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A computational method for the simulation of viscous and compressible gas–gas flows is 
presented. It consists in solving the Navier–Stokes equations associated with a convection 
equation governing the motion of the interface between two gases using high-order finite-
difference schemes. A discontinuity-capturing methodology based on sensors and a spatial 
filter enables capturing shock waves and deformable interfaces. One-dimensional test 
cases are performed as validation and to justify choices in the numerical method. The 
results compare well with analytical solutions. Shock waves and interfaces are accurately 
propagated, and remain sharp. Subsequently, two-dimensional flows are considered 
including viscosity and thermal conductivity. In Richtmyer–Meshkov instability, generated 
on an air–SF6 interface, the influence of the mesh refinement on the instability shape 
is studied, and the temporal variations of the instability amplitude is compared with 
experimental data. Finally, for a plane shock wave propagating in air and impacting 
a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained 
using different grid refinements are found to compare well with experimental shadow-
photographs. The mass conservation is verified from the temporal variations of the mass 
of the bubble. The mean velocities of pressure waves and bubble interface are similar to 
those obtained experimentally.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Gas–gas flows with strong effects of compressibility are encountered in various areas, from astrophysics, such as in 
supernova expansion where the fluid mixing is attributed to Richtmyer–Meshkov instability [6], to engineering, such as in 
supersonic combustion [45]. A main challenge for the simulation of these flows is that a deformable interface separates 
two fluids of different properties; furthermore, other discontinuities such as shock waves may arise. Specific concerns are 
that the computational methods capture such discontinuities accurately, without introducing spurious perturbations, and 
the accurate conservation of mass of the fluids.

Several methods have been developed for the simulation of a deformable interface [44,55]. These methods can be classi-
fied into interface-tracking and interface-capturing methods. Interface-tracking methods use an adaptive mesh, some points 
of which coincide with an interface [22,29,62], such that a mesh moves with the interface, possibly in conjunction with 
a uniform background mesh. These methods can be accurate, but difficulties arise during interface rupture or coalescence 
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events, and implementation is involved for a three-dimensional geometry. In interface-capturing methods, a fixed mesh can 
be used. These methods simulate interface evolution by solving an advection equation for a scalar field.

A commonly-used type of interface-capturing methods is the level-set method [28,47,48], wherein the scalar field corre-
sponds to the signed distance to the nearest interface. A drawback of that method is that, in order to maintain the level-set 
function as a signed-distance function, which is desirable for accurate determination of the normal vector of an interface, 
a reinitialisation step is commonly used, which may introduce significant mass errors. But some modern level-set meth-
ods appear not to be prone to this [58]. For compressible multi-component flows, level-set methods are frequently used 
in conjunction with a ghost-fluid method to apply interface conditions (e.g., [48]). It seems unclear, however, how such an 
approach could be generalized to simulate flows for viscous/conductive fluids, which is our objective here, as imposing the 
corresponding stress/energy jump conditions at interfaces would require further development, although such a formulation 
is available for incompressible flows [37].

An interesting alternative is to model an interface as a thin interfacial layer. Several approaches of this type have been 
developed for compressible flows. One of these is to use a single set of balance equations for a mixture; jumps in the value 
of fluid properties (such as those in the equation of state) occur in an interfacial layer. The system is then closed by an 
advection-type equation for (a function of) such a fluid property, or several of these, which can be put into conservative 
form upon combination with the mass balance equation for the entire mixture. The advected quantity is chosen such 
that interface conditions are satisfied accurately without introducing spurious oscillations in the pressure or in the fluid 
properties, when considering basic one-dimensional test problems. In particular, a judicious choice of an advected parameter 
reduces significantly deviations from a uniform pressure across an interface in a one-dimensional inviscid uniform flow; 
such pressure oscillations are specific to these multi-component systems (e.g., [1]). For the perfect gas equation of state, 
one advected quantity may be used (e.g., [1,2]). In all, a set of mixture relations used in the interfacial region should be 
consistent: that is, the primary variables and parameters in the equation of state should be determined in a consistent 
manner.

A second such approach is to resolve separately the balance equations for mass conservation, possibly also energy and 
momentum balance equations for each constituent. To obtain the local value of parameters in the equation of state inside 
an interfacial layer, these balance equations may have to be supplemented by a balance equation for the volume fraction of 
one of the constituents again such as to satisfy interface conditions in basic test problems (e.g., [4,15,54]). The formulation 
of an advection-type equation for the volume fraction is not straightforward however, and may require making assumptions 
(e.g., [34]). An approach based entirely on mass fractions has also been formulated [53].

This ‘diffuse’-interface type of model seems more suitable for systems with viscosity, wherein a discontinuity in tangen-
tial velocity does not have to be contended with. Accounting for conduction, and possibly for dependencies on temperature 
in the equation of state, requires reduction of errors in the temperature at basic one-dimensional tests, in addition to pres-
sure errors, which has prompted further consideration of the formulation of mixture relations in view of errors in the 
temperature at basic one-dimensional tests, in addition to pressure errors (e.g., [7,34]).

These models have been formulated thus far mostly in a finite-volume methodology, in particular, using high-order 
WENO schemes. The objective of the present study is to develop high-order finite-difference methods for the simulation 
of viscous and compressible multi-component flows. These methods have initially been developed for aeroacoustic com-
putations in order to provide negligible dissipation and dispersion errors [8,9]. In this work, the methods are adapted to 
the simulation of multi-component flows. High-order explicit centred finite difference schemes are used for spatial differ-
entiation. In order to remove grid-to-grid oscillations, whose wavelength is equal to twice the mesh spacing, a centred
selective filter is applied every time step, throughout the entire domain. A discontinuity-capturing methodology enables 
to capture various discontinuities such as deformable interfaces between two fluids or shock waves. The methods are em-
ployed to solve the Navier–Stokes equations associated with one advection equation governing the interface displacements 
[2,33]. In order to validate the present methods, three one-dimensional test cases are solved. The numerical results are 
compared with analytical solutions. Finally, the algorithm is employed to simulate two-dimensional viscous flows. Firstly, 
a Richtmyer–Meshkov instability generated on a post-shocked interface between air and sulphur hexafluoride (SF6) is in-
vestigated. Secondly, a plane shock wave propagating through air, impacting a cylindrical bubble filled with helium or 
chlorodifluoromethane (R22) gas is studied. The numerical results are compared with experimental solutions [24,30].

The present paper is organized as follows. The equations governing the test problems are given in Section 2. The nu-
merical methods are detailed in Section 3. The one-dimensional and two-dimensional flows are presented, and solved in 
Sections 4 and 5, respectively. Concluding remarks are finally provided in Section 6.

2. Governing equations

2.1. Balance equations

Each of the two fluids considered does not occupy all space, so we shall make use of the volume fraction φα defined as 
that part of an infinitesimal volume occupied by fluid α, and denote by ρα the mass per unit volume of pure fluid α, and 
by eα the internal energy per unit mass of pure fluid α. Pursuing a formulation of balance equations for an entire mixture, 
we note that the mixture density and internal energy are then
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ρ =
∑
α

φαρα , ρe =
∑
α

φαραeα, (1)

and 
∑

α φα = 1. The velocity components are considered continuous for viscous systems without phase change, so a single 
velocity field is defined for both fluids; there is no relative motion between the fluids.

A single set of balance equations for the mixture mass, momentum and energy can be developed along standard ar-
guments as follows (see, for instance, [14], albeit in the context of level-set methods). Consider a small volume of the 
mixture, possibly containing an interface between the two fluids. The contribution to a balance equation from the part of 
that volume occupied by fluid α is then merely the usual integrated balance equation for that fluid, but after replacing 
therein the density by φαρα , the internal energy per unit mass by φαραeα (with similar expressions for the stress tensor 
and heat flux); the same velocity u is used for both fluids. Taking the traction and heat flux to be continuous at interfaces 
(discussed further below), and using that the velocity component normal to an interface is the same as that of the velocity 
of each fluid (no phase change), the pre-constitutive governing equations for the gas–gas system can then be obtained upon 
using (1). In conservative form,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂ρui

∂xi
= 0 ,

∂ρui

∂t
+ ∂ρuiu j

∂x j
= ∂σi j

∂x j
,

∂ E

∂t
+ ∂ui E

∂xi
= ∂

∂xi
(σi ju j) − ∂qi

∂xi
,

(2)

where E = ρ|u|2/2 + ρe is the total energy per unit volume. Although the fluid traction and heat flux are assumed to be 
continuous at interfaces, a discontinuity in either can be accounted for, as in the representation of surface tension in the 
continuous surface tension formulation [12]. We note further that the density and internal energy are not assumed to be 
continuous in this approach.

