithmic scales. See caption of Fig. 5 for details.

Table 4

Accuracy limits in amplitude and in phase of the standard and optimized Runge–Kutta algorithms

T d
p =Dt T d

a =Dt T x
p =Dt T x

a =Dt

RKs4s 9.65 14.24 8.41 13.69

RKo5s 4.27 11.63 4.45 13.22

RKo6s 3.29 3.76 4.11 9.69

Table 5

Accuracy limits multiplied by the number of stages for the standard and optimized Runge–Kutta algorithms

pT d
p =Dt pT d

a =Dt pT x
p =Dt pT x

a =Dt

RKs4s 38.6 57 33.6 54.8

RKo5s 21.4 58.2 22.2 66.1

RKo6s 19.8 22.6 24.6 58.1
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still reduces the phase error, but its specific feature is given by its very low dissipation compared to the other

algorithms.

Finally, numerical efficiencies are estimated by multiplying the accuracy limits, proportional to the

number of iterations, by the number of stages, and they are displayed in Table 5. The optimized algorithms

are clearly more efficient than the RKs4s. For the same computational cost, they provide more accurate

results than the standard RKs4s algorithm.
5. Test filters

In the dynamic subgrid modelings used in Large Eddy Simulation, filterings of the resolved variables are

involved to determine the magnitude of the subgrid terms. Application to variable u is written, as for the

grid-to-grid oscillation filterings, as

uf x0ð Þ ¼ u x0ð Þ � Du x0ð Þ;
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Fig. 7. Damping functions of the test filters: (a) - - - TFo11pp=2 (N ¼ 5), and — TFo15pp=2 (N ¼ 7); (b) - - - TFo11pp=3 (N ¼ 5) and —

TFo15pp=3 (N ¼ 7).
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with Du x0ð Þ given by expression (2). Usually, the LES grid filter width is estimated as Dx and test filters with

an effective width of 2Dx or 3Dx are used. These filters are constrained so that their damping functions (3)

are such as Dk kcDxð Þ ¼ 1=2 for kcDx ¼ p=2 and kcDx ¼ p=3, respectively.
To construct cut-off test filters, their coefficients dj can be evaluated by vanishing the low-order terms

[19] in the Taylor series of DkðkDxÞ for kDx ! 0, and of 1� DkðkDxÞ for kDx ! p. However, to obtain filters

with better characteristics in the whole range of wavenumbers, using a minimization procedure in Fourier

space is more interesting. In the present work, test filters with kcDx ¼ p=2 and kcDx ¼ p=3 are built up in

this way. We impose Dkð0Þ ¼ 0, DkðpÞ ¼ 1 and Dk kcDxð Þ ¼ 1=2. For a sharp gradient near the cut-off

wavenumber, we also set d2j ¼ 0 and d3j ¼ 0 (j 6¼ 0), respectively, for the two kinds of filters. The other

coefficients are optimized to minimizeZ lnðkcDx=
ffiffi
2

p
Þ

lnðp=16Þ
DkðkDxÞj jdðlnðkDxÞÞ þ

Z lnðpÞ

lnð
ffiffi
2

p
kcDxÞ

1j � DkðkDxÞjdðlnðkDxÞÞ:

The proposed test filters, TFo11pp=2, TFo15pp=2, TFo11pp=3 and TFo15pp=3, require 11 or 15 points, and

their damping functions are displayed in Figs. 7(a) and (b). They appear to be selective enough to eliminate

the wavenumbers such as k > kc without significantly affecting the waves numbers with k < kc. Their co-
efficients dj are provided in Appendix D.
6. Test problems

6.1. Definition

Two basic problems are considered to illustrate the relative accuracy of the standard and the optimized

schemes used for spatial derivation, grid-to-grid selective filtering and time integration. Both involve the

long-range propagation of one-dimensional disturbances, allowing the observation of dispersion or dissi-

pation errors. The convective wave equation

ou
ot

þ ou
ox

¼ 0

is solved with a time step derived from the mesh spacing as Dt ¼ aDx, a being the CFL number.
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Initial disturbances at t ¼ 0 are defined as

uðxÞ ¼ sin
2px
aDx

� �
exp

�
� lnð2Þ x

bDx

� 	2
�
;

where aDx is the dominant wavelength and bDx the half-width of the Gaussian function. They are presented
in Fig. 8. The parameters a and b are directly connected to the spectral contents of the disturbances, and we

set a ¼ 8 and b ¼ 3 for problem I, a ¼ 4 and b ¼ 9 for problem II. The normalized spatial power spectral

densities of the initial disturbances are thus displayed in Fig. 9.

