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In a previous work [Bogey, J. Fluid Mech. 859, 1022 (2019)], the potential-core closing
of temporally developing isothermal round jets at a Mach number M = 0.9 was shown
to generate a strong axisymmetric noise component in the downstream direction. The
persistence of this component is investigated in the present work for jets at M = 0.3,
0.6, 1.3, and 2 computed by direct numerical simulation, from a low subsonic to a high
supersonic Mach number. The flow and sound fields are presented, and the Mach number
scaling of their magnitudes and spectral content is examined. The centerline velocity and
hydrodynamic pressure spectra are close to each other using kzr0 in abscissa, where kz and
r0 are the axial wave number and the initial jet radius, respectively. The sound spectra for
M � 1.3 collapse well when they are plotted as a function of kzr0M−1 and adjusted in
amplitude using a M7.5 power law, whereas a kzr0 scaling and a lower power-law exponent
seem to apply to the spectra for M � 1.3. The flow and sound fields are then correlated
with each other, and conditionally averaged based on a synchronization of the fields with
the minimum values of centerline velocity at potential-core closing. The noise component
radiated in the downstream direction for M = 0.9 is clearly identified for M = 0.6, 1.3, 2,
and is also detected, albeit with more difficulty, for M = 0.3, indicating the presence of the
associated sound source over a wide range of Mach numbers. In all cases, its generation
process extracted by the conditional averaging consists in the growth of a spot of low
velocity and a high vorticity level in the inner side of the mixing layer, reaching a peak
intensity at its arrival on the axis and weakening subsequently. The use of different trigger
conditions for the averaging suggests that, for a given Mach number, the amplitude of
the acoustic waves radiated during that stage depends linearly on the velocity deficit and
the strength of the vortical structures on the jet centerline at the time of potential-core
closing.

DOI: 10.1103/PhysRevFluids.4.124601

I. INTRODUCTION

Since the early 1950s, noise generation in jet flows has been investigated in a very large amount
of theoretical, experimental, and numerical studies. Sound sources have been described in several
ways involving different concepts, such as acoustic quadrupoles [1], self noise and shear noise [2],
vortex sound [3], instability waves [4], large-scale ordered structures [5], fine-scale turbulence [6],
and wave packets [7], just to mention a few seminal papers in these fields. Significant progress
has thus been made, in particular for supersonic jets [8]. Some questions, however, are still
unanswered about the strong mixing-noise component prevailing in the downstream direction of
jets, whose properties are quite distinct from those of the omnidirectional, broadband mixing-noise
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component dominant in the upstream and sideline directions [9]. This downstream component
is mainly axisymmetric [10,11], and appears to be generated by large-scale structures and/or
instability waves over a wide range of Mach numbers [12], typically from M = u j/c0 = 0.5
up to M = 2, where uj and c0 are the jet velocity and the speed of sound in the ambient
medium. On the basis of the results of noise source localizations [13–15] and flow-noise cross-
correlations [16–18], it was also found to originate at the end of the jet potential core where the
shear layers merge. Its generation mechanism is most likely not to depend significantly on the
Reynolds number [18–20] but is not yet clearly understood [9,11]. Some of the basic characteristics
of the noise component themselves continue to be matters of debate. For instance, this is the
case for the dependence of its peak frequency on the velocity. This frequency was indeed found
to remain around a Strouhal number of StD = f D/u j = 0.15, where f and D are the frequency
and the jet diameter, in a number of work [21,22], but scalings as the Helmholtz number Hm =
f D/c0, with [23] or without [11,24] a correction by a Doppler factor, were also reported in the
literature.

In order to get a new insight into the generation of the jet noise component radiated in the
downstream direction, temporally developing subsonic axisymmetric mixing layers were simulated
well after the time of their potential-core closing in a recent study [25]. Despite obvious differences
with their spatially developing counterparts, temporally developing planar and axisymmetric mixing
layers have been computed over the last few years to describe the turbulent development and the
compressibility effects [26–29] and to explore acoustic sources in free shear flows [30–34]. In
Ref. [25], two jets at a Mach number of 0.9 and at diameter-based Reynolds numbers of 3125 and
12 500 were considered. The jet at a Reynolds number of 12 500 develops more rapidly, exhibits
more fine turbulent scales, and generates more high-frequency acoustic waves than the jet at a
Reynolds number of 3125, as expected. In both cases, however, strong low-frequency acoustic
waves are emitted in the downstream direction approximately at the time of potential-core closing.
These waves are dominated by the axisymmetric azimuthal mode and are strongly correlated with
the centerline flow fluctuations. This led us to conditionally average the jet flow and near pressure
fields using a sampling synchronization with the minimum values of centerline axial velocity at
potential-core closing. In this way, it was found that a spot characterized by a lower velocity and a
higher vorticity level relative to the background flow field develops in the interface region between
the mixing layer and the potential core, strengthens rapidly and reaches a peak intensity when
arriving on the jet axis, and then breaks down. That process is accompanied by the growth and
decay of a hydrodynamic pressure wave around the jets, and by the radiation of sound waves in
the downstream direction, These results, not necessarily expected at first sight, are similar to those
observed for spatially developing jets, e.g., in Refs. [35–37] for the near-field wave packets. They
suggest that the mechanism responsible for the jet noise component dominant in the downstream
direction does not depend on the presence of a nozzle or of a potential core of finite length, which
would be necessary for the establishment of feedback modes. On the contrary, it seems to be linked
to the physics of the interactions and merging of parallel mixing layers, as was suggested by the
calculations of two-dimensional plane jets subjected to a spatially localized initial disturbance by
Sandham et al. [38]. In the latter two-dimensional simulations, however, the contra-rotative vortical
structures in the two jet mixing layers mutually interact, but they cannot merge, preventing the
potential-core closing.

A logical next step is now to deal with temporally developing jets at different Mach numbers,
in order to examine the influence of the velocity on the noise generation at the potential-core
closing. The variations of the acoustic characteristics of spatially developing jets with the Mach
number have been investigated in a lot of studies in order to obtain information on sound
components and their associated sources. For instance, the theoretical work of Lighthill [1] and
Ffowcs Williams [39] established that the overall sound pressure level should increase with the
eighth power of velocity for subsonic jets, but with the third power of velocity for supersonic
jets. Overall, these power laws apply to far-field noise measurements, although the power-law
exponent appears to change with the radiation angle [21]. In particular, there is a rapid increase
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of the exponent as the angle decreases [9]. Thus, as noise intensity typically varies as M7.5 at 90◦
relative to the jet direction [22,23], exponents as high as 10 or 11 can be obtained for sufficiently
small radiation angles [9,22]. In the same way, using subsonic or supersonic wave filtering, Ryu
et al. [40] found that the supersonic downstream-propagating components scale with the 10th power
of the jet velocity in the near pressure fields of jets at Mach numbers ranging from 0.51 to 1.95.
Regarding the peak frequency in the far-field spectra, it scales with the Strouhal number StD in the
sideline direction, but there is no clear consensus for its scaling in the downstream direction, as
mentioned previously in this introduction. Finally, the levels of the correlations obtained between
the sound pressure fluctuations in the downstream direction and the flow fluctuations around the
end of the jet potential core strongly depend on the jet velocity. Indeed, they are high for M � 2
but sharply decrease for lower Mach numbers, falling below the noise floor for M � 0.8 [17],
which supports the inefficiency of the corresponding acoustic source in jets at sufficiently low
velocities.

