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Abstract. This study investigates the noise radiated by a subsonic circular jet with a Mach number of
0.9 and a Reynolds number of 65 000 computed by a compressible Large Eddy Simulation (LES). First, it
demonstrates the feasibility of using LES to predict accurately both the flow field and the sound radiation
on a domain including the acoustic field. Mean flow parameters, turbulence intensities, velocity spectra and
integral length scales are in very good agreement with experimental data. The noise generated by the jet,
provided directly by the simulation, is also consistent with measurements in terms of sound pressure spec-
tra, levels and directivity. The apparent location of the sound sources is at the end of the potential core in
accordance with some experimental observations at similar Reynolds numbers and Mach numbers. Second,
the noise generation mechanisms are discussed in an attempt to connect the flow field with the acoustic
field. This study shows that for the simulated moderate Reynolds number jet, the predominant sound ra-
diation in the downstream direction is associated with the breakdown of the shear layers in the central jet
zone.

1. Introduction

1.1. Jet Noise

The early investigations on jet noise were performed in the framework of the acoustic analogy formulated by
Lighthill (1952), where the noise generated by the region occupied by the turbulent flow, radiating over large
distances, is regarded as a solution of the inhomogeneous wave equation in a medium at rest. The analogy
was reformulated by Lilley (1972) and others to provide an appropriate expression for the sound sources, by
incorporating the effects of mean flow on sound propagation into the wave operator. An important result of
the analogy is to supply the dimensional law of the radiated acoustical power as a function of the jet velocity
Uj , the famous U8

j law for subsonic jets. Pragmatic applications of the acoustic analogy to predict jet noise
from a statistical description of turbulence have been derived since the works of Ribner (1964). They give
global acoustic quantities such as the overall sound power in good agreement with experimental results, as
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illustrated in Lilley (1996) or in Bailly et al. (1997). Applications using unsteady turbulence have been also
proposed, see for instance the numerical study of Bastin et al. (1997). The acoustic analogy is appropriate
for predicting jet noise when a sufficiently accurate solution of the turbulent flow is available.

The initial jet development, as well as the range of small scales, depends appreciably on the Reynolds
number. This implies that the noise sources are necessarily modified as the Reynolds number varies. How-
ever, the presence of coherent turbulent structures was shown in experimental observations by Winant and
Browand (1974) and by Brown and Roshko (1974), even at high Reynolds numbers, which raised questions
of the possible predominant role of these large structures in jet noise generation. Thus, in supersonic jets, it
is now well established, as presented in the paper of Tam (1995a), that the large scales are responsible for
Mach wave radiation. Experiments of Troutt and McLaughlin (1982) have demonstrated that this radiation
dominates the sound field, and, from a modeling point of view, Tam and Burton (1984) have used a matched
asymptotic expansion method from an instability wave solution to an acoustic wave solution to explain the
basic mechanism.

In subsonic jets, the respective role of large and small scales in the noise generation process has been
a matter of debate for a long time. The similarities between radiations measured by Mollo-Christensen et al.
(1964) and Stromberg et al. (1980) on subsonic jets with the same Mach number M = 0.9, but very different
Reynolds numbers, suggest that sound generation in subsonic jets can be mainly attributed to coherent struc-
tures in the principal direction of radiation, i.e. around an angle of 30◦ to the downstream axis. Small-scale
turbulence would then appear as a secondary noise source. Nevertheless, experiments conducted by Zaman
(1985) on excited jets have shown that the sound generation is dependent on the laminar or turbulent ini-
tial shear layers, and therefore on the Reynolds number. On that controversial subject of subsonic jet noise
mechanisms, new investigations are fortunately made possible by the direct calculation of the acoustic field.

1.2. Direct Calculation of the Acoustic Field

In this approach, the aerodynamic field and the acoustic field are provided in a single computation, by solv-
ing the compressible unsteady Navier–Stokes equations. In this way the computed acoustic field is a priori
exact because no acoustic model is used. However, to compute the noise directly from the compressible flow
motion equations, some issues of Computational AeroAcoustics (CAA) clearly presented by Tam (1995b)
must be taken into account. In particular, appropriate numerical techniques, such as non-reflecting boundary
conditions and schemes preserving the non-dispersive feature of acoustic waves, must be used to face the
great disparity of level and length scale between the acoustics and the flow field.

Three methods can be used to solve the Navier–Stokes equations: Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES) and simulation of the Reynolds Averaged Navier–Stokes (RANS) equations.
The Direct Numerical Simulation (DNS) approach consists of computing all turbulent scales down to the
dissipating eddies. The first applications of DNS to compute noise for three-dimensional flows were per-
formed by Freund et al. (2000) and Freund (2001) on supersonic and subsonic round jets respectively, with
ReD = 3600 for the subsonic jet. In Large Eddy Simulation (LES), only the larger scales are resolved while
the effects of smaller unresolved ones are taken into account by a subgrid scale model. LES has been applied
by Gamet and Estivalezes (1998) to obtain the acoustic near field radiated by a supersonic jet, in combina-
tion with a Kirchhoff surface method to propagate sound to the far field. It has also been used by Morris et al.
(1999) to compute the radiation of a supersonic rectangular jet. More recently, it has been used by Zhao et al.
(2001) and by Constantinescu and Lele (2001) for subsonic circular jets. Finally, unsteady Reynolds Aver-
aged Navier–Stokes (RANS) equations using turbulence closures have also been used. This approach can be
regarded as a very large eddy simulation where only the very large structures are resolved. It is limited to
specific cases such as the computation of screech noise in supersonic jets. A well-documented example is
provided by Shen and Tam (1998).

Among the different methods, LES appears as the most interesting one to approach a wide class of flows,
since it is not restricted to very low Reynolds numbers as DNS, and, unlike the unsteady RANS simulations,
an important part of the small scales can be accuratly calculated, if properly accounted for by the grid reso-
lution. The noise generated by the unresolved part of the small scales will be neglected. This noise is likely
to be significant only for high frequencies, and it would be possible to take it into account through modeling
using a statistical approach. The application of LES for the computation of jet noise is also justified by two
experimental observations. First, the contributions of coherent structures and of the larger small scales may
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be predominant. Second, the region between the nozzle exit and the end of the potential core, where flow
events such as vortex pairings or laminar–turbulent transition take place, is of importance in the noise gener-
ation, and this region is intended to be well described by LES. Finally, it should be noted that the broadening
of the acoustic spectra, and consequently of the part neglected by LES, will depend on the choice of the jet
Reynolds number.

1.3. Present Investigation

In the present work, a circular jet with a Mach number Mj = Uj/c0 = 0.9 and a Reynolds number of
ReD = Uj D/ν = 65 000 (c0 is the ambient sound speed, D is the jet diameter, ν is the kinematic viscosity)
is computed by LES. The numerical algorithm used is the three-dimensional extension of the one developed
by Bogey et al. (2000) to study the noise generated by vortex pairings in a mixing layer. The first goal of the
present work is to show the feasibility of the direct calculation of the noise radiated by a subsonic jet using
a compressible LES. This feasibility will be checked by comparisons with available experimental data. Since
a direct sound computation provides both the turbulent flow and its radiated sound field, comparisons will be
done on these two aspects. The second goal is to extend our knowledge of noise generation mechanisms. In
particular, great attention will be turned to the complex region at the end of the potential core where turbulent
structures merge. Connections between the dynamics of the turbulent flow and the radiated sound field will
be reported.

The choice of this Mach number of 0.9 is justified by the amount of experimental studies available in
the literature, providing both aerodynamic results with Lau et al. (1979), and acoustic results with Mollo-
Christensen et al. (1964), Lush (1971) and Stromberg et al. (1980). A DNS was moreover recently performed
by Freund (2001) for a Reynolds number 3600 jet precisely at this Mach number, and has directly provided
a radiated sound field in good agreement with experiments at very low Reynolds numbers. In the present
LES, the jet Reynolds number of 65 000 has been chosen to be higher than those affordable by DNS, since
it is the basic motivation of LES to deal with high Reynolds number flows. However, it is still quite inferior
to the threshold of about 5×105 beyond which the shear layer is fully turbulent at the jet nozzle exit. For
this reason, we expect to find an acoustic field and sound sources rather similar to those of a low Reynolds
number jet.