The procedure recalled above for obtaining the pre-constitutive mixture balance equations yields that the mixture stress 
tensor and heat flux appearing therein are defined as the averages of those in each fluid weighted by volume fraction. 
Adopting the Navier–Stokes–Fourier model, the constitutive relation for the stress tensor σi j is

σi j = −
(

p − μb
∂uk

∂xk

)
δi j + μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (3)

where δi j is the Kronecker delta, μ is the shear viscosity, μb is the bulk viscosity, and p is the thermodynamical pressure 
which differs from the mechanical pressure pm = p − μb∇ · u. The heat flux is

qi = −λ
∂T

∂xi
, (4)

where λ is the thermal conductivity and T is the temperature. Since these are averages weighted by volume fraction, we 
conclude that

p =
∑
α

φα pα , (5)

and that weighting by volume fraction should also be used for the transport coefficients

μ =
∑
α

φαμα , μb =
∑
α

φαμbα , λ =
∑
α

φαλα . (6)

The empirical relations employed to estimate the values of these coefficients for each of the pure gases considered in the 
present study are given in Appendix A.

2.2. Equation of state

The mixture internal energy per unit volume can be developed starting with (1), upon using the definition of internal 
enthalpy for each fluid,

ρe =
∑
α

φαραeα =
∑
α

φαρα (hα − pα/ρα) , (7)

where hα is the internal enthalpy per unit mass of pure fluid α. Invoking (5), we obtain

ρe + p =
∑

φαραhα. (8)

α
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The gases are assumed to be ideal, so the thermal expansion coefficient for each gas equals the inverse temperature and 
dhα = cp,αdT , where cp is the specific heat at constant pressure. If we assume the gases to be perfect, cp is constant (we 
discuss the more general case of imperfect ideal gases at the end of this subsection) and (8) becomes

ρe + p = T
∑
α

φαραcp,α. (9)

It is at this point that we first have imposed the one remaining interface condition (not used in deriving the mixture balance 
equations), which is that the temperature be continuous at interfaces, i.e., Tα = T .

To proceed further, we introduce the mass fraction of fluid α, denoted by Yα , as the mass of fluid α per unit mixture 
mass, and after the mole fraction nα as the amount of α (in moles) divided by the total amount of the mixture; both such 
that 

∑
α nα = 1 and 

∑
α Yα = 1. The ratio nα Mα/Yα , where Mα is the molar mass of fluid α, is thus the mixture mass per 

unit amount of the mixture, which is defined as the mixture molar mass, denoted here by M [34]. Multiplying the resulting 
identity with Yα/(Mα M) and summing over the fluids then yields

1

M
=

∑
α

Yα

Mα
, (10)

where we have used that the mole fractions sum to unity. Multiplying with the universal gas constant Ru then yields the 
specific gas constant for the mixture as

R = Ru

M
=

∑
α

Yα Rα , (11)

where Rα = Ru/Mα is the specific gas constant of fluid α. For each ideal gas the specific gas constant satisfies Mayer’s 
relation, Rα = cp,α − cv,α , where cv,α is the specific heat at constant volume for fluid α. This suggests R = cp − cv with

cp =
∑
α

Yαcp,α , cv =
∑
α

Yαcv,α . (12)

Now, since the mass of fluid α per unit volume of mixture can then be written in two ways, which results in the identity

φαρα = ρYα , (13)

we can write (9) as

ρe + p = ρcp T . (14)

This can be simplified further by using the equation of state for fluid α in (13) as

φα pα = ρT Yα Rα . (15)

Summing over α then yields the mixture ideal gas law

p = ρRT , (16)

where we have used (11). The equation of state for the mixture is then, finally,

ρe = p

γ − 1
, (17)

where γ = cp/cv is the ratio of mixture specific heats.
Thus, to conclude, the mixture equation of state that accompanies the mixture balance equations is (17); the temperature 

can be obtained from (16), which requires the specific gas constant (11) of the mixture. We have also developed mixture 
relations for the mixture specific heats (12) and the molar mass (10). It remains, however, to determine the factor 1/(γ − 1)

and the composition: the mass and volume fractions.
Although we have restricted ourselves here to perfect gases, it is straightforward to generalize the above for imperfect 

ideal gases: any dependency of cp,α on temperature can readily be integrated to obtain the internal enthalpy, which merely 
gives an extra term in (9). For instance, for a linear dependency on temperature, cp,α = c0

p,α + c1
p,α T , this yields an extra 

term (pT /R) 
∑

α Yαc1
p,α/2 on the right-hand side of (17), which poses no further modelling difficulty. The cases considered 

herein involve temperature variations of a hundred Kelvin around ambient temperature, in which variations of specific heats 
are not significant, this generalisation is therefore not pursued herein.

In deriving (17), apart from ignoring a temperature dependence of the specific heats, we have only used continuity of 
temperature at interfaces, which is a physical interface condition; the pressure has not been assumed to be continuous here.
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2.3. Interface evolution

It remains to determine the mixture composition: the mixture balance equations (2) with the constitutive relations (3)
and (4) supplemented by the mixture equations of state (16)–(17) require the volume fraction in the mixture transport 
coefficients, and 1/(γ − 1).

The composition of the mixture can be evolved using an advection-type equation for a scalar function χ(x, t) in non-
conservative form

∂χ

∂t
+ u · ∇χ = 0 (18)

or, upon invoking mixture mass balance, in conservative form,

∂ρχ

∂t
+ ∇ · (uρχ) = 0 . (19)

One possible choice for this scalar is the mass fraction of one of the fluids (say, χ = Y1), for which the transport equation 
is exact. The mixture specific heats and their ratio, alongside specific gas constant and molar mass then follow from the 
respective mixture relations derived in the previous subsection. On the other hand, this still leaves the determination of 
the volume fraction required for the mixture transport properties, (6); this can be obtained, but upon making a further 
modelling assumption such as ignoring a jump in pressure at interfaces: it then follows directly from the mass fraction 
through (13),

Yα = φα R/Rα = φα Mα/M . (20)

We report on results obtained with this approach for an inviscid, non-conductive 1D system in Section 4.1.2.
A broader range of choices for the scalar function in the transport equation is identified by noting that most of the 

mixture relations developed in the previous subsection are averages weighted by the mass fractions; for example, the 
mixture specific heats, and the ratio of specific heats. Since each mass fraction satisfies the transport equations (18) and 
(19), it follows that all these mixture properties also satisfy these equations. A well-known example is to use χ = 1/(γ − 1)

as the advected variable (e.g., [1]), i.e.,

∂

∂t

(
1

γ − 1

)
+ u j

∂

∂x j

(
1

γ − 1

)
= 0 . (21)

This is exact for perfect gases, by the above argument. This can be seen by

1

(γα − 1)
= cv,α

(cp,α − cv,α)
= cv,α

Rα
, (22)

multiplying by φα and using the relation (20) yields,∑
α

φα
cv,α

Rα
=

∑
α

Yαcv,α

R
. (23)

From equation (12), one obtains∑
α

Yαcv,α

R
= cv

R
= 1

(γ − 1)
, (24)

hence,

∂

∂t

(
1

γ − 1

)
+ u.∇

(
1

γ − 1

)
= 1

R

∑
α

cv,α

(
∂Yα

∂t
+ u.∇Yα

)
= 0. (25)

Although not pursued here further, this description can be generalized to imperfect gases by taking into account a source 
term equal to 1/R 

∑
α Yα

Dcv,α

Dt ∼ DT
Dt .

The choice of the advected quantity is very important, as will be shown in Section 4.1.2, since the advection of other 
quantities can lead to high numerical errors. For instance, the mass fraction advection is suitable for general cases consid-
ering perfect and imperfect gases but it may lead to spurious oscillations. The conservative form of the equation (21) also 
provides numerical oscillations at the interface. Therefore, the advection equation (21) of 1/(γ − 1) is chosen. It remains 
to determine the volume and mass fractions. Relations (23) and (24) allow to relate the volume fraction to the quantity 
1/(γ − 1) which is known from equation (21),

1

(γ − 1)
=

∑ φα

(γα − 1)
. (26)
α
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Then, using equations (10) and (20) enables the determination of the mass fractions of fluids 1 and 2 from the volume 
fractions

Y1 = φ1M1

M2 − φ1(M2 − M1)
(27)

and Y2 = 1 − Y1.

3. Numerical methodology

High-order explicit finite-difference schemes are used to solve the governing equations. They have been designed to 
provide low dissipation and dispersion errors for aeroacoustic computations [8,9]. Some of these methods are adapted for 
the simulation of multi-component flows.

3.1. Spatial discretization

The spatial derivatives are estimated using the eleven-point fourth-order centred finite difference scheme developed by 
Bogey and Bailly [8]. The spatial derivative of a variable at point x0, in the i-direction is approximated by

∂L

∂xi
(x0) = 1

�x

5∑
j=−5

a j L(x0 + j�x) , (28)

where �x is the grid spacing, considered as uniform in the present study, although extensions to non-uniform grids are 
possible, as in prior work on single-phase flows. The scheme is centred, and its coefficients are chosen such as a j = −a− j , 
providing no dissipation.

