
Journal of Computational Physics 230 (2011) 1134–1146
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Finite differences for coarse azimuthal discretization and for reduction
of effective resolution near origin of cylindrical flow equations

Christophe Bogey ⇑, Nicolas de Cacqueray, Christophe Bailly 1

Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully Cedex, France
a r t i c l e i n f o

Article history:
Received 9 December 2009
Received in revised form 18 October 2010
Accepted 24 October 2010
Available online 31 October 2010

Keywords:
Finite differences
Flow equations
Cylindrical coordinates
Azimuthal discretization
High-order
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.10.031

⇑ Corresponding author. Address: Centre Acoustiq
43.

E-mail addresses: christophe.bogey@ec-lyon.fr (C
1 Institut Universitaire de France, France.
a b s t r a c t

In this paper, the errors generated by the computation of derivatives in the azimuthal direc-
tion h when flow equations are solved in cylindrical coordinates using finite differences are
investigated. They might be large for coarse discretizations even using high-order schemes,
which led us to design explicit finite differences specially for 8, 16, 32 and 64 points per cir-
cle. These schemes are shown to improve accuracy with respect to standard finite differ-
ences, and to provide solutions for a two-dimensional propagation problem similar to
those obtained using Fourier spectral methods in the direction h. A method is then presented
to alleviate the time-step limitation resulting from explicit time integration near cylindrical
origin, when finite differences are used. It consists in calculating azimuthal derivatives at
coarser resolutions than permitted by the grid, in the same way as usually done using
spectral methods. In practice, a series of doublings of the effective discretization in h is
implemented. Thus simulations can for instance be performed on a grid containing
nh = 256 points with a time step 32 times larger, with an accuracy comparable to that
achieved in corresponding simulations involving Fourier spectral methods in the direction h.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The use of cylindrical or spherical coordinate systems is convenient to solve many physical configurations, including
meteorological and geophysical problems, as well as basic fluid flows such as pipe flows and jets. It results however in spe-
cific issues which might decrease the accuracy or the computational efficiency of simulations if numerical methods are not
appropriate. Spectral methods are for instance usually recommended for the computation of the derivatives in the azimuthal
direction [1–3]. Compared to finite differences, these achieve high accuracy, but problems arising near the coordinate origin
such as the singularity of the equations or the time-step limitation due to the clustering of points are still to be treated.

The special behaviour of flow equations at the origin of cylindrical coordinates has been considered in many studies. Pro-
cedures of different kind have been proposed. Among them, pole conditions serving as numerical boundary conditions have
been constructed for pseudospectral schemes [4,5]. Methods based on series expansions of the variables around singularity
have also been developed, and applied using finite differences [6,7]. In a different manner, the equations can be rewritten to
obtain a form similar to that in Cartesian coordinates [8,9], thus simplifying the calculations at the coordinate origin. The
coordinate singularity can also be avoided, by solving the flow equations in a Cartesian coordinate system at the origin
[10], or by shifting the grid points in the radial direction by half the radial mesh spacing [11]. Another important problem
. All rights reserved.
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when using cylindrical coordinates is related to the very fine resolution near the singularity, which imposes a severe time-
step restriction when time integration is explicit. This limitation can be alleviated by an appropriate rearrangement of the
grid points to relieve the mesh density near the origin [12], or by the application of implicit differentiation schemes in the
azimuthal direction [13,14]. When spectral methods are implemented in the azimuthal direction, it appeared also natural in
many simulations [11,15–19] to reduce the effective resolution in the azimuth by artificially removing the highest Fourier
modes. Finally, it can be noted that using finite-difference schemes for cylindrical coordinate system, energy conservation
might not be strictly satisfied [20].

As mentioned above, it is usually most suitable, when using cylindrical coordinates, to employ spectral methods in the
azimuthal direction because of their very high accuracy. Their computational costs might however be significant [3] for large
numbers of points nh in the azimuth, reaching for example nh = 1024 in recent works [21]. This may in particular be the case
both for the Discrete Fourier Transform and for the Fast Fourier Transform algorithms whose costs are respectively propor-
tional to n2

h and to nh � lognh. Considering this, finite-difference schemes, which are relatively easy to implement, and whose
cost increases linearly with nh, can be interesting to apply in the azimuthal direction. This has successfully been done by the
authors over the last two years in large-eddy simulations of turbulent round jets [21–23] based on the three-dimensional
cylindrical compressible Navier–Stokes equations. In these simulations, great care have been taken to minimize numerical
errors and to preserve computational efficiency.