Problem I is a typical test case to study propagation over a large distance. The initial perturbation is

characterized by wavenumbers in the range 0 < kDx < p=2 with a peak for kDx ¼ p=4, i.e., for eight points
per wavelength. It is propagated over 800Dx corresponding to 100 times the dominant wavelength, to

emphasize the possible numerical errors. The motivation for problem II is to investigate the way the

wavenumbers such as kDx ’ p=2, with about four points per wavelength, are calculated. These waves are
often involved in the LES dynamic procedure to evaluate the modeling constants. The initial perturbation is

propagated over a distance of 200Dx corresponding to 50 times the wavelength.
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Fig. 9. Spectral contents of the initial disturbances for: - - -, problem I and — problem II.
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Fig. 8. Initial disturbances for: - - -, problem I and — problem II.
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For the two problems, to quantify the agreement between the exact and the calculated solutions, the

error rate enum is evaluated as

enum ¼
X

ðucalc
�

� uexactÞ2
.X

u2exact
	1=2

:

6.2. Problem I

First, problem I is solved using the different standard and optimized finite-difference schemes, no fil-

tering, and the RKo6s algorithm with a time step small enough to introduce negligible errors since the CFL

number is a ¼ 0:2. The results obtained with the standard schemes are presented in Fig. 10(a), and with the

optimized schemes in Fig. 10(b). The solutions using the standard schemes all show more or less dispersion

of the initial disturbance. The solution using the optimized FDo9p scheme is slightly distorted, whereas the

solutions using the FDo11p and FDo13p schemes superpose fairly on the exact solution. The agreement
with the exact solution is demonstrated by the values of the numerical errors reported in Table 6. The errors

with the optimized schemes are at least two times lower than the errors with the standard schemes using the

same number of points. It should also be noted that the FDo11p scheme is very well suited to this problem.

Second, problem I is solved using the different standard and optimized selective filters, the FDo13p

scheme and the RKs6s algorithm with the same small time step as previously. Filtering is applied at every

iteration with rd ¼ 0:2. The results calculated with the standard filters are displayed in Fig. 11(a), with the
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Fig. 10. Problem I. s exact solution; solutions using no filtering, RKo6s (a ¼ 0:2) and: (a) � � � �, FDs9p; - - -, FDs11p and —, FDs13p;

(b) � � � �, FDo9p; - - -, FDo11p and — FDo13p.

Table 6

Problem I. Errors enum using the standard and the optimized finite-difference schemes, no filtering and the RKo6s algorithm (a ¼ 0:2)

FDs9p 0.630

FDs11p 0.307

FDs13p 0.141

FDo9p 0.329

FDo11p 0.052

FDo13p 0.065
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Fig. 11. Problem I. s exact solution; solutions using FDo13p, RKo6s (a ¼ 0:2) and: (a) � � � �, SFs9p; - - -, SFs11p and —, SFs13p;

(b) � � � �, SFo9p; - - - SFo11p and — SFo13p (rd ¼ 0:2).
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optimized filters in Fig. 11(b), and they are compared to the exact solution. The solutions using the

standard filters show dissipation of the initial perturbation, even for the SFs13p filter of order 12. The

solution with the SFo9p filter is significantly dissipated, but the ones with the optimized SFo11p and

SFo13p filters are not. This is supported by the values of enum in Table 7. Except for the SFo9p filter, using
the optimized selective filters instead of the standard ones remarkably decreases the dissipation of the

disturbances involved in this problem. Besides numerical errors with the SFo13p filter can be mainly at-

tributed to the spatial derivation.