The paper is organized as follows. The numerical procedure and parameters, as well as the inflow condi-
tions, are presented in Section 2. The aerodynamic characteristics computed from the jet flow are studied in
Section 3. They deal first with the laminar transition in the shear layers and second with the developed tur-
bulent jet further downstream in the self-similar region. Turbulence intensities, velocity spectra, two point
correlation functions and integral length scales are described, and validated by comparison with available
measurements. In Section 4 the sound field generated by the jet flow is checked very carefully in terms
of sound pressure levels and directivity. In addition, the spectral content of acoustic signals is analyzed
with respect to the cut-off introduced by the spatial discretization. Validations making use of several sets
of experimental data are extensively conducted. Section 5 is devoted to a display of the links between the
dynamics of turbulent structures at the end of the potential core and the sound field emitted by the jet. To
support this, a space–time analysis is developed to correlate intermittency of vorticity in the potential core
with wave fronts propagating at low angles in the downstream direction.

2. Flow Simulation

2.1. Numerical Algorithm

LES is performed by solving the filtered three-dimensional Navier–Stokes equations provided in Ap-
pendix A. A model is required for the subgrid scale terms associated with the unresolved structures, and,
considering that small-scale turbulence has mainly dissipative effects, the standard Smagorinsky turbulent
viscosity is implemented.

The numerical algorithm developed to compute propagation problems using the linearized Euler equa-
tions in Bailly and Juvé (2000) and Bogey et al. (2002) is chosen. It has also previously been applied to
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solve the two-dimensional Navier–Stokes equations in Bogey (2000). The seven-point stencil, Dispersion-
Relation-Preserving (DRP) finite-difference scheme of Tam and Webb (1993) is used to discretize the spatial
derivatives of the Euler fluxes. The coefficients of the DRP scheme are chosen to minimize errors on the ef-
fective wave number. In this way, this scheme introduces very low dispersion, with typically seven points
required per wavelength. Euler fluxes are advanced in time by an explicit four-step Runge–Kutta algorithm
which is highly stable and has low storage requirements. Viscous terms are discretized by a standard second-
order finite difference scheme and they are included in the residual at the last stage of the Runge–Kutta
algorithm. The lower-order integration of the viscous terms is justified by the relatively high Reynolds num-
ber of the computed jet. For high Reynolds numbers flows, the time step is imposed by the stability limitation
associated with the discretization of Euler fluxes, and is very small compared with the limitation required
by the discretization of viscous fluxes. Thus the numerical treatment of the viscous terms is sufficiently ac-
curate. Finally, grid-to-grid oscillations are not resolved by the DRP scheme. To ensure numerical stability,
it is necessary to filter them out by using a selective damping of Tam (1995b). The combination of the se-
lective damping with a subgrid scale model based on a turbulent viscosity will have to be studied in further
works. However, we should emphasize that their roles are basically different: the selective damping damps
only the grid-to-grid oscillations, whereas the subgrid scale model dissipates the turbulent energy through
a large range of wave numbers.

2.2. Boundary Conditions

The formulation of boundary conditions is very important in aeroacoustic simulations, because spurious
waves reflected when acoustic and aerodynamic fluctuations leave the computational domain may con-
taminate the physical sound field. Therefore, to predict the sound field directly, acoustic reflections at the
boundaries must be minimized.

The two-dimensional formulation developed by Tam and Dong (1996) from the solution of Euler’s equa-
tions in the acoustic far-field is extended to the three-dimensional case. Their efficiency is mainly due to their
multi-dimensional formulation which ensures a continuous treatment along all the boundaries. Two kinds of
boundary conditions are considered: a radiation condition at the inflow and the lateral sides of the compu-
tational domain, where only acoustic fluctuations are found, and an outflow condition where aerodynamic
fluctuations convected by the flow are leaving the computational domain. Further details are provided in Ap-
pendix B. Moreover, it is still necessary to implement a sponge zone in the outflow direction to dissipate
aerodynamic fluctuations before they reach the boundary, and to filter out possible reflected waves, see Bo-
gey et al. (2000). The sponge zone is based on a combination of grid stretching with the introduction of an
artificial damping. It is similar to the sponge zone technique proposed by Colonius et al. (1993) for noise
computation.

2.3. Flow Parameters

The inflow axial velocity of the jet is given by the following hyperbolic-tangent profile:

u (r) = Uj

2
+ Uj

2
tanh

(
r0 −r

2δθ

)
,

where Uj is the inflow centerline velocity, δθ is the initial momentum thickness of the shear layer, and r0 is
the jet radius. The jet Mach number Mj is taken as 0.9, and the fluid surrounding the jet is initially at rest.
The jet Reynolds number is ReD = Uj × D/ν = 65 000, and D = 2r0 = 3.2×10−3 m.

The inflow characteristics are important in determining the initial jet structure, typically for one or two
diameters just downstream of the nozzle. Experimental ratios between the initial momentum thickness of
the shear layer and the initial jet radius, δθ/r0, are very small, less than 10−2 as shown in measurements of
Zaman (1985). They cannot be reproduced in simulations because of the numerical constraint to discretize
the shear layer with enough grid points, and a ratio around 0.1 is usually found in numerical studies. In this
study a ratio of 0.05 is chosen, that enables the development of vortical structures in the shear zones, before
turbulent mixing occurs on the whole radial section of the jet at the end of the potential core.
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To seed the turbulence, the jet is forced using an excitation described in detail in Appendix C. Velocity
disturbances are added to the flow in the incoming shear layers. They are solenoidal in order to minimize the
production of spurious acoustic waves. They are temporally random and not strongly correlated azimuthally
as shown by the correlation function displayed in Appendix C, so that the jet can develop in a natural way,
without being influenced by the initial disturbances after one or two diameters downstream from the forcing.
Turbulence intensities generated by the forcing are around 4% locally, at the center of the shear layer. This
value is in the range of what can be expected for a jet at the present moderate Reynolds number.

2.4. Numerical Specifications

The flow equations are solved on a Cartesian grid of 255×187×127 points in the three coordinate direc-
tions. As represented in Figure 1, meshes are significantly stretched owing to computing requirements. There
is high resolution in the jet to calculate turbulent structures very accurately. In this flow region, the turbulent
viscosity is of the order of ten times the molecular viscosity. The mesh grid is coarser outside the flow, and is
optimized to contain the acoustic field only in the upper radial y direction. In the other transverse directions,
the grid does not extend beyond 6r0. The sound radiation is therefore investigated in the upper x–y section.
It should be noted that a polar grid is more suited to the mean circular geometry since less points are required
in far-field, but, for simplicity, Cartesian equations and resolution are chosen, and three-dimensional effects
can be similarly investigated in both systems.

Radially, points are clustered in the jet with 26 points in the jet radius. The minimum mesh spacing
∆0 = δθ/1.6 is found around r = r0. Outside the jet, mesh spacing increases rapidly, to reach a max-
imum value of ∆ymax = 0.4r0. This mesh spacing allows an accurate sound propagation up to a frequency
fm � c0/(5∆ymax) corresponding to a Strouhal number Stm = fm D/Uj � 1.2. In the flow direction, mesh
spacing is constant up to x = 20r0, with ∆x = 3∆0. Then meshes are stretched for the 40 last points with
∆xmax = 0.54r0, in order to form a sponge zone. Following the technique used in an earlier study, see Bo-
gey et al. (2000), artificial damping is progressively applied in the sponge zone, in the flow region only. Thus,
the physical part of the computational domain in the axial direction extends up to x = 20r0 for the flow field,
and up to x = 30r0 for the acoustic field.