In the present paper, the accuracy obtained when flow equations are solved in cylindrical coordinates using finite differ-
ences is examined. The errors coming from the calculation of the derivatives in the azimuthal direction are first analyzed in
the wave-number space, with the aim of showing that specific errors are generated in this case, and that they might be large
even using high-order schemes. Explicit finite differences are therefore designed specially for azimuthal differentiation for 8,
16, 32 and 64 points per circle to remove these errors. Then the issue of the time-step limitation due to the fine mesh spacing
near the cylindrical origin is addressed. Following a classical approach when spectral methods are used, a method is pre-
sented to reduce the effective resolution near the origin, allowing possible use of larger time steps when time integration
is performed explicitly. It consists of changes in the implementation of finite differences in the azimuthal direction as the
radial distance decreases. In addition, in order to illustrate and compare the algorithm properties, problems of acoustic prop-
agation based on the polar Euler equations are solved using different methods in the azimuthal direction. The objective will
be here to show that the solutions provided by the proposed schemes are more accurate than those calculated using stan-
dard finite differences for coarse discretizations, but also that they are similar to those obtained using Fourier spectral algo-
rithms for azimuthal differentiation.

The paper is organized as follows. The Euler equations written in polar coordinates are first given in Section 2. The numer-
ical artefacts generated by the discretization of the equations in the azimuthal direction using finite differences are charac-
terized in Section 3. Differentiation schemes are then derived for coarse discretization. Section 4 is devoted to the approach
of artificial reduction of the effective resolution near the coordinate origin. In both Sections 3 and 4, two-dimensional prop-
agation problems are solved to assess the validity of the proposed algorithms with respect to standard high-order schemes
and to Fourier spectral methods. Concluding remarks are finally drawn in Section 5.

2. Flow governing equations

The 2D Euler equations are expressed using the polar coordinates (r,h) where r is the distance from the origin and h is the
azimuthal angle. They are written as:
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The variables q, ur, uh and p denote density, radial and azimuthal velocities, and pressure. The total energy is given by
qe ¼ p=ðc� 1Þ þ q u2

r þ u2
h

� �
=2 with c = 1.4.

3. Finite-differences for coarse azimuthal discretization

3.1. Analysis of numerical error

For coarse azimuthal discretization, significant errors might be generated by the spatial derivatives in Eq. (1). Consider for
instance a steady uniform flow field of velocity u = ux, where x = (x,y) are the Cartesian coordinates and u is a constant,
theoretically verifying @U/@ t = H = 0. Using polar coordinates, the velocity field is written as ur = ucosh and uh = �usinh,
and vectors E, F and B become:
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Vectors E, F and B in Eq. (1) thus depend only on azimuthal angle h, containing terms in sinh, cosh, sin2h and cos2h.
For exact differentiation operators @/@r and @/@h, it can be directly checked that:
H ¼ 1
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¼ 0;
yielding @U/@t = 0 as expected for the considered steady and uniform flow field. However, using approximate derivatives @*/
@r and @*/@h, this might not be the case. The term
H� ¼ 1
r
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has then to be evaluated to determine the errors generated by the differentiations.
This term is examined when explicit centered (2n + 1)-point finite-difference schemes with coefficients aj are used. For a

polar grid with constant mesh spacings Dr and D h in the radial and azimuthal directions, one gets:
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because vector E is only a function of the azimuth h, and
Pn
�naj ¼ 0 and

Pn
�njaj ¼ 1 for centered finite differences, by con-

struction. In the same way, one obtains :
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Finite differences thus provide exact approximations of the derivatives in the radial direction, which is not the case in the
azimuthal direction. Expressions (3) and (4) are then introduced in term (2) to calculate H*. The first component of H*, asso-
ciated with the mass conservation equation, writes as:
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The error resulting from the azimuthal differentiation is given here by the function:
E1
polðDhÞ ¼ 1� 2
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Xn
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The same error function can be derived for the fourth component of H*, related to the energy equation. For the second and
third components of H*, associated with the momentum conservation equations, it is found that:
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In this case the numerical error is governed by the function
E2
polðDhÞ ¼ 1� 1

Dh

Xn

j¼1

aj sinð2jDhÞ;
which is also E2
polðDhÞ ¼ E1

polð2DhÞ. The errors E1
pol and E2

pol coming from the approximate derivatives in the direction h natu-
rally depend on the finite-difference scheme applied, and on the azimuthal discretization, which can be characterized for an
equally-spaced grid by the number of points per circle, hereafter denoted by PPC, defined by PPC = 2p/Dh. The variations of
E1

pol and E2
pol when different explicit centered finite differences and discretizations are used, are illustrated in Figs. 1 and 2.

In Fig. 1, the azimuthal discretization errors are determined using standard differentiation schemes which are of order 2n
for (2n + 1) stencils, for grids with PPC = 8, 16, 32 and 64. They are represented as functions of the stencil size, from
(2n + 1) = 3 to 15, yielding schemes of order 2 to 14. Using these schemes, whatever the grid discretization may be, the error
E2

pol resulting from the approximate derivatives of cos2h and sin2h is seen to be significantly higher than the error E1
pol coming

from the derivative of sinh. Both errors however decrease rapidly with the scheme order, E1
pol varying for instance, for 16



Fig. 1. Errors E1
pol (in black), and E2

pol (in gray), obtained for PPC = 8, 16, 32 and 64 using centered (2n + 1)-point finite differences: � standard schemes of
order 2n, 4 a 4th-order 11-point low-dispersion scheme [24]. The dotted line represents an error of 10�6.

