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Thiswork is related to the investigation of innovative stator designs aiming to reduce the dominant interactionnoise

in aeroengines. The study of turbulent structures definition is crucial for the accurate prediction of broadband

noise radiation from passive treatments, as leading-edge serrations studied here. A modified Fourier modes-based

methodology is proposed to obtain a fully three-dimensional incompressible turbulence field, while taking into

account periodic and wall-boundary conditions. A low-noise geometry is examined along with the reference profile

on a rectilinear seven-vane cascade rig using a hybrid computational fluid dynamics/computational aeroacoustics

method. Numerically assessed noise reductions from the serrated airfoils are favorably compared with an analytical

solution anda semi-empirical law. An overall soundpower-level reduction around 4 to 6 dB is obtained at three acoustic

certification points. Finally, the aerodynamic performances are also evaluated through Reynolds-averaged Navier–

Stokes computations, and an improved variant of the initial treatment is proposed, allowing for acceptable penalties at

the aerodynamic design point.

Nomenclature

c = chord of the airfoil
E = energy spectrum of turbulence
fmin, fmax = respectively, minimal andmaximal considered

frequencies
fw = window function
gw = correction function
hs = amplitude of the serrations
k = wave vector
k = norm of the wave vector k
�ka; kb; kc� = a specific orthonormal basis in thewave vector

space
(kx, ky, kz) = coordinates of the wave vector k in the basis

�x; y; z�
(kξ, kη, kz) = coordinates of the wave vector k in the basis

�ξ; η; z�
k⊥ = wave vector component in the plane

perpendicular to the z axis
Lw = input parameter defining the shape of the win-

dow function fw

Ly = length in the computational aeroacoustics
setup between the two sides of the periodic
boundary condition

Lz = span of the airfoil
Lξξ = integral longitudinal length scale of turbulence

nv = number of vanes in the computational aeroa-
coustics domain

p, p0, p
0 = fluid static, mean, fluctuating pressure

Rw = ratio between the length Lw (parameter of the
window function fw) and the span Lz

s = intervane spacing
St = Strouhal number of the serrations, where St

equals frequency × hs∕U
t = time
t1 = an arbitrary time interval
U = mean velocity vector
u, u 0 = velocity vector, fluctuating velocity vector
X = position vector in the physical space
�x; y; z� = orthonormal basis in the computational aero-

acoustics setup frame, where y is aligned with
the cascade and z with the span

α = a random angle in �0; 2π�
βc = entrance flow angle with respect to x axis
Δf = frequency spacing
Δk = wave number discretization step (for each

respective direction)
λs = serration wavelength
�ξ; η;z� = orthonormal basis in the inflow frame, where ξ

aligned with the upstream flow and z with the
span

ρ, ρ0, ρ
0 = fluid, mean, fluctuating density

σ = unit vector defining the direction of a given
velocity fluctuation

φ3D
ii , φ2D

ii , φ1D
ii = three-dimensional, two-dimensional (planar),

one-dimensional autocorrelation velocity spec-
tra along i direction

ψ = random phase in �0; 2π�
ω = angular frequency
ω 0 = vorticity of fluctuating velocity

i = indices/subscripts denoting a direction, such
as i equals ξ, denoting mean flow direction
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hi = set average operation
zmin, zmax = respectively, coordinates of the bottom and top

walls in the numerical setup

I. Introduction

I N ORDER to lower the turbofan engine noise emission, much
effort is put into reducing the rotor/stator interaction noise

sources, which are the dominant contributions for both tonal and
broadband noise components particularly at approach (APP) con-
dition.With this perspective, research projects have been set up, such
as InnoSTAT in the framework of the H2020 European programs.
The goal is to study promising passive and active technologies that
might be implemented in future innovative stators. ONERA is
involved in the design of a successful passive concept based on
leading-edge serrations [1,2]. A set of these serrated low-noise vanes
will be evaluated during the first test campaign of the InnoSTAT
project, which will take place at Ecole Centrale de Lyon (ECL). Two
numerical approaches are actually affordable for simulating turbu-
lence-cascade interactions including serrated airfoils. The first one is
relying on the Lattice–Boltzmannmethod, as proposed, for example,
in [3], and that is also under study in the framework of InnoSTAT [4].
The second one discussed in the present paper is based on a hybrid
computational fluid dynamics/computational aeroacoustics (CFD/
CAA) method, involving a synthetic turbulence model. The first
calculations performed on the InnoSTAT rectilinear cascade have
already been reported in [5]. However, that study did not account for
aerodynamic assessment of the serrated design, contrary to the
present study. These simulations mainly focused on the determina-
tion of the best-suited numerical setup, in particular, depending on the
number of vanes taken into account for theCAA.However, theywere
limited to one-dimensional and planar turbulence structures as inflow
condition. The generation of a fully three-dimensional (3-D) turbu-
lence structure investigated in this work still represents a challenging
issue. Several methods have emerged to tackle this issue, such as the
synthetic eddy method [6,7], extended to anisotropic flows and
serrated airfoils [8,9], and the random particle mesh methodology
[10] with recent developments to generate 3-D turbulence fields
[11,12]. In this paper, the focus is put on synthetic turbulence
modeling with a particular interest on the development and imple-
mentation of a fully three-dimensional vector field (with the complete
three-wave numbers spectrum and three-velocity components). The
tradeoff between the accuracy, central processing unit (CPU) time,
and representativeness of the turbulence–airfoil interaction will be
discussed throughout CAA simulations with one-dimensional
(1-D), two-dimensional (2-D), and three-dimensional (3-D) turbu-
lence fields injected at the entrance of the CAA domain. The method
proposed here to generate synthetic turbulence structures is based on
Fourier modes decomposition of the velocity introduced in [13–15].
Until now, it has been implemented atONERA to correctly reproduce
the upwash velocity component to the airfoil. That is the dominant
component behind turbulence interaction noise mechanism, as
shown, for example, analytically in [16] or through numerical
simulations in [8] for serrated airfoils. The upwash velocity is

represented via its autocorrelation spectrum and through planar
turbulent structures. However, as shown in the present work, the
latter approach is not directly expandable to 3-D turbulence struc-
tures. Consequently, the framework used for homogeneous isotropic
turbulence generation and currently relying on the energy spectrum
definition such as proposed in [14] and in [17] is considered. An
equivalent mathematical formalism is originally proposed to still link
the energy spectrum with wave number distribution over a spherical
volume to the velocity autocorrelation spectra using Cartesian
writing over a rectangular volume. This equivalence is drawn for
both 2-D and 3-D turbulence structures. This paper follows on
previous work on CAA with synthetic turbulence based on Fourier
modes decomposition [1,2,18]. Turbulence-generation processes
able to tackle some of the issues arising in simulations of practical
configurations are implemented, such as wall and periodic boundary
conditions (BC), while keeping the CPU time as low as possible. The
newmethodology is first validated and then applied on both baseline
(untreated) and serrated (treated) geometries in the context of the
InnoSTAT project. A comparison is performed with previous results
and with semi-empirical and analytical solutions. A semi-empirical
law proposed by Paruchuri et al. [19] is considered to link the power
noise reduction to the Strouhal number St of single-wavelength
serrations.Moreover, an analytical formulation to assess noise reduc-
tions provided by wavy leading edges has also been implemented, as
detailed in [2]. It was initially developed at Cambridge University
[20], by means of the Wiener–Hopf (WH) technique, and slightly
extended and validated [2].
The structure of the paper is as follows. Section II describes the

experimental setup at ECL. In Sec. III, the aeroacoustic numerical
methodology used in this study is detailed. The development and
implementation of synthetic turbulence-generation routines are sum-
marized in Sec. IV. Issues raised by three-dimensional structures and
associated with the boundary conditions of the CAA are highlighted.
Sec. V presents CAA computations to assess noise emission on both
baseline and serrated geometries. Finally, the aerodynamic perfor-
mances evaluated by means of Reynolds-averaged Navier–Stokes
(RANS) computations are discussed in Sec. VI.