The time step is ∆t = 0.7∆0/c0. The simulation runs for 4.5 × 104 iterations, the calculation of sta-
tistical means being performed after 5000 iterations. The simulation time is Tsim � 33 × Lx/c0 � 29 ×
Lx/Uj (Lx = 30r0 is the grid length in the axial direction) which corresponds to a non-dimensional time
T 	

sim = TsimUj/D � 440. Spectra are computed using the final 3.9 × 104 iterations, on a time period of
T 	

sp = 1/Stmin � 380. Therefore, the simulation time is likely to be long enough to achieve statistical station-
arity. Finally, the computation requires 25 hours on an Nec SX-5, with a CPU time of 0.3 µs per grid point
per iteration.

Figure 1. Visualization of the x–y and y–z sections of the Cartesian mesh grid. Only every sixth line in the three coordinate
directions is shown.
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3. Flow Field

3.1. Flow Development

Figure 2 displays the vorticity fields provided by LES. The axial vorticity field ωz shows that the initial flow
development is likely to be governed by growing instability waves in the shear layer, originating from the
forcing disturbances. Large-scale eddies are generated with the rolling-up of the shear layer, for x � 6r0,
which initiates the laminar–turbulent transition. Then the mixing zones grow, up to the end of the poten-
tial core for about x = 10r0 where they interact and merge. Downstream, a strong typical three-dimensional
mixing is found, as illustrated by the transverse vorticity field ωx , and the flow tends towards developed
turbulence.

3.2. Mean Flow Properties

Contours of the mean longitudinal velocity are shown in Figure 3 for velocities varying from 0.05Uj up to
0.95Uj . The potential core (region with uniform velocity Uj ) ends around x � 10r0. In the present simulation
the inflow excitation is strong enough to have a potential core length corresponding to those obtained for jets
with high Reynolds numbers, in which significant turbulent disturbances are found in the initial shear layers.
For example, the Mach number 0.9, Reynolds number 106 jet of Lau et al. (1979) has a potential core length
of 10.4r0. It should be noted that for very low Reynolds number jets, the core length is generally larger, for

Figure 2. Snapshots of the vorticity field. Upper picture, ωz in the x–y plane at z = 0; bottom picture, ωx in the y–z plane at x = 12r0.
Levels are given in s−1.

Figure 3. Visualization of mean flow: ––––, ten contours of the mean longitudinal velocity defined from 0.05Uj to 0.95Uj ; – · – ·, five
streamlines.
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Figure 4. Longitudinal evolution of (a) the inverse of the non-dimensional mean centerline velocity Uj/Uc; (b) the non-dimensional
half-width of the jet δ1/2/r0; and (c) the non-dimensional mean flow rate Q/Q0. (d) Radial profiles of the mean longitudinal vel-
ocity normalized by the local centerline velocity U/Uc: ×, at x = 15.8r0; +, at x = 16.8r0; ∗, at x = 17.7r0; 	, at x = 18.6r0;

, at x = 19.6r0. ––––, approximation with a Gaussian profile.

instance it is 14r0 in Stromberg et al. (1979) for an ReD = 3600 jet, and this is certainly due to the fact that
the incoming flow is laminar.

Some streamlines initiating from points well outside the jet are also plotted in Figure 3. Surrounding
fluid, initially at rest, is radially drawn in by the flow at a low speed around 0.02Uj . This is in accordance
with experimental descriptions of the fluid entrainment mechanism. This demonstrates that the boundary
conditions implemented in the simulation allow the incoming of fluid into the computational domain to feed
the flow. Since fluid entrainment is responsible for the increase of the jet flow rate, its correct modeling is
essential to obtain flow characteristics that conform to experiments.

Figure 4 presents the characteristics of the mean flow obtained from the simulation. First, Figure 4(a)
displays the longitudinal evolution of the inverse of the mean centerline velocity normalized by the in-
flow velocity Uj . Its value is 1 in the potential core, and grows linearly afterwards so that we can write
Uc/Uj = B × D/(x − x0) where x0 � 0 is the virtual origin, and B � 5.5 is the decay constant. This value
of B is consistent with measurements of Wygnanski and Fiedler (1969), Panchapakesan and Lumley (1993)
and Hussein et al. (1994), as well as DNS results of Boersma et al. (1998), see Table 1. The virtual origin

Table 1. Mean flow parameters obtained from experiments ∗, DNS ∗∗ and the present simulation.

ReD B A Reference

8.6 × 104 5.4 0.086 Wygnanski and Fiedler (1969)∗
1.1 × 104 6.1 0.096 Panchapakesan and Lumley (1993)∗
9.5 × 104 5.8 0.094 Hussein et al. (1994)∗
2.4 × 103 5.9 0.095 Boersma et al. (1998)∗∗
6.5 × 104 5.5 0.096 Present simulation
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given by the simulation lies in the range of experimental values varying from x0 = −5r0 for Panchapakesan
and Lumley (1993) up to x0 = 8r0 for Hussein et al. (1994). The scattering of these results is due to different
Reynolds numbers and initial conditions, and their effect on potential core length.

In the same way, Figure 4(b) presents the longitudinal evolution of the jet half-width normalized with
the radius r0. Its value is nearly 1 up to x = 6r0 where the large vortical structures begin to appear. The
jet spreads linearly afterwards in the turbulent region as δ1/2 = A × (x − x0), where A � 0.096. This is in
agreement with the experimental and numerical data of Table 1.

Finally, Figure 4(c) displays the longitudinal evolution of the mean flow rate Q = ∫
S U dy dz, where U is

the mean axial velocity and S is the transverse section. Its value grows regularly, since the entrainment of the
surrounding fluid occurs from the inflow of the computational domain onwards. Its linear growth, deduced
from the x−1 decay of the centerline velocity and from the linear spreading of the jet, takes place after the
potential core, such that Q/Q0 = C × (x −x0)/D where Q0 is the initial flow rate and C � 0.32. Experimen-
tal values of this constant are rare in the literature, because they are difficult to measure. Ricou and Spalding
(1961) succeeded however in estimating a mass entrainment constant of 0.32, in an air–air jet, corresponding
exactly to the simulation result.

The linear longitudinal evolutions of parameters 1/Uc, δ1/2 and Q suggest that the self-similarity region
of the jet is reached in the simulation. To confirm this, radial profiles of the mean axial velocity normal-
ized by the centerline velocity Uc are plotted in Figure 4(d) as a function of the non-dimensional coordinate
y/(x − x0), for five locations between x = 15r0 and x = 20r0. The constant A is then given by the half-width
of the profiles and these curves are superimposed. It is interesting to notice that the mean radial profile is well
approximated by the Gaussian function U/Uc = exp

(− Ku (y/(x − x0))
2 )

found experimentally, where the
constant Ku is related to the constant A by the relation Ku = ln 2/A2.

3.3. Turbulence Intensities

Turbulence intensities provided by LES are now investigated. The longitudinal, radial and azimuthal inten-
sities, σuu , σvv and σww, are calculated in the x–y plane at z = 0, using fluctuating velocities u′, v′ and w′.
They are given by σuu = √〈u ′2〉/Uc, σvv = √〈v′2〉/Uc and σww = √〈w′2〉/Uc, where 〈·〉 denotes the time
averaging. The Reynolds stress intensity σuv is also defined by σuv = √|〈u′v′〉|/Uc. These intensities are
normalized with the local centerline longitudinal velocity, according to usual representation.