3.2. Spatial selective filtering

Using centred finite differences could result in grid-to-grid oscillations leading to numerical instability. A spatial selective 
filter is used herein to remove these numerical oscillations [8]. Specifically, an eleven-point sixth-order centred filter is 
applied at each time step to the variables U = (ρ,ρuk, E,1/(γ − 1)), yielding at node i:

U sf
i = Ui − σ sf Dsf

i with Dsf
i =

5∑
j=−5

d j Ui+ j .

This filtering procedure is conservative since the filtering intensity σ sf is constant [40]. In the present study, it is set to 
σ sf = 1 in order to completely remove grid-to-grid oscillations. The coefficients d j are such that d j = d− j , providing no 
dispersion. The filter has been designed to not significantly affect the waves discretized by more than four mesh points per 
wavelength [8].

3.3. Temporal advancement

For the temporal advancement, an explicit second-order six-step Runge–Kutta algorithm [8] is employed. It has also 
been developed in order to minimize the numerical dissipation and dispersion errors, over a wide range of frequencies. The 
temporal advancement of the variables U from time level n to time level n + 1, at a time step �t , is performed in six steps 
as:

Un+1 = Un +
6∑

j=1

b j�t j ∂
j Un

∂t j
,

where b j are the coefficients of the algorithm [8].

3.4. Discontinuity-capturing methodology

In compressible multi-component flows, various discontinuities arise, including shock waves and interfaces. In the 
present work, a methodology is proposed to capture these discontinuities without generating significant Gibbs’ oscilla-
tions. It is based on the use of a spatial filter with a magnitude evaluated from the flow variables. It has been designed by 
Bogey et al. [9] for single-phase turbulent compressible flows, and is modified herein to also capture deformable interfaces.
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3.4.1. Discontinuity spatial filtering
A second-order spatial filter is applied to damp high-frequency oscillations that may appear around discontinuities. 

The magnitude of this filter is adjusted dynamically from the flow variables in order to be negligible in the absence of 
oscillations. This filtering is applied at each time step to the variable U , yielding at node i:

U df
i = Ui −

(
σ

df

i+ 1
2

Ddf

i+ 1
2

− σ
df

i− 1
2

Ddf

i− 1
2

)
,

with Ddf

i+ 1
2

=
n∑

j=1−n

c j Ui+ j and Ddf

i− 1
2

=
n∑

j=1−n

c j Ui+ j−1 ,

where c j = −c1− j are the coefficients of the standard second-order filter with c1 = −1/4 and c2 = 0. The magnitude of 
the filter 0 ≤ σ df ≤ 1 must be high around discontinuities and negligible otherwise. In order to detect the presence of 
discontinuities, two sensors rρ and rp are evaluated from density and pressure, respectively. The values of the sensor rρ
are high in the presence of an interface, a contact discontinuity or a shock wave. Those of the pressure-based sensor rp are 
significant for rarefaction waves and shock waves. Since the two sensors are calculated in the same way, only the calculation 
of the density-based sensor rρ is detailed here. First, the high-frequency components are extracted from the density signal, 
yielding at node i:

Dρi = 1

4
(−ρi+1 + 2ρi − ρi−1) .

The magnitude of these components is

Dρ
magn
i = 1

4

(
(Dρi+1)

2 + 2(Dρi)
2 + (Dρi−1)

2
)

.

Then, the shock sensor rρ is defined

rρ = Dρ
magn
i

ρi
2

.

Once the sensor rρ is known, the spatial filtering intensity σ df
ρ is then determined. It is defined such as to be approximately 

equal to 1 when oscillations are detected around discontinuities, in other words when the shock sensor rρ is high, and the 
filtering strength σ df

ρ tends to zero in the absence of oscillations, when rρ is low. At node i, the intensity σ df
ρ is calculated 

using the following equation:

σ
df
ρi = Mρi

2

(
1 − rth

rρi + ε
+

∣∣∣∣1 − rth

rρi + ε

∣∣∣∣
)

, (29)

where ε = 10−16 is introduced to avoid numerical divergence. In this approach, a threshold parameter rth is used to specify 
the minimum sensor value for which the spatial filtering is applied. For the calculations of σ df

ρ and σ df
p , the same parameter 

rth = 2 × 10−5 is employed. The intensity σ df
ρ , for instance, is zero when rρ ≤ rth and σ df

ρ is positive when rρ > rth . The 
arbitrary value of the threshold parameter provides appropriate results for the different tests solved. This point is discussed 
later in Section 4.1.3.

The prefactor Mρ , the monotony indicator, is introduced to impose σ df
ρ = 0 in the absence of numerical oscillations. It 

is estimated from a study of the density monotony around the node i detailed in the next subsection; by design, Mρ takes 
values between 0 and 1. Similarly, a monotony indicator Mp is also estimated from pressure.

Finally, the filtering intensity is defined as the maximum of the two intensities estimated from the density and pressure, 
σ df = max(σ

df
ρ , σ df

p ). For use in the present conservative formulation, σ df between nodes is obtained from

σ
df

i+ 1
2

= 1

2

(
σ

df
i+1 + σ

df
i

)
and σ

df

i− 1
2

= 1

2

(
σ

df
i + σ

df
i−1

)
.

3.4.2. Monotony indicator
The monotony indicator Mρ in equation (29) is used to avoid damping in the absence of oscillations. Indeed, the shock 

sensor rρ is defined as the ratio between the high-frequency components and the local density. Thus, if the gradient is 
significant while the local density is weak, the sensor may be higher than the threshold rth even if there is no oscillation. In 
order to correct this, the indicator Mρ is introduced in the computation of the filtering magnitude σ df

ρ . It is estimated from 
the density monotony; likewise, the indicator Mp is estimated from pressure monotony. Since they are computed in exactly 
the same way, only the calculation of Mρ is presented below: the density monotony is evaluated using a three-point stencil 
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S = {i − 1, i, i + 1}. First, two variables D L and D R , respectively the density variations at the left-hand side and right-hand 
side of the node i, are considered:

D L
i = ρi − ρi−1 and D R

i = ρi+1 − ρi .

The product of these variables verifies:{
D L

i D R
i < 0 if ρ has an extremum at node i ,

D L
i D R

i ≥ 0 if ρ is monotonous over S .

The variable α is given, at node i, by:

αi = |D R
i D L

i | − D R
i D L

i .

Thus, one obtains{
αi > 0 if ρ has an extremum at node i ,

αi = 0 if ρ is monotonous over S .

The dispersion error of the discontinuity filtering is directly related to the spatial variations of σ df [9]. Therefore, in order 
to reduce the dispersion errors due to the filtering, the parameter α is averaged over five mesh points yielding, at node i,

ᾱi = 1

5

2∑
j=−2

αi+ j

Finally, the monotony indicator is defined, at node i, as

Mρi = ᾱi

ᾱi + ρi
2 ε

, (30)

where ε = 10−16 is introduced to avoid numerical divergence. By construction Mρi takes values between 0 and 1, and 
verifies{

Mρi = 0 if ρ is monotonous over S ,

Mρi � 1 otherwise.

In this way, the magnitude of the spatial filtering σ df
ρ is set to zero when the solution does not oscillate, but the magnitude 

is unchanged otherwise.
The present computational approach has been used previously to simulate various viscous and conductive problems for 

a single fluid, the present work being the generalization to multi-component systems, which is not trivial and includes 
the introduction of the new monotony indicator. Prior applications in single fluids include the propagation of infra-sounds 
within homogeneous and inhomogeneous media [46], and turbulent channel flows [41]. Several simulations of turbulent jets 
have also been performed, notably, subsonic jets at different Reynolds number [11], an overexpanded jet at a Mach number 
of 3.3 [18] and supersonic round jets impinging on a flat plate [10].

4. 1D test cases

In order to validate the present algorithm, several one-dimensional test cases are considered here. In these, equations (2)
and advection equation (21), supplemented with the perfect gas equation of state (17) are solved.

4.1. Gas–gas interface advection

The first test case concerns the advection of an interface between two gases at constant pressure and velocity [32]. This 
configuration often arises in two phase flows, for instance before and after a shock/interface interaction. We first solve this 
in order to verify that the algorithm is able to capture an interface, and to assess the effects of the monotony indicators on 
the solutions. Then, the test is considered in order to exhibit the influence of the choice of the advected variables governing 
the interface. Finally, we use different values for the threshold parameter rth , which allows us to compute the discontinuity 
filtering magnitude σ df

ρ in equation (29).
At time t = 0, the conditions are:

(ρ, u, p, γ ) =
{

(1,0.5,1/1.4,1.4) for x ≤ 0 ,

(10,0.5,1/1.4,1.2) for x > 0 .
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Fig. 1. Gas–gas interface advection. Representation of (a) the density, (b) the difference with respect to the analytical solution for velocity u − u0, (c) the 
difference with respect to the analytical solution for pressure p − p0 and (d) γ at time t = 4. Solutions obtained without and with monotony 
indicators; mesh points, analytical solutions.