II. Description of the Experimental Setup

The experimental facility (used for the first test campaign of the
InnoSTAT project) consists of a rectilinear cascade, depicted in
Figs. 1a and 1b, impinged by a roughly isotropic and homogeneous
turbulence flow generated by an adequately shaped turbulence grid
placed upstream of the airfoils inside the test section. Table 1 sum-
marizes the main parameters expected to be representative of the
approach condition at M � 0.34. In cases where two values are
indicated, target values in parentheses indicate initial pretest values
used for the present aeroacoustic calculations. As for the downstream
far-field acoustic measurements, amicrophone arraywill be placed at
a distance r � 1.88 m from the cascade center, as illustrated in
Fig. 1b. As for the instrumentation upstream, hot-wire anemometry
at midspan will characterize the incoming turbulence, static pressure
probes (transverse direction)will check the flowhomogeneity, and an

Fig. 1 Experimental facility: a) test facility for InnoSTAT at Ecole Centrale de Lyon and b) (x, y) cut of the geometry and coordinate systems.
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axial microphone array will be used to separate waves propagating
directions. In addition, probes will monitor the pressure at the air-
foil skin.

III. Quick Overview of the Hybrid Computational
Methodology

A hybrid method has been implemented at ONERA to conduct
aeroacoustic studies, and a block diagram is provided in Fig. 2. The
main step is the CAA simulation, achieved using the in-house code
sAbrinA and solving the linearized Euler equations for perturbated
variables, which are detailed in [21,22]. The unsteady flowfield is
classically split in two parts, namely themean flow �U; p0; ρ0�, which
has to be provided as an input, and the fluctuating part �u 0; p 0; ρ 0�,
which solution is computed by the code. Regarding numerical
schemes, sAbrinA uses a sixth-order finite difference scheme for
the spatial derivatives and a third-order multistage explicit Runge–
Kutta scheme for the temporal discretization. Specific treatments
and boundary conditions (BC) are implemented, such as a tenth-
order filter in order to remove high-frequency oscillations and Tam
and Dong boundary conditions [23], which are used to allow both
the exit and entrance of the fluctuations in the domain without
generating spurious noise sources or numerical reflections. The
mean flow that advects the fluctuating variables is an input param-
eter of the CAA computations. A RANS computation is usually
performed to this end. However, in order to comply with the non-
viscous assumption of the CAA code, boundary layers have to be
removed. To avoid this correction step, the mean flow has been
obtained here by means of an open-source CFD code solving the
Euler equations [24]. Turbulence inflow generated through a sto-
chastic process is injected at the entrance of the CAA domain using
Tam and Dong’s nonreflective boundary condition. The procedure
developed to obtain the synthetic turbulence is detailed in the next
section. The third step is devoted to computation of sound radiation
from an integral formulation. The fluctuating pressure p 0

wall is

extracted at the vane skin throughout simulation time and radiated
to the far field using a Ffowcs Williams and Hawkings (FWH)
[25,26] analogy with Green’s function valid for a free-space
medium with a uniform mean flow. The latter integral method is
completed using the in-house code MIA.

IV. Synthetic Turbulence Modeling and Generation

A. Prescribed Geometry and Main Assumptions

The starting idea to synthesize turbulence is based on an ergodic

stochastic process. First, a set average hi can be applied on the

velocity field in order to get a decomposition in a mean part and a

fluctuating part:

8<
:
u � U � u 0

U � hui
hu 0i � 0

(1)

For the configuration under study here, with almost a uniform mean

flow, turbulence can be considered as being statistically steady.

Hence,

u 0�X; t� � u 0�X� Ut1; t� t1�; ∀t1

The validity of the frozen turbulence hypothesis depends on charac-

teristic times of turbulence and of the advection by the mean flow.

They must satisfy τturb ≫ τconv, that is, u
0∕U ≪ 1. The frozen turbu-

lence assumption implies that the angular frequency of the velocity

fluctuations is directly related to the wave vector, thanks to the

following dispersion relation ω � k ⋅ U. In this study, the wave

number spectra of turbulence are based on the definition given by

Liepmann [27]:

E�k� � 8TI2U2Lξξ

π

�kLξξ�4
�1� �kLξξ�2�3

with k �
���������������������������
k2ξ � k2η � k2z

q
(2)

where the subscript ξ indicates the direction parallel to themean flow,

and TI, the turbulence intensity. From Eq. (2), the link with the

autocorrelation velocity spectra can be made through [Eq. (9.1.8)]

in [28]:

φ3D
ii �kξ; kη; kz� �

E�k�
4πk2

�
1 −

k2i
k2

�
(3)

In order to consider simplified cases with planar turbulence and also

1-D spectra, an integration is performed over transversewave number

components:

φ2D
ii �kξ; kz� �

Z �∞

−∞
φ3D
ii �kξ; kη; kz� dkη (4)

φ1D
ii �kξ� �

Z �∞

−∞
φ2D
ii �kξ; kz� dkz (5)

The previous integrations in Eqs. (4) and (5) can be analytically

performed to obtain explicitly φξξ, φηη, and φzz, which are of major

interest for the implementation. They are listed in Table 2.

Fig. 2 Main components of the CFD/CAA computation chain.

Table 1 Main parameters of the rectilinear cascade configuration at
approach condition (in parentheses, initial pretest values)

Parameter Value

Airfoil

Shape NACA7310

Chord c 12 cm

Span Lz 20 cm

Intervane space s 8.5 cm

Upstream flow
Mach number, U direction 0.34 (0.3)

Entrance angle βc 34 deg (30 deg)

Turbulence
Turbulence intensity (TI) 4.5% (5%)

Turbulent length scale, Lξξ 9 mm (8 mm)
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For simplified turbulence structures, one may choose not to con-
sider the influence of the kz component, with the subscript z referring
to the direction alignedwith the span of the studied airfoil or flat plate.
Indeed, it has shown to be not significant for flat plates placed along
the z axis, following Amiet theory under certain hypothesis (far-field
observer located in the midspan plane) as detailed in [16,29]. Spectra
are then not explicitly discretized along the latter direction since
kz � 0. To recover the expected magnitude of turbulence, a correc-
tion is required by multiplying the spectrum by a factor Δkz �
2π∕Lz, as proposed in [29]. Beyond these reminders of some assump-
tions commonly used in turbulence and aeroacoustic modeling, the
particular geometrical characteristics and CAA setup of the recti-
linear cascade facility, as depicted in Fig. 3, must be considered. First
of all, in order to limit the CPU cost, the test facility is not fully
included in the CAA. Adjacent vanes are taken into account through
periodic boundary conditions applied along the y direction. Multi-
channel calculations can be performed, simply considering that
Ly � nvs. An example is given in Fig. 3 for nv � 1. The cascade

direction that is tilted from the normal axis to themean flow, as shown
by Fig. 1b, must be taken into account in the generation procedure
since the gusts are injected in the coordinate system of the cascade
(x, y, z) and not the one aligned with the mean flow (ξ, η, z). There-
fore, to ensure periodicity, all wave numbers ky have to be multiples

of 2π∕Ly.Moreover, wall boundary conditions are taken into account

for the CAA computations at both ends of the airfoil span. These slip
flow boundary conditions considered for the CAA computations
represent a major constraint for the generation of a fully 3-D turbu-
lence, as explained later.

B. Computing Planar Turbulence Structures Through Velocity
Autocorrelation Spectra

1. Turbulence Structure �kξ; kz � 0�
First of all, let us consider the simplest turbulence field for 3-D

geometries, namely, parallel gust, for which ky � 0, as illustrated in
Fig. 4. The divergence-free condition leads to the simple condition
∂u 0

x∕∂x � 0. Thus, u 0
x is constant (here zero), and the overall turbu-

lence velocity is driven by the one-component velocity u 0
y. To recover

the prescribed normal velocity u 0
η, we set u 0

y � u 0
η∕ cos�βc�. The

angular frequency is independent of the considered reference frame;
therefore, kx � kξ∕ cos�βc� � ω∕Ux � ω∕�U cos�βc��. The simpli-

fication kxx � kξξ comes from the fact that for the turbulence projec-

tions, a flat plate aligned with the mean flow is considered. All points
of the flat plate being at a location η � 0, whereas, in the CAA, the
airfoil thickness is considered. More details can be found in [22],
pp. 132–134. The spatial discretization step is given by Δkξ;l �

cos�βc�Δkx;l, which can be associated with the angular frequency

discretization through ωl � 2πlΔf. This equation allows to generate
L modes equally distributed from fmin � Δf to fmax � LΔf. For
eachmode l, a randomphaseψ l is also introduced.The autocorrelation

spectrum of the upwash velocity component is defined by φ2D
ηη �kξ; 0�,

referring to the φ2D
ηη �kξ; kz� definition in Table 2. Since the wave

number kz is set to zero, the turbulence spectrum has also to be

weighted by Δkz � 2π∕Lz, in order to obtain the prescribed magni-

tude of the injected turbulence as mentioned in [29]:

u 0
y�X; t� �

2

cos�βc�
XL
l�1

��������������������������������������
φ2D
ηη �kξ;l; 0�Δkξ

2π

Lz

s
cos�kx;lx − ωlt� ψ l�

(6)

Since the synthetic turbulence [defined byEq. (6)] depends only on the

kx wave number, the numerical results match exactly the analytical

solution as depicted in Fig. 5.