Longitudinal profiles of the turbulence intensity σuu in the shear layer and in the jet centerline are dis-
played in Figure 5. To check the transition in the shear layers in Figure 5(a), turbulence intensity is presented
in a logarithmic scale for 0 < x/r0 < 10 where σuu � √〈u ′2〉/Uj . From an initial value of 4% generated by
the forcing, it then increases linearly until x � 8r0. This shows the exponential development of the instabil-
ities in the shear layers with a growth rate −kir0 = 0.205. This rate is lower than rates usually predicted by
linear instability analysis for the most unstable frequency of the initial profile. Two discrepancies with a sim-
ple linear analysis exist. First the amplitudes are strong enough for important nonlinearities to occur. Second,

Figure 5. Profiles of the longitudinal turbulence intensity σuu : (a) in the shear layer at z = 0 and y = r0, in a logarithmic scale;
(b) in the jet centerline, in a linear scale. � measurements of Lau et al. (1979) shifted by −1.5r0 in the axial direction.
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Figure 6. Radial profiles of the turbulence intensities: (a), σuu , (b), σvv , (c), σww, (d), σuv. ×, at x = 15.8r0; +, at x = 16.8r0; ∗, at
x = 17.7r0; 	, at x = 18.6r0; 
, at x = 19.6r0. ––––, mean profiles calculated from x = 15r0 to x = 20r0; – · – ·, experimental profiles
obtained by Panchapakesan and Lumley (1993); − − −, experimental profiles obtained by Hussein et al. (1994).

the spectra are broadband, as shown in the next subsection, and the growth rate of a single frequency cannot
be compared with the total growth rate.

The centerline profile presented in Figure 5(b) shows that the intensity is negligible at the inflow owing
to the excitation being applied only in the shear layers. It increases significantly only after the end of the po-
tential core around x � 10r0, to reach a value of the order of 0.25 for x > 15r0. This result shows that the
averaging time Tav � 20× Lx/Uj is long enough to make the mean turbulence intensities converge to steady
values. It supports the assumption that turbulence is fully developed and that jet self-similarity is verified for
x > 15r0. The transition from laminar to turbulent flow between x = 5r0 and x = 15r0 is also consistent with
the experiment of Lau et al. (1979). Turbulence intensities provided by Lau et al., shifted by −1.5r0 in the
axial direction to account for the different initial conditions, coincide well with the simulation curve.

Radial profiles of the turbulence intensities are shown in Figure 6 for five locations between x = 15r0
and x = 20r0, as a function of the non-dimensional coordinate y/(x − x0). Profiles are well superimposed,
which is in agreement with the self-similarity of fully turbulent jets. The mean profiles calculated between
x = 15r0 and x = 20r0 are also plotted as solid lines. They are very close to measurements, and fall between
two experimental profiles provided by Panchapakesan and Lumley (1993) and Hussein et al. (1994). Thus,
turbulence levels supplied by LES agree very well with experimental data.

3.4. Turbulence Integral Length Scales

Experiments conducted by Davies et al. (1963) and Wygnanski et al. (1969) have shown the evolution of tur-
bulence length scales in the three following jet zones: the shear layers, the zone just after the potential core
and the self-similarity zone. In the shear layers, the length scales initially increase rapidly and linearly with
the axial distance. Further downstream, after the disappearance of the potential core, the turbulent structures
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Figure 7. Evolution of correlation functions at the point defined by x = 16.8r0 and y = z = 0: ––––, R(1)
11 (r); − − −, R(2)

11 (r).

Table 2. Integral length scales found on the jet axis.

L(1)
11 /x L(2)

11 /x L(1)
11 /L(2)

11 Reference

0.0385 0.0157 2.43 Wygnanski and Fiedler (1969)
0.037 0.017 2.14 Present simulation

are mixed over the whole jet section and their length scales tend to decrease. Finally, in the self-similarity re-
gion with developed turbulence, length scales increase again linearly with the axial distance, but more slowly
than in the shear layers.

Integral length scales are now estimated in the jet self-similarity zone, at x = 16.8r0 on the jet axis. With
this aim in view, Figure 7 presents the evolution of the correlation functions of the axial fluctuating velocity,
R(1)

11 (r) and R(2)
11 (r), computed at the point (x, y, z) by

R(1)
11 (r) = 〈u′(x,y,z)×u′(x+r,y,z)〉

〈u′2(x,y,z)〉1/2×〈u′2(x+r,y,z)〉1/2 ,

R(2)
11 (r) = 〈u′(x,y,z)×u′(x,y+r,z)〉

〈u′2(x,y,z)〉1/2×〈u′2(x,y+r,z)〉1/2 .

The behavior of these two functions agrees well with experimental results, reported for instance by Wygnan-
ski and Fiedler (1969). In particular, the R(2)

11 (r) function takes negative values for large distances.
The integral scales defined by L(1)

11 = ∫ ∞
0 R(1)

11 (r) dr and L(1)
22 = ∫ ∞

0 R(1)
22 (r) dr are respectively L(1)

11 =
0.62r0 and L(2)

11 = 0.29r0. They are well discretized since ∆x � 0.05r0 and ∆y � 0.03r0 at the study point.
Moreover, because of the linear increase of integral scales with x, the ratios L(1)

11 /x and L(2)
11 /x are constant in

a turbulent jet. Thus the ratios evaluated in the simulation can be compared with ratios given by Wygnanski
and Fiedler (1969) on the axis of a jet in its self-similarity zone and presented in Table 2. Both are in very
good agreement. The ratio L(1)

11 /L(2)
11 is also close to the measurement, and it is slightly higher than the value

of 2 found for a homogeneous isotropic turbulence. In this way, the turbulent field provided by the simulation
is validated both in terms of intensity and length scales, or respectively, one and two point correlations.

3.5. Spectra of Velocity Fluctuations

The time histories of fluctuating radial velocity have been recorded at y = r0 and z = 0 in the shear layers for
four distances from the inflow, during the final 39 000 iterations. Spectral power densities are obtained from
these signals. We can expect to find the fundamental frequency f0 of the initial hyperbolic-tangent profile,
at least for the first study point. It is predicted by the linear theory of instabilities developed by Michalke
(1964), and corresponds to a Strouhal number of St = 0.68. Spectra are calculated from a time sample Tsp
such as Tsp × f0 � 260, and have therefore converged.
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Figure 8. Power spectral density of the fluctuating radial velocity at four locations in the shear layer, at y = r0 and z = 0;
(a) x = 2.4r0; (b) x = 4.4r0; (c) x = 8.5r0; (d) x = 12.6r0. f0 is the fundamental frequency of the hyperbolic-tangent profile provided
by the linear theory of instabilities. ( f0 corresponds to a Strouhal number of St = 0.68.)

The four spectra are presented in Figure 8. We can notice the difference of magnitude in the first three
spectra, with around one order between two successive ones. This shows the rapid growth of instability
waves in the shear layer in the early stage of jet development. The spectra also all appear to be broadband,
which suggests nonlinear broadening.

In Figure 8(a), at x = 2.4r0 near the inflow, two peaks are clearly visible in the spectrum. Since the inflow
forcing is random, the velocity profile has selected particular frequencies. The most amplified frequency is
close to but slightly lower than the fundamental frequency f0. As shown by the growth of turbulence inten-
sities in the shear layer, the linear instability basically derived for a parallel shear flow cannot fully describe
the initial development. The second frequency peak is two-thirds of the frequency of the primary instability.
Following the discussion conducted by Stromberg et al. (1980), the instability mode is likely to be helical
rather than axisymmetric.

The three other spectra given in Figure 8 are comparable with spectra given by Stromberg et al. (1980)
at x = 10r0, x = 14r0 and x = 16r0 from the nozzle exit, for a Mach 0.9, ReD = 3600 jet. This demon-
strates that the transition in the shear layers is consistent with experimental observations in terms of spectral
contents. Moreover, the apparent shift of the order of 5r0 between computation and experiment, already
observed for the potential core length, is almost certainly due to the different inflow conditions. In Fig-
ure 8(b) at x = 4.4r0, a narrow spectral band dominates the spectrum with a maximum for St = 0.48. An
St = 0.44 was found experimentally in Stromberg et al. (1980). In Figure 8(c), at x = 8.5r0, the spectrum
becomes richer in high-order subharmonic frequencies related to large structures, while high frequencies as-
sociated with small-scale turbulence appear. Finally, a spectrum dominated by frequencies between St = 0.1
and St = 0.6 is obtained at x = 12.6r0 in Figure 8(d). We can also note that the flow downstream from the
potential core is transitional, but not fully turbulent.
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3.6. Turbulent Spectrum

The spectrum of the turbulent kinetic energy
〈
u

′2
1 +u

′2
2 +u

′2
3

〉
/2 is calculated in the fully turbulent jet at the

point y = r0, z = 0 and x = 16.8r0, from the same time Tsp as in the previous subsection, and is plotted in
Figure 9. The Taylor hypothesis of frozen turbulence is used to estimate E(1)

k (k1) from the temporal spec-
trum E f ( f ). Assuming that wave number and frequency are related by k1 = 2π f/U with U the mean axial
velocity, we can then write

1

2

〈
u

′2
1 +u

′2
2 +u

′2
3

〉
=

∞∫
0

E f ( f ) d f =
∞∫

0

E f ( f )
U

2π
dk1 =

∞∫
0

E(1)
k (k1) dk1 .