Fig. 2. Gas–gas interface advection. Representation of the intensity of the discontinuity filtering σ df at time t = 4. Solutions obtained without and 
with monotony indicators; mesh points.

Only density and γ are discontinuous at the interface whereas pressure and velocity are uniform. The viscosity and the 
thermal conductivity of both fluids are zero. Their effects on the results are found not significant (we defer discussion of 
that to the end of Sec. 4.1.2). The problem is computed using a uniform grid spacing �x = 0.02 and a time step �t = 0.016. 
At time t = 0, the highest non-dimensional speed of sound is equal to c = √

γ p/ρ = 1, leading to c�t/�x = 0.8. Periodic 
boundary conditions are imposed at x = −1 and x = 1. The solution is computed up to time t = 4. At that time, the interface, 
initially at x = 0, returns to its initial position.

4.1.1. Validation of the algorithm
The results obtained at t = 4 for density, γ and the differences between the numerical and analytical solutions for 

velocity and pressure, respectively u − u0 and p − p0, are presented in Fig. 1. The analytical solutions are represented in 
dashed lines. The numerical results in black and in gray are computed with and without using the monotony indicators, 
respectively. In the latter case, the density and γ profiles in Figs. 1(a) and 1(d) are strongly asymmetric. In the former case, 
using the indicators, the gas–gas interface is accurately propagated and discretized by only five mesh points. The velocity 
and pressure errors in Figs. 1(b) and 1(c) are of the order of 10−15 in both cases.

The intensity of the discontinuity filtering σ df at final time is represented in Fig. 2. It is estimated either with or 
without the monotony indicators. Without the monotony indicators, the filtering intensity is stronger on the left part of 
the interface than on the right part. Indeed, the local density ρi is lower in the left region, leading to a higher sensor 
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Fig. 3. Representation of the differences between numerical and analytical solutions for (a) velocity u − u0 and (b) pressure p − p0 at time t = 4; solutions 
obtained using the advection equation of γ and 1/(γ − 1).

value rρ . Consequently, the solutions are significantly damped, leading to the asymmetry of the profile. Using the monotony 
indicators, the filtering intensity is not zero only on five mesh points located around x = −0.8 and x = 0.9. In addition, the 
filtering intensity is null across the interface. At that time, no significant oscillation is detected across the interface, most 
likely because they have already been damped by the discontinuity filtering. Thus, thanks to the indicators which set the 
amplitude of the filtering to zero in the absence of oscillations, the filtering is only applied when Gibbs’ oscillations are 
generated.

In order to verify that the monotony indicators are also effective in the case of a large density ratio, an additional 
problem has been solved. It consists in the advection of an interface at constant pressure and velocity with an initial 
density ratio of 103. The corresponding results (not shown) indicate that the interface is correctly propagated and the 
filtering only applies when significant oscillations are generated. Therefore, the monotony indicators enable the simulations 
of flows containing large density ratios as observed around an air–water interface.

4.1.2. Influence of the advected variables governing the interface
In order to assess the influence of the choice of the advected variable in equation (18), two simulations are performed. 

In the first case, χ = γ is used and in the second case, χ = 1/(γ − 1) is used.
The differences between numerical and analytical solutions for velocity and pressure are presented in Figs. 3(a) and 

3(b), respectively. The results in gray are obtained employing γ and those in black using 1/(γ − 1). In the first case, the 
pressure and velocity errors are of the order of 10−3 whereas, in the second case, they are of the order of 10−15. Therefore, 
if the variable γ is advected, pressure oscillations are generated at the interface and propagate. Note that the test case has 
also been solved using the conservative and the non-conservative forms of the advection equation of the mass fraction, both 
leading to pressure oscillations of the order of 10−2. We also considered the advection equation of 1/(γ −1) in conservative 
form to solve this problem and other 1-D test cases. This yields oscillating and incorrect results as observed in other studies 
[1,32,56].

The choice of the advection of 1/(γ −1) was justified by Abgrall [1] by considering an inviscid flow containing two gases 
at same pressure and velocity. Since pressure and velocity are uniform, the total energy conservation equation of system (2)
can be expressed as:

∂ E

∂t
+ u

∂ E

∂x
= 0. (31)

Substituting the total energy E using the perfect gas equation of state (17), the previous equation becomes

∂

∂t

(
p

γ − 1

)
+ u

∂

∂x

(
p

γ − 1

)
= 0,

yielding equation (21), the advection equation for 1/(γ − 1). Therefore, the advection of 1/(γ − 1) is chosen in order to 
propagate a deformable interface between perfect gases.

The derivation of the equation (21) from equation (31) is also valid for a viscous and conductive flow containing two 
fluids at the same pressure, velocity and temperature, as the viscous and conductive terms then vanish. In order to validate 
the algorithm in the case of a viscous flow, an additional test case has been solved using the Navier–Stokes equations 
including viscosity and thermal conductivity of both fluids. It involves the advection of a helium–air interface at constant 
pressure, velocity and temperature. The results are very similar to those obtained using Euler’s equations (not shown).

4.1.3. Influence of the threshold parameter rth
The influence of the threshold parameter rth is now investigated by solving the test case using rth = 2 × 10−6, 2 × 10−5

and 2 × 10−4. The threshold parameter provides the minimum value of sensors rρ and rp , from which the discontinuity 
filtering applies. This parameter can be adjusted according to the flow that is considered.
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Fig. 4. Representation of the γ profile (a) in the entire domain and (b) between x = −1 and x = 0 at t = 4; numerical solutions obtained using the threshold 
values 2 × 10−6, 2 × 10−5 and 2 × 10−4; analytical solution.

The profile of γ obtained at t = 4 is presented between x = −1 and x = 1 in Fig. 4(a) and between −1 and 0 in Fig. 4(b). 
The solutions obtained for rth = 2 ×10−4, 2 ×10−5 and 2 ×10−6 are presented in dash–dot, in black and in gray, respectively. 
Very weak oscillations are observed using the lowest threshold, whereas significant Gibbs’ oscillations appear around the 
interface using the highest threshold. A numerical solution with a sharp discontinuity and weak oscillations is obtained 
using the intermediate value rth = 2 × 10−5. Therefore, this value is used in what follows.

4.2. Inviscid gas–gas shock-tube

This test case concerns a shock-tube containing two inviscid gases [2]. The interest here is to simulate both a shock wave 
and an interface within the same flow. The conditions at t = 0 are:

(ρ, u, p, γ ) =
{

(1,0,500,1.4), if x ≤ 0.5 ,

(1,0,0.2,1.6), if x > 0.5 .

The density and the velocity are uniform. The discontinuities in the pressure and γ profiles result in the formation of 
a shock wave and an interface. The computational domain is composed of 800 cells from x = 0 to x = 1. The solutions 
are calculated up to time t = 0.01 using a time step �t = 5 × 10−5, yielding a Courant–Friedrich–Lewy number C F L =
c�t/�x = 1.06 where c = √

γ p/ρ = 26.5 is the maximum non-dimensional speed of sound of the flow at t = 0.
The numerical and analytical results obtained at t = 0.01 for density, velocity, pressure and γ are shown in Fig. 5. The 

numerical and the analytical results are in black and in gray dashes, respectively. Two discontinuities appear in the density 
profile in Fig. 5(a): an interface and a shock wave, indicated by the letters I and S, respectively. The interface observed at 
x = 0.64, and the shock wave at x = 0.7 travel in the downstream direction. Also, a rarefaction wave propagating in the 
upstream direction is observed in the density profile between x = 0.21 and x = 0.39, indicated by the letter R. The velocity 
and the pressure profiles in Figs. 5(b) and 5(c) only show the rarefaction wave and the shock wave. The maximum velocity 
is located between these two waves reaching u = 13.25. Finally, only the interface is visible in the γ profile in Fig. 5(d). 
Indeed, the heat capacity ratio is constant in each fluid and discontinuous at the interface. Initially, the shock wave and the 
interface are both located at x = 0.5. At the final time, the interface is upstream of the shock wave. Therefore, the interface 
is advected at a lower speed than the shock wave. This is due to the fact that the speed behind a shock is smaller than the 
shock speed.

The numerical results are in very good agreement with the analytical solutions and no significant oscillations are found 
around the discontinuities. All the singularities are accurately propagated and the shock wave is discretized by only five 
mesh points. However, the density discontinuity is slightly damped on the right-hand side of the interface because of the 
interaction of the shock wave with the interface at the very beginning of the simulation.