Fig. 2. Errors E1
pol (in black), and E2

pol (in gray), for an azimuthal discretization varying from PPC = 4 to PPC = 128, using: (a) � 4th-order 5-point finite
differences; (b) � 10th-order 11-point finite differences, and M a 4th-order 11-point low-dispersion scheme [24]. The dotted line represents an error of 10�6.
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points per circle, from about 10�2 using a 2nd-order scheme down to 10�10 using a 14th-order scheme. Schemes with
increasing order must therefore be used to reduce the azimuthal differentiation errors. With fewer grid points in the azi-
muthal direction, schemes of higher-order must also be chosen to reach a given accuracy. To get E2

pol lower than 10�6 for
example, orders 6, 8 and 14 are respectively required for 64, 32 and 16 points per circle, whereas for 8 points per circle
an order much higher than 14 is necessary.

For comparison, the errors obtained using a 4th-order 11-point scheme [24] designed to minimize dispersion down to
four points per wavelength are also shown in Fig. 1 for the four azimuthal discretizations. Compared to the errors determined
for the 10th-order scheme of same stencil size, they are smaller for PPC = 8, similar for PPC = 16, but appreciably higher for
PPC = 32 and 64. Thus using low-dispersion schemes instead of standard high-order schemes might increase the numerical
errors generated by the azimuthal derivatives.

The reduction of the errors E1
pol and E2

pol with the number of points per circle is displayed in Fig. 2 for standard 4th- and
10th-order schemes and for the 11-point low-dispersion schemes considered above. As expected the decrease of the errors is
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more rapid at order 10 than at order 4. It is however striking to notice that using the 4th-order scheme, E2
pol < 10�6 is not

satisfied even for PPC = 128.
As for the use of the low-dispersion scheme instead of the standard scheme with the same stencil size, it leads to lower

errors for PPC = 8, that is for a very coarse grid, but higher errors for finer azimuthal discretizations. To ensure E2
pol < 10�6 for

example, 128 points are to be specified in the azimuth using the low-dispersion scheme, but only 32 points using the 10th-
order scheme. The implementation of a low-dispersion scheme therefore appears appropriate only for very high PPC.

3.2. Development of specific schemes for azimuthal differentiation

To remove the azimuthal differentiation errors described above, which might be non negligible for coarse grids even using
finite differences of very high-order, explicit 2nd-order centered finite differences are developed for 8, 16, 32 and 64 points
per circle. For PPC = 8 and 16, schemes based on 7-point stencils, referred respectively to as FD8ppc and FD16ppc in Table 1,
are proposed. Their coefficients aj (a0 = 0 and a�j = �aj) are determined so that:
Table 1
Coeffici

a1

a2

a3

a4

Fig. 3.
wavenu
Pn
�n

jaj ¼ 1;

E1
pol ¼ 0;

E2
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8>>>><
>>>>:

ð5Þ
The numerical errors generated for an uniform velocity field by the approximate derivatives of sinh, sin2h and cos2h are thus
nil.

For PPC = 32 and 64, 9-point finite differences, FD32ppc and FD64ppc, are designed. Their coefficients aj, provided in
Table 1, satisfy conditions (5) as previously. They are also chosen so that the phase error jk* � kjDx/p, where k* is the wave
number computed by the finite differences for the wave number k for a Dx grid spacing [25], given by:
k�Dx ¼ 2
Xn

j¼1

aj sinðjkDxÞ; ð6Þ
is lower than 5 � 10�4 over the largest wave-number range.
To check the properties of the schemes in the Fourier space, the effective wave numbers k*Dx and the phase errors

jk* � kjDx/p obtained for FD8ppc, FD16ppc, FD32ppc and FD64ppc are represented in Fig. 3 as functions of kDx. As expected,
the schemes built up to remove the derivation errors of sinh, sin2h and cos2h for m points per circle generate no phase error
for m and m/2 points per wave length. For FD8ppc developed for 8 points per circle for instance, the phase error is nil for
kDx = p/4 and p/8, corresponding to discretizations of 8 and 4 points per wave length.
ents of the finite differences for azimuthal discretizations of PPC = 8, 16, 32 and 64, with a0 = 0 and a�j = � aj.