Using jet parameters in the relations of isotropic turbulence, the Kolmogorov and Taylor scales are
calculated to be η = (

L(1)
11

)1/4(
ν/u′

1

)3/4 = 2×10−6 m and λg = (
15L(1)

11 ν/u′
1

)1/2 = 6.5×10−5 m, and the
longitudinal integral length scale is L(1)

11 = 8.9×10−4 m. The large difference between λg and η indicates
that an inertial zone is likely to be found in the spectrum. This is the case in the computed results as shown by
the typical k−5/3

1 slope in Figure 9. The Kolmogorov wave number is equal to kη = 1/η = 5×105 m−1. It is
higher than the grid cut-off wave number also represented in Figure 9 and given by kc = 2π/(5∆c), where ∆c
is the local mean mesh spacing, corresponding to the highest wave number well resolved by the numerical
algorithm with six points per wavelength. This cut-off wave number is located in the inertial zone, there-
fore supporting an assumption of the subgrid scale model, and the spectrum decreases rapidly afterwards as
expected.

A cut-off Strouhal number Stc = fcD/Uj where fc = kcU/(2π) can be associated with the grid cut-off
wave number, for example Stc � 2.5 in Figure 9. The local grid cut-off Strouhal number is represented in
Figure 10 for the whole jet. It is between 2 and 5 in the jet, and more especially between 4 and 5 at the end
of the potential core in the zone where the predominant sound sources are located. Since the preferred range
of jet radiation has been experimentally found for 0.1 < St < 1 by Mollo-Christensen et al. (1964), Lush
(1971), Stromberg et al. (1979) and Juvé et al. (1980), most of the significant sound sources are resolved by
the simulation.

Figure 9. Turbulent kinetic energy spectrum E(1)
k (k1) at x = 16.8r0, y = r0 and z = 0.

Figure 10. Visualization of the aerodynamic grid cut-off Strouhal number Stc. Five contours defined from 5 in the jet to 1 outside
with a decrement of 1.
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4. Acoustic Field

4.1. Instantaneous Dilatation Field

Figure 11 displays, in the plane z = 0, the instantaneous dilatation field Θ = ∇ · u in the acoustic region
and the vorticity field ωxy in the flow region, obtained directly from the simulation. Dilatation accounts for
compressible fluctuations only, and is linked to the acoustic pressure outside the flow by

Θ = ∇ ·u = − 1

�0c2
0

∂p

∂t
. (1)

Dilatation is thus proportional to the time derivative of the pressure outside the jet. Its use allows the elimi-
nation of any slow drift in the mean pressure field and the filtering out of very low frequency waves.

Acoustic wave fronts generated by the turbulent jet are clearly visible in Figure 11. Any sound waves
that might be generated by the inflow excitation or by the exit of turbulent structures at the outflow are de-
tected in the dilatation field. Waves fronts originate from the region where the mixing layers merge around
x = 11r0. Predominant sound sources are therefore indicated in the region slightly after the end of the po-
tential core. This agrees both with the results of the recent DNS performed by Freund (2001) and with the
measurements of Chu and Kaplan (1976) and Juvé et al. (1980) using various sound source localization tech-
niques. The sound field directivity is also much more pronounced in the downstream direction, in accordance
with experiments.

4.2. Acoustic Fluctuations

To investigate the sound field properties, pressure and dilatation are recorded in the acoustic field during the
final 39 000 iterations, at different locations along the boundaries of the computational domain. As an illus-
tration, Figure 12 shows the simultaneous time traces of the fluctuating pressure and dilatation obtained at
x = 10r0, y = 24r0 and z = 0. The pressure fluctuation appears to be composed of two components: waves

Figure 11. Snapshot of the dilatation field Θ = ∇ ·u in the acoustic region, and of the vorticity field ωz in the aerodynamic region,
in the x–y plane at z = 0. The dilatation color scale is defined for levels from −90 to 90 s−1, the vorticity scale is the same as in
Figure 2.
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Figure 12. Time evolution of (a) the pressure and (b) the dilatation; recorded at x = 10r0, y = 24r0 and z = 0, as a function of non-
dimensional time t∗ = tUj/D = 1/St.

characterized by Strouhal numbers St � 0.3, and low frequency oscillations with St � 0.06. The low fre-
quency waves can be considered as spurious sound waves, and they are probably due to reflections at the
outflow boundary, because the sponge zone is built up over only 40 points owing to numerical constraints.
The low frequency waves resolved by the maximum grid spacing in the downstream direction are not very
dissipated by the artificial damping. In an ealier simulation of a two-dimensional mixing layer in Bogey
(2000), a 100 point sponge zone was used and the spurious waves were then significantly reduced.

The spectrum of the fluctuating pressure is calculated from all the recordings so that the sampling period
is T 	

sp = TspUj/D = 1/Stmin � 380. Pressure and dilatation signals can be used indifferently. When working
with the dilatation signal, the pressure spectrum is deduced from the dilatation spectrum thanks to the Fourier
transform of relation (1) giving in modulus

p( f ) = �0c2
0

2π f
Θ( f ) . (2)

The two computed spectra are displayed in Figure 13(a), and they are exactly superimposed except for very
low frequencies where relation (2) diverges. The use of pressure or of dilatation is therefore equivalent to
describe the acoustic field.

Figure 13(b) presents the pressure spectrum in a logarithmic scale. For St ≤ 0.1, the spectrum corres-
ponds to the spurious waves, with a peak of St � 0.06 in agreement with previous observations. For St > 0.1,
the spectrum can be associated with physical waves, and shows the typical shape of an acoustic spectrum for
a moderate Reynolds number jet, at an observation angle close to 90◦. The radiation range 0.1 < St < 0.6

Figure 13. Sound pressure spectra obtained at the point defined in Figure 12, as a function of Strouhal number St = fD/Uj , from
the pressure (––––) and the dilatation (− − −). (a) Linear scale and (b) logarithmic scale.
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corresponds to the preferred range of radiation found experimentally, as for instance in Juvé et al. (1980).
The rapid decrease of the spectrum around St � 1 can certainly be attributed to the maximum grid frequency
in the acoustic field.

4.3. Sound Pressure Spectra

Figures 14 shows the sound pressure spectra obtained for angles of 30◦ and 90◦ from the downstream jet
axis, respectively, at a constant distance of 60r0 from the jet inflow. Only Strouhal numbers greater than
0.15 are considered in accordance with the observations of Section 4.2. The radiation distance of 60r0 has
been chosen to make comparisons possible with experimental directivities, for which origins are taken at
the jet nozzle exit. Calculation of the spectra is moreover simply done by using the r−1 decay of acous-
tic waves from the source region located at x = 11r0 to the far field. Remember that the sampling time is
T 	

sp = 1/Stmin � 380, and thus contains 380 and 76 periods, respectively, for St = 1 and St = 0.2 frequencies.
This time is divided into 12 overlapping sections. Therefore, we can expect the spectra to be fairly converged.
For further studies, to accelerate the statistical convergence and to obtain experiment-like spectra, it would
be helpful to average in the azimuthal direction.