In Fig. 6, the intensities of the discontinuity filtering σ df
p and σ df

ρ obtained at t = 0.01 are presented. Both intensities 
are null everywhere except around the shock wave, including around the rarefaction wave and the interface. The intensity 
σ

df
p estimated from the pressure is approximately equal to one over twelve mesh points from x = 0.67 to x = 0.69. The 

intensity σ df
ρ is not null from x = 0.67 to x = 0.68. This indicates that some oscillations remain around the shock wave on 

the density and the pressure. In addition, since the intensity of the discontinuity filtering σ df is given by the maximum of 
σ

df
p and σ df

ρ , σ df is identical to σ df
p at this time.

In Fig. 7, the density obtained at t = 0.01 using five meshes containing 800, 5 × 103, 104, 5 × 104 and 105 cells are 
represented. The density profiles are zoomed in around the interface, and are compared with the analytical solution. The 
numerical solutions are in agreement with the analytical one, indicating that the interface is accurately propagated for all 
grids. A sharper interface is obtained using a finer mesh, as awaited. In order to assess the convergence of the results, the 



M. Capuano et al. / Journal of Computational Physics 361 (2018) 56–81 67
Fig. 5. Inviscid gas–gas shock-tube. Results for (a) density, (b) velocity, (c) pressure and (d) γ at t = 0.01; numerical and analytical solutions, 
mesh points; the letters R, I and S indicate the rarefaction wave, the interface and the shock wave, respectively.

Fig. 6. Inviscid gas–gas shock-tube. Solutions at t = 0.01 for the intensities of the discontinuity filtering σρ
df and σ

df
p ; mesh points.

Fig. 7. Inviscid gas–gas shock-tube. Results for the density zoomed in around the interface and computed at t = 0.01 on meshes containing 800, 
5 × 103, 104, 5 × 104 and 105 cells; analytical solution.
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Fig. 8. Inviscid gas–gas shock-tube. Norm of the error on (a) the density, (b) the velocity and (c) the pressure as a function of �x, the dash line indicates a 
variation proportional to �x.

norm of the errors is calculated for density, pressure and velocity, and shown in Fig. 8 as a function of mesh spacing �x. It 
is defined, at node i, by

‖L‖2 =
√

1

nx

∑
i

(Le,i − Ln,i)
2,

where Le and Ln are the exact and numerical solutions, respectively, and nx is the number of mesh points. As expected, 
the error decreases when the grid is refined. Unlike the results of Gallouët et al. [20], the same convergence rate is found 
for the three variables. More precisely, as indicated by the line represented in black dashes and also by the computation 
of the convergence rate, the error is proportional to �x. This is consistent with the order of the dispersion error of the 
discontinuity capturing filtering [9].

4.3. Viscous helium–air shock-tube

The test case concerns a shock-tube containing helium in the left half of the domain and air in the right half of the 
domain [1]. It is solved using either the Euler equations or the Navier–Stokes equations. In the second case, the viscosity 
and the thermal conductivity of both fluids are estimated using empirical relations given in Appendix A. The conditions at 
t = 0 are:

(ρ, u, p, γ ) =
{

(14.54903 kg.m−3,0,194.3 × 105 Pa,1.67), if x ≤ 0.5 m

(1.16355 kg.m−3,0,1 × 105 Pa,1.4), if x > 0.5 m

Initially, the velocity is zero everywhere. The shock wave and the helium–air interface are superimposed at the centre of 
the domain. The computational domain is discretized into 800 cells, and ranges from x = 0 to x = 1 m. The solutions are 
calculated up to t = 2 × 10−4 s using a CFL number che�t/�x = 0.8, where the speed of sound in helium is equal to 
che = √

γ p/ρ = 1493.4 m.s−1, which is the maximum speed of sound of the flow at t = 0.
The results obtained at final time for density, velocity, pressure, and γ are presented in Fig. 9. The solutions obtained 

using the Euler equations and the Navier–Stokes equations are depicted in gray and black, respectively. The analytical so-
lutions for the inviscid flow are given by black dashed lines. Three singularities appear on the density profile in Fig. 9(a): 
a rarefaction wave between x = 0.2 m and x = 0.58 m, an interface at x = 0.78 m and a shock wave at x = 0.85 m. The 
velocity and the pressure profiles, in Figs. 9(b) and 9(c), only show two singularities which are the rarefaction wave and 
the shock wave. Finally, on the profile of γ in Fig. 9(d), only the interface is observed. For both viscous and inviscid flows, 
a peak is observed on velocity and pressure immediately upstream of the rarefaction wave, and also on the density profile 
downstream of the interface. Small oscillations remain on the γ profile downstream of the interface. However, using both 
Euler and Navier–Stokes equations, all the discontinuities are propagated accurately, and remain sharp.

5. 2D simulations

Two flows that have been studied experimentally previously, involving a plane shock wave and an interface between two 
perfect gases, are considered in this section. They are simulated by solving the two-dimensional Navier–Stokes equations 
(2) combined with the equations governing the interface advection (21) and the perfect gas equation of state (17).

5.1. Richtmyer–Meshkov instability

5.1.1. Initial configuration
The first problem is Richtmyer–Meshkov instability (RMI) developing at the interface between two gases. The instability 

is formed after the passage of a shock wave through a perturbed interface between two fluids with different densities [13]. 
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Fig. 9. Viscous helium–air shock-tube. Results for (a) density, (b) velocity, (c) pressure and (d) γ at t = 2 × 10−4 s; solutions obtained using the Euler 
and the Navier–Stokes equations; analytical solutions. The black squares indicate the zones where the solutions are zoomed in.

Fig. 10. Initial configuration for the study of Richtmyer–Meshkov instability [30].

In the present work, the RMI grows between air and sulphur hexafluoride (SF6), as in the experiments of Jacobs and 
Krivets [30], that were performed in a vertical shock tube at ambient temperature and pressure. The shock tube of square 
cross section, was shaken horizontally in order to create a sinusoidal interface without the use of a solid membrane. Then, 
a plane shock wave was generated in the air and impacted the perturbed interface.

The initial configuration, corresponding to the experimental set up [30], is drawn in Fig. 10. A shock wave with a Mach 
number of M = 1.29 is generated in air at x = xs . The air–SF6 interface is initially located at x0 and the distance between xs

and x0 is equal to 2 cm. The interface is perturbed using a cosine profile [27,61]. Thus, its initial position xint is expressed 
as:

xint = x0 + a × cos

(
2π

λ
y

)
,

where a = 2.9 mm is the perturbation amplitude and λ = 59 mm is the cosine wavelength. Experimentally, the distance 
between the two walls of the shock tube is larger than the perturbation wavelength λ. Consequently, multiple instabilities 
develop on the interface. In the simulation, the upper and lower boundaries of the domain are spaced by the distance 
L = λ, and periodic conditions are imposed on these two boundaries. Therefore, only one wavelength is simulated. Radiation 
conditions are imposed at the upstream and downstream boundaries [60]. The initial conditions for density, axial velocity, 
pressure and γ are:
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Table 1
Number of grid cells nx and ny contained in the meshes 
ny64, ny128, ny256 and ny512 in the x and y directions.

nx ny Number of cells

ny64 1023 64 65 × 103

ny128 2046 128 262 × 103

ny256 4092 256 1 × 106

ny512 8186 512 4.2 × 106

(ρ, ux, p, γ ) =

⎧⎪⎨
⎪⎩

(2.2997 kg.m−3,136 m.s−1,179750 Pa,1.27) for x ≤ xs

(1.4933 kg.m−3,0,101325 Pa,1.27) for xs < x ≤ xint

(6.0156 kg.m−3,0,101325 Pa,1.0984) for x > xint

The air density of 1.4933 kg.m−3 is higher than the density provided by the ideal gas law at temperature T = 296 K and 
pressure p = 101325 Pa yielding ρ = 1.194 kg.m−3. Indeed, in the experiments the air was mixed with 25% of gaseous 
acetone in order to allow the flow to be visualized when lighted up by a laser sheet. Therefore, the molar mass of the 
air–acetone mixture Maa is estimated from:

Maa = 0.25Macetone + 0.75Mair = 36.27 g.mol−1,

where the molar mass of air Mair � 29 g.mol−1 and the molar mass of acetone Macetone = 58.08 g.mol−1. The heat capacity 
ratio of the air–acetone mixture γaa = 1.27 and the temperature of the experiment have been communicated by Jacobs and 
Krivets [31]. The densities of the air–acetone mixture ρaa and of the SF6 ρS F 6 ahead of the shock are obtained using the 
ideal gas law, such as:

ρaa = p

T

Maa

Ru
= 1.4933 kg.m−3 and ρS F 6 = p

T

M S F 6

Ru
= 6.0156 kg.m−3,

where M S F 6 = 146.06 g.mol−1 is the molar mass of SF6 and Ru = 3.14462 J.mol−1.K−1 is the universal gas constant. The 
Atwood number is then given by

A = ρS F 6 − ρaa

ρS F 6 + ρaa
= 0.6023.

In the experiments [30], this is approximately equal to 0.6. Finally, the conditions behind the initial plane shock wave were 
computed from the normal shock relations [5].