Third, problem I is solved using the FDo13p scheme, the SFo13p filter and the standard or optimized

explicit Runge–Kutta algorithms, with CFL numbers of a ¼ 0:2, a ¼ 0:5 and a ¼ 1. The solutions for

a ¼ 0:5 and for a ¼ 1 are presented in Figs. 12(a) and (b), and the errors enum are reported in Table 8 for the

three CFL numbers. For a ¼ 0:2, the three algorithms provide very good results, but for a ¼ 0:5 and a ¼ 1,

the RKo6s algorithm is much more accurate than the two others. This is spectacularly visible for a ¼ 1:
solutions are distorted and dissipated, highly with the RKs4s algorithm and slightly with the RKo5s one,

whereas the solution found with the RKo6s algorithm is in agreement with the exact solution.

6.3. Problem II

Problem II is solved using the RKo6s algorithm with a ¼ 0:8 and three finite-difference scheme/selective
filter combinations: FDo9p and SFo9p, FDo11p and SFo11p, and FDo13p and SFo13p. The solutions

obtained with the last two combinations are shown in Fig. 13. The wave packet is dispersed and dissipated

using the 11-point methods, but it is well calculated using the 13-point methods. In the latter case, the
Table 7

Problem I. Errors enum using the standard and the optimized selective filtering, FDo13p and RKo6s (rd ¼ 0:2, a ¼ 0:2)

SFs9p 0.533

SFs11p 0.303

SFs13p 0.168

SFo9p 0.580

SFo11p 0.114

SFo13p 0.077
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Fig. 12. Problem I. s exact solution; solutions using FDo13p, SFo13p (rd ¼ 0:2) and: � � � �, RKs4s; - - -, RKo5s; —, RKo6s; (a) for

a ¼ 0:5 and (b) for a ¼ 1.

Table 8

Problem I. Errors enum using the RK schemes for different CFL numbers, the FDo13p and SFo13p schemes (rd ¼ 0:2)

a ¼ 0:2 a ¼ 0:5 a ¼ 1

RKs4s 0.070 0.269 0.884

RKo5s 0.086 0.229 0.528

RKo6s 0.077 0.122 0.200
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Fig. 13. Problem II. s exact solution; solutions using RKo6s (a ¼ 0:8) with: - - - FDo11p and SFo11p, — FDo13p and SFo13p,

(rd ¼ 0:2).

Table 9

Problem II. Errors enum using optimized finite-difference schemes and selective filters with the RKo6s algorithm (rd ¼ 0:2, a ¼ 0:8)

FDo9p+SFo9p 0.905

FDo11p+SFo11p 0.488

FDo13p+SFo13p 0.077
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computed solution is in phase with the exact one and is only very slightly dissipated. The errors enum given

in Table 9 support these observations and also show that the 9-point methods are not accurate enough to

resolve this problem involving wavenumbers with kDx ’ p=2.
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7. Applications

In this section, some remarks are made about the practical applications of the present optimized

schemes. Two issues dealing with the spatial discretization schemes are discussed: first the way they can

be connected with boundary conditions and second, the effects of grid non-uniformity on their prop-

erties. Examples of Large Eddy Simulations of turbulent flows using the present schemes are also

reported.
7.1. Connection with boundary conditions

At the edge of the computational domain, boundary conditions are necessary to impose for instance

free-field or wall conditions. They can be implemented using non-centered stencils with the same size as the

centered stencil used for the interior points. This approach was particularly followed by Tam et al. [2,27]

who provided both centered and backward DRP schemes with 7-point stencils. A common practice is,
however, to use stencils with smaller size near the boundaries. This is usually done to keep centered

schemes, for stability concern.

In our first simulations with the present spatial discretization schemes, the second method was used for

the boundary conditions. The size of the stencil is decreased progressively, from 9, 11 or 13 points in the

interior domain to 3 or 5 points at the boundary. As an example, the standard second-order schemes are

used to take into account wall boundaries in simulations of cavity flows [28]. For non-reflecting boundaries,

the standard fourth-order schemes are implemented as illustrated in Fig. 14. In this case, the equations

governing the acoustic far-field [29,30] are solved in three rows of points using standard 5-point stencil
schemes for the y-derivatives. The connection with the optimized 11-point stencil is performed, thanks to

the intermediary use of standard or optimized schemes with 7- and 9-point stencils.
7.2. Properties for a non-uniform grid