Figure 14 shows that sound levels for θ = 30◦ are more than 10 dB higher than for θ = 90◦. Spectra are
not fundamentally different, and both reach a peak for a Strouhal number abound St � 0.2. This frequency
peak is in accordance with the experimental observations of Stromberg et al. (1980) on an ReD = 3.6×103

jet, and by Long and Arndt (1984) on an ReD = 8.5×104 jet. The evolution of the spectrum shape as a func-
tion of the observation angle is also in good agreement with the results of Long and Arndt (1984). Thus, as
expected, the spectra of the present moderate Reynolds number jet are comparable with those measured for
jets at low Reynolds numbers. In particular, a broadband high frequency spectrum is not found for θ = 90◦
as, for instance, in the jets of Lush (1971) at higher Reynolds numbers.

4.4. Acoustic Directivity

The pressure spectra are now integrated to provide the sound directivity. The portion of the physical sound
spectrum for St < 0.15 is neglected. To support this, the spectra of Juvé et al. (1980), measured for M = 0.4
and ReD = 1.8×105 jet, have been integrated with and without the St < 0.15 band. Level differences are
0.4 dB for an angle of θ = 90◦ and 0.6 dB for θ = 30◦. The pressure spectra are also limited at high fre-
quencies by the maximum Strouhal number Stm � 1.2 resolved by the grid in the acoustic field. The same
spectra as above have been integrated with and without the St > 1.2 band, and level differences are 0.6 dB
for θ = 90◦ and 0.3 dB for θ = 30◦. In all cases with partial integration, underestimation of pressure levels is
of the order of only 1 dB.

The sound pressure levels are shown in Figure 15 with experimental data for jets with similar Mach num-
bers but various Reynolds numbers as reported in Table 3. The agreement between calculated and measured

Figure 14. Sound pressure spectra as a function of Strouhal number St = fD/Uj , at 60r0 from the inflow, for an angle of (a) θ = 30◦
and (b) θ = 90◦.
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Figure 15. Overall sound pressure level as a function of angle θ measured from the jet axis, at 60r0 from the jet nozzle. Experimental
data by: +, Mollo-Christensen et al. (1964); �, Lush (1971); ×, Stromberg et al. (1980).

Table 3. Some jet sound field experiments with Mach numbers similar to that of the present simulation.

M ReD Reference

0.9 5.4×105 Mollo-Christensen et al. (1964)
0.88 5×105 Lush (1971)
0.9 3600 Stromberg et al. (1979)
0.9 6.5 × 104 Present simulation

sound levels is very good for all observation angles. As expected, the acoustic level reaches a peak around an
angle of θ = 30◦. At larger observation angles, the levels decrease rapidly, and fall between the experimental
data.

The sound directivity results from a complex combination of convective amplification and mean flow–
acoustic interaction effects, which is not discussed here but can be found in Lilley (1994). However, some
observations can be made from the different experimental results. For θ > 90◦, levels are relatively scattered,
with for example 4 dB between levels provided by Lush (1971) and by Stromberg et al. (1979). This behavior
is associated with a Reynolds number effect, and suggests that small-scale turbulence is responsible for the
main part of the noise for large angles. In the downstream direction, however, there are similarities between
the acoustic radiations of jets with very different Reynolds numbers varying from 3600 up to 5.4×105. This
suggests that the noise generation in the jet axis direction may be relatively independent of the Reynolds
number.

Sound sources are likely to be well described in the simulation since the sound field is in good agree-
ment with measurements at moderate Reynolds numbers in terms of directivity, spectra and levels. Then we
can now investigate in detail the links existing between the dynamics of turbulent structures and acoustic
emission.

5. Investigation of Noise Sources

5.1. Introduction

Although the role of large-scale structures in subsonic jet noise is recognized by many authors, the gen-
eration mechanism is not clearly identified. Pairings of coherent structures were proposed by Laufer et al.
(1974) to be the predominant noise source. They can radiate intensely, in particular when they are controlled
by an appropriate jet excitation as in the experiments of Kibens (1980), but they may not represent the main
contribution of sound sources. Among the facts supporting this, we can mention that for most jets, shear
layers being initially turbulent, very few pairings occur. The pairings of purely axisymmetric coherent struc-
tures generate a very typical directivity shown experimentally by Bridges and Hussain (1992) which is quite
different from the classical jet noise directivity. To deal with the problem of noise generation by pairings,
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it is necessary to consider pairings in a more general way as the interactions between two distinct vortical
regions, and to note that sound generation proceeds not only from the merger of turbulent structures but
also from their mutual interactions via induced velocities. Hussain (1986) for instance has suggested that
it is the breakdown process of the toroidal structures into substructures near the end of the potential core
that produces most noise. However, it is still difficult to look into the proposed theories, because of the flow
complexity.

A classical attempt to identify noise sources consists in performing causality correlations, as in Schaffar
(1979) or in Juvé et al. (1980) for instance. Nevertheless, for a temporally random turbulent flow, it is very
difficult to find convincing correlations between the acoustic field and the flow field, and only the case of
excited flows provides a direct connection between the coherent structures within the jet shear layers and
the observed noise. Although these difficulties tackled in experiments remain in numerical investigations,
simulations providing the space–time evolution of both flow field and acoustic radiation constitute a new
opportunity to understand the link between flow and acoustics.

5.2. Connection between Flow Field and Acoustic Field

In the present simulation, animations of visualizations of both the flow and the acoustic radiation suggest that
the noise comes principally from the region where the shear layers merge, at the end of the potential core. To
establish this, the pressure and the norm ω of the vorticity vector in the jet have been recorded every 45 iter-
ations during 4050 time steps. The non-dimensional recording time is t∗ = tUj/D = 39.6 with ∆t∗ = 0.44.
The pressure is filtered out for St < 0.12 so that only the fluctuating pressure p′ corresponding to physical
waves is used.

The pressure obtained in the plane z = 0, at points (x = 24.8r0, y = 8r0) and (x = 16r0, y = 8r0), is
displayed in Figure 16. These points are at distances of 16r0 and 9.4r0, respectively, from the apparent lo-
cation of sound sources at (x = 11r0, y = z = 0), at angles of about θ̂ = 30◦ and θ̂ = 60◦ with respect to the
downstream direction (θ̂ denotes an angle taken from the source location). The pressure signal for θ̂ = 30◦
in Figure 16(a) clearly has a low frequency periodic behavior with a predominant period corresponding to
a Strouhal number of St � 0.2. This value is in agreement with the peak measured in the sound spectra re-
ported in Figure 14. The pressure signal for θ̂ = 60◦ in Figure 16(b) contains more high frequency waves
than for θ̂ = 30◦, but still shows a fundamental oscillation at St � 0.2. These observations indicate that a sin-
gle sound source is responsible for a very large part of the noise in the downstream direction, but that other
additional sources radiate for wider angles.

To detect the sound sources, we consider the wave front with the highest amplitude in each of the two
pressure signals. For θ̂ = 30◦, it is obtained for t∗ = 13.2 and it is part of the St � 0.2 oscillation. This front is
presented in Figure 17(a) and has a directivity well pronounced in the downstream direction with a maximum
around 30◦, consistent with the typical jet noise pattern. For θ̂ = 60◦ the largest amplitude is detected for
t∗ = 6.9. It cannot be related to another wave front and may correspond to an isolated flow event. As shown

Figure 16. Time evolution of the fluctuating pressure in Pa, as a function of the non-dimensional time t∗ = tUj/D = 1/St for (a)
x = 24.8r0, y = 8r0 and z = 0, for θ̂ = 30◦ and (b) x = 16r0, y = 8r0 and z = 0, for θ̂ = 60◦.
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Figure 17. Snapshot of the fluctuating pressure p′ in the acoustic field and of the vorticity ω in the flow field in the plane z = 0 at
times (a) t∗ = 11 and (b) t∗ = 7.5. Vorticity contours: [0.6, 1.2, 1.8, 2.4, 3]×105 m s−2. Pressure contours: ––––, [70, 100, 130] Pa;
− − −, [−130,−100,−70] Pa.

in Figure 17(b), this radiation is important for angles between 30◦ and 70◦, unlike the integrated jet noise
directivity.