2. Turbulence Structure �kξ; kz�
For �kξ; kz� turbulence, the same geometry and notations are used

as previously, as illustrated by Fig. 3. The only difference is that the

wave number kz is no longer equal to zero. Instead, thewave numbers

along the z direction are discretized following kz;n � nΔkz. Now,
L × N angular phases ψ ln are randomly selected. Figure 6 validates

the good implementation of this spanwise varying turbulence:

u 0
y�X; t� �

2

cos�βc�
XL
l�1

XN
n�−N

��������������������������������������������
φ2D
ηη �kξ;l; kz;n�ΔkξΔkz

q
× cos�kx;lx� kz;nz − ωlt� ψ ln� (7)

even if the kz variation gives rise to statistical errors in the power

spectral density spectrum.

3. Turbulence Structure �kξ; kη; kz � 0�
The purpose of the structure �kξ; kη; 0� is to consider the pitchwise

variations that should produce significant cascade effects in such

rectilinear configurations. Figure 7 is helpful to follow the discussion.

There are several ways to derive the equations for the injected

velocities �u 0
x; u

0
y� or �u 0

ξ; u
0
η�, depending on the coordinate system.

Two of them are listed as follows. Contrary to the �kξ; kz� turbulence

Fig. 3 Boundary conditions for the CAA computation.

Table 2 Integrated autocorrelation spectra obtained from Liepmann spectrum, Eq. (2)

2-D planar spectra φ2D
ii �kξ; kz� 1-D spectra φ1D

ii �kξ�

φ2D
ξξ �kξ; kz� �

TI2U2L2
ξξ

4π

1� L2
ξξ�k2ξ � 4k2z�

�1� L2
ξξ�k2ξ � k2z��5∕2

φ1D
ξξ �kξ� �

TI2U2Lξξ

π

1

1� �Lξξkξ�2

φ2D
ηη �kξ; kz� �

3TI2U2L4
ξξ

4π

k2ξ � k2z

�1� L2
ξξ�k2ξ � k2z��5∕2

φ1D
ηη �kξ� �

TI2U2Lξξ

2π

1� 3�Lξξkξ�2
�1� �Lξξkξ�2�2

φ2D
zz �kξ; kz� �

TI2U2L2
ξξ

4π

1� L2
ξξ�4k2ξ � k2z�

�1� L2
ξξ�k2ξ � k2z��5∕2

φ1D
zz �kξ� � φ1D

ηη �kξ�

Fig. 4 Coordinate systems with associated wave numbers and involved
turbulent velocities for turbulence structures lying in the plane kξ;kz.
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for which the spectrum was integrated over kη, the summation is

explicitly defined here. Consequently, the u 0
η component of the

velocity is no more independent of the kη wave number. To ensure

a divergence-free solution, a second velocity component must be

considered:

∂u 0
ξ

∂ξ
� ∂u 0

η

∂η
� 0 (8)

Consequently, u 0
ξ is defined by u 0

ξ � −kη∕kξu 0
η and, furthermore,

φ3D
ξξ �kξ;kη;kz�0��φ3D

ηη �kξ;kη;kz�0�k2η∕k2ξ . The spectrum along

the ξ axis is also correctly prescribed. Turbulence equations can also
be obtained starting from the energy spectrum E�k�, as more usually
considered in stochastic noise generation and radiation (SNGR)
models [14]:

u 0�X; t� � 2
XK
k�1

����������������������������
E�k⊥k �Δk⊥

2π

Lz

s
cos

�
k⊥k ⋅X − ωkt� ψk

�
σk (9)

where k⊥ is defined such as k⊥ ⋅ kz � 0,ωk � k⊥k ⋅ U, and σ is a unit
vector such as σ ⋅ k⊥ � 0. Equation (9) gives the discretized velocity
forKmodes distributed over a disk. As for �kξ; kz � 0� turbulence, a
factor 2π∕Lz has to be taken into account to recover the expected
magnitude of the spectra. However, here, the turbulence modes are
mapped on a rectangular box in the wave number space. This
discretization proposed by Gill et al. [15] represents an original
variant to the classical SNGR formulation [14,17]. Thewave number
relations are kξ;l � 2πlΔf∕U � cos�βc�kx;lm � sin�βc�ky;m and

kη;lm � − sin�βc�kx;lm � cos�βc�ky;m:

u 0�X; t� � 2
XL
l�1

XM
m�−M

������������������������������������������������������������
E
� �����������������������

k2ξ;l � k2η;lm

q �
πk⊥

ΔkξΔkη
2π

Lz

vuut
× cos

�
kξ;lξ� kη;lmη − ωlt� ψ lm

�
σlm (10)

A similar equation is provided by Gea-Aguilera et al. [7]. The
wave number decomposition along the spatial directions in Eq. (10)
easily ensures the periodic boundary condition along the y direc-

tion by satisfying ky;m � k⊥ ⋅ y � m2π∕Ly, with m an integer. The

Fig. 5 Analytical spectrum of the upwash velocity component and synthetic turbulence spectrum , obtained with Δf � 1 Hz and averaged
over 250 realizations.

Fig. 6 Analytical spectrum of the upwash velocity component and synthetic turbulence spectrum , obtained with N � 30, Δkz � 2π∕Lz,
Δf � 1 Hz, and averaged over 250 realizations.

Fig. 7 Coordinate systems with associated wave numbers and involved
turbulent velocities for turbulence structures lying in the plane
kξ;kη;kz � 0.
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formulation coming from the autocorrelation velocity spectra can

be recovered considering that E�k⊥� � φ3D
ηη �kξ; kη; 0�4πk4⊥∕k2ξ ,

E�k⊥� � φ3D
ξξ �kξ; kη; 0�4πk4⊥∕k2η , and σξ;lm � �kη;lm∕k⊥; ση;lm �

�kξ;l∕k⊥. The gusts are then generated as follows:

u 0
ξ�X; t� � −2

XL
l�1

XM
m�−M

kη
kξ

���������������������������������������������������������
φ3D
ηη �kξ;l; kη;lm; 0�ΔkξΔkη

2π

Lz

s

× cos�kξ;lξ� kη;lmη − ωlt� ψ lm�

u 0
η�X; t� � 2

XL
l�1

XM
m�−M

���������������������������������������������������������
φ3D
ηη �kξ;l; kη;lm; 0�ΔkξΔkη

2π

Lz

s

× cos�kξ;lξ� kη;lmη − ωlt� ψ lm� (11)

Moreover, the wave numbers in the upstream mean flow frame

can be expressed as kξ;l � cos�βc�kx;lm � sin�βc�ky;m and kη;lm �
− sin�βc�kx;lm � cos�βc�ky;m, which can be deduced from Fig. 7. The

numerical implementation is validated for both streamwise and

upwash velocity components as plotted in Fig. 8.

C. Framework for Generating Fully 3-D Turbulence Structures

1. Choice of an Adapted Energy Spectrum Description and Equivalence

with Autocorrelation Formulations

Let us see now how to obtain a fully three-wave number spectrum.