Based on the above, the properties of the jet noise components radiated by four temporally
developing isothermal round jets at a Reynolds number of 3125 and at Mach numbers of 0.3, 0.6,
1.3, and 2 when their potential cores close are investigated in the present paper. For that, the jet flow
and sound fields are computed by direct numerical simulation (DNS) using the same numerical set-
up as for the jets at M = 0.9 in Ref. [25], up to times well after the potential-core closing. In a sense,
the present study constitutes an extension of that of Freund et al. [29] in which axisymmetric mixing
layers at Mach numbers ranging from 0.2 to 3.5 and at diameter-based Reynolds numbers between
4200 and 6400 were simulated by DNS until their potential-core closing. The flow fields were
analyzed just before that time, and the acoustic fields were not captured due to the limited extent
of the computational domain in the radial direction. In this work, the objective will be to describe
the velocity and pressure fields of the jets during the potential core closing and afterwards for the
first time for temporally developing jets at various Mach numbers to the best of our knowledge. The
particular question that arises is whether the jets all produce axisymmetric low-frequency sound
waves in the downstream direction around the time of potential-core closing, as observed for the jet
at Mach 0.9. This is not obvious for the low subsonic case at M = 0.3 given the experimental results
of the literature [9,17], but also for the high supersonic case at M = 2 for which strong Mach-wave
radiation is expected. The variations with the Mach number of the results, including the magnitudes
and spectral contents of the centerline velocity fields and of the hydrodynamic and acoustic pressure
fields, will be examined, and compared with those available for spatially developing jets. Moreover,
in order to highlight the noise generation mechanism, cross-correlations will be computed between
centerline flow quantities and pressure fluctuations in the hydrodynamic and near acoustic fields of
the jets. More importantly, conditional averaging will also be performed, as was, for instance, the
case in the recent studies of Schmidt and Schmid [41] and Pineau and Bogey [42] to isolate the
flow event precursor of Mach-wave radiation in supersonic jets. In practice, the DNS fields will be
synchronized with the minimum values of centerline velocity at the time of potential-core closing,
when the latter are below a given threshold. Different thresholds will moreover be used to search
for connections between the emitted sound waves and the centerline flow features at core closing,
including the velocity deficit and the strength of the vortical structures on the jet centerline at that
time.

The paper is organized as follows. The main characteristics of the jets and of the simulations,
including initial flow conditions, numerical methods, grid and computational parameters, and the
procedure of linear stability analysis used in this work are documented in Sec. II. The simulation
results, namely, vorticity and pressure snapshots, the key features of the jet velocity and near
pressure fields, flow-noise cross-correlations and conditionally averaged flow and sound fields, are
shown and commented on in Sec. III. Concluding remarks are given in Sec. IV. Finally, some results
of the linear stability analysis and flow-noise correlations computed from the conditionally averaged
fields are provided in two appendices.
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II. PARAMETERS

A. Jet definition

At initial time t = 0, five axisymmetric, isothermal mixing layers are imposed in the computa-
tional domain. They have Mach numbers of M = 0.3, 0.6, 0.9, 1.3, and 2, and a Reynolds number
of ReD = u jD/ν = 3125, where u j and D = 2r0 are the initial centerline velocity and diameter,
and ν is the kinematic molecular viscosity. For the axial velocity, a hyperbolic-tangent profile of
axial velocity is prescribed. Following the variations of δθ/r0 with the Reynolds number observed
in experiments for initially laminar jets [43], the momentum thickness of the velocity profile is fixed
at δθ = 0.0358r0. This leads to the initial momentum Reynolds number of Reθ = u jδθ/ν = 56, and
hence to significant viscous effects in the mixing layers [44,45]. Radial and azimuthal velocities are
set to zero, pressure is equal at p0, and density is determined by a Crocco-Busemann relation.

The mixing layers are simulated well after the disappearance of their potential cores. For that
reason, they will be referred to as jets in what follows, and this despite their differences with
respect to spatially developing jets, in terms of flow entrainment in particular [46]. As in the DNS
of Freund et al. [29], their Reynolds numbers are low in order to resolve all the flow turbulent scales
using reasonable mesh spacings. A second reason for that Reynolds number value is that the noise
component generated at potential-core closing was found to be more predominant in the acoustic
fields of Mach 0.9 jets for ReD = 3125 than for ReD = 12 500 and 50 000 in Ref. [25], which should
ease its extraction in the present study. It can also be noted that the jet at M = 2 was considered in
a previous paper [47] in a preliminary exploration of the formation of shocked waves in the vicinity
of supersonic jets.

At time t = 0, velocity disturbances of low amplitude are added in the mixing layers in order
to seed the laminar-turbulent transition. For this, divergence-free Gaussian ring vortices of radius
r0 are introduced [48]. These vortices have a half-width of 2δθ , and are regularly distributed in
the axial direction every �z = 0.025r0, where �z is the axial mesh spacing. At each position, the
vortex has a maximum velocity randomly fixed between 0 and αexc and is weighted in the azimuthal
direction by the function cos(nθ θ + ϕ) where nθ and ϕ are randomly chosen between 0 and 32 and
between 0 and 2π , respectively. For the jets at M = 0.3, 0.6, 0.9, and 1.3, the same forcing strength
of αexc = 0.01u j is used. It was chosen arbitrarily to provide a peak turbulence intensity close to 1%
at t = 0. For the jet at M = 2, for which the growth rates of the linear instability waves are much
weaker than for the jets at lower Mach numbers as shown in Sec. III B, such an initial condition was
found to lead to a laminar-turbulent transition process much longer than 100r0/u j , which would be
very costly. The forcing strength is therefore of αexc = 0.04u j , resulting in a turbulence intensity
of 4% at t = 0 in that case. The effects of the forcing strength on the early development of the
instability waves were examined for a jet at M = 2 and ReD = 12 500 in Pineau and Bogey [42].
Except for the amplitude, very similar results were found for αexc = 0.0025u j , 0.01u j , and 0.04u j

at t = 5r0/u j . Therefore, for the Mach 2 jet of the present study, it is most likely that the flow
properties when the potential core closes, that is around t = 50r0/u j , do not significantly depend on
the forcing strength. Finally, several runs are performed for each jet using different random seeds in
order to improve the statistical convergence of the results.

B. Numerical methods

The numerical framework is identical to that used in recent simulations of spatially devel-
oping [49–51] and temporally developing [25,42] round jets. The simulations are carried out
using an in-house solver of the three-dimensional filtered compressible Navier-Stokes equations
in cylindrical coordinates (r, θ, z) based on low-dissipation and low-dispersion, high-order explicit
schemes. The axis singularity is taken into account by the method of Mohseni and Colonius [52]. In
order to alleviate the time-step restriction near the cylindrical origin, the derivatives in the azimuthal
direction around the axis are calculated at coarser resolutions than permitted by the grid [53]. For
the points closest to the jet axis, they are evaluated using 16 points, yielding an effective resolution
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TABLE I. Jet Mach number M, number of runs nruns, extents of the computational domain in the axial and
radial directions Lz and Lr , simulation time tmax, and time of potential-core closing tc.

M nruns Lz/r0 Lr/r0 tmaxr0/uj tcr0/uj

0.3 5 240 30 50 16.9
0.6 5 240 30 60 18.5
0.9 10 120 30 75 21.6
1.3 5 240 30 75 30.1
2 4 240 13 96 48.9

of 2π/16. Fourth-order 11-point centered finite differences are used for spatial discretization,
and a second-order six-stage Runge-Kutta algorithm is implemented for time integration [54]. A
12th-order 11-point centered filter is applied explicitly to the flow variables every time step in order
to remove grid-to-grid oscillations while leaving larger scales mostly unaffected. Noncentered finite
differences and filters are also used near the grid boundaries [55,56]. Radiation conditions [57,58]
are applied at the sideline boundaries to avoid significant acoustic reflections. Finally, periodic
boundary conditions are imposed in the axial direction. Given the size of Lz = 120r0 or 240r0 of the
computational domains, they are unlikely to distort the jet flow development or to impose artificial
modes in that direction. This is demonstrated for the jet at M = 0.9 in Ref. [25] on the basis of
velocity correlation functions.