The standard high-order and optimized schemes presented in this paper are based on a uniformly spaced
computational grid. They are, however, applied in most numerical simulations for non-uniform grids,

where grid stretching is used to adapt the mesh size to the different length scales to be calculated. This

results in discretization errors which can be significant for high grid non-uniformity and which are usually
Fig. 14. An example of numerical implementation combining the 11-point stencil difference scheme with far-field boundary conditions

applied in three rows of points. The y-derivatives at points d are evaluated using points s.
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minimized using small stretching rates. For the optimized schemes, one particular question raised by grid

stretching is about the damage caused to their dispersion and dissipation properties. One can also wonder

whether these schemes remain more accurate than the standard ones for non-uniform grids. These points

are here investigated for the spatial derivation on a non-uniform grid x in which the mesh spacing is

stretched by a ratio r, yielding xjþ1 ¼ xj þ Dxrðj�1Þ. Note that a quite similar study could be done for the

selective filtering.

The spatial derivative ou=ox is classically evaluated as
ou
ox

¼ on
ox

ou
on

¼ 1

ox=on
ou
on

;

where n is an arbitrary uniform grid. At the mth grid point, using a central 2N þ 1 point stencil finite-

difference scheme, it provides
ou
ox

xmð Þ ¼ 1eDx
XN
j¼�N

ajumþj; with eDx ¼ XN
j¼�N

ajxmþj: ð6Þ
The wavenumber k� estimated by the derivative on the non-uniform grid is then obtained by applying

spatial Fourier transform to (6), which gives

k�D ¼ �i
DeDx

XN
j¼�N

aj exp ikðxmþj

�
� xmÞ

�
;

where D ¼ ðxmþ1 � xm�1Þ=2 is the local mesh size.

To discuss the effects of grid stretching, the difference between the exact and the effective wavenumbers k
and k� is calculated for the standard and the optimized 11-point stencil schemes FDs11p and FDo11p, in

the case of stretching rates of r ¼ 2% and 8%. Fig. 15 presents the dispersion error estimated from the real

part of k�, whereas Fig. 16 displays the imaginary part of k�, responsible for the error in amplitude. For the

stretching rate r ¼ 2%, the numerical errors on the wave numbers in the range p=46 kD6 p=2 are signif-

icantly reduced using FDo11p instead of FDs11p. However, for the rate of r ¼ 8%, the errors generated by

the two schemes do not appreciably differ. This shows that the optimized schemes developed in the present
paper keep better accuracy than the standard ones for small stretching rates, typically up to about r ¼ 5%.

They can therefore be recommended as long as the grid stretching is reasonable, as in our simulations

[28,31], where stretching rates of only 2% or 3% are used.
7.3. Large Eddy Simulations of turbulent flows

The schemes developed in this paper have recently been used to solve the full three-dimensional Navier–
Stokes equations. Subsonic flows past rectangular open cavities and Mach number M ¼ 0:9, circular jets
have been successfully simulated using the RKo6s algorithm for the time integration and, respectively, the

FDo11p and SFo11p, and the FDo13p and SFo13p schemes for the spatial discretization. Both flow

configurations were at Reynolds numbers much higher than affordable by Direct Numerical Simulation and

have therefore been computed by Large Eddy Simulation. The Reynolds numbers based on the cavity depth

and on the jet nozzle diameter were indeed 4� 104 and 4� 105. At such values, turbulence display a great

disparity of length scales as illustrated by the jet vorticity field represented in Fig. 17. Using the optimized
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schemes, one can at least consider that all the scales discretized by more than four grid points are accurately

resolved. For the detailed description of the simulation results and the comparisons with measurements, the

reader is referred to [28,31].

The use of the optimized schemes appears also especially relevant for the Large Eddy Simulation
methodology. First, they permit to define a sharp, spectral-like cut-off of the turbulent scales at the filtering

wavenumber around ksfc ¼ p=ð2DxÞ for four point per wavelength. Second, they allow to ensure that the

shorter resolved scales, involved in the dynamic procedures of subgrid modeling, are not distorted by

the discretization, and thus that the model coefficients are not calculated from numerical artifacts. This was

the primary motivation for developing new explicit schemes, see for instance, the application of the

dynamic Smagorinsky modeling to the circular jet in [32]. A third point can also be reported about the

possible use of the selective filtering for taking into account the dissipative effects of the subgrid scales

instead of an eddy-viscosity model as in [31–33]. In this way, the turbulent energy is dissipated only through
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Fig. 17. Spatial evolution of a circular jet at Mach 0.9 and Reynolds number 4� 105. View of the two vorticity-norm contours as-

sociated with the magnitudes of 3.2� 104 and 9.6� 104 s�1 in the x–y plane at z ¼ 0.
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the short scales characterized by kP ksfc . This approach may be particularly interesting at high Reynolds

numbers where the larger scales must be dissipation-free.
8. Conclusion

A family of explicit methods including finite-difference schemes for spatial derivation, low-storage