FD8ppc FD16ppc FD32ppc FD64ppc

0.819475776996 0.764510305787 0.827728256913 0.825858420492
�0.210854308895 �0.161835782187 �0.228094785916 �0.225946472928
0.034077613598 0.019720419529 0.050400938205 0.049278244240
0 0 �0.005685374924 �0.005450051839

Representation (a) of effective wave numbers k*Dx in linear scales, and (b) of phase errors jk* � kjDx/p in logarithmic scales, as functions of the exact
mber kDx, obtained for the schemes: — FD8ppc, – � – � FD16ppc, – – – FD32ppc, � � �� � �� FD64ppc.
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3.3. Application to the propagation of an acoustic pulse

To illustrate the accuracy of the schemes proposed, a two-dimensional test case is solved using polar Eq. (1). In the same
way as in the first workshop on Computational Aeroacoutics [26], the propagation of a Gaussian acoustic pulse is considered.
The initial acoustic pulse is placed in an uniform flow u = Mx, where x = (x,y) are the Cartesian coordinates, with constant
mean density and pressure. More precisely the conditions at t = 0 are:
Fig. 4.
derivat
[50,100
p ¼ 1=cþA exp½�ðln 2Þðx2 þ y2Þ=b2�;
q ¼ 1þA exp½�ðln 2Þðx2 þ y2Þ=b2�;
ux ¼ M;

uy ¼ 0;

ð7Þ
where A ¼ 10�4 and b = 6 are respectively the magnitude and the half-width of the Gaussian pulse, which is initially located
at x = �15 and y = 0 on the left-hand side of the origin 0 = (0,0) of the polar coordinates. The mean flow velocity is M = 0.5.
The acoustic wave generated by the pulse reaches the origin at time t = 10.

Polar Euler Eq. (1) are solved up to time t = 20 on uniform grids containing nr = 81 points in the radial direction, and
nh = PPC = 8, 16, 32 or 64 points in the azimuthal direction. The mesh spacings are Dr = 1 and Dh = 2p/PPC, and the time step
is Dt = CFL DrDh/(1 + M) with CFL = 5/(2p) ’ 0.8. Thus the number of time steps is 48 for PPC = 8, 96 for PPC = 16, 192 for
PPC = 32, and 384 for PPC = 64. The method of Mohseni & Colonius [11] consisting in placing the first points in the radial
direction at r = Dr/2 is implemented to avoid the treatment of the axis singularity. To focus on the errors generated by
the azimuthal differentiation, the derivatives in the radial direction are calculated using 14th-order finite differences,
whereas those in the azimuth are computed using standard finite differences, or the FD8ppc, FD16ppc, FD32ppc and
FD64ppc schemes depending on the discretization, or spectral methods based on discrete Fourier tranforms [16]. Time inte-
gration is performed using a low-storage 2nd-order 6-stage Runge–Kutta algorithm [24]. As required using centered finite-
difference schemes [24,27–30], the flow variables are filtered explicitly at every time step by the application of a 14th-order
filter sequentially in the radial and azimuthal directions with a strength of 0.5 for PPC = 8 and of 0.2 for PPC = 16, 32 and 64, a
filtering strength of unity leading to a complete removal of grid-to-grid oscillations as defined in previous papers [24,30]).
Finally the radiation conditions of Tam & Dong [31] are imposed at the boundaries using optimized explicit non-centered
finite differences [32].

To characterize the accuracy of the numerical methods, the solutions are compared with the analytical solution of this
initial value problem [25] given by:
psolðx; tÞ ¼
1
c
þ A

2a

Z 1

0
n exp½�n2=4a� cosðtnÞJoðngÞdn; ð8Þ
where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�MtÞ2 þ y2

q
;a ¼ ðln 2Þ=b2 and Jo(z) is the Bessel function of first kind and order 0. The error rate with respect

to the analytical solution is then
EsolðtÞ ¼
½
R R
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2dS�1=2
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R R

Sðpðt ¼ 0Þ � 1=cÞ2dS�1=2 : ð9Þ
The pressure fields obtained at t = 20 for 8 grid points per circle using 14th-order finite differences, the FD8ppc scheme and
Fourier spectral methods in the azimuthal direction are shown in Fig. 4(a,b,c). They are compared to the exact pressure field
represented in Fig. 4(d), which does not appear axisymmetric because of the very low grid resolution. The solution calculated
using the 14th-order scheme strongly differs from the analytical solution, whereas the two other solutions roughly agree,
Solutions obtained at t = 20 for PPC = 8, using (a) 14th-order finite differences, (b) the FD8ppc scheme, and (c) Fourier spectral method for azimuthal
ives; (d) analytical solution. The contours of fluctuating pressure in black are for levels of [1.75,3.5,7,14] � 10�6, those in grey are for
,200] � 10�6.



1140 C. Bogey et al. / Journal of Computational Physics 230 (2011) 1134–1146
both exhibiting a fair circular-wave-front shape. In the present case, the FD8ppc scheme is therefore much more accurate
than the 14th-order scheme, which is remarkable given their respective 7-point and 15-point stencils. Its use also provides
results similar to those determined when Fourier spectral methods are applied to the azimuthal differentiation.

The pressure fields obtained at t = 20 for PPC = 16 using 10th-order finite differences, the FD16ppc scheme and Fourier
spectral methods in the azimuthal direction are now presented in Fig. 5(a,b,c). The solution calculated using the 7-point
FD16ppc scheme is found to be in better agreement with the analytical solution in Fig. 5(d) than that computed using
the 11-point 10th-order scheme. As previously, it also corresponds well to the solution provided by the simulation using
Fourier spectral methods.