C. Simulation parameters

The present simulations are fully resolved DNS, which was checked by calculating the different
terms of the turbulent kinetic energy budget and making sure their sum is nil. Their main parameters
are provided in Table I. The grids all contain 980 million points, with nr = 382, nθ = 512 and
nz = 4800 for the jet at M = 0.9, nr = 382, nθ = 256, and nz = 4800 for M = 0.3, 0.6, and 1.3,
and nr = 382, nθ = 256, and nz = 9600 for M = 2. They extend up to Lz = 120r0 and out to
Lr = 30r0 in the first case, Lz = 240r0 and Lr = 30r0 in the second one, and Lz = 240r0 and
Lr = 13r0 in the third one. The mesh spacing in the axial direction is uniform and equal to
�z = 0.025r0, whereas the mesh spacing in the radial direction varies. The latter is minimum and
equal to �r = 0.006r0 at r = r0. It is maximum and equal to �r = 0.2r0 for r � 16r0 for the jets at
M � 1.3 and to �r = 0.05r0 for r � 4r0 for the jet at M = 2, yielding wave numbers of kzr0 = 7.8
and 31, respectively, for a wave discretized by four points per wavelength. The mesh is finer for the
Mach 2 jet than for the others in order to allow for the propagation of shocked waves in the near
field of the former jet [42]. The use of nθ = 256 and 512 points in the azimuthal direction leads to
r�θ = 0.024r0 and 0.012r0 at r = r0.

The computations are performed using an OpenMP-based in-house solver on 32-core nodes
of Intel E5-4650 processors with a clock speed of 2.7 GHz and 16-core nodes of Intel E5-2670
processors at 2.6 GHz. The total number of iterations is equal to 18 000 for M = 0.3 and 0.6, to
23 000 for M = 0.9, to 17 000 for M = 1.3 and to 21 000 for M = 2, leading to the final times tmax

of 50r0/u j for M = 0.3, of 60r0/u j for M = 0.6, of 75r0/u j for M = 0.9 and 1.3, and of 96r0/u j for
M = 2. After preliminary tests of numerical stability, the value of the time step �t was chosen so
that c0�t/�r(r = r0) = 1.5, 0.9, 0.6, 0.55, and 0.37 for M = 0.3, 0.6, 0.9, 1.3, and 2, respectively.
During the simulations, density, the three velocity components, pressure and vorticity norm are
recorded every 0.1r0/u j on the jet axis and on the cylindrical surfaces at r = r0, 4r0, and 20r0, and
every 0.2r0/u j on the four azimuthal planes at θ = 0, π/2, π , and 3π/2. Their Fourier coefficients
in the azimuthal directions, estimated over the full section (r, z), are also saved for the first four
azimuthal modes every 0.2r0/u j . For each jet, several runs, namely, 10 runs for M = 0.9, five runs
for M = 0.3, 0.6, and 1.3, and four runs for M = 2, are executed using different random seeds. The
statistical results obtained in each run are averaged over the periodic directions z and θ , and are then
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ensemble averaged, providing mean values denoted by 〈.〉. Their convergence for the jet at M = 0.9
is shown in Ref. [25].

D. Linear stability analysis

Inviscid temporal stability analyses have been carried out directly from the DNS profiles of mean
axial velocity and mean density obtained at t = 0 and between t = tc − 15r0/u j and t = tc, where
tc is the time of potential-core closing defined hereafter, using the same procedure as in recent study
on spatially developing subsonic jets [51]. For simplicity’s sake, viscous effects are not taken into
account, although they are expected to be significant at the low Reynolds numbers Reθ considered in
this work [44,45]. In practice, for a given time t and a given axial wave number kz, the mean profiles
of axial velocity and density are considered as if they were stationary and their instability modes are
calculated numerically by solving the compressible Rayleigh equation [59–61]. These instabilities
are computed through a shooting technique [45] based on the Euler method for the integration step
and on the secant method for the search of the complex angular frequency ω. The integration is
performed on a grid with a spatial step of 0.0001r0, extending from the DNS grid point closest to
the jet axis out to r = 5r0.

III. RESULTS

A. Vorticity and pressure snapshots

Fields of vorticity norm and pressure fluctuations obtained for M = 0.3, 0.6, 1.3, and 2 in
the (z, r) plane at t = tc and tc + 18r0/c0, where tc denotes the time when the mean centerline
velocity is equal to 0.95u j , are represented in Figs. 1 and 2. Their time evolutions are shown in the
corresponding movies available as Supplemental Material [62]. Fields reconstructed from the first
four azimuthal modes in the (r − θ ) plane at z = 0 are also provided in the figures. Note that the
pressure fluctuations are normalized by p0M2 at t = tc and by p0M3.75 at tc + 18r0/c0, according
to the respective Mach number scalings of the levels of the hydrodynamic and acoustic pressure
fluctuations that will be found in Sec. III C.

For all jets, instability waves grow at earlier times in the initially laminar hyperbolic-tangent
velocity profiles [59], leading to the rolling up of vortices in the mixing layers. As the Mach number
increases, as in the DNS of Freund et al. [46], this occurs more rapidly, and the vortices are weaker
and more elongated in the axial direction, in particular for the jet at a Mach number of 2. The
vortices develop and interact with each other through the jet potential core at t = tc in Fig. 1. Then
the mixing layers merge on the jet axis, resulting in the disappearance of the potential core and the
presence of vortical structures in the whole radial section; see, for instance, Fig. 2.

In the jet near fields, large-scale pressure waves are first seen in the immediate vicinity of the
flow. They correspond to the hydrodynamic pressure disturbances induced by the large turbulent
structures of the shear layers [63,64]. They are well visible at t = tc in Fig. 1. At that time, acoustic
waves also start to emerge from the jet flow, especially for the jet at M = 2 for which Mach waves
are generated by the supersonic motion of the flow structures in the mixing layers [47]. The acoustic
waves appear more clearly at t = tc + 18r0/c0 in Fig. 2 as they propagate farther from the axis. In
all cases, they travel mainly in the downstream direction, as observed at shallow angles for spatially
developing subsonic jets [48,65]. They are mostly symmetric with respect to the jet centerline [see
also their three-dimensional geometries in the (z − θ ) planes] and have a large spatial extent along
the wave front direction. Their levels strongly increase with the Mach number, as expected, and
range approximately from 5 Pa at M = 0.3 up to 3000 Pa at M = 2. In addition, their associated
wavelengths decrease with the jet velocity. For instance, they are typically equal to 20r0 at M = 0.6
and to 10r0 at M = 1.3.

B. Properties of the velocity fields

In order to characterize the linear instability waves growing initially in the laminar shear layers,
the instability amplification rates Im(ω)r0/u j obtained for the first two azimuthal modes nθ = 0
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FIG. 1. Vorticity norm for r � 2.5r0 and pressure fluctuations otherwise, obtained at tc for M = 0.3, 0.6,
1.3, and 2, from top to bottom: (left) full fields in the (r − z) section, (right) fields reconstructed from the first
four azimuthal modes at z = 0. The color scales range between ±5uj/r0 and ±0.002p0M2, from blue to red.
See also the movies available as Supplemental Material [62].

and nθ = 1 from the flow profiles at t = 0 using the methodology described in Sec. II D are
represented in Figs. 3(a) and 3(b) as a function of the axial wave number kzr0. For M = 0.3, the
curves for nθ = 0 and 1 are very similar to each other, and to that given by the temporal linear
stability analysis of Michalke [59] for an incompressible two-dimensional mixing layer with a
hyperbolic-tangent velocity profile, which yields a peak value of Im(ω)r0/u j = 1.34 at kzr0 = 1.21
using the parameters of the present mixing layers. With increasing Mach number, the amplification
rates are reduced, the range of unstable wave numbers is narrower, and the mode nθ = 1 becomes
more unstable than the axisymmetric mode, in agreement with the literature [60].
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FIG. 2. Vorticity norm for r � 3r0 and pressure fluctuations otherwise, obtained at tc + 18r0/c0 for M =
0.3, 0.6, 1.3, and 2, from to bottom: (left) full fields in the (r − z) section, (right) fields reconstructed from the
first four azimuthal modes at z = 0. The color scales range between ±5uj/r0 and ±0.003p0M3.75, from blue to
red. See also the movies available as Supplemental Material [62].