The role of all the wave number components on the aeroacoustic

response can thus be investigated for both the impinged baseline and

serrated airfoils in a cascade configuration. As a preliminary step, it

can be useful to underline the failure of a turbulent field built with

only two components �u 0
ξ�kξ; kη; kz� and u 0

η�kξ; kη; kz��, with

u 0
η�X; t� � 2

XL
l�1

XM
m�−M

XN
n�−N

����������������������������������������������������������������
φ3D
ηη �kξ;l; kη;lm; kz;n�ΔkξΔkηΔkz

q
× cos�kξ;lξ� kη;lmη� kz;nz − ωlt� ψ lmn�

u 0
ξ�X; t� � −2

XL
l�1

XM
m�−M

XN
n�−N

kη;lm
kξ;l

����������������������������������������������������������������
φ3D
ηη �kξ;l; kη;lm; kz;n�ΔkξΔkηΔkz

q

× cos�kξ;lξ� kη;lmη� kz;nz − ωlt� ψ lmn� (12)

The autocorrelation spectrum of the u 0
ξ component where the sum-

mation over the kη wave number has been replaced by an integral is

considered:

φ2D
pseudo;ξξ�kξ; kz� �

TI2U2L2
ξξ

4π

1

k2ξ

�k2ξ � k2z�
�1� L2

ξξ�k2ξ � k2z��3∕2
(13)

After integration, Eq. (13) is providing a so-called pseudo 2-D

autocorrelation spectrum. The 1-D spectrum should be obtained from

an integration over kz. However, this φ
2D
pseudo;ξξ�kξ; kz� tends asymp-

totically to 1∕jkzj, which prevents the convergence of the integral

with respect to kz. Moreover, close to low frequencies, the solution

will diverge due to the 1∕k2ξ term. That is why, even if in practice u 0
ξ is

discretized over finite intervals and not over R2, this formulation

leads to very high values of the velocity component along the ξ axis.
For a flat plate impacted by such gusts, u 0

ξ plays absolutely any role

and there is thus no issue. However, for a NACA airfoil with a

nonzero thickness, an issue may appear if the magnitude of u 0
ξ is

much higher in comparison with what it should be if turbulence had

been properly defined. Consequently, the generated gusts have to

include a nonzero component u 0
z in order to match correctly the three

components of the autocorrelation spectra.
Each velocity component is nowdefined through its spectral tensor

following Eq. (3), with

u 0
i �X; t� � 2

XL
l�1

XM
m�−M

XN
n�−N

����������������������������������������������������������������
φ3D
ii �kξ;l; kη;lm; kz;n�ΔkξΔkηΔkz

q
× cos�kξ;lξ� kη;lmη� kz;nz − ωlt� ψ lmn� (14)

The turbulent field must satisfy the incompressibility condition in

order to avoid the creation of spurious sources, which leads to

∂u 0
x

∂x
� ∂u 0

y

∂y
� ∂u 0

z

∂z
� 0 ⇔

X
i

ki

��������
φ3D
ii

q
� 0 (15)

When injecting φ3D
ξξ and φ3D

ηη in Eq. (15), one can deduce that φ3D
zz is

inadequately prescribed. Namely,

φ3D
pseudo;zz�kξ;kη;kz��

1

k2z

�
kξ

���������������
k2η�k2z

q
�kη

���������������
k2ξ�k2z

q �
2

k2ξ�k2η
φ3D
zz �kξ;kη;kz�

(16)

The shape of the spectrum is strongly altered. Although the compo-

nent φηη plays a key role in the aeroacoustic response [8], nonnegli-

gible effects might be expected. For this reason, the most reasonable

path to obtain a fully 3-D turbulence relies again on the usual SNGR

formalism already initiated with �kξ; kη; kz � 0� turbulence:

u 0�X; t� � 2
XK
k�1

������������������
E�kk�Δk

p
cos�kk ⋅ X − ωlt� ψk�σk (17)

Equation (17) is the general form of Eq. (9). However, it is not

possible to take directly into account the periodic boundary condi-

tions in the y direction ky � m2π∕Ly. The present approach general-

izes the key idea already probed with the �kξ; kη; 0� turbulence

Fig. 8 Analytical upwash and streamwise spectra. Synthetic upwash and streamwise spectra, with M � 16, Ly � s � 8.5 cm,

Δf � 1 Hz, and averaged over 250 realizations.
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structure. Thewave number space is nomore discretized by spherical
volumes of an equivalent radius k and thickness Δk but by rectan-
gular boxes with an elementary volume ΔkξΔkηΔkz. The relation

between the two discretizations is given by Δk ≅ ΔkξΔkηΔkz∕
�2πk2�, and the velocity field is expressed as

u 0�X; t� � 2
XL
l�1

XM
m�−M

XN
n�−N

��������������������������������������������������������������������������
E
� ������������������������������������

k2ξ;l � k2η;lm � k2z;n

q �
2πk2

ΔkξΔkηΔkz

vuut
× cos�kξ;lξ� kη;lmη� kz;nz−ωlt� ψ lmn�σlmn (18)

A similar decomposition has been proposed by Gill et al. [15]. The

divergence-free condition is now given by k ⋅ σlmn � 0, with k �
�kξ;l; kη;lm; kz;n�T and σlmn, a unit vector. The direction of the turbu-

lent velocity in Eq. (18) has to be determined. This is practically
achieved by means of an efficient algorithm, similarly to [14], whose
main steps are summarized in Appendix A. In Appendix B, a piece
of demonstration is given to show the consistency between this
modified energy spectrum formalism proposed here and previous
formulations.

2. Taking into Account Wall-Boundary Conditions by Means

of a Nondivergence-Free Window Function

The full 3-D turbulence formulation implies that a vertical velocity
component u 0

z has to be considered. This additional component must
be damped near the wall boundaries in order to avoid spurious noise
sources, which is a nontrivial issue. A window function fw�z� is
applied to a stochastic velocity field, defined here for a single wave
vector component in order to simplify the notations

u 0�X; t� � Afw�z� cos�k ⋅X − ωt� ψ�σ (19)

where A is the initial amplitude of this given fluctuation, such as the
velocity tends to zero near the wall boundaries. The chosen window-
ing, without care on divergence, is a gate function with half-sinusoi-
dal lobes on each side controlled by a length size Lw:

8>>>>>><
>>>>>>:

∀ z ∈ �zmin; zmin � Lw�; fw�z� �
1

2

�
1 − cos

�
π
z − zmin

Lw

��
and f 0

w�z� �
π

2Lw

sin

�
π
z − zmin

Lw

�
∀ z ∈ �zmin � Lw; zmax − Lw�; fw�z� � 1 and f 0

w�z� � 0

∀ z ∈ �zmax − Lw; zmax�; fw�z� �
1

2

�
1� cos

�
π
z − �zmax − Lw�

Lw

��
and f 0

w�z� � −
π

2Lw

sin

�
π
z − �zmax − Lw�

Lw

� (20)

The function fw proposed in Eq. (20) ensures a smooth, that is,

without discontinuity, transition to the zero velocity condition at wall

boundaries due to the fact that fw isC1 (differentiable functionwhose

derivative is continuous) everywhere on the interval �zmin; zmax� and
that fw�zmin� � fw�zmax� � f 0

w�zmin� � f 0
w�zmax� � 0:

div�u 0� � f 0
w�z�A cos�k ⋅ X − ωt� ψ�σz ≠ 0 (21)

The divergence-free property of the synthetic turbulence field is no
more ensured when the windowing is introduced. The impact on the

far-field acoustics will be discussed on the baseline numerical sim-

ulations in Sec. V.
An example of a window function is presented in Fig. 9.

Figures 10a and 10b show, respectively, turbulence spectra at z �
0 (where fw�z� � 1) and z � 0.185 (where fw�z� � 0.5). They
demonstrate a good agreement with the theoretical spectra, which

validates the adapted formulation relying on the energy spectrum.
Since the windowing consists simply in the multiplication of

the turbulence fluctuations by a constant, the spectra amplitude at

z � 0.185 are simply reduced here by a factor 0.52 as illustrated in
Fig. 10b.

3. Theoretical Development and Implementation of a Divergence-Free

Windowed Field

The choice has been made to only modify the component u 0
z in

Eq. (21) since it plays a minor role in the noise source generation
process:

∂u 0
z

∂z
� −fw�z�A sin�k ⋅X − ωt� ψ�kzσz

� f 0
w�z�A cos�k ⋅ X − ωt� ψ�σz − g 0

w�z�Aσz (22)

Consequently, in order to cancel the additional spurious term in
Eq. (21), the derivative of u 0

z is modified by means of a corrective
function gw�z�, as shown in in Eq. (22). Other options would have
been to alter all the components of the velocity. However, it would
have led to less accurate acoustic predictions, especially since the
spectrum of the perpendicular component to the airfoils uη would

have been modified. Another option could have consisted in shifting
phases to obtain a zero velocity at walls. However, it would have led
to a complete loss of the spatial correlation (and representativeness of
turbulence length scales) along the spanwise direction. The spatial
correlation plays a major role regarding the noise reduction mecha-
nism obtained with a serrated design.
After some calculations ensuring �fw; gw� ∈ C1 and boundary

conditions refer to Eq. (C8) in Appendix C, one can show that the
following equality must be satisfied:

(
gw�zmin� � gw�zmax� � 0

gw�zmin�Lw� � gw�zmax −Lw�
⇒

cos

�
kxx� kyy� kzzmin�

kzLw

2
−ωt�ψ

�
cos

�
kzLw

2

�

� cos

�
kxx� kyy� kzzmin � kzLz −

kzLw

2
−ωt�ψ

�
cos

�
kzLw

2

�
(23)