Pressure fields are not shown for PPC = 32 and PPC = 64, because they all look nearly alike. Instead, time variations of er-
rors Esol with respect to the analytical solution are plotted in Fig. 6 for grid discretizations PPC = 8, 16, 32, and 64. The errors
are evaluated from the solutions computed using 8th-order finite differences, the schemes proposed in the paper, and Fou-
rier spectral methods for the azimuthal differentiation. Compared to those obtained for the 8th-order scheme in Fig. 6(a), the
errors estimated for the proposed schemes in Fig. 6(b) are spectacularly lowered for the two coarser grids, they are slightly
reduced for 32 points per circle, and they are similar for 64 points per circle. Moreover they do not differ appreciably from
those reported in Fig. 6(c), whatever the resolution may be. This indicates that applying the proposed schemes rather than
Fourier spectral methods does not lead here to a loss of accuracy.
Fig. 5. Solutions obtained at t = 20 for PPC = 16, using (a) 10th-order finite differences, (b) the FD16ppc scheme, and (c) Fourier spectral methods for
azimuthal derivatives; (d) analytical solution. The contours of fluctuating pressure are for levels of [1.75,3.5,7,14] � 10�6.

Fig. 6. Time variations of error Esol obtained with respect to the analytical solution for: —— PPC = 8, – – – PPC = 16, – � – � PPC = 32, and � � �� � �� PPC = 64, using
(a) 8th-order finite differences, (b) the FD8ppc, FD16ppc, FD32ppc, FD64ppc schemes (from top to bottom), and (c) Fourier spectral methods for azimuthal
derivatives.

Table 2
Error Esol estimated at t = 20 with respect to the analytical solution for PPC = 8, 16, 32, and 64, using the FD8ppc, FD16ppc, FD32ppc, FD64ppc schemes (second
column, from top to bottom), standard finite differences of order 4 (FDo4), 6 (FDo6), 8 (FDo8), 10 (FDo10) and 12 (FDo12), and Fourier spectral methods for
azimuthal derivatives.

Present schemes FDo4 FDo6 FDo8 FDo10 FDo12 Fourier

PPC = 8 0.21 1050 480 220 100 47 0.21
PPC = 16 0.060 96 13 1.7 0.24 0.061 0.056
PPC = 32 4.0 � 10�3 6.4 0.22 8.6 � 10�3 2.1 � 10�3 2.2 � 10�3 2.4 � 10�3

PPC = 64 1.1 � 10�4 0.40 3.6 � 10�3 0.9 � 10�4 0.5 � 10�4 0.5 � 10�4 0.5 � 10�4
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Finally the errors Esol estimated at t = 20 for varying discretizations and differentiation operators in the azimuthal direc-
tion are collected in Table 2. They support the previous findings: for the present test case, the schemes designed in the paper
are more appropriate than corresponding standard schemes for PPC 6 32, and they yield results whose accuracy is compa-
rable to that obtained using spectral methods.

4. Reduction of effective azimuthal discretization near cylindrical origin

4.1. Presentation of the method

When cylindrical equations are advanced in time using explicit algorithms, the time step might be severely limited be-
cause of the fine azimuthal mesh spacing near the origin, which is classically DrDh at radial distance r = Dr. To alleviate this
constraint, it is proposed to compute the azimuthal derivatives near r = 0 not as usually using finite differences from the di-
rectly adjacent points as:
Fig. 7.
discreti
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¼ 1

Dh
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j¼�n

ajFðhþ jDhÞ;
but from points separated by DhFD = mDh (m > 1 is an integer) as:
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¼ 1
DhFD
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The effective azimuthal mesh spacing near the origin is then affected by the coarsening ratio DhFD/Dh, and becomes DrDhFD,
which reduces the effective azimuthal discretization to PPCFD = 2p/DhFD.

As illustrations, the calculation of derivatives in the azimuthal direction of a polar grid using 2nd-order finite differences
is represented in Fig. 7. In the standard way, in Fig. 7(a), the derivatives at angle h are evaluated from solutions at h ± Dh,
yielding an azimuthal resolution of 2p/Dh. In the proposed approach, in Fig. 7(b), the effective azimuthal resolution near
r = 0 is for instance lowered to p/Dh by computing the derivatives near the origin, at angle h, from solutions at h ± 2Dh.

In the present finite-difference-based method, the effective resolution is consequently reduced near the origin, in the
same way as in the classical approach consisting in removing the highest Fourier modes when using spectral methods
[11,15–19]. Note that the azimuthal derivatives must still be estimated at all points. No point is removed, which implies that
the number of numerical operations is the same. The time step however increases as the effective mesh spacing, from
Dt = aDrDh to Dt = aDrDhDF, where the coefficient a is determined from the stability properties of the time integration
scheme. The time-step limitation due to the use of cylindrical coordinates is therefore relaxed. In the case presented
in Fig. 7(b), the time step can for example be doubled because the minimum effective azimuthal mesh spacing becomes
2DrDh instead of DrDh.