In the experiments [30], the initial thickness of the interface between air and SF6 is about 5 mm. This thickness is due 
to mass diffusion between the two gases. In the simulation, the interface is initially specified by a hyperbolic tangent profile 
centred on the interface position xint [61]. The thickness δint

99 = 5 mm is defined as the distance between the positions where 
the volume fraction is equal to 0.01 and 0.99. Therefore, the volume fractions of the air–acetone mixture φaa and of the SF6 
φS F 6 are initially provided by:⎧⎪⎨

⎪⎩
φaa = 1

2

[
1 − tanh

(
x − xint

δth

)]
,

φS F 6 = 1 − φaa ,

(32)

where δth is equal to:

δth = δint
99 /

(
−2 tanh−1

(
0.01 − 0.5

0.5

))
.

Four uniform grids, containing 64, 128, 256 and 512 mesh cells in the y-direction, and denoted by ny64, ny128, ny256 and 
ny512, respectively, are used. The number of cells in the x-direction and y-direction, are given in Table 1. The time step �t
is defined by the C F L = caa

�t
�x = 0.5 where caa = 293.5 m.s−1 is the speed of sound in the air–acetone mixture. In order 

to consider the same shock using the four grids, the shock is initially defined by imposing the hyperbolic tangent profile 
of equation (32) on density, axial velocity and pressure. The shock thickness is arbitrary set to δsh

99 = 3.7 mm in order to 
discretize the shock wave by 4 mesh cells on the coarsest grid ny64, and consequently by 8�x, 16�x and 32�x using the 
grids ny128, ny256 and ny512, respectively.

5.1.2. Results
The density fields obtained at t = 1.76, 3.06, 4.96 and 5.86 ms using grids ny128, ny256 and ny512 are compared with 

the experimental visualisations of Jacobs and Krivets [30] in Fig. 11. The time t = 0 corresponds to the moment when there 
is the first contact between the shock and the interface. The SF6 density is in black and the density of the air–acetone 
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Fig. 11. Experimental visualisations of Jacobs and Krivets [30] (first column) at (a) t = 1.76 ms, (b) t = 3.06 ms, (c) t = 4.96 ms and (d) t = 5.86 ms; and 
density fields obtained using the meshes ny128 (second column), ny256 (third column) and ny512 (fourth column). The air–acetone mixture is in gray and 
the SF6 in black.

mixture is in gray. For the comparisons, the density fields are rotated 90◦ clockwise. Note that the discontinuity-capturing 
methodology is not used here for two reasons. Firstly, it is not necessary because the shock is weak and the interface is 
thick. Secondly, slight instabilities are generated on the interface when the methodology is employed in this case. Similar 
instabilities have been observed in other computations from the literature [42,61], but their origin is unclear.

At time t = 1.76 ms in Fig. 11(a), the RMI begins to develop. The air–acetone mixture is accelerated more rapidly than 
the SF6, leading to the formation of a spike of SF6 penetrating the air–acetone mixture. On the left- and right-hand side 
of the spike spirals of SF6 are formed in the simulations using ny256 and ny512. At the second time, in Fig. 11(b), the 
instability grows into a mushroom shape. Two spirals are visible in the experiment on the left- and right-hand side of the 
mushroom. In the simulations, they are disrupted leading to smaller structures which are better defined using the finest 
mesh. In Figs. 11(c) and 11(d), the two fluids are mixed at each side of the mushroom stem and small perturbations appear 
on the stem. The simulation performed on the finest mesh allows us to better distinguish the small structures and provides 
instability shapes which are similar to those obtained experimentally.

As depicted in Fig. 12, the amplitude a of the RMI is defined by half the distance xt −xb between the mushroom’s summit 
and its base. The width of the stem ws is measured at x = (xb + xt)/2. The width of the mushroom’s head wh is given by 
the maximum width of the instability between xt and x = xt − 0.75a. The temporal variations of the RMI amplitude are 
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Fig. 12. Representation of the RMI amplitude a, the width of the mushroom’s stem ws and the width of the mushroom’s head wh .

Fig. 13. Temporal variations of the RMI amplitude a normalized by the width of the computational domain L; solutions obtained using the meshes 
ny64, ny128, ny256 and ny512; ◦ experimental data [30].

Fig. 14. Temporal variations of the width of (a) the mushroom’s stem ws and of (b) the mushroom’s head wh , normalized by the width of the computational 
domain L; solutions obtained using the meshes ny64, ny128, ny256 and ny512.

presented in Fig. 13. The results obtained using the four meshes ny64, ny128, ny256 and ny512 are superimposed, indicating 
that the instability amplitude is not sensitive to the grid refinement. They are also in good agreement with the experimental 
data in black circles [30]. After t = 3 ms, the amplitude is slightly lower in the simulations than in the experiments. This 
may be due to differences in initial conditions, or in fluid properties. In the experiments for instance, the initial interface 
perturbation is not perfectly sinusoidal.

The temporal variations of the width of the mushroom’s stem are shown in Fig. 14(a). As the instability grows, the 
width of the stem decreases. The variations of the width of the mushroom’s head are also displayed in Fig. 14(b). From 
t = 0 to 1 ms, the width decreases and then increases after t = 1 ms. At early times, the sinusoidal interface remains 
sinusoidal with an increasing amplitude. Therefore, the spike becomes longer and thinner and its width decreases. At later 
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Fig. 15. Initial experimental configuration for the study of a cylindrical helium or R22 bubble, hit by a shock wave at M = 1.22 [24].

times, a mushroom head appears which becomes larger in time. Therefore, the width wh increases. For both widths ws

and wh , significant differences are observed between the results computed on the grids ny64, ny128 and ny256. However, the 
solutions estimated using ny256 and ny512 are very similar. Consequently, the simulation performed using ny256 appears 
to be converged with respect to the grid.

5.2. Cylindrical bubble hit by a shock wave

The second two-dimensional problem concerns a shock wave travelling through air, and impacting on a cylindrical bubble 
of helium or chlorodifluoromethane (R22), studied previously experimentally by Haas and Sturtevant [24]. Similar experi-
ments with spherical bubbles have been conducted by Layes et al. [43]. They have been simulated including viscous effects 
by Giordano and Burtschell [21]. The experiments of Haas and Sturtevant [24] were performed using a cylindrical bubble. 
Thus, the 2-D simulation corresponds with this experimental configuration. Two cases leading to strongly different bub-
ble shapes are considered: a shock wave travelling from heavy gas (air) to a light gas (helium bubble), and a shock wave 
propagating from light gas (air) to heavy gas (R22 bubble).

5.2.1. Initial configuration
The initial configuration depicted in Fig. 15 is considered. The domain width is L = 8.9 cm and the bubble of diameter 

D = 5 cm is centred along the y-direction. The shock wave is initially generated in air at the position xs , and is propagated 
from right to left with a Mach number M = 1.22. The initial conditions for density, axial velocity, pressure and γ are:

(ρ, ux, p, γ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.66 kg.m−3,−114 m.s−1,159080.98 Pa,1.4) for x > xs

(1.2062 kg.m−3,0,101325 Pa,1.4) in air, for x ≤ xs

(0.2204 kg.m−3,0,101325 Pa,1.6451) inside the helium bubble

(3.5965 kg.m−3,0,101325 Pa,1.1847) inside the R22 bubble

In the experiments, the cylindrical bubble is shaped using a solid membrane. Because of the membrane’s permeability, the 
helium in the bubble is initially mixed with 28% of mass concentration of air. Therefore, the mass fractions of helium and air 
in the bubble are equal to Yh = 0.72 and Ya = 0.28, respectively. Consequently, the molar mass of this helium–air mixture 
Mha is (see equation (20))

Mha =
(

0.28

Mh
+ 0.72

Mair

)−1

= 5.3 g.mol−1 ,

where the molar mass of air is Mair � 29 g.mol−1 and the molar mass of helium is Mh = 4.0026 g.mol−1. The heat capacities 
at constant pressure and volume of the helium–air mixture, cp,ha and cv,ha , respectively, are given by{

cp,ha = Yhcp,h + Yacp,air = 4026 J.kg−1.K−1 ,

cv,ha = Yhcv,h + Yacv,air = 2447.3 J.kg−1.K−1 ,

where the heat capacities of helium are cp,h = 5201 J.kg−1.K−1 and cv,h = 3120 J.kg−1.K−1 and, the heat capacities of air 
are cp,air = 1004.5 J.kg−1.K−1 and cv,air = 717.5 J.kg−1.K−1. Thus, the ratio of heat capacity of the helium–air mixture γha

is

γha = cp,ha

cv,ha
= 1.6451 .