There are two types of constraints that can be applied on kz to ensure
the equality coming from Eq. (23). Firstly, let us consider that

cos�kzLω∕2� � 0, satisfying Eq. (23), which gives 0 � 0. Under
this assumption, kz � �2n� 1�π∕Lw with n ∈ N. However, since
kz ≠ π∕Lw (see Appendix C), this solution implies that the discreti-

zation cannot be uniformly spaced, since one cannot chose whatever

integer n ∈ N. Moreover, ifLw is chosen too small, the discretization

steps tends to become very wide, which could affect the precision of

Fig. 9 fw�z� with Rw � Lw∕Lz � 15% and Lz � 0.2 m.
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the solution. Another possibility is to consider kz � 2nπ∕�Lz − Lw�,
for which the left-hand side and right-hand side of Eq. (23) become

cos�kxx�kyy�2nπ�zmin�Lw∕2�∕�Lz−Lw�−ωt�ψ�cos�2nπLw∕
�2Lz−2Lw��. The case Rw � 15% provides the same envelope as

that for the nondivergence-free scenario, but with a slightly shifted

discretization of the kz wave numbers, 2nπ∕�Lz − Lw� instead of

2nπ∕Lz. The generated spectra with the new implementation are

compared with the analytical solutions in Figs. 11a and 11b. There

is a good agreement for the streamwise and upwash components for

all cases. The fact that the spanwise spectra are altered is related to the

choice of applying the correction on theu 0
z component of the velocity.

4. Numerical Optimization

The synthetic turbulence-generation process has been imple-

mented in FORTRAN code. Previous routines used at ONERA for

annular geometries [1,2] have been rewritten in a Cartesian coordi-

nate system. In parallel, several features have been added in order to

lower the CPU generation cost. Turbulence structures having a

symmetry axis are generated only on a line of themesh and duplicated

afterwards on all the injection planes. Turbulence equations have

been decomposed as much as possible using trigonometric identities

to factorize operations. In order to speed up the generation process of

a fully 3-D synthetic turbulence, some additional optimization has

been needed. It has been chosen not to generate turbulence over all the

time steps of the simulation, similarly to [11]. The missing time steps

are recovered by a linear interpolation. For example, here, the syn-

thetic turbulence field has been generated one time step over 10

on the baseline computations, still ensuring 40 points per period at

the highest simulated frequency. For each three-channel simulation

presented in the following, the 3-D turbulence-generation process has
required only around 10 h on one thousand cores, for which the CAA
converged solution was obtained in about 30 h on 1077 cores on the
baseline geometry. The ratio between the CPU time dedicated to the

turbulence generation and CAA simulations is presented in Table 3
for various turbulent fields. The generation time is negligible for one-
dimensionnal and planar turbulent structures. However, if the fully 3-
D turbulence had been generated over all time steps it would have
represented almost four times the CAA cost (around 2500 h on 100

cores). The 3-D turbulence field is instead generated on sampled time
steps without altering the quality of the solution since the character-
istic time of the turbulence is much higher than the time step of the
CAA calculation.
A flow chart representing the 3-D turbulence generation has also

been added in Appendix D.

Fig. 10 Analytical upwash, spanwise and streamwise spectra. Synthetic upwash , spanwise , and streamwise spectra, with
N � 30, Rw � 15%, M � 16, Ly � s � 8.5 cm, Δf � 1 Hz, and averaged over 250 realizations.

Fig. 11 Analytical upwash, spanwise and streamwise spectra. Synthetic upwash , spanwise , and streamwise spectra, with

N � 30, Rw � 15%, M � 16, Ly � s � 8.5 cm, Δf � 1 Hz, and averaged over 250 realizations.

Table 3 Comparison of CPU times for turbulence generation and
CAA calculations

3-channel computations
(on the serrated geometry)

Generation time of
turbulence

(on 100 cores)

Ratio with respect to
CAA time

(withTsimulation � 3Δf)
kξ; kz � 0 ≈20 min <0.1%

kξ; kz ≈40 min ≈0.1%
kξ; kη; kz � 0 ≈2 h ≈0.3%
kξ, kη, kz (with interpolation) ≈100 h ≈15%
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V. Aeroacoustic Applications on the Rectilinear
Cascade Configuration

A. Introduction to the Numerical Setup on the Baseline Geometry

1. Inviscid Mean Flow Calculation

Themean flow has been computed bymeans of a 2-D open-source

Euler code proposed in [24]. Inflow conditions are indicated in

Fig. 12. A few loops have been performed to get the targeted

upstream Mach number of 0.3. This has been done by adjusting the

exhaust static pressure. This approach was shown to be an efficient

alternative to the previous RANS approach, which requires some

corrections near the solid boundaries in order to remove boundary

layers and recirculation zones, incompatible with the inviscid

assumption of the CAA code. For the mean flow computation, a

single channel simulation with periodic boundary condition has been

considered. The obtained mean velocity field has been then dupli-

cated and interpolated on the CAA mesh for acoustic multichannel

computations. The upstream Mach number and the entrance flow

angle used for the CAAwere chosen before the final values, corre-

sponding to the pretest values in Table 1. It should not modify the

conclusions drawn here.

2. Simulated Configuration and Main Assumptions of the Aeroacoustic

Computations

TheCAA simulation setup uses the boundary conditions presented

in Figs. 3 and 12. Except for the one-channel computations and the

parametric study on thevane count from [5] on the baseline geometry,

which are performed on an H pattern grid [5], the whole CAA grid is

designed using an O-H pattern. This choice facilitates the generation
of the 3-D mesh for the serrated geometry. Indeed, the mesh is
practically designed using an in-house tool, ersatZ, which allows to
apply suitable 3-D deformations on the reference skeleton to obtain
the serrated shape and to extend themwithin the grid volume [5]. The
main conclusion from this preliminary study was that multichannel
computations aremandatory to avoid spurious resonance phenomena
in the midfrequency range resulting from periodic boundary condi-
tions and requiring to include at least three-vane channels in the CAA
domain. A typical result from these parametric studies [5] is shown in
Fig. 13. All the simulations discussed in the next paragraphs are
carried out using three-vane channels, and first solutions from [5] are
completed using fully 3-D turbulence modeling.

B. Aeroacoustic Predictions on the Baseline (Untreated) Geometry

The parameters used for the generation of the 3-D synthetic
turbulence are the following: Ly � 0.255 m, M � 48, N � 30,
andΔf � 100 Hz. In Fig. 14, snapshots of synthetic turbulent flows
related to the transverse velocity u 0

y are clearly showing the different

patterns issued from 1-D (Fig. 14a), 2-D (Figs. 14b and 14c), and 3-D
(Fig. 14d) injected turbulence. Note that 1-D (parallel gust), 2-D
(planar), and fully 3-D structures are, respectively, linked to the
number of velocity components (1, 2, or 3) [15] and then to the
nonzero wave numbers involved in the present turbulence models.
The pressure fluctuations are then extracted at the vane skin and

radiated in the far field using an in-house code called MIA. MIA
solves the FWH equation restricted here to the loading noise term
with a solid surface formulation. The power spectra were obtained by
a weighted angular integral over half a circle downstream of the
cascade, as performed in [5]. In order to compensate for the lack of
energy input due to the window function fw�z�, with Rw � 0.15, a
simple correction 20 log�1∕�1 − Rw�� has been applied to the spec-
tra. The numerical spectra are compared to Amiet’s solution for an
isolated flat plate in Fig. 15. Please note that a cascade model as
proposed in [30–32]might be used to get a reliable reference solution,
so that the Amiet-based spectrum is only giving a biased estimate by
neglecting the cascade effect (quite significant in this configuration).
At high frequencies, Amiet’s model is overpredicting the acoustic
spectra because it does not take into account any thickness. For
�kξ; kz � 0�, �kξ; kz�, and (kξ, kη, kz) turbulent structures, the com-

putations have been performed with Δf � 100 Hz and with Δf �
20 Hz for �kξ; kη; kz � 0� turbulence.
Regarding the numerical spectra associated with �kξ; kz � 0� and

�kξ; kη; kz � 0� turbulence, one may notice that taking into account

kη provides a more constant slope at medium- and high-frequency

range. However, the bump (around 800 Hz) due to a numerical
amplification using periodicity conditions over three-vane channels
instead of seven is stronger when a turbulence with a varying kη is
injected; see Fig. 15 from [5]. Regarding the comparison between
CAA results and Amiet’s solution, the levels are definitely overesti-
mated by the isolated flat plate approximation. This iswhy, even if the
nonzero divergence turbulence is the closest solution to one from
Amiet, it represents in fact the worst numerical prediction. Indeed,
following literature [32,33], a few decibels’ reduction is at least
expected at low frequencies due to the cascade effect and at high
frequencies due to the nonzero thickness of the airfoils [34]. Looking
at the divergence-free result, taking into account the kz wave number

Fig. 14 Turbulent-like u 0
y snapshots (levels between�2 m ⋅ s−1 for the kz � 0 cases and�10 m ⋅ s−1 otherwise). Turbulence structures a) kξ; kz � 0,

b) kξ; kz, c) kξ; kη; kz � 0, and d) kξ , kη, kz.