The spectra of axial velocity fluctuations normalized by the initial centerline velocity, calculated
at r = r0 at t = 2r0/u j for M = 0.3, 0.6, 0.9, and 1.3 and at t = 8r0/u j for M = 2 are plotted
in Fig. 3(c). The spectrum for M = 2 is shown at a later time in order to obtain components of
comparable levels in the five cases despite the much weaker amplification rates at M = 2 than
at lower Mach numbers. Overall, the results are consistent with the linear stability analysis. In
particular, the peak wave numbers in the spectra are just slightly lower than the most unstable wave
numbers predicted by the analysis. For the jets at M � 1.3 at t = 2r0/u j , in addition, the fluctuation
intensities decrease with the Mach number, as expected.
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FIG. 3. Instability growth rates obtained at t = 0 for (a) nθ = 0 and (b) nθ = 1, and (c) power spectral
densities (PSDs) of axial velocity fluctuations at r = r0 at t = 2r0/uj for M � 1.3 and at t = 8r0/uj for M = 2,
as a function of axial wave number: M = 0.3, M = 0.6, M = 0.9, M =
1.3, M = 2.

The variations of the shear-layer momentum thickness are presented as a function of tu j/r0 in
Fig. 4(a). In accordance with the results above, the shear layer spreads more slowly at a higher Mach
number. As a result, the jet potential core persists over a longer time period, and the mean centerline
velocity reaches a value of 0.95uj at a time tc ranging from 16.9r0/u j for M = 0.3 up to 48.9r0/u j

for M = 2, as reported in Table I. At that time, the momentum thickness is nearly the same for all
cases and is close to δθ = 0.24r0. For the comparison, most of the results in the paper of Freund
et al. [29] are presented for δθ = 0.2r0, which is slightly before t = tc.

In order to examine the differences in mean flow development after the potential-core closing, the
mean centerline axial velocities and the jet half-widths are plotted in Figs. 4(b) and 4(c) as a function
of (t − tc)u j/r0. The curves obtained for M = 0.3 and 0.6 are superimposed. The other curves
deviate from them, almost imperceptibly for M = 0.9, appreciably for M = 1.3 and strongly for
M = 2. The velocity decay and the flow spreading are therefore weaker as the jet velocity increases,
especially for Mach numbers well above 1, which can be attributed to compressibility effects [66].
Furthermore, it can be remarked that in all cases the jet half-width decreases and reaches a minimum
value around t = tc, indicating a narrowing of the axisymmetric mixing layers when the turbulent
structures burst into the centerline region.

The time variations of the axial turbulence intensities at r = 0 are displayed in Fig. 5(a). As
for the mean centerline velocity in Fig. 4(b), the results are similar for the jets at M � 1.3, but
differ for M = 2. For M � 1.3, the turbulence intensities reach peaks approximately of 17% at
t � tc + 4r0/u j , whereas for M = 2 the peak value is obtained later, at t = tc + 8.1r0/u j , and is
equal to 19.4%. Moreover, after the peaks, the decrease of the turbulent intensities is less pronounced

FIG. 4. Time variations of (a) the shear-layer momentum thickness, (b) the mean axial velocity at r = 0,
and (c) the jet half-width: M = 0.3, M = 0.6, M = 0.9, M = 1.3,
M = 2; ◦ momentum thickness at t = tc.
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FIG. 5. Flow field at r = 0: time variations of (a) the rms values of axial velocity fluctuations and (b) the
convection velocity, and (c) power spectral densities of velocity at tc as a function of axial wave number:

M = 0.3, M = 0.6, M = 0.9, M = 1.3, M = 2; k−5/3
z .

for the jet at M = 2 than for the others, in agreement with the slower flow development in the
high-supersonic case.

The convection velocities on the axis, calculated from the correlation functions of the axial
velocity fluctuations, are shown in Fig. 5(b). For M � 1.3, they are close to 0.6u j at t � tc −
10r0/u j , then increase and reach maximum values around 0.85u j near the time of potential-core
closing, and finally diminish. As in spatially developing jets [18], these results suggest that the
turbulent structures that enter in the potential core are accelerated, which may generate sound [67].
For M = 2, the convection velocities are lower compared to those at lower Mach numbers, and the
peak values are obtained earlier, at t � tc − 5r0/u j .

Finally, to get an insight into the flow structures at the potential-core closing, the spectra of
the centerline axial velocity fluctuations at t = tc are represented in Fig. 5(c) as a function of
kzr0. For the comparison, a line given by the k−5/3

z law is also drawn. As in the mixing layers of
Freund et al. [29] at the δθ = 0.2r0 point, all spectra are broadband with no significant discrete
peak. In addition, they do not strongly differ from each other. As the Mach number increases,
however, the magnitude of the flow components tends to increase for kzr0 � 0.3 and to decrease
for kzr0 � 0.8. Therefore, at a higher velocity, the flow structures are more elongated in the axial
direction, as previously noted in the vorticity fields of Fig. 1. This trend is consistent with the linear
stability analysis conducted between t = tc − 15r0/u j and tc for the axisymmetric mode, reported
in Appendix A, predicting lower unstable wave numbers at higher Mach numbers. This analysis
also reveals no unstable wave number around the time of potential-core closing. Indeed, the last
unstable wave numbers are found between tc − 1.5r0/u j for M = 0.3 and tc − 13r0/u j for M = 2,
and are equal to kzr0 � 0.45 for M = 0.3, 0.6 and 0.9, and kzr0 � 0.35 for M = 1.3 and 2. It can be
remarked that these wave numbers do not emerge in the spectra of Fig. 5(c).

C. Properties of the pressure fields

In order to examine the properties of the hydrodynamic pressure fields, clearly appearing around
the jet flows at t = tc in Fig. 1, the pressure fluctuations are first considered at r = 2.5r0. Indeed, for
the temporally developing axisymmetric mixing layers of Freund et al. [29] with Mach numbers
between 0.2 and 1.92, the rms values of pressure fluctuations at that position just before the
potential-core closing scale with the square of the velocity. The values obtained for the present
jets are presented as a function of (t − tc)u j/r0 in Fig. 6(a), normalized by M2. As for the centerline
velocity fluctuations in Fig. 5(a), the profiles are nearly superimposed for M � 0.9, and differences
are observed for M = 1.3 and especially for M = 2. At t = tc, however, the levels are very close to
each other in all cases, and similar to that approximately of 0.008 found slightly before tc for the
mixing layers of Freund et al. [29] mentioned above. This demonstrate the hydrodynamic nature
of the pressure fluctuations. For t < tc, the levels are stronger as the Mach number increases. This
can be due to the fact that, at a given t − tc, the momentum thickness is larger, i.e., the flow is
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FIG. 6. Pressure field at r = 2.5r0: (a) time variations of the rms values of fluctuations, and power spectral
densities of fluctuations obtained at tc from (b) the full signal and (c) mode nθ = 0, as a function of axial wave
number: M = 0.3, M = 0.6, M = 0.9, M = 1.3, M = 2.

more developed, at a higher Mach number, refer to Fig. 4(a). For t > tc, peaks of comparable
amplitudes are reached at t � tc + 10r0/u j for M � 0.9, that is 6r0/u j after the time of peak
turbulence intensities on the axis. For M = 2, the maximum values are somewhat higher and are
found later, around tc + 12r0/u j .