The densities ρha , ρR22 and ρair of the helium–air mixture, of the R22 and of the air ahead of the shock, respectively, are 
provided by the ideal gas law:
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Table 2
Number of grid cells nx and ny in the x and y directions respec-
tively, contained in the 4 meshes R0100, R0200, R0400 and R0800.

nx ny Number of cells

R0100 2000 356 712 × 103

R0200 4000 712 2.85 × 106

R0400 8000 1424 11.4 × 106

R0800 16000 2848 23 × 106

Fig. 16. Helium bubble: numerical Schlieren pictures (lower-half pictures) and experimental shadow-photographs (upper-half pictures) [24] obtained at 
(a) t = 32 μs, (b) t = 82 μs, (c) t = 102 μs, (d) t = 245 μs, (e) t = 427 μs and (f) t = 674 μs.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρha = p

T

Mha

Ru
= 0.2204 kg.m−3 ,

ρR22 = p

T

MR22

Ru
= 3.5965 kg.m−3 ,

ρair = p

T

Mair

Ru
= 1.2062 kg.m−3 ,

where MR22 = 86.47 g.mol−1 is the molar mass of R22 and, T = 293 K and p = 101325 Pa are the temperature and pressure 
chosen as the initial conditions ahead of the shock wave.

Periodic boundary conditions are used to model the upper and lower shock-tube walls which are spaced by 89 mm. 
Radiation conditions are imposed at the upstream and downstream boundaries of the shock-tube [60]. Four uniform grids, 
containing 100, 200, 400 and 800 mesh cells in the initial bubble radius R0, denoted by R0100, R0200, R0400 and R0800, 
respectively, are considered. The number of mesh cells in the x and y directions, are collected in Table 2. The numerical 
time step is related to the C F L number, which is, based on the highest speed of sound of the flow cmax , given by C F L =
cmax�t/�x = 0.9. For the helium bubble, the speed of sound in the helium–air mixture cha = 869 m.s−1 is the maximum 
speed of sound. In the case of the R22 bubble, the speed of sound in air cair = 366.3 m.s−1 is employed to determine the 
time step �t . Both cases are simulated using the discontinuity-capturing methodology introduced in Section 3.4.

In order to consider the same initial conditions for the four meshes, the thicknesses of the interface and the shock 
wave are fixed using the hyperbolic tangent profile of equation (32). The thicknesses are arbitrary set to 3�x on the grid 
R0100. Thus, they are equal to 6�x, 12�x and 24�x on the meshes R0200, R0400 and R0800, respectively. The hyperbolic 
tangent profile is used to define the interface on the viscosities, conductivities, density and 1/(γ − 1), and the shock wave 
on density, axial velocity and pressure. Note that simulations have also been performed for a very thin interface and shock 
wave, which resulted in solutions similar to those obtained for the present thick interfaces.

5.2.2. Helium bubble
The solutions obtained at t = 32, 82, 102, 245, 427 and 674 μs for the helium bubble using the mesh R0200 are shown in 

Fig. 16. The time t = 0 corresponds to the moment of the first contact between the shock wave and the bubble interface. The 
numerical results are presented in the lower-half pictures and are compared with the experimental shadow-photographs in 
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Fig. 17. Helium bubble: numerical Schlieren pictures obtained at time (a) t = 32 μs and (b) t = 674 μs using the meshes R0100 (first column), R0200
(second column) and R0400 (third column).

Fig. 18. Helium bubble: temporal variations of the positions of the (a) upstream and (b) downstream sides of the interface obtained using R0100, 
R0200 and R0400. These positions are indicated by x in the upper-right figures.

the upper-half pictures [24]. The numerical solutions represent artificial Schlieren fields, defined as the norm of the density 
gradient |∇ρ| [21,49,57]. The dashed circle indicates the initial position of the bubble.

In Fig. 16(a), the upstream side of the interface is flattened due to the impact of the shock wave. Three pressure waves 
appear: a reflected wave propagating through air in the upstream direction, a refracted wave travelling downstream inside 
the bubble, and the incident shock wave propagating downstream, above and below the bubble. In Fig. 16(b), the bubble 
has moved slightly downstream. As the speed of sound is higher in helium than in air, the refracted wave is out of the 
bubble whereas the shock wave is still located above and below the bubble. Finally, in Figs. 16(d–f), the upstream side of 
the interface penetrates the bubble, leading to a bubble of kidney shape which then deforms. The overall behaviour has 
been analysed in prior work in terms of baroclinic instability, reviewed in [50]. The pressure waves are not exactly at the 
same positions on the numerical and experimental pictures. However, the bubble deformations are consistent at all times.

The Schlieren pictures obtained in the simulations using the three meshes R0100, R0200 and R0400 at time t = 32 and 
674 μs are presented in Fig. 17. At the first time in Fig. 17(a), no significant difference is observed between the solutions. The 
black lines indicative of strong density gradients are thinner on the finest mesh than on the two other meshes. Therefore, 
the discontinuities are thinner as the mesh is finer. At the second time in Fig. 17(b), the shapes of the bubble are similar 
but the small structures developing on the interface are better resolved on the meshes R0200 and R0400.

The temporal variations of the positions of the upstream and downstream sides of the interface xui and xdi , respectively, 
are presented in Figs. 18(a) and 18(b). These positions are estimated along the x-direction on the centreline of the domain, 
and correspond to the location where the volume fraction is equal to 0.5. The solutions in gray, gray dashed and black lines 
are obtained using the grids R0100, R0200 and R0400, respectively. In Fig. 18(a), the position xui decreases monotonically 
during the whole simulation whereas in Fig. 18(b), the location xdi is constant up to t = 54 μs and then decreases. These 
results are due to the fact that the shock wave hits the upstream side of the interface at t = 0, and the downstream side of 
the interface starts to move downstream after its interaction with the refracted wave propagating in the bubble at t = 54 μs. 
In above all, no significant differences are observed between the solutions obtained using the different grids. Therefore, the 
present results appear to be converged with respect to the grid.



76 M. Capuano et al. / Journal of Computational Physics 361 (2018) 56–81
Table 3
Helium bubble: mean velocities of the incident shock us , the refracted wave ur , the transmitted wave ut , 
and the upstream and downstream sides of the interface uui and udi , obtained using R0400.

us (m.s−1) ur (m.s−1) ut (m.s−1) uui (m.s−1) udi (m.s−1)

Experiment [24] 410 ± 41 900 ± 90 393 ± 39.3 170 ± 17 145 ± 14.5
Simulation 417 948.7 377 181.7 139.5

Fig. 19. Helium bubble: temporal variations of the mass mha: solutions obtained using R0100, R0200 and R0400.

The mean velocities of the different pressure waves obtained using R0400 are compared with experimental results in 
Table 3. They are estimated along the x-direction on the centreline of the domain. The velocity us of the incident shock 
is computed from the start of the simulation at time t = −180 μs, up to shock-bubble impact at t = 0. The velocity ur of 
the refracted wave is estimated during its propagation inside the bubble. The transmitted wave propagates downstream of 
the bubble in air at speed ut . Finally, the velocities of motion of the upstream and downstream sides of the interface are 
denoted by uui and udi , respectively. The numerical results are roughly comparable to the measurements. The speed of the 
refracted wave in the simulation is 948 m.s−1, which is higher than in the experiment but similar to value of 945 m.s−1

provided by the simulation of Coralic and Colonius [15]. The difference in speed of the refracted waves in the experiment 
and the simulation can be seen in Fig. 16(a), where the waves on the upper-half and the lower-half pictures do not exactly 
coincide. Since the properties of the helium–air mixture significantly affect the wave propagation in the bubble, it is possible 
that the mass concentration of air contained inside the bubble is higher than was estimated experimentally.

In order to verify that the numerical methods conserve mass, the mass of the helium–air mixture mha contained inside 
the bubble is estimated by integrating the density over the surface of the bubble S as

mha =
∫∫

S

ρ dxdy.

In practice, since the bubble surface is unknown, the mass of the bubble is calculated from the product of the mass fraction 
of the helium–air mixture Yha with density. This product is integrated over the computational domain �, leading to

mha =
∫∫
�

Yhaρ dxdy. (33)

The temporal variations of the mass mha obtained using the grids R0100, R0200 and R0400 are presented in Fig. 19. The 
bubble mass is nearly constant before the contact between the shock and the interface at t = 0. It decreases slightly just 
afterwards, at a rate that is weaker using a finer mesh. At later times, the mass monotonically increases using the three 
grids. It should be kept in mind that during this simulation the bubble is much deformed physically. In spite of this, the 
maximal variation in the bubble mass remains small, at most 0.5%. Note that similar results were obtained when starting 
with a thinner initial interface.

The present results indicate that the variations of the bubble mass here depend appreciably neither on the grid nor on 
the initial interface thickness. Therefore, the small error in mass can be attributed to the use of the quantity 1/(γ − 1)

as the advected variable, which has been motivated in Section 4. In order to reduce this error one possibility could be to 
include a dilatational source term in the volume fraction equation as in Beig and Johnsen [7].