To connect the acoustic radiation with flow events, the non-dimensional time delay ∆t∗r = ∆trUj/D
between the emission and the arrival in the acoustic field of the sound waves, is evaluated by assuming
a source location close to (x = 11r0, y = z = 0) and a wave propagation at the mean sound speed c0. We find
∆t∗r = 7.1 and ∆t∗r = 4.2, respectively, for the two points at θ̂ = 30◦ and θ̂ = 60◦. The flow is now inves-
tigated in the plane z = 0. It is important to note that events involved in noise generation could have taken
place out of this two-dimensional slice, but it is reasonable to think that the events at the origin of the two
high amplitude sound waves shown above can be detected in this slice.

For the wave front obtained at θ̂ = 30◦, the emission time is approximately t∗ = 6.1, but it is certainly
a little later because the sound propagation takes place largely in the flow region. The vorticity field is then
shown at times t∗ = 6.2 and t∗ = 7.5 in Figure 18. The shear layers of the jet are distinguishable up to x =
15r0 in Figure 18(a), but only up to x = 11r0 in Figure 18(b). Turbulent structures initially in the shear layers
have penetrated the jet core near x = 11r0, and they are suddenly accelerated by the higher flow velocity. At
the same time, we can observe that the shear layer is locally stretched. This breakdown of the shear layers in
the jet core seems to be the source of the noise generated in the downstream direction.

For the wave front obtained at θ̂ = 60◦, the generation occurs for t∗ = 2.7. Vorticity is thus shown at times
t∗ = 2.2 and t∗ = 3.5 in Figure 19. A large coherent structure isolated from other ones, located by x � 11r0
and y � r0, is observed in the upper shear layer in Figure 19(a). It interacts with others to merge with the
vortical field located downstream as shown in Figure 19(b). This kind of vortex pairing could be responsible
for the strong radiation observed in the pressure signal.

5.3. Correlation between the Predominant Radiation and the Breakdown of Shear Layers

We now attempt to show that a correlation exists between the sound radiation predominant in the downstream
direction, and the breakdown of shear layers in the jet near the end of the potential core. As it is difficult to
interpret the signals of velocity or vorticity in the jet directly, because of their random behavior, a new simple
indicator of the presence of vortical structures in the vicinity of the jet axis is introduced. It is the distance
δsl(x) between the shear layers in the plane z = 0, and this transverse length is computed using a threshold
of magnitude vorticity ω ≤ 5×104 m s−2. This value is chosen arbitrarily, but the comparison with the scales
used in Figure 18 suggests that the vorticity can be considered as negligible below this level.

A space–time representation of δsl downstream of the potential core is provided in Figure 20. The black
regions are determined by the criterion δsl ≤ 0.05r0, and they point out that turbulence is significantly present
in the jet core. They begin around x = 12r0, but more interestingly, they are clearly distinct and distributed
regularly in time. This shows that the shear layers break down in the jet intermittently, and even quasi-
periodically, in the vicinity of x = 11r0 just after the potential core. In the period between two breakdowns,
the shear layers grow continuously as in Figure 18(b) and no turbulence is found on the jet axis.
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Figure 18. Snapshot of the vorticity ω in the plane z = 0 at times (a) t∗ = 6.2 and (b) t∗ = 7.5. Color scale is from 6×104 up
to 3×105 m s−2.

Figure 19. Snapshot of the vorticity ω in the plane z = 0 at times (a) t∗ = 2.2 and (b) t∗ = 3.5. Color scale is from 6×104 up
to 3×105 m s−2.

Figure 20. Space–time evolution of the distance between the shear layers δsl in the plane z = 0. The regions in black are
for δsl ≤ 0.05r0.

The time evolution of δsl for x = 12.1r0 is plotted in Figure 21. This profile is located just after the po-
tential core, and therefore must clearly indicate the occurrence of the breakdowns of the shear layer in the
region of the end of the potential core. Breakdowns are detected when δsl is equal to zero. Since eight can-
cellations are observed during the recording time, a Strouhal number of St � 0.2 can be associated with these
flow events. This corresponds to the Strouhal number of the predominant sound radiation for θ̂ = 30◦.

To exhibit a link between the breakdowns of the shear layer and the acoustic field, the coincidences be-
tween the negative peaks of Figure 16(a) and the cancellations of δsl at x = 12.1r0 are studied. A time delay
∆t∗r = 5.3 between the two signals is applied to deal with the propagation time. This value has been deter-
mined using the maximum wave front described in the previous subsection, by matching its negative peak
with the corresponding cancellation of δsl. The correlation existing between the two signals is thus shown in
Figure 22. The same periodicity is observed on both figures and the six negative pressure peaks nicely cor-
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Figure 21. Time evolution of the distance δsl for x = 12.1r0.

Figure 22. Time evolution of the fluctuating pressure p′(t∗ +∆t∗r
)

for x = 24.8r0, y = 8r0 and z = 0, and of the distance δsl(t∗) for
x = 12.1r0, with the time delay ∆t∗r = 5.3.

respond to the cancellations of the distance between the shear layers. The only slight disagreement is found
for the third negative pressure peak, which has, as it happens, the lowest amplitude.

This good correlation demonstrates that, for the simulated moderate Reynolds number jet, the predomi-
nant low frequency noise radiated in the downstream direction is connected to the intermittent breakdown of
the shear layers in the jet at the end of the potential core. The sudden acceleration of the vortical structures
when coming into the jet center region, followed by the stretching of the local shear layer, may be involved.
For larger angles, the acoustic field is rather associated with more random flow events, generating broadband
frequency noise. Among these sources radiating upstream, some are likely to be located in the turbulent shear
layers where coherent vortical structures interact.

6. Conclusion

In this paper, a subsonic circular jet with a Mach number of 0.9 and a Reynolds number of 6.5 × 104 is
computed by LES to study its radiated acoustic field. Non-dispersive schemes and non-reflecting boundary
conditions developed for aeroacoustics are used to directly obtain the sound field generated by the jet.
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The first feature of the present work is that both flow field and acoustic radiation provided by the simu-
lation are systematically validated by comparison with the experimental data available in the literature.
Parameters of the flow field such as the mean flow, turbulence intensities, velocity spectra and integral length
scales are in very good agreement with experiments both in the turbulent transition region and the fully tur-
bulent region of the jet. Sound pressure spectra and directivities obtained in the acoustic field agree well with
corresponding experimental results, and predominant sound sources in the jet are also apparently located just
after the end of the potential core, in accordance with observations. These validations demonstrate the fea-
sibility of the direct calculation of the acoustic field generated by subsonic jets using LES. They are also
essential to make sure that the noise generation mechanisms are well described in the simulation.

The second feature of the present work is an attempt to find a link between the flow field and acoustic
radiation, in order to investigate the sound sources in subsonic jets. It is important because, unlike in super-
sonic jets where Mach waves dominate the sound field, sound sources in subsonic jets are still not clearly
identified. The predominant low frequency acoustic radiation, found in the downstream direction of jets at
every Reynolds number, is generally attributed to coherent flow structures. In the present study at a moder-
ate Reynolds number, a correlation between this radiation and the breakdown of the shear layers in the jet
center zone near the end of the potential core is shown. This suggests that the sudden periodic accelerations
of vortical structures in this region are responsible for the predominant noise radiation. The broader band fre-
quency noise radiated by jets for larger angles depends on the Reynolds number and is classicaly associated
with the small-scale turbulence. The interactions of flow structures within the turbulent shear layers before
the end of the potential core may be one of these sources, as shown by an illustration in this study. Further
investigations are required to support the present observations, particularly at high Reynolds numbers where
the breakdowns of the shear layer at the end of the potential core may not be the primary noise generation
mechanism. It would also be interesting to study the connection between the three-dimensional structures of
the jet and the sound field.
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Appendix A. Filtered Full Navier–Stokes Equations

We consider the full compressible three-dimensional Navier–Stokes equations written in conservative form
in Cartesian coordinates. The fluid is considered as a perfect gas so that the total energy is �e = p/(γ −1)+
�(u2