Runge–Kutta algorithms for time integration, selective filters for eliminating grid-to-grid oscillations and
test filters is proposed. The characteristics of these methods are optimized by minimizing the numerical

errors for the same range of wavenumbers, so that they can be associated to form algorithms with spectral-

like resolution. This is of importance with the aim of performing with confidence 3-D computations, where

dependence of results on numeric schemes can hardly be investigated through parametric studies. Analysis

of dispersion and dissipation properties, evaluation of accuracy limits, and resolution of test problems

demonstrate the higher precision of the optimized methods for short waves with respect to the standard

explicit ones, even for slowly non-uniform grids with stretching rates of few per cent. Numerical efficiency is

also discussed and it is shown that for an identical computational cost, optimized methods provide higher
accurate results. Considering this, the algorithm using the 11-point stencil finite-difference scheme and

selective filter, and the six-stage Runge–Kutta scheme, showing stability up to a CFL number a ¼ 1:98,
appears especially appropriate. Finally, the schemes developed in this paper can be clearly used both for

long-range propagation problems and for simulating turbulent flows, as shown by recent applications using

Large Eddy Simulations.
Appendix A. Finite-difference schemes

Coefficients of the standard high-order schemes using 9-, 11- and 13-point stencils (a0 ¼ 0, a�j ¼ �aj):

FDs9p FDs11p FDs13p

a1 4/5 5/6 6/7

a2 )1/5 )5/21 )15/56
a3 4/105 5/84 5/63

a4 )1/280 )5/504 )1/56
a5 1/1260 3/1155

a6 )1/5544
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Coefficients of the optimized schemes using 9-, 11- and 13-point stencils (a0 ¼ 0, a�j ¼ �aj):

Appendix B. Selective filters

Coefficients of the standard high-order filters using 9-, 11- and 13-point stencils (d�j ¼ dj):

Coefficients of the optimized selective filters using 9-, 11- and 13-point stencils (d�j ¼ dj):

Appendix C. Runge–Kutta algorithms

Coefficients of the 4-stage 4th-order algorithm and of the 5- and 6-stage optimized algorithms:

FDo9p FDo11p FDo13p

a1 0.841570125482 0.872756993962 0.907646591371

a2 )0.244678631765 )0.286511173973 )0.337048393268
a3 0.059463584768 0.090320001280 0.133442885327

a4 )0.007650904064 )0.020779405824 )0.045246480208
a5 0.002484594688 0.011169294114

a6 )0.001456501759

SFs9p SFs11p SFs13p

d0 35/128 63/256 231/1024

d1 )7/32 )105/512 )99/512
d2 7/64 15/128 495/4096

d3 )1/32 )45/1024 )55/1024
d4 1/256 5/512 33/2048

d5 )1/1024 )3/1024
d6 1/4096

SFo9p SFo11p SFo13p

d0 0.243527493120 0.215044884112 0.190899511506

d1 )0.204788880640 )0.187772883589 )0.171503832236
d2 0.120007591680 0.123755948787 0.123632891797

d3 )0.045211119360 )0.059227575576 )0.069975429105
d4 0.008228661760 0.018721609157 0.029662754736

d5 )0.002999540835 )0.008520738659
d6 0.001254597714

RKs4s RKo5s RKo6s

c1 1 1 1

c2 1/2 1/2 1/2

c3 1/6 0.165250353664 0.165919771368
c4 1/24 0.039372585984 0.040919732041

c5 0.007149096448 0.007555704391

c6 0.000891421261
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Appendix D. Test filters

Coefficients of the optimized test filters with kcDx ¼ p=2 using 11- and 15-point stencils (d�j ¼ dj):

Coefficients of the optimized test filters with kcDx ¼ p=3 using 11- and 15-point stencils (d�j ¼ dj):
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