Fig. 12 Ux, levels between 60 and 120 m ⋅ s−1.

Fig. 13 Downstream soundpower per vane from [5], with akξ; kη; kz �
0 turbulence. Computations performed with Δf � 10 Hz and averaged
over 10 realizations.
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seems not to modify the spectra (green vs pink curves) except for the
resonance bump at low frequencies (link with the three-channel
periodicity), which is in accordance with previous numerical simu-
lations [5] and with Amiet’s theory.
Snapshots of the turbulent-like velocity divergence are plotted in

Fig. 16, at the injection plane. In the nonzero divergence case plotted
in Fig. 16a, divergence is nonnegligible in the region where the
window function derivative is maximum. On the contrary, with the
divergence-free formulation, the issue disappears as illustrated in
Fig. 16b. As clearly visible on isosurfaces of fluctuating pressure in
Fig. 17, the nonzero divergence formulations (Fig. 17a) give rise,
close to areas of maximum divergence in Fig. 16a, to local intense
spots extending through the CAA domain and interacting with the
vanes and responsible for some noise increase. On the contrary, the
solution obtained with the divergence-free formulation (Fig. 17b) is
found to be much cleaner without generation of additional spurious
numerical sources.

C. Design of a Passive Treatment Based on Leading-Edge Serrations

The leading-edge serrations have been firstly designed on a 2-D
plane, plotted in Fig. 18a, following the background from previous
studies; the most recent is presented in [2]. The theoretical optimal
serration wavelength, defined from [19], corresponds to twice the
turbulence length scale of 8 mm. The serration amplitude is defined
directly related to the serration angle and so the ratio hs∕λs. Although
the acoustic benefit could be improved by increasing hs, a practical
limitation of the ratio hs∕c is required to avoid a noticeable loss of
aerodynamic performance for industrial applications. Such a thresh-
old has been used in [2]. Hence, setting hs∕λs � 1 can be considered
as a reasonable value close to the optimum design. For the numerical
computation, in order to get an integer number of serrations along the
span, the quantities have been slightly increased to end with

hs � λs � 16.7 mm. To apply the planar deformation on the 3-D
geometry of the airfoil, the ersatZ tool has been used. The first step
has consisted in the extraction of the camber and thickness laws. A
homothety has been then applied to these laws in order to obtain the
shape of the airfoil at the roots of the serrations. To get the airfoil
geometry at the hills of the serrations, the camber lawwas extended at
the leading edge, keeping a constant angle as illustrated in Fig. 18b.
The ersatZ modeler, which is able to extend the skeleton deforma-
tions (see Fig. 18c) to the cells of the volume mesh, has been used to
apply a morphing of the baseline CAA grid, presented in Fig. 19, in
order to perform aeroacoustic simulations on the low-noise design.

D. Assessment of the Noise Reduction Provided by the Serrated
Geometry

1. Mean Flow and CAA Computation

In order to obtain themean flow around the new geometry with the
2-D Euler open-source code, the computation was performed on z
planes, fromwhich thevelocity field has been then interpolated on the
3-DCAAmesh. Thus,Uz is set equal to zero in the domain, which is a
proper approximation. Indeed, the vertical (radial) component of the
mean flow velocity has shown to be negligible in comparisonwith the
other velocity components by RANS solutions discussed in Sec. VI
and also consistent with previous studies on realistic turbofan con-
figurations [2]. The resulting Euler mean flowfields, in terms of axial
velocity maps and streamline visualization, are plotted in Figs. 20a
and 20b, respectively, for planar cuts at root and peak of the serration.
The streamlines are perfectly aligned to the airfoil geometry for these
two tricky positions, which should allow proper assessment of the
turbulence-airfoil sources and sound propagation in the CAA.
The contour maps of the RMS pressure fluctuations on the vane

skin are plotted in Fig. 21. Moreover, the strongest pressure sources
are located at the roots and peaks of the serrations in accordance with

Fig. 15 Amiet’s solution . Numerical spectra with a 1 kHz moving
average: kξ; kz � 0 , kξ; kz , kξ; kη; kz � 0 , kξ , kη, kz with
div�u 0� ≠ 0 , and kξ , kη, kz with div�u 0� � 0 .

Fig. 16 At the injection surface, div�u� (levels between �100 s−1). Fully 3-D turbulence with a) nonzero divergence and with b) divergence-free
formulation.

Fig. 17 Isosurfaces of p 0 at�200 Pa. Turbulence kξ , kη, kz with a) non-
zero divergence and kξ, kη, kz with b) divergence-free formulation.
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the literature [2,8]. Finally, the pressure fluctuations are equally

distributed over the three vanes, which satisfies the periodicity con-

ditions (enforced in the transverse direction) and indicates the good

convergence of the CAA computation.

2. Sound Power-Level Reductions from CAA and Comparison with Ana-

lytical and Empirical Solutions

The noise reduction assessed in terms of sound power-level reduc-

tions (ΔPWL) spectra are summarized in Fig. 22. The numerical

predictions with the different synthetic turbulence injections are

compared with both an analytical solution and a semi empirical

law proposed by the Institute of Sound and Vibration Research

[19]. The analytical solution presented in [20] satisfies the Helmholtz

advective equation and is obtained from the Wiener–Hopf technique

for any piecewise leading-edge geometries. It has been slightly

modified for applications to finite span airfoils in [2,5]. The semi-

empirical law from [19] provides the optimal noise reduction occur-
ring when λs � 2Lξξ, for a single-wavelength geometry in terms of

the Strouhal number, ΔPWL � 10 log�St� � 10. There is a good

agreement between the different solutions in the medium frequency
range, especially in comparison with the semi-empirical law. As

discussed in previous numerical studies [5,29], omitting the spanwise
turbulence variation leads to an overprediction of the noise reduction,

particularly at high frequencies. The 3-D turbulence numerical pre-
diction (in pink) exhibits a slightly smaller noise reduction at high

frequencies compared to other CAA computations, in particular the

two-wave number �kξ; kz� formulation (in blue). Practically, this

Fig. 20 Isocontour maps of Ux (levels between 60 and 120 m ⋅ s−1) with streamlines. Cuts at the a) root and b) peak of the serration.

Fig. 18 The serration: a) 2D plots of the serration, b) diagram of the deformation applied on the NACA 7310, and c) 3-D geometry.

Fig. 19 Views of the skin CAA mesh and z slice at the peak of the
serration.

Fig. 21 RMS wall pressure p 0
rms, Pa (levels between 0 and 500 Pa).
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study highlights that the �kξ; kz� turbulence model is a good com-

promise in terms of accuracy versus CPU time for the noise reduction

prediction. In particular, the ΔPWL spectra achieved in this case are

found to be almost identicalwhen using one-channel or three-channel

simulations, whichmakes this approach very attractive.However, the

latter conclusion should be nuanced, since it is limited to a rectilinear

cascade setup.

The expected acoustic performances from numerical/analytical/

semi-empirical approaches are gathered in Table 4. There is a good

agreement between the trends drawn from Fig. 22 and the average

noise reduction provided in Table 4. However, drawing conclusions

from the overall sound power-level noise reductions (ΔOAPWL) is a
bit tricky, because it is influenced by the shape of the baseline noise

spectra. Indeed, due to resonance phenomena associated with peri-

odic boundary condition (more discussed in [5]), some bumps appear

in the spectra that tend to overpredict the noise emission around 500

to 1000 Hz for the three-channel setup. The later bump is a bit less

visible on a multichannel computation with a turbulence invariant

along the cascade directions, as shown in [5] by Fig. 15. Conse-

quently, in order to give a better idea of the overall noise reduction for

themultichannel computations, the frequency range 1300 to 9800Hz

is also considered. In any case, for all the methods, a significant

ΔOAPWL (noise reduction) around 6 dB is expected.