1 +u2
2 +u2

3)/2, where �, u1, u2, u3, e and p are the density, the three velocity components, the total spe-
cific energy and the pressure, respectively, and γ is the specific heat ratio. In an LES, these equations are
filtered spatially. The system solved in the present study is then

∂U
∂t

+ ∂Ee

∂x1
+ ∂Fe

∂x2
+ ∂Ge

∂x3
− ∂Ev

∂x1
− ∂Fv

∂x2
− ∂Gv

∂x3
= 0 ,

where the unknown vector is U = (�, �u1, �u2, �u3, �e)t , the overbar denoting the LES filter. For a com-
pressible flow, it is useful to introduce Favre averaging to evaluate the computed velocity and specific total
energy as ũi = �ui/� and ẽ = �e/�. This density-weighted filter is denoted by a tilde. Moreover, the unre-
solved part of all variables are written as f ′′. Resolved Euler fluxes are denoted by the subscript e, and they
are given by

Ee = (
�ũ1, p+�ũ1

2, �ũ1ũ2, �ũ1ũ3, (� ẽ+ p)ũ1
)t

,

Fe = (
�ũ2, �ũ1ũ2, p+�ũ2

2, �ũ2ũ3, (� ẽ+ p)ũ2
)t

,

Ge = (
�ũ3, �ũ1ũ3, �ũ2ũ3, p+�ũ3

2, (� ẽ+ p)ũ3
)t

.
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The terms denoted by the subscript v are the resolved viscous fluxes and the subgrid scale terms

Ev = (
0, τ̃11 +T11, τ̃12 +T12, τ̃13 +T13, ũi

(
τ̃1i +T1i

))t
,

Fv = (
0, τ̃21 +T21, τ̃22 +T22, τ̃23 +T23, ũi

(
τ̃2i +T2i

))t
,

Gv = (
0, τ̃31 +T31, τ̃32 +T32, τ̃33 +T33, ũi

(
τ̃3i +T3i

))t
.

The viscous stress tensor τ̃ij is defined by τ̃ij = 2µS̃ij where µ is the dynamic molecular viscosity, and S̃ij is
the deviatoric part of the resolved deformation stress tensor

S̃ij = 1

2

(
∂ũi

∂xj
+ ∂ũ j

∂xi
− 2

3
δij

∂ũk

∂xk

)
.

The subgrid scale terms retained are the subgrid scale stress tensor Tij in the momentum equations and ujTij
in the energy equations. The first one appears naturally as

Tij = −�ũiu j +�ũi ũ j � −�ũ′′
i u′′

j .

The second one comes from the term −�ẽu j +� ẽũ j which can be simplified as

−�ẽu j +� ẽũ j � −�ũ′′
i u′′

j ũ′′
i � Tij ũ′′

i .

To evaluate the subgrid scale stress tensor from the resolved scales, the classical strategy consists of re-
producing the dissipative effects of the unresolved scales through the model (see the review of Lesieur and
Métais (1996) for instance). The subgrid scale tensor can then be modeled by

Tij = 2µt S̃ij − 2

3
�ksgsδij ,

where µt is the turbulent viscosity and ksgs is the subgrid scale energy. In the present study, the latter is neg-
lected because it is very small compared with the thermodynamic pressure, as shown by Erlebacher et al.
(1992), and because the major part of the turbulent energy is resolved. The turbulent viscosity is estimated
using the model of Smagorinsky (1963), and is assumed to be proportional to a subgrid characteristic length
scale and to a characteristic turbulent velocity

µt = � (Cs∆c)
2
√

2S̃ij S̃ij ,

where Cs is the Smagorinsky constant, and ∆c is usually given by ∆c = 3
√

∆x1∆x2∆x3. By assuming that
the cut-off wave number, typically π/∆c, lies in the inertial zone of the turbulence, µt is determined to
provide the dissipation of the energy transferred from the resolved to the unresolved scales in isotropic
turbulence, yielding Cs = 0.18.

Appendix B. Formulation of boundary conditions

At the inflow and at the lateral sides of the computational domain, radiation boundary conditions are applied.
They are given by the differential system governing the behavior of acoustic perturbations in the far field, and
they are written, in spherical coordinates (r, θ, ϕ), as

∂

∂t


�

ui
p


+vg

(
∂

∂r
+ 1

r

) 
 �−�0

ui −ui0
p− p0


 = 0 for i = 1, 2, 3 ,

where vg is the acoustic group velocity, and �0, ui0 and p0 are the mean density, velocity components and
pressure, respectively. These mean quantities are computed during the simulation and converge rapidly to
steady values. The mean sound speed is then evaluated as c0 = √

γp0/�0.
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The outflow conditions are obtained by modifying the previous equations to enable the exit of vortical or
entropic perturbations, and they are written as

∂�
∂t +u0 ·∇ (�−�0) = 1

c2
0

(
∂p
∂t +u0 ·∇ (p− p0)

)
,

∂ui
∂t +u0 ·∇ (ui −ui0) = − 1

�0

∂(p−p0)
∂xi

for i = 1, 2, 3 ,

∂p
∂t +vg

(
∂
∂r + 1

r

)
(p− p0)= 0 .

The accuracy of these boundary conditions has been estimated with two test cases in Bogey (2000) and
in Bogey and Bailly (2002). The first case, dealing with the propagation of an acoustical pulse, has demon-
strated that acoustic disturbances leave the computational domain without significant reflection. The second
one, consisting of the convection of a vortex ring, has shown that the exit of a vortical structure gener-
ates spurious waves which are small with respect to the aerodynamic field, but might not be negligible in
comparison with the low-amplitude physical sound field.

Appendix C. Inflow Forcing

In jet simulations it is necessary to introduce small disturbances near the inflow to seed the turbulence and
allow laminar–turbulent transition. Natural flow development is obtained with a random forcing and the clas-
sical method consists in adding a synthetic turbulent field to the mean flow. In the present study, to minimize
the production of spurious acoustic waves by the forcing, velocity fluctuations are only introduced into the
shear layers of the jet, and they are divergence-free. A vortex ring of radius r0 is therefore considered, with
an axial velocity Ux0 and a radial velocity Ur0 given by

Ux0 = 2 r0
r

r−r0
∆0

exp

(
− ln(2)

(
∆(x,r)

∆0

)2
)

,

Ur0 = −2 r0
r

x−x0
∆0

exp
(

− ln(2)
(

∆(x,r)
∆0

)2
)

for r = √
y2 + z2 �= 0, where ∆(x, r)2 = (x − x0)

2 + (r −r0)
2 and x0 = 0.8r0. The vortex has no azimuthal

velocity, and the vortex velocity reaches a maximum value of 1 for ∆(x, r) = ∆0. The excitation is built up
by combining the basic vortex ring with the azimuthal functions cos(nθ) for n = 0, . . . , 9. Disturbances are
thus superimposed on the jet flow at every iteration in the following way:

ux = ux +∑9
n=0 αεn cos(nθ +ϕn)Ux0Uj ,

ur = ur +∑9
n=0 αεn cos(nθ +ϕn)Ur0Uj ,

Figure 23. Azimuthal cross correlation function of the axial velocity disturbances superimposed on the jet flow by the excitation.
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where εn and ϕn are uniform random variables in time, between −1 and 1, and between 0 and 2π, respec-
tively. The variables εn and ϕn correspond to the random amplitudes and phases of each forcing mode, and
they are updated at each iteration. The frequency spectrum of the excitation disturbances is very broad, and
a large part of the spectrum, wider than the grid can resolve, is rapidly damped. The amplitude α is taken as
0.01, so that the turbulence intensities generated by the forcing are around 4%, of the order of experimental
values. Furthermore, to check that the excitation is random not only in time, but also in space, the azimuthal
correlation function of the forcing axial velocity is presented in Figure 23. The forcing disturbances are not
correlated azimuthally for angles higher than 20◦. The excitation is thus sufficiently stochastic for modeling
the jet inflow conditions.
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