The spectra estimated at r = 2.5r0 at time tc for the full pressure signals and for mode nθ = 0
are represented in Figs. 6(b) and 6(c) as a function of kzr0. They are multiplied by M−4 to take into
account the variations of the rms levels with M2. In Fig. 6(b) the spectra resemble each other over
the whole range of Mach numbers considered. This is also the case in Fig. 6(c) for M � 1.3, but
noticeable discrepancies appear for M = 2, in particular in terms of amplitude. This can be related
to the fact that 46.6%, 47.7%, and 34.6% of the energy are contained in the axisymmetric mode for
M = 0.3, 0.6, and 1.3, but only 14.8% for M = 2. This reduction of the relative importance of the
axisymmetric mode in the hydrodynamic pressure field with the Mach number likely results from
the predominance of higher modes of instability waves at supersonic Mach numbers [42]. In terms
of spectral content, the spectra peak around kzr0 = 0.8 for M � 1.3, yielding a wavelength λ � 8r0.
With increasing jet velocity, the pressure components are stronger at wave numbers kzr0 � 0.2 and
weaker at kzr0 � 0.8. These trends are in agreement with those noted in the jet flow, see in Fig. 5(c).

The near acoustic fields are analysed at r = 10r0, where sound waves prevail at tc + 18r0/c0 in
Fig. 2. The rms values of pressure fluctuations at that position are presented in Figs. 7(a) and 7(b).
They are displayed as a function of (t − tc)c0/r0 by assuming a wave propagation at the ambient
speed of sound, and they are multiplied, following the classical noise scaling associated with the
acoustical analogy of Lighthill [1], by M−4 in Fig. 7(a) and, more arbitrarily, by M−3.75 in Fig. 7(b).
In all cases, the peak values are obtained at t � tc + 15r0/c0, suggesting that they are due to sound
sources emitting at same times relative to the potential-core closing. Regarding their amplitudes,

FIG. 7. Pressure field at r = 10r0: time variations of (a), (b) the rms values of fluctuations, and (c) the
radiation angle relative to the jet direction: M = 0.3, M = 0.6, M = 0.9,
M = 1.3, M = 2.
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FIG. 8. Pressure field at r = 10r0: power spectral densities of fluctuations obtained at tc + 15r0/c0 from
(a) the full signal and (b) and (c) nθ = 0, as a function of (a) and (b) kzr0 and (c) kzr0 × M−1: M = 0.3,

M = 0.6, M = 0.9, M = 1.3, M = 2.

a better match is found in Fig. 7(b) than in in Fig. 7(a). In the former figure, they are similar to
each other for M � 1.3. The sound levels thus vary roughly as M7.5. This velocity exponent is
slightly lower than the exponent of 8 predicted for subsonic jets by the analogy. More surprisingly,
compared to the velocity exponents obtained for spatially developing subsonic jets, it corresponds to
that measured at 90◦ relative to the flow direction [22,23], but differs from those for small radiation
angles [9,22,40]. This suggests that the velocity exponent typically of 10 found in the latter case is
related to the spatial development of the jet flow. Last, the peak for M = 2 is significantly below
the other ones, implying that, if any, the power law exponent is lower for the noise emitted in this
supersonic case, as expected given the further developments of the analogy [39].

The variations of the mean radiation angle at r = 10r0, estimated from cross-correlations of
the pressure fluctuations, are plotted in Fig. 7(c). The angle decreases monotonically with time, as
the distance to the sound sources increases. For M = 2, however, it remains near the angle φ =
cos−1(c0/uc) = 54◦, predicted for Mach waves by taking the instability-wave phase velocity of
0.85u j obtained in Appendix A as convection velocity, between t � tc + 10r0/c0 and tc + 16r0/c0.
Moreover, the mean radiation angle is smaller at a higher Mach number, as can be seen in Fig. 2.

Finally, the spectra calculated from the full pressure signals and from mode nθ = 0 at r = 10r0

at tc + 15r0/c0, near the times of maximum sound level, are provided in Figs. 8(a) and 8(b) as a
function of kzr0. Given the rms profiles of Fig. 7(c), they are multiplied by M7.5. In all cases, the
axisymmetric mode dominates [10,11] and contains between 57.5% of the total energy for M = 0.3
and 47.3% for M = 2. As a result, Figs. 8(a) and 8(b) show very similar features. Focusing on mode
nθ = 0, the spectra for M � 1.3 clearly differ in Fig. 8(b), their strongest components shifting, for
instance, from kzr0 � 0.15 for M = 0.3 up to kzr0 � 0.8 for M = 1.3. On the contrary, when they
are plotted as a function of kzr0M−1 in Fig. 8(c), they are close to each other and all peak around
kzr0M−1 = 0.55. This result is consistent with the pressure fields of Fig. 2 and suggests an acoustic
radiation at a constant Strouhal number St = f D/u j = 0.175, which is approximately the value
measured in the downstream direction for subsonic jets [21,22]. Regarding the spectrum for M = 2,
it is not aligned with the other ones in Fig. 8(c). It has stronger low-wave-number components, and
even looks like the spectrum for M = 1.3 when depicted as a function of kzr0 in Fig. 8(b). Thus, a
Helmholtz-number scaling may apply to the acoustic spectra for M � 1.3. Such a scaling is usually
attributed to the noncompactness of the source [11], which is certainly encountered in the present
high-velocity jets for which the velocity spectra at tc peak at lower wave numbers than the acoustic
spectra.

D. Flow-noise cross-correlations

Correlations are computed between the flow and sound fields, as was done in numerous
experimental and numerical investigations for spatially developing [16–18,68–71] and temporally
developing [25] jets, in order to identify links between source and observer points. In this work,
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two types of correlations, denoted by C in a dimensional form and R in a normalized form, are
calculated for the axisymmetric mode. The first ones are correlations between pressure fluctuations
at rac = 10r0 in the acoustic field and flow fluctuations at raxis = 0. For the axial velocity u′

z, they
are given by

C(δz, δt ) = 〈p′(rac, θ, z, tac)u′
z(raxis, z + δz, tac + δt )〉,

where tac = tc + 22r0/c0, δz is the spatial separation and δt is the time shift. The second ones are
correlations between pressure fluctuations at rac and at rhydro = 2.5r0, defined by

C(δz, δt ) = 〈p′(rac, θ, z, tac)p′(rhydro, θ, z + δz, tac + δt )〉.
The normalized correlations obtained between p′ at r = 10r0 and velocity and vorticity fluctua-

tions u′
z and | �ω|′ at r = 0 for M = 0.3, 0.6, 1.3 and 2 are shown in Figs. 9 (left) and 9 (middle)

as a function of δz/r0 and δtc0/r0. The dotted, solid and dashed lines reflect, respectively, the
time of potential-core closing, a propagation at the ambient speed of sound between the two points
considered, and a velocity of 0.65u j .