Additionally, a parametric study has been performed using the

analytical solution (based on the WH technique) in order to evaluate

the acoustic performances at the three certification points (approach

APP, cutback CUTB and sideline SDL). The obtained results are

plotted in Fig. 23. The prediction atM � 0.3 (condition used for the
CAA) is also given. These results show that the noise reduction is

shifted towards high frequencies. As already pointed out in [2], the

peak frequency of the PWL reduction roughly follows the one related

to the noise emission spectrum, at respective regimes. By theway, the

low-noise design remains efficient at low-speed and high-speed flows
and is thus well adapted for acoustic certification.

VI. Aerodynamic Assessment of the Serrated Design

A. RANS Simulations Setup and Aerodynamic Performance Analysis

In addition to aeroacoustic computations, an aerodynamic
assessment has been conducted through RANS calculations using
ONERA code elsA and applying the Jameson spatial scheme and
k − l Smith turbulence model. The full span extension has been
considered, with the use of adiabaticwalls condition on thevane and
end walls and periodic boundary condition at vane channel sides. In
the spanwise direction, 421 points are used, ensuring at least 30
points per serration wavelength. Aview of the CFD grid containing
about 5 million cells is shown in Fig. 24a. For the serrated case, the
vane skin mesh (see Fig. 24b) is trimmed using the in-house
modeler ersatZ, as illustrated in Fig. 25. Two operating point con-
ditions have been investigated, at approach (APP) and at the aero-
dynamic design point (ADP), with inletMach number, respectively,
equal to 0.34 and 0.67, and inlet total pressure and temperature,
respectively, equal to 101,325 Pa and 288.15 K. The inflow turbu-
lence intensity is set equal to 4.5%, and a turbulence viscosity ratio
of 0.01 is considered. At APP (the selected condition for which the
CAA simulations were performed), aerodynamic penalties are
found to be acceptable with the first serrated design (mainly
achieved for acoustics purposes) as illustrated by Fig. 26 (contour
maps of Mach number). In Fig. 26, comparisons of the cut views
(taken at the roots of the serration) do not reveal significant changes,

Table 4 Average ΔPWL and ΔOAPWL, dB

Average ΔPWL,
0.2 to 9.8 kHz

ΔOAPWL,
0.2 to 9.8 kHz

ΔOAPWL,
1.3 to 9.8 kHz

WH 7.3 5.5 6.8

10 log�St� � 10 7.5 4.9 6.1

CAA, kx; kz � 0 11.0 5.2 6.2

1-vane CAA, kx; kz 8.7 6.7 7.1

CAA, kx; kz 8.6 5.4 6.4

CAA, kx; ky; kz � 0 9.0 3.9 5.3

CAA, kx, ky, kz 7.2 3.5 5.7

Fig. 22 Wiener–Hopf and semi-empirical log law . Numerical spectra with a 1 kHz moving average: kξ; kz � 0 , kξ; kz
(one-channel ), kξ; kη; kz � 0 , and kξ, kη, kz .

Fig. 23 Wiener–Hopf solutions at three certification points: M �
0.3 , APP (M � 0.34) , CUTB (M � 0.53) , and SDL
(M � 0.64) .
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with only a slight flow separation at the trailing-edge suction side.
This gives rise to a 0.14 pp (percentage points) deviation for total

pressure loss coefficient and �1.8 deg deviation for outlet flow
angle; see summarized results gathered in Table 5.
However, at the ADP, the aerodynamic performances are signifi-

cantly deteriorated compared to the reference geometry. Indeed,
contrary to the previous observations from Fig. 26, a strong flow
separation is clearly shown in Fig. 27b by comparison to the baseline

solution in Fig. 27a. This has resulted in the proposal of a second
design presented in Sec. VI.B, consisting in a basic modification of

the initial serrated design for aerodynamic purposes only.

B. Proposal of an Alternative Design to Improve Aerodynamic

Behavior

In order to limit the aerodynamic penalties, more particularly
pointed out at ADP, a second serrated design with an increased

averaged chord (the reference chord being set at the roots) has been

proposed and simulated too. Three-dimensional views of this second

serrated geometry are depicted in Fig. 25. As the serration parameters

hs and λs are unchanged, this design 2 should have almost no impact

on acoustic performances assessed with the serrated design 1. The

following results address the aerodynamic performances obtained for

both designs in comparison to the reference case. At APP, slightly

Fig. 27 Mach number (levels between 0.1 and 1.2) contour maps at ADP.

Fig. 24 CFD grid: a) one-channel mesh of the baseline CFD geometry and b) zoom view of the serrated mesh.

Fig. 25 Views of the baseline geometry (in gray) and the second serrated design (in blue).

Fig. 26 Mach number (levels between 0.05 and 0.45) contour maps at APP.
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better performances are obtained with the second design, as illus-
trated by the orange-colored pressure loss distribution in Fig. 28a.
The updated penalties for total pressure loss coefficient and outlet
flow angle are found to be, respectively, reduced to −0.10 pp and
�0.5 deg with design 2; see Table 5. At ADP, the strong flow
separation observed in Fig. 27b, is greatly reduced in the presence
of design 2. The overall performances addressed in Table 5 indicate a
nonsuitable penalty of −1.6 pp for total pressure loss coefficient and
a flow-angle deviation of �3.8 deg with design 1. These critical
values are, respectively, reduced to −0.6 pp and �0.8 deg with
design 2, which is a quite valuable improvement. These positive
effects are clearly pointed out on the spanwise profiles of pressure
loss coefficient obtained for both designs, compared to the reference
solution in Fig. 28a at APP and Fig. 28b at ADP. The benefit of using
an increased mean chord is clearly highlighted, with the design 2
being able to reduce the penalties all over the span, with much more
acceptable deviations of the mean flow.

VII. Conclusions

The ability to implement a fully three-dimensional turbulencewith
a limited computational cost has been demonstrated in this study.
Wall and periodic boundary conditions have raised important chal-
lenges. To address the latter issues, a variant of the usual generation
process based on the energy spectrum, similarly to [15], has been
proposed. Adequately defined weighting functions have been intro-
duced to obtain a divergence-free turbulence in the presence of wall
BC. From a methodological point of view, this work has provided

some additional insight on the setup ofCAAcomputations, following
on preliminary CAA simulations performed at ONERA on the
InnoSTAT configuration [5]. One may conclude that multichannel
computations with at least a �kξ; kη; kz � 0� turbulence are needed to
accurately reproduce the noise spectra on a baseline multichannel
configurations at medium and high frequencies. The convergence at
low frequencies is ensured by taking into account a large number of
airfoils only, as shown in [5,33]. To simply study the relative noise
reduction, a one-channel simulation with a �kξ; kz� turbulence struc-
ture appears appropriate. However, in order to take into account very
properly both cascade and serration effects, a 3-D synthetic turbu-
lence might represent the best choice. The only drawback of a
multichannel computation with a 3-D turbulence is that an important
number of vanes has to be taken into account in order to reduce the
bump at low frequency of the acoustic spectra associated with
periodic boundary conditions. An alternative is to consider multi-
channel computations with �kξ; kz� turbulence [1,2], even if the

spectra are a bit altered at medium and high frequencies. The latter
conclusions could be modified if other geometries were considered.
In any case, the new fully 3-D turbulence methodology might be of
particular interest for cases where both kη and kz are likely to strongly
influence the acoustic sources. In parallel, a low-noise design with
leading-edge serrations has been proposed, for which around 4 to
6 dB overall noise reduction can be expected at the three certification
points, with a good agreement between the noise reduction spectra
from the different methods. Finally, aerodynamic performances of
the serrated design were evaluated. At the approach point, the design
offers acceptable performance losses. However, at theADPoperating
point, the aerodynamic penalties raise the need for an improved
variant of the initial design. This second design, involving a larger
mean chord, should not modify the acoustic prediction, since the
leading-edge sinusoidal shape has been preserved. Even better, the
improved aerodynamics might reduce the additional self-noise
sources compared to the first design.