In practice, the reduction of the effective azimuthal discretization can be applied in different ways, depending notably on
the grid density. One possibility is to gradually decrease the effective resolution near the origin as in simulations using spec-
tral methods [11,15–19]. In these works, the summations yielding the azimuthal derivatives in the Fourier space are trun-
cated to eliminate the highest wave numbers in such a way that the effective resolution in h is nearly constant with radial
location.

Another possibility which is proposed here using finite differences is to implement a series of doublings of the effective
azimuthal discretization with the radial distance. Consider for instance a uniform polar grid containing nh = 256 points, lo-
cated from r = 0 every Dr. To decrease the effective azimuthal resolution near the origin down to 8 points per circle, coars-
ening ratios DhFD/Dh can be specified as in Table 3, from 2 at r = 31Dr up to 32 at r = Dr. As reported in the table, this results
in effective azimuthal mesh spacings equal or higher than 32DrDh. In this way the time step could be 32 times larger than
the time step that is reachable using standard azimuthal differentiation.
Differentiation in the azimuthal direction on a polar grid, using 2nd-order finite differences: (a) standard method, and (b) reduced effective
zation near the origin. Derivatives at points � and j are approximated from points � and h, respectively.



Table 3
Example of reduction of the effective azimuthal discretization near the origin on a nh = 256-point polar grid in which the first
point is at r = Dr: coarsening ratio DhFD/Dh, and effective mesh spacing rDhFD as a function of the radial distance.

r/Dr DhFD/Dh rDhFD/DrDh

1 32 32
2 ? 3 16 32 ? 48
4 ? 7 8 32 ? 56
8 ? 15 4 32 ? 60
16 ? 31 2 32 ? 62
32 ? nr 1 32 ? nr
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4.2. Application to the propagation of an acoustic pulse

The method is applied to a two-dimensional propagation problem based on polar Euler Eq. (1). At t = 0, a Gaussian acous-
tic pulse placed in a mean flow of velocity M = 0.5 is specified from conditions (7) given in Section 3.3. The pulse is charac-
terized by a magnitude A ¼ 10�4 and a half-width b = 3, and is located at x = �30 and y = 0 on the left-hand side of origin 0.
The acoustic wave generated by the pulse reaches point 0 at time t = 20. The problem is computed up to time t = 40, on a
uniform polar grid containing nr = 81 and nh = 256 points in the radial and azimuthal directions. The radial mesh spacing
is Dr = 1, and the first points near the origin are at r = Dr/2 following the method of Mohseni & Colonius [11]. In the radial
direction, the derivatives are calculated using 14th-order finite differences.

In the azimuthal direction, six configurations with effective discretizations near the origin varying from PPCFD = nh = 256
down to PPCFD = nh/32 = 8 are first considered. Their acronyms and parameters are provided in Table 4. In the first simulation
Pol256, all azimuthal derivatives are evaluated classically using standard 10th-order finite-differences FDp10. In simulations
Pol128, Pol64, Pol32, Pol16 and Pol8, series of doublings of the effective azimuthal discretization are applied to obtain respec-
tively PPCFD = 128, 64, 32, 16 and 8 at the points placed at r = Dr/2, and minimum effective mesh spacings rDhFD = DrDh,
2DrDh, 4DrDh, 8DrDh and 16DrDh. The differentiation in the azimuthal direction is performed using FDo10 for PPCFD = 256
and 128, but using the schemes designed in Section 3 for coarser effective discretizations, namely FD64ppc for PPCFD = 64,
FD32ppc for PPCFD = 32, FD16ppc for PPCFD = 16 and FD8ppc for PPCFD = 8.

Time integration is performed using a low-storage 2nd-order 6-stage Runge–Kutta algorithm [24], and the time step is
defined by Dt = CFLDrmin (DhFD)/(1 + M) with CFL = 5/(2p) ’ 0.8. Computing up to time t = 40 consequently requires 3072
time steps in Pol256, 1536 in Pol128, 768 in Pol64, 384 in Pol32, 192 in Pol16 and 96 in Pol8.

In Pol256, the flow variables are filtered explicitly at every 32nd iteration using a 14th-order filter in the radial direction
and a 6th-order 11-point filter [33] in the azimuthal direction, sequentially, with a strength equal to unity. The same filter-
ings are implemented in the other simulations, but at every 16th iteration in Pol128, every 8th iteration in Pol64, every 4th
Table 4
Parameters in Pol256, Pol128, Pol64, Pol32, Pol16 and Pol8 with effective azimuthal discretizations of 256, 128, 64, 32, 16 and 8 points per circle near the origin:
coarsening ratio DhFD/Dh, effective azimuthal discretization PPCFD, effective azimuthal mesh spacing r DhFD, and schemes used for azimuthal differentiation, as
a function of the radial distance.