For M = 0.3, strong correlations are visible in Figs. 9(a) and 9(b). However, at the time of
potential-core closing, they are not consistent with a propagation of acoustic waves. In order to
clarify this point, correlations are calculated between pressure fluctuations at r = 25r0 at t =
tc + 55r0/u j and velocity and vorticity fluctuations at r = 0 at t + δt . They are represented in
Fig. 10, in a normalized form. The levels are significant for distances δz � −5r0 for all time delays
for u′

z and for δtc0/r0 � 40 for | �ω|′, in the same way as in Figs. 9(a) and 9(b). These correlations
can be attributed to the presence of components of hydrodynamic nature in the pressure signals.
Such components can indeed be expected for kzr < 2 [40,64], yielding kzr0 < 0.2 at r = 10r0 and
kzr0 < 0.008 at r = 25r0, with relative amplitudes compared to those of the acoustic disturbances
all the greater given that the Mach number is low. In Fig. 10 notable correlations also emerge
approximately 10r0/c0 after the potential-core closing for δz � −40r0, close to the line for a
propagation at the speed of sound. Downstream-propagating noise components therefore appear
to be detected, and to be emitted shortly after the potential-core closing, as will be discussed in
what follows.

Apart from the axis-hydrodynamic correlations which may be identified around δz � −10r0

for M = 0.6, the results for M = 0.6, 1.3 and 2 in Figs. 9(d) and 9(e), 9(g) and 9(h), and 9(j)
and 9(k) are very similar, suggesting the presence of a common noise generation mechanism. The
peak correlations lie near the intersection of the dashed and solid lines, for negative separation
distances. This supports that acoustic waves are emitted in the downstream direction around the
time of potential-core closing. The correlations are negative for u′

z and positive for | �ω|′, which is
due to the occurrence of velocity deficit and vorticity excess on the axis at t � tc [25]. In absolute
value, the correlation levels, which do not exceed 0.15 at M = 0.6 and are greater than 0.25 for
M � 1.3, increase with the jet velocity, as in the case for spatially developing jets [17]. Strong
correlations are also encountered long after t = tc for the velocity fluctuations and before t = tc for
the vorticity fluctuations, along trajectories revealing a velocity which is close to 0.65uj for t � tc
and then decreases with time. This persistence of non-negligible correlations over a long period of
time is related to the convection of the turbulent structures in the flow [18].

Finally, the normalized correlations between p′ at r = 10r0 and at r = 2.5r0 are shown in Fig. 9
(right). For M = 0.3, notable correlations are found but they do no occur along the solid line for a
propagation of acoustic waves. They may be hydrodynamic-hydrodynamic correlations caused by
the hydrodynamic components at r = 10r0. For M � 0.6, on the contrary, significant correlations
lie along elongated spots aligned with the solid line. The levels are stronger for a higher Mach
number, and peak slightly after tc. These features are similar to those exhibited by the axis-acoustic
correlations, the correlations in the present case showing the links between the hydrodynamic
pressure waves around the flows and the acoustic waves [9,72]. More specifically, in Figs. 9(f), 9(i),
and 9(l), the correlations fork into two separate branches approximately for δt � −10r0/c0. The
branch on the left-hand side can be related to hydrodynamic-acoustic correlations between the sound
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FIG. 9. Normalized correlations between p′(rac, z, tac ) and (left) u′
z(raxis ), (middle) | �ω|′(raxis ), (right)

p′(rhydro) at z + δz and tac + δt for nθ = 0, for M = 0.3, 0.6, 1.3, and 2, from top to bottom; the color scales
range between (left, middle) ±0.25 and (right) ±0.6, from blue to red; propagation at c0;
δt = tc − tac; velocity of 0.65uj .

waves at rac and the hydrodynamic waves at rhydro convected at a decreasing velocity for t � tc. That
on the right-hand side corresponds to acoustic-acoustic correlations between the waves at rac and
the lower part of the waves at rhydro propagating at c0.

E. Conditional averaging of the flow and pressure fields

A conditional averaging method is employed in order to extract the noise generation mechanism
related to the intrusion of turbulent structures in the potential core. The method consists in averaging
samples selected using a trigger condition in a signal, and enables to isolate a specific phenomenon
from the background noise. For jets, it has been used over the last years by Hileman et al. [73],
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FIG. 10. Normalized correlations of p′(r = 25r0, z, t = tc + 55r0/c0) with (a) u′
z(raxis ) and (b) | �ω|′(raxis) at

z + δz and t + δt for M = 0.3. The color scale ranges between ±0.2, from blue to red; propagation at
c0; δt = tc − t ; velocity of 0.65uj .

Kearney-Fisher et al. [74], and Camussi and Grizzi [75], for instance, and more recently by Schmidt
and Schmid [41] and Pineau and Bogey [42] to study Mach-wave radiation in supersonic jets.
In practice, the averaging procedure is very similar to that used for temporal jets at M = 0.9 in
Ref. [25], but it is here applied only to the axisymmetric mode of the flow and acoustic fields.
The signal for the sample selection is the signal of axial velocity on the axis at the time of
potential-core closing. The trigger events are identified by detecting the minimum values of velocity
below a threshold of 0.7u j . This threshold value is chosen arbitrarily, but it was verified in the
aforesaid paper that the use of other thresholds, such as 0.60uj and 0.75u j , only changes the
results quantitatively. The trigger events separated by a distance of less than 7.5r0 are discarded to
avoid sample overlapping. This leads to a total number of samples equal to 40 for M = 0.3, 46 for
M = 0.6, 61 for M = 1.3 and 34 for M = 2, which is small but sufficient to obtain averaged fields
clearly exhibiting coherent features. The flow and pressure fields are then recorded over windows
centered around the position zc of the trigger events, and the resulting snapshots are ensemble
averaged. This is carried out at time tc, but also at previous and subsequent times using the same
synchronization with the negative spikes of centerline velocity at tc, yielding access to the time
evolution of the generation and radiation of the axisymmetric sound components.

The conditional fields of velocity fluctuations in the flow and of pressure fluctuations outside
at tc − 8r0/u j , tc − 4r0/u j and tc are represented in Fig. 11. Those at tc + 6r0/c0, tc + 12r0/c0

and tc + 18r0/c0 are shown in Fig. 12. The pressure fluctuations are multiplied by M−2 for t � tc
and by M−3.75 for t > tc, to get comparable levels for the hydrodynamic disturbances in the first
case and for the acoustic ones in the second one. In the figures, velocity contours are drawn for
the value of 75% of the mean centerline velocity to visualize the inner limit of the mixing layer. The
time evolutions of the conditional fields of velocity and vorticity fluctuations in the flow and of
pressure fluctuations outside can be seen in the movies available as Supplemental Material [62].

The results obtained before the potential-core closing in Fig. 11 share remarkable similarities
regardless of the Mach number. In all jets, a spot of lower velocity and higher vorticity level relative
to the background flow field develops at the inner edge of the mixing layer. It is located at z �
zc − 3r0 in Figs. 11 (middle) and, by construction, z = zc in Figs. 11 (right). The axial length of
this spot does not change much with the Mach number between M = 0.3 and 1.3 but is longer for
M = 2. In the pressure field, a hydrodynamic wave centered on this velocity defect grows around the
jet. With respect to the jet direction, its lobes are perpendicular for M = 0.3 and M = 0.6, but they
are slightly inclined for M = 1.3 and strongly inclined for M = 2. In the latter case, they resemble
Mach waves, which is not surprising given the supersonic motion of the flow structures [47].