Appendix A: Algorithm to Determine the Direction of the
Velocity for 3-D Turbulence Structures

Let us consider the wave number k � �kξ;l; kη;lm; kz;n�T in the
coordinate system (ξ, η, z). The goal is to build on an orthonormal
basis �ka; kb; kc� from k in order to determine σlmn such as
k ⋅ σlmn � 0. The main steps of the procedures are mentioned as
followswith αlmn a randomphase term sorted for eachmode (l,m, n):
1) kc � k∕kkk

Fig. 28 Pressure loss distributions along the dimensionless spanwise coordinate h � z∕Lz. At a) APP and b) ADP.

Table 5 Summary of the aerodynamic performances of baseline,
serrated design 1, and design 2a

Baseline
(reference) Design 1 Design 2

Total pressure loss coefficient
at APP

0.9970
0.9956

(−0.14 pp)
0.9960

(−0.10 pp)

Total pressure loss coefficient
at ADP

0.9880
0.9720

(−1.60 pp)
0.9820

(−0.60 pp)

Outlet angle (remaining swirl)
at APP

2.1 deg
3.9 deg

(�1.8 deg)
2.6 deg

(�0.5 deg)

Outlet angle (remaining swirl)
at ADP

2.5 deg
6.3 deg

(�3.8 deg)
3.3 deg

(�0.8 deg)

aDifference to the reference value in parenthesis.
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2) Supposing that kξ;l > 08>><
>>:
ka�

�
−
k2η;lm�k2z;n

kξ;l
;kη;lm;kz;n

�
T

�ξ;η;z�
; if jkη;lmj�jkz;nj≠0

ka��0;kη;lm;0�T�ξ;η;z�; if jkη;lmj�jkz;nj�0

3) ka � ka∕kkak and kb � kb∕kkbk
4) kb � kc ∧ ka
5) σlmn � cos�αlmn�ka � sin�αlmn�kb, with αlmn ∈ �0; 2π�.

Appendix B: Link Between Formulations Based on the
Turbulence Energy and the Velocity Autocorrelations

For the sake of simplicity, let us assume that βc � 0. In order to
achieve the comparison between the formulations, an amplitude of a

givenmode u 0
i � 2

����������������
E�k�Δkp

σi � 2
��������������������������������������������������
E�k�∕�2πk2�ΔkxΔkyΔkz

q
σi is

considered. The directivity of the velocity is given by the vector σ,
which satisfies Eq. (B1), following Appendix A:

σ � cos�α� k

k2
����������������
k2y � k2z

q
0
BB@
−�k2y � k2z�

kxky

kxkz

1
CCA

� sin�α� 1

k2
����������������
k2y � k2z

q
0
BB@

0

−kzk2

kyk
2

1
CCA (B1)

The next step is to consider the mean value (denoted by the
subscript mean) of the squared norm of the vector σ from a statistical
point of view, considering an infinite number ofα randomly generated:

σ2x � cos2�α� 1

k2
�k2y � k2z�

⇒ σ2x;mean �
1

2

1

k2
�k2y � k2z� �

1

2

�
1 −

k2x
k2

�

σ2y �
1

k4�k2y � k2z�
�cos�α�kxkyk − sin�α�kzk2�2

⇒ σ2y;mean �
1

2

1

k2
�k2x � k2z� �

1

2

�
1 −

k2y
k2

�

σ2z �
1

k4�k2y � k2z�
�cos�α�kxkzk� sin�α�kyk2�2

⇒ σ2z;mean �
1

2

1

k2
�k2x � k2y� �

1

2

�
1 −

k2z
k2

�

The expression of averaged (mean) velocities, with respect to α, can
now be expanded:

u 02
x;mean � 4

E�k�
4πk2

�
1 −

k2x
k2

�
ΔkxΔkyΔkz

u 02
y;mean � 4

E�k�
4πk2

�
1 −

k2y
k2

�
ΔkxΔkyΔkz

u 02
z;mean � 4

E�k�
4πk2

�
1 −

k2z
k2

�
ΔkxΔkyΔkz

If one considers the squared amplitude of the average statistical

velocities (u 0
i;mean � 2

������������������������������
φiiΔkxΔkyΔkz

p
), the formulations that would

have been obtained using autocorrelation spectra φii �
E�k�∕�4πk2��1 − k2i ∕k2� are recovered. To conclude, it has been
demonstrated that if an infinite number of modes is generated, the
two formulations (relying on the energy spectrum or the autocorrela-
tion velocity spectra) tend towards the same limit.

Appendix C: Determining Conditions Under Which a
Divergence-Free Formulation Can Be Achieved

The choice has been made to alter the u 0
z component, with the aim

of achieving a divergence-free formulation:

∂u 0
z

∂z
� −fw�z�A sin�k ⋅X − ωt� ψ�kzσz

� f 0
w�z�A cos�k ⋅ X − ωt� ψ�σz − g 0

w�z�Aσz (C1)

From Eqs. (21) and (C1), one can obtain that g 0
w�z� �

f 0
w�z� cos�k ⋅X − ωt� ψ�. More precisely, gw�z� is a piecewise

function likewise fw�z�, defined as follows:8>>>>><
>>>>>:

∀ z ∈ �zmin; zmin � Lw�; g 0
w�z� �

π

2Lw

sin

�
π
z − zmin

Lw

�
cos�k ⋅ X − ωt� ψ�

∀ z ∈ �zmin � Lw; zmax − Lw�; g 0
w�z� � 0

∀ z ∈ �zmax − Lw; zmax�; g 0
w�z� �

π

2Lw

sin

�
π
z − zmax

Lw

�
cos�k ⋅X − ωt� ψ�

(C2)

The idea of the following paragraphs is to demonstrate the conditions under which the previous system of equations [Eq. (C2)] can be satisfied,

taking into account that both functions fw and gw are C1 and cancel in zmin and zmax. Let us consider that kz ≠ �π∕Lw (the case kz � �π∕Lw,

which is not detailed here, leads to the equality sin�kxx� kyy� π∕Lwzmin − ωt� ψ� � 0, which cannot be ensured for every set of variables):8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

∀ z ∈ �zmin; zmin � Lw�; gw�z� �
−π2

2π2 − 2k2L2
w

cos�k ⋅ X − ωt� ψ� cos
�
π
z − zmin

Lw

�

−
kLwπ

2π2 − 2k2L2
w

sin�k ⋅X − ωt� ψ� sin
�
π
z − zmin

Lw

�
� Ca

∀ z ∈ �zmin � Lw; zmax − Lw�; gw�z� � Cb

∀ z ∈ �zmax − Lw; zmax�; gw�z� �
−π2

2π2 − 2k2L2
w

cos�k ⋅ X − ωt� ψ� cos
�
π
z − zmax

Lw

�

−
kLwπ

2π2 − 2k2L2
w

sin�k ⋅X − ωt� ψ� sin
�
π
z − zmax

Lw

�
� Cc

(C3)

The integrated form of Eq. (C2) is given by Eq. (C3), in which three

constants Ca, Cb, and Cc need to be determined. The functions fw
and gw have to be damped near the boundaries, for example, at zmin,

gw�zmin� � 0. Thus, the constant Ca satisfies

Ca � π2

2π2 − 2k2L2
w

cos�kxx� kyy� kzzmin − ωt� ψ� (C4)

The continuity has to be ensured in z � zmin � Lw, leading to

Cb � gw�zmin � Lw�:

Cb � π2

2π2 − 2k2L2
w

cos�kxx� kyy� kz�zmin � Lw� − ωt� ψ�

� π2

2π2 − 2k2L2
w

cos�kxx� kyy� kzzmin − ωt� ψ� (C5)
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Thus, the constant Cb can be expressed by Eq. (C5):

Cc �
π2

2π2 − 2k2L2
w

cos�kxx� kyy� kzzmax − ωt� ψ� (C6)

Likewise at z � zmax, gw�zmax� � 0, which leads to Eq. (C6):

Cb � π2

2π2 − 2k2L2
w

cos�kxx� kyy� kz�zmax − Lw� − ωt� ψ�

� π2

2π2 − 2k2L2
w

cos�kxx� kyy� kzzmax − ωt� ψ� (C7)

Thereafter,Cb � gw�zmax − Lw�, andCb has also to satisfy Eq. (C7):

cos

�
kxx� kyy� kzzmin �

kzLw

2
−ωt�ψ

�
cos

�
kzLw

2

�

� cos

�
kxx� kyy� kzzmin� kzLz −

kzLw

2
−ωt�ψ

�
cos

�
kzLw

2

�
(C8)

The constraint that Cb � gw�zmin � Lw� � gw�zmax − Lw� imposes

that Eq. (C8) has to be verified.

Appendix D: Flow Chart Representing the Synthetic Turbulence Generation
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