Simulation r/Dr DhFD/Dh PPCFD rDhFD/DrDh schemes

Pol256 1/2 ? nr � 1/2 1 256 1/2 ? nr � 1/2 FDo10

Pol128 1/2 2 128 1 FDo10
3/2 ? nr � 1/2 1 256 3/2 ? nr � 1/2 FDo10

Pol64 1/2 4 64 2 FD64ppc
3/2 2 128 3 FDo10
5/2 ? nr � 1/2 1 256 5/2 ? nr � 1/2 FDo10

Pol32 1/2 8 32 4 FD32ppc
3/2 4 64 6 FD64ppc
5/2 ? 7/2 2 128 5 ? 7 FDo10
9/2 ? nr � 1/2 1 256 9/2 ? nr � 1/2 FDo10

Pol16 1/2 16 16 8 FD16ppc
3/2 8 32 12 FD32ppc
5/2 ? 7/2 4 64 10 ? 14 FD64ppc
9/2 ? 15/2 2 128 9 ? 15 FDo10
17/2 ? nr � 1/2 1 256 17/2 ? nr � 1/2 FDo10

Pol8 1/2 32 8 16 FD8ppc
3/2 16 16 24 FD16ppc
5/2 ? 7/2 8 32 20 ? 28 FD32ppc
9/2 ? 15/2 4 64 18 ? 30 FD64ppc
17/2 ? 31/2 2 128 17 ? 31 FDo10
33/2 ? nr � 1/2 1 256 33/2 ? nr � 1/2 FDo10
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iteration in Pol32, every 2nd iteration in Pol16 and every iteration in Pol8, leading to a filtering frequency independent of the
time step. For reduced resolutions, variables are filtered supplementally in the azimuthal direction, by applying the 11-point
filter at strength and frequency defined above, to grid points separated by doubling distances from 2Dh up to DhFD, that is up
to the effective azimuthal discretization. For PPCFD = 64 for instance, filtering is performed three times in the azimuthal
direction, for 256, then for 128 and finally for 64 points per circle. In this way the calculations of the derivatives and the var-
iable filterings are carried out at same effective azimuthal resolution.

To discuss the quality of results, two additional computations are performed using spectral methods based on discrete
Fourier transforms to evaluate the azimuthal derivatives [16]. They are referred to as Spec256 and Spec8 in Table 5, because
their effective azimuthal discretizations near the origin are respectively of 256 and 8 points per circle. To achieve this, the
summations used to compute the azimuthal derivatives in the Fourier space are fully considered in Spec256, but truncated in
Spec8 so as to obtain a constant effective azimuthal mesh spacing of 16DrDh for r 6 31Dr/2 as reported in Table 5. Except for
the azimuthal differentiation, simulations Spec256 and Spec8 are respectively identical to Pol256 and Pol8, implying same
parameters for the grid, time integration, radial discretization, and azimuthal filtering. In particular, 3072 time steps are re-
quired in Spec256, but only 96 in Pol8.

The solutions obtained at t = 40 from the four simulations with coarser effective discretizations near the origin, namely
Pol32, Pol16, Pol8 and Spec8, are represented in Fig. 8. Changes with the effective resolution near r = 0 are only clearly visible
for Pol8. For this simulation with PPCFD = 8 at r = Dr/2, the inner contour of pressure displays small oscillations, which is not
the case for Spec8 for instance. They may be generated by the doublings of the effective discretization near the origin.

The differences found at t = 40 between the solutions from Pol32, Pol16, Pol8 and Spec8, and analytical solution (8) are dis-
played in Fig. 9. In all cases numerical errors are observed all around the acoustic wave propagating from the initial pulse.
They appear higher with lower effective discretization near the origin, especially in Pol8 and in Spec8.

To quantify this, the error rates Esol between the computed and analytical solutions are determined from expression (9).
Their time variations are presented in Fig. 10. They collapse very well in the simulations Pol256, Pol128, Pol64, Pol32, and
Spec256, with effective azimuthal discretizations equal or higher than 32 near the origin. In these cases, the errors resulting
from the reduction of the effective azimuthal discretization are consequently lower than those from the other numerical
tools. They appear however higher for coarser effective resolutions near the origin. The error rates Esol indeed increase
slightly in Pol16, and more significantly in Pol8 and in Spec8. A hump is in particular found around time t = 20 in Pol8 when
the acoustic wave is travelling around r = 0. It is certainly due to the generation of short-wave oscillations observed in
Fig. 8(c), but it is progressively damped as selective filtering is applied to the flow variables. As a result, one gets similar er-
rors at t = 40 in the two simulations Pol8 and Spec8 with an effective resolution of 8 points per circle near the origin, using
finite differences or Fourier spectral methods for azimuthal differentiation. For completeness, it can be noted that the errors
in Pol8 have been checked not to vary appreciably with the time step, which supports that the errors are mainly related to the
spatial discretization.
Table 5
Parameters in Spec256 and Spec8 using Fourier spectral methods for azimuthal differentiation with effective
azimuthal discretizations of 256 and 8 points per circle near the origin: effective azimuthal mesh spacing
rDhFo.