The profiles of centerline velocity and vorticity fluctuations normalized by uj and r0 and of
pressure fluctuations at r = 2.5r0 multiplied by M−2, given by the conditional-averaging procedure
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FIG. 11. Velocity fluctuations for r � 1.75r0 and pressure fluctuations otherwise, obtained using condi-
tional averaging for nθ = 0 at (left) tc − 8r0/uj , (middle) tc − 4r0/uj , and (right) tc for M = 0.3, 0.6, 1.3,
and 2, from top to bottom. The color scales range between ±0.075uj and ±0.0011p0M2, from blue to red;

uz = 0.75〈uz(r = 0)〉. See also the movies available as Supplemental Material [62].

at t = tc, are plotted in Figs. 13(a)–13(c). They do not depend appreciably on the Mach number
in both shape and amplitude. In the velocity and vorticity profiles, negative and positive peaks of
typical width of 0.6r0 are found at z = zc. They result from the arrival on the jet axis of the low-
velocity vortical spot developing in the inner side of the mixing layer. The hydrodynamic pressure
waves induced by this spot appear in Fig. 13(c). They are dominated by a positive hump at z = zc

for M � 0.6 and slightly more upstream for M � 1.3, and by a wavelength roughly of 8r0.
After the potential-core closing, in Fig. 12, the spot of low velocity in the flow and its associated

hydrodynamic pressure wave weaken, but persist over a long period of time and are still visible
at tc + 18r0/c0 for all jets. In the acoustic field, sound waves are emitted and propagate in
the downstream direction. This is clearly the case for M � 0.6, but less obvious for M = 0.3.
The profiles of the pressure fluctuations at r = 10r0 at tc + 18r0/c0 are depicted in Fig. 13(d).
For the four jets, a wavefront with an amplitude of (p′/p0) × M−3.75 � 5 × 10−4 is observed. It
is however located farther upstream as the Mach number decreases. This is particularly true for
M = 0.3, which further supports the contention of previous section that this jet radiates noise
components in the downstream direction as the other jets, but a later time. Note that correlations
computed between the conditional fields of p′ at r = 10r0 and the centerline velocity fluctuations
for M = 0.6, 1.3 and 2 are displayed in Appendix B. They are in good qualitative agreement with the
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FIG. 12. Velocity fluctuations for r � 1.75r0 and pressure fluctuations otherwise, obtained using condi-
tional averaging for nθ = 0 at (left) tc + 6r0/c0, (middle) tc + 12r0/c0 and (right) tc + 18r0/c0 for M = 0.3,
0.6, 1.3, and 2, from top to bottom. The color scales range between ±0.075uj and ±0.0011p0M3.75 Pa, from
blue to red; uz = 0.75〈uz(r = 0)〉. See also the movies available as Supplemental Material [62].

correlations in Sec. III D, indicating that the noise generation mechanism extracted using conditional
averaging corresponds to the source revealed using the latter correlations.

The time variations of the minimum values of velocity in the flow and of the maximum values
of pressure at r = 2.5r0 are shown over tc − 8r0/u j � t � tc + 8r0/u j in Figs. 14(a) and 14(b).
For all jets, in absolute value, they first rapidly grow, peak and then gradually decay. The peak
is located at tc for u′

z and at tc or slightly later for p′. In addition, the peak is narrower, i.e., the
growing-and-decaying process happens over a shorter period of time, for u′

z than for p′. The axial
positions of the minimum values of velocity are illustrated in Fig. 14(c) to gain information on
the convection velocity of the spot of velocity deficit. In all cases, this velocity is approximately of
0.65u j at t = tc, and then decreases. Before tc, it seems to be slightly lower than 0.65u j for M = 0.3,
0.6 and 2, and close to this value for M = 1.3. This is confirmed by the profiles of Fig. 14(d)
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FIG. 13. Velocity, vorticity and pressure fluctuations obtained using conditional averaging for nθ = 0,
(a) u′

z(raxis, tc )/uj and (b) | �ω|′(raxis, tc )r0/uj , (c) (p′(rhydro, tc )/p0) × M−2 and (d) (p′(rac, tc + 18r0/c0 )/p0) ×
M−3.75: M = 0.3, M = 0.6, M = 1.3, M = 2.

showing the time derivatives of the positions depicted in Fig. 14(c), except for M = 2 because of
strong oscillations. Therefore, as previously pointed out for jets at M = 0.9 in Ref. [25], no strong
acceleration is noticed when the potential core closes, which is in contrast with the convection
velocities acquired from the correlation functions of centerline velocity fluctuations of Fig. 5(b).

The variations of the maximum values of p′ at r = 10r0 and of their axial positions between tc
and tc + 24r0/u j are provided in Figs. 15(a) and 15(b). For M = 0.3, significant levels are obtained
in Fig. 15(a) for t � tc + 12r0/u j at positions remaining close to z = 0. They might be due to the
hydrodynamic disturbances mentioned in the previous section. Later, the pressure levels exhibit a
second hump for t � tc + 19r0/u j , which is most likely of acoustic nature. For M = 0.6, 1.3, and
2, the pressure levels increase and reach peak values around tc + 16r0/u j , as expected according to
the rms profiles of Fig. 7. Apart for M = 0.6 for t � tc + 8r0/u j , certainly also due to the presence
of hydrodynamic disturbances, the axial positions of the pressure extrema increase as the acoustic
waves propagate. In all cases, in addition, they indicate a propagation velocity tending toward the
speed of sound as the direction of noise radiation is closer to the axial direction. Moreover, for
t � tc + 12r0/u j , the distance z − zc is shorter at a lower Mach number, which is consistent with
Fig. 13(d).

The radiation angles computed from the positions of the pressure peaks at r = 10r0 for M =
0.6, 1.3, and 2 are presented in Fig. 15(c) between tc + 10r0/u j and tc + 22r0/u j . For t � tc +
15r0/u j , similar results are found with angles decreasing from φ � 40 down to φ � 30◦ relative
to the flow direction. These angles are lower than those in Fig. 7(c) obtained from correlations of
the full pressure fluctuations. This may be due to the fact that in the conditional pressure fields the
noise components generated by the potential-core closing are isolated from other components by

FIG. 14. Time variations of (a) the minimum of u′
z/uj over 0 � r � r0, (b) the maximum of p′/p0 at rhydro,

(c) the axial position of the minimum of u′
z and (d) its time derivative, obtained using conditional averaging for

nθ = 0: M = 0.3, M = 0.6, M = 1.3, M = 2; velocity of 0.65uj .
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FIG. 15. Time variations of (a) the maximum of p′/p0 at rac, (b) their axial positions and (c) the
corresponding radiation angles relative to the jet direction, obtained using conditional averaging for nθ = 0:

M = 0.3, M = 0.6, M = 1.3, M = 2; velocity of c0 and 1.3c0.

the averaging procedure. As in Fig. 7(c), however, the angle for M = 2 remains close to the angle
of 54◦ previously associated with Mach-wave radiation.

Finally, an attempt is made to quantitatively relate the flow features at potential-core closing and
the emitted sound waves. For that, conditional averaging is performed as above but with different
trigger conditions for M = 0.6 and 1.3. For M = 0.6, the DNS fields are synchronized with the
minimum values of centerline velocity u′

z at tc below a threshold of 0.6u j in a first case, and between
0.6u j and 0.75u j in a second one, yielding conditional fields computed from 20 and 44 samples,
respectively. For M = 1.3, in the same way, the trigger conditions are u′

z(r = 0, tc) < 0.55u j and
0.55u j � u′

z(r = 0, tc) � 0.75u j to obtain 21 and 52 samples in the two cases. The conditional fields
of velocity and pressure thus determined for M = 1.3 are illustrated in Fig. 16 at tc, tc + 9r0/c0 and
tc + 18r0/c0. Overall, the results are very similar using the two trigger conditions, but the amplitudes
of the fluctuations differ and are higher in Figs. 16 (bottom) using u′

z(r = 0, tc) < 0.55u j for the
sample selection than in Figs. 16 (top).