5.2.3. R22 bubble
The results obtained at t = 55, 115, 135, 187, 247 and 417 μs for the R22 bubble using the mesh R0200 are shown in 

Fig. 20. They are compared with experimental shadow-photographs. In Figs. 20(a–b), the refracted wave travelling inside the 
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Fig. 20. R22 bubble: numerical Schlieren pictures (lower-half pictures) and experimental shadow-photographs (upper-half pictures) [24] obtained at (a) t =
55 μs, (b) t = 115 μs, (c) t = 135 μs, (d) t = 187 μs, (e) t = 247 μs and (f) t = 417 μs.

Fig. 21. R22 bubble: numerical Schlieren pictures obtained at (a) t = 55 μs and (b) t = 417 μs using the meshes R0100 (first column), R0200 (second 
column), R0400 (third column) and R0800 (fourth column).

bubble is seen to propagate more slowly than the incident shock in air. Consequently, in Fig. 20(c), the refracted wave is still 
in the bubble, while the incident shock is already downstream of the bubble. At later times, in Figs. 20(e–f), the refracted 
wave is out of the bubble, generating the transmitted wave. In addition, the bubble has slightly moved downstream, and 
the downstream side of the interface penetrates into the bubble resulting in a spike on the bubble axis. The interfacial layer 
appears to roll up, as can be expected from baroclinically-generated vorticity in the interfacial layer [50]. This instability 
is clearly observed in the simulation but the experimental images appear unclear at this stage. It has been noticed also 
in the numerical work of Hejazialhosseini et al. [25], So et al. [57] and Daude et al. [17]. This may appear blurred on the 
shadow-photographs because of the view along the spanwise direction of the cylindrical bubble, which is 8.8 cm long. 
Furthermore, due to the sensitivity of this behaviour to the initial interface thickness [57], its development may be affected 
by the solid membrane.

The numerical Schlieren pictures obtained at t = 55 and 417 μs using R0100, R0200, R0400 and R0800 are presented 
in Fig. 21. At the first time in Fig. 21(a), the bubble shape is the same in the four cases. On the finest mesh, the density 
gradients are represented by thinner black lines than on the coarsest grid. Therefore, the density discontinuities at the 
interface and the shock wave are sharper on the mesh R0800 than on the three others. At the second time, in Fig. 21(b), the 
acoustic waves inside and outside the bubble, and the small vortices developing on the bubble interface are better resolved 
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Fig. 22. R22 bubble: temporal variations of the positions of the (a) upstream and (b) downstream sides of the interface obtained using R0100, 
R0200, R0400 and R0800. These positions are indicated by x in the upper-right figures.

Table 4
R22 bubble: mean velocities of the incident shock us , the refracted wave ur , the transmitted wave ut , 
and the upstream and downstream sides of the interface uui and udi , obtained using R0400.

us (m.s−1) ur (m.s−1) ut (m.s−1) uui (m.s−1) udi (m.s−1)

Experiment [24] 410 ± 41 240 ± 24 540 ± 54 73 ± 11 78 ± 8
Simulation 417 250.5 524 73.7 79.4

Fig. 23. R22 bubble: temporal variations of mass mR22: solutions obtained using R0100, R0200, R0400 and R0800.

using the finest grid. Furthermore, the spike generated on the downstream side of the interface does not appear using the 
mesh R0100.

As for the helium bubble, the temporal variations of the positions of the upstream and downstream sides of the interface 
are presented in Figs. 22(a) and 22(b). The solutions are obtained using the grids R0100, R0200, R0400 and R0800. In 
Fig. 22(a), the position xui decreases monotonically and no differences are observed between the four solutions. In Fig. 22(b) 
the location xdi is constant up to t = 200 μs and then decreases. After t = 200 μs, the results obtained using the grids R0100, 
R0200 and R0400 differ but those obtained using R0400 and R0800 are very similar. The differences can be attributed to the 
formation of a spike on the bubble axis at t = 200 μs when the refracted wave hits the downstream side of the interface. 
This spike is indeed longer on the finest grids than on the coarsest. However, a number of 400 mesh cells in the bubble 
radius allows the spike length to be correctly predicted.

The mean velocities of the shock wave, the refracted wave, the transmitted wave, and the mean velocities of the upstream 
and downstream sides of the interface obtained using R0400 are given in Table 4. They are similar to the experimental 
results, also given in Table 4. Thus, the interface deformations and the propagation of the pressure waves inside and outside 
the bubble are both very well simulated.

In the same way as for the helium bubble, the mass of the R22 bubble mR22 is computed. The temporal variations of 
mR22 obtained using the three meshes are presented in Fig. 23. The variations are negligible before the shock/interface 
contact, from t = −180 μs up to t = 0. Then, when the shock hits the interface, the mass increases slightly. Subsequently, 
the mass monotonically decreases for the three grids yielding a maximal error of 0.025% compared to the initial bubble 
mass. Therefore, the mass variations are of small magnitude despite the large deformation of the bubble.
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Table 5
Constants of Sutherland’s equation (34) used to calculate the shear 
viscosity of air, SF6, helium and R22.

μ(T0) (kg.m−1.s−1) T0 (K) S (K)

Air 1.716 × 10−5 273 130
SF6 1.4 × 10−5 273 227
He 1.87 × 10−5 273 65
R22 1.289 × 10−5 300.5 310

6. Conclusion

A computational method is proposed here for the simulation of compressible viscous gas–gas flows. It consists in solving 
the single-fluid formulation of the Navier–Stokes equations associated with an advection equation governing the interface. 
These equations are solved using explicit high-order centred finite difference schemes. A sixth-order selective filter is applied 
to remove grid-to-grid oscillations and a discontinuity-capturing methodology, including shock-sensors and an adaptive 
spatial filter enabling the capture of various discontinuities such as, shock waves and deformable interfaces is employed. 
The choice of the advected variable governing the interface displacements appears to be very important to reduce numerical 
errors.

It is shown that the present algorithm is suitable for the simulations of interactions between shock waves and interfaces 
including viscous effects and thermal conduction. These interactions lead to the generation of various pressure waves such 
as transmitted and refracted waves. They are all captured using the same discontinuity-capturing methodology which re-
moves Gibbs’ oscillations while conserving discontinuity sharpness. Slight differences are noticed between numerical and 
experimental results. They are probably caused by differences in initial conditions between simulation and experiments. 
Furthermore, the deformation of the interface is well predicted, and the high-order schemes allow us to obtain converged 
results using relatively coarse meshes.
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Appendix A. Viscosity and thermal conductivity calculation

The shear viscosity μ, the bulk viscosity μb and the thermal conductivity λ are estimated using empirical relations, as 
functions of temperature. The shear viscosity is computed from Sutherland’s equation [59],

μ = μ(T0)

(
T0 + S

T + S

)(
T

T0

)(3/2)

, (34)

where T0 is a reference temperature and S is a constant, given in Table 5. These values are taken from Hellemans et al. [26]
and Johnston [35] for air, from references [64] for SF6, [3,38] for helium and [36,39] for R22.

Stokes’ hypothesis, consisting in neglecting the bulk viscosity μb with respect to μ, is true for dilute monoatomic gases. 
Therefore, the helium bulk viscosity is equal to zero. However, this is not the case for most other gases (and liquids) [23]. 
Bulk viscosity has an effect on the damping and the thickness of shock waves [19]. The bulk viscosities of air and SF6 
are estimated using empirical relations. The air bulk viscosity is computed from the relation proposed by Rossing [52]
μbair = 0.6μair , where μair is the shear viscosity of air obtained from Sutherland’s equation (34). The thermal evolution of 
the SF6 bulk viscosity [16], is given by

μbS F 6 = 7.54 × 10−5
(

0.2064(γS F 6 − 1)2 exp

(
121

T 1/3
− 339

T 2/3

))
.

Since no information has been found on the bulk viscosity of R22 gas, this has been set to zero.
Similarly, the thermal conductivities of air, SF6, helium and R22 are expressed as functions of temperature. The air 

thermal conductivity λair is determined from the Prandtl number Pr, as

λair = μaircp,air

Pr
(35)

using Pr = 0.7 and cp,air = γaircv,air is the air heat capacity at constant pressure, obtained from the air heat capacity at 
constant volume cv,air = 717.5 J.kg−1.K−1.
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A second-order polynomial approximation issued from experimental measurements [63] is used to compute the thermal 
conductivity of SF6 as

λS F 6 = −7.3447 × 10−8T 2 + 1.2882 × 10−4T − 1.9136 × 10−2 . (36)

The helium thermal conductivity λh is estimated using a third-order polynomial [51]

λh = 1.29 × 10−11T 3 − 7.45 × 10−8T 2 + 3.896 × 10−4T + 3.722 × 10−2. (37)

Finally, the R22 thermal conductivity λR22 is obtained using a linear fit of experimental data [36]. It is expressed as:

λR22 = 6.227 × 10−5T − 7.6001 × 10−3. (38)
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