Simulation r/Dr rDhFo/D rDh

Spec256 1/2 ? nr � 1/2 1/2 ? nr � 1/2

Spec8 1/2 ? 31/2 16
33/2 ? nr � 1/2 33/2 ? nr � 1/2

Fig. 8. Solutions obtained at time t = 40 from simulations Pol32, Pol16, Pol8 and Spec8. The contours of fluctuating pressure are for levels of
[0.03125,0.125,0.5,2,8] � 10�6.



Fig. 9. Absolute value of the difference between the analytical solution and the solutions obtained at time t = 40 from simulations Pol32, Pol16, Pol8 and
Spec8. The contours are for pressure levels of [0.125,0.5,2] � 10�8.

Fig. 10. Time variations of error Esol obtained with respect to the analytical solution for: —— Pol256, – – – Pol128, – � – � Pol64, Pol32, Pol16, Pol8,
Spec256, Spec8.
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To evaluate the artefacts resulting from the changes in the azimuthal differentiation alone, comparisons are performed
with the solution from Pol256. They are shown in Fig. 11 for Pol32, Pol16 Pol8 and Spec8 at time t = 40. As expected, the dis-
crepancies are of higher amplitude with lower effective resolution near the origin. Remarks can also be made regarding the
error footprints. Errors are first observed in all simulations on an arc following the position of the circular acoustic wave gen-
erated by the initial pulse, with a maximum in the direction downstream of the origin. Additional errors, indicated by an
inner round wave, are then found in the two simulations Pol8 and Spec8, when the effective discretization near r = 0 is 8
points per circle.

The error rates with respect to the solution p256 obtained from Pol256 are finally determined as:
Fig. 11.
contou
E256ðtÞ ¼
½
R R

SðpðtÞ � p256ðtÞÞ
2dS�1=2

½
R R

Sðpðt ¼ 0Þ � 1=cÞ2dS�1=2 : ð10Þ
They are presented in Fig. 12 for the different simulations. They increase in time to reach at t = 40 values ranging from
E256 ’ 3� 10�6 in Pol128 up to E256 ’ 10�3 in Pol8. The errors coming from the present approach therefore appear negligible
Absolute value of the difference between the solution obtained at time t = 40 from simulation Pol256, and those from Pol32, Pol16, Pol8 and Spec8. The
rs are for pressure levels of [0.125,0.5,2] � 10�8.



Fig. 12. Time variations of error E256 obtained with respect to the solution from simulation Pol256, for: – – – Pol128, – � – � Pol64, Pol32, Pol16,
Pol8, Spec8.
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for large PPCFD near the origin, and remain small for coarse effective resolution, in particular thanks to the schemes devel-
oped in Section 3. It is interesting to emphasize that the accuracy is still acceptable in Pol8. The tremendous increase of the
time step, and the saving in computational cost in this simulation with PPCFD = 8, are thus achieved without significantly
deteriorating the numerical solution. The loss of accuracy is even found to be comparable to that observed in Spec8, in which
the reduction of the effective azimuthal resolution down to 8 points per circle is performed using Fourier spectral methods.
5. Conclusion

In the present paper, an analysis of the errors that arise when the flow equations are solved in cylindrical coordinates
using finite differences is presented. It shows that strong numerical artefacts might be generated by the computation of
derivatives in the azimuthal direction. Centered 7-point or 9-point explicit finite differences are therefore derived specially
for azimuthal differentiation. For an acoustic propagation problem, they provided results supporting that they enable to
reach reasonable accuracy even for very coarse discretization. For 16 points per circle, the error rate is for instance only
around 6% for the test case considered. To get comparable error rate using standard schemes, 12th-order finite differences
based on a stencil of twice width are required. For 8 points per circle, the error rate is even about 200 times lower than the
one obtained using 12th-order schemes.

An approach is then proposed to alleviate the time-step restriction due to the fine mesh spacing near the cylindrical origin
when time integration is explicit. It consists in decreasing the effective azimuthal resolution at smaller radial location, as
usually done using spectral methods, by implementing finite-difference stencils of larger azimuthal span. Using the schemes
previously developed, good accuracy is found for an acoustic propagation problem, down to an effective azimuthal resolution
of 8 points per circle near r = 0. In the latter case, for a cylindrical grid containing nh = 256 points, the simulation is performed
using a time step 32 times larger than in the simulation without reduction of the effective azimuthal discretization. The error
rate is checked to be only around 0.1%, indicating that the accuracy of the solution is not significantly affected by the present
approach.

The finite-difference-based methods presented in the paper are fast and easy to implement. Moreover, when applied to
linear propagation problems using the 2D Euler equations, they yield solutions whose accuracy is similar to that achieved
using Fourier spectral methods in the azimuthal direction. To examine their behaviours for more complicated flow config-
urations, additional work would naturally be necessary. It must however be noted that the methods have already been suc-
cessfully employed in large-eddy simulations of turbulent round jets [21–23] solving the 3D cylindrical compressible
Navier–Stokes equations.
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