Some properties of the conditional fields are brought together. The maximum values of vorticity
norm in the flow for M = 0.6 and 1.3 are presented in Fig. 17(a) as a function of the absolute
value of the minimum of velocity. They increase monotonically, indicating that the more marked
the velocity deficit during the potential-core closing, the stronger the vorticity excess. Inversely, the

FIG. 16. Velocity fluctuations for r � 1.75r0 and pressure fluctuations otherwise, obtained for M = 1.3 at
(left) tc, (middle) tc + 9r0/c0 and (right) tc + 18r0/c0 for nθ = 0, using the trigger conditions (top) 0.55uj �
u′

z(r = 0, tc ) � 0.75uj and (bottom) u′
z(r = 0, tc ) < 0.55uj . The color scales range between ±0.075uj and

±0.0011p0M3.75 Pa, from blue to red; uz = 0.75〈uz(r = 0)〉.
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FIG. 17. Conditional averages for ◦ M = 0.6 and � M = 1.3 for nθ = 0: (a) maximum of | �ω|′r0/c0 over
0 � r � r0, (b) maximum of p′/p0 at rac and (c) maximum of p′/p0 at rac multiplied by M−3.75

and M−3.75/ max(| �ω|′r0/c0 ), as a function of the minimum of u′
z/c0 over 0 � r � r0.

intense structures entering in the potential core lead to a deeper drop of the centerline velocity than
weaker ones. Looking at the sound fields, the maximum values of pressure fluctuations at r = 10r0

are plotted in Fig. 17(b). Two well-distinct steps, one for M = 0.6 and another for M = 1.3, are
observed, on which the levels grow with the velocity deficit. The pressure peaks are multiplied by
M−3.75 and M−3.75/ max(| �ω|′r0/c0) in Fig. 17(c). The values obtained increase in the first case,
whereas they do not vary much in the second one. Therefore, the amplitude of the acoustic waves
appears to be a function of the Mach number, as expected, but also of the strength of the vortical
structures closing the potential core or, given the results of Fig. 17(a), of the velocity deficit. The
latter links seem to be linear, but it is difficult to conclude this definitively because of the limited
number of samples in the conditional averages.

IV. CONCLUSION

In this paper, the generation of noise components by the potential-core closing of temporally
developing isothermal round jets at a Reynolds number of 3125 and Mach numbers of 0.3, 0.6,
1.3, and 2 is investigated using direct numerical simulation. For that purpose, the main properties
of the flow and pressure fields are compared, flow-noise cross-correlations are shown to identify
source regions in the flow, and a conditional-averaging procedure is employed to identify the
generation mechanisms. At a higher Mach number, the jet develops more slowly due to the weaker
amplification rates of the shear-layer instability waves, leading to a later time of closing of the
potential core. At that time, however, the spectra of velocity in the flow and of hydrodynamic
pressure in its immediate vicinity are similar to each other when plotted as a function of the axial
wave number kz and multiplied by M−2 and M−4, respectively. In the acoustic field, axisymmetric
sound waves are emitted in the downstream direction. For M � 1.3, their corresponding spectra
scale as kzM−1 in frequency and as M7.5 in level. For M � 1.3, a frequency scaling with kz, as well
as a lower power-law exponent for the levels as expected for supersonic jets, seem to apply. For
M = 2, in addition, the downstream sound waves look like Mach waves, whereas they do not in the
other cases. Despite this, they appear to be generated by a common mechanism in the four cases
with Mach numbers from 0.3 to 2.

Some characteristics of that mechanism are revealed by the conditional-averaged fields synchro-
nized with the peaks of velocity deficit on the jet axis at the time of potential-core closing. The
generation mechanism occurs over a long period of time of the order of 10r0/u j , and predominantly
emits noise around the potential-core closing. As previously in Ref. [25] for temporally developing
jets at M = 0.9, it is shown to be related to the development in the inner part of the jet mixing layer,
the rapid intrusion on the jet axis, and then the weakening, of a structure of lower velocity and higher
vorticity level with respect to the background flow field, and to the associated growth-and-decay
process of a hydrodynamic pressure wave just outside of the jet. This mechanism is observed over
the wide range of Mach numbers considered, in particular at both M = 0.3 and M = 2, which is
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rather surprising given the difference in Mach number. Moreover, using different trigger conditions
for the conditional averaging, the amplitude of the waves generated at the potential-core closing is
found to depend on the peak values of the velocity deficit and vorticity excess in the flow at that
time, possibly in a linear way. The present results provide original information on the axisymmetric
downstream-propagating jet noise component usually attributed to the jet large-scale structures. It
is hoped that, combined with results obtained for spatially developing jets at various Mach and
Reynolds numbers, they will help us to get a better understanding of the source responsible for this
component.
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APPENDIX A

In this first Appendix, some results obtained by the linear stability analysis documented in
Sec. II D between t = tc − 15r0/u j and tc for the axisymmetric mode are presented. The axial wave
numbers and the growth rates of the most unstable waves, normalized by the momentum thickness,
are shown in Figs. 18(a) and 18(b). Both are lower at higher Mach numbers, as expected [60].
For M = 0.3, in particular, their values at t = tc − 15r0/u j are close to those obtained in the
temporal linear stability analysis of Michalke [59] for an incompressible two-dimensional mixing
layer, namely 0.22 and 0.047, respectively. As time passes, that is, as the mixing-layer thickness
increases and tends to the jet radius, the peak Strouhal number slightly decreases in all cases.
Meanwhile, the instability growth rates collapse, resulting in no unstable wave number around the
time of potential-core closing. However, the higher the Mach number, the earlier the time when
all disturbances are damped. This arises at tc − 1.5r0/u j for M = 0.3, tc − 1.9r0/u j for M = 0.6,
tc − 2.7r0/u j for M = 0.9 and 1.3, and tc − 13r0/u j for M = 2.

The axial wave numbers and growth rates of the most unstable waves are replotted in Figs. 19(a)
and 19(b) using a scaling with the jet radius, i.e. a length scale which does not evolve with time. Both

FIG. 18. Time variations of (a) the axial wave number and (b) the growth rate of the most unstable wave for
nθ = 0, normalized by δθ : M = 0.3, M = 0.6, M = 0.9, M = 1.3,
M = 2.
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FIG. 19. Time variations of (a) the axial wave number, (b) the growth rate and (c) the phase velocity
of the most unstable wave for nθ = 0, normalized by r0: M = 0.3, M = 0.6,
M = 0.9, M = 1.3, M = 2.

sharply decrease as the shear layer spreads. Furthermore, the last unstable wave numbers are equal
to kzr0 � 0.45 for M = 0.3, 0.6, and 0.9, and kzr0 � 0.35 for M = 1.3 and 2. For completeness, the
phase velocities of the most unstable waves are given in Fig. 19(c). For M � 1.3, they are close to
0.6u j at t = tc − 15r0/u j and then progressively increase to reach peak values around 0.8u j before
the potential-core closing. For M = 2, such values are found well before, following the shift in time
observed in Figs. 19(a) and 19(b) between this case and the others.

APPENDIX B

In this second Appendix, correlations are computed between the conditional fields of pressure
fluctuations at (r = 10r0, z) at t = tc + 15r0/c0 and velocity fluctuations at (r = 0, z + δz) at t +
δt for M = 0.6, 1.3 and 2. The maps of normalized correlations are shown in Figs. 20 (top) as

FIG. 20. Normalized correlations between p′(rac, z, t = tc + 15r0/c0) and u′
z(raxis, z + δz, t + δt) from

(top) the conditionally averaged and (bottom) the full fields for nθ = 0: (left) M = 0.6, (middle) M = 1.3,
(right) M = 2. The color scales range between (top) ±1 and (bottom) ±0.45, from blue to red;
propagation at c0; δt = tc − t .
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a function of δz/r0 and δtc0/r0, and are compared with those of Figs. 20 (bottom), determined
from the full fields of pressure and velocity. The correlation levels are higher in Figs. 20 (top) as
expected given the selection of the strongest events using the conditional-averaging procedure, but
the correlation patterns are very similar in the two cases. The noise generation mechanism extracted
using conditional averaging in Sec. III E therefore appears to be responsible for the flow-noise
correlations of Sec. III D.
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