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Prediction of Sound Propagation in Ducted Potential
Flows Using Green’s Function Discretization
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The sound propagation in ducted mean potential flows is computed by using a Green’s function discretiza-
tion (GFD) technique. Linear combinations of the free-space Green’s functions of the locally uniform convected
Helmholtz problem are analytically differentiated to build shape functions for the derivatives of the acoustic po-
tential. These are used to discretize both the field governing equation and the boundary conditions. The GFD
approach is validated by computing the sound propagation in annular ducts with hard/soft walls and uniform
flow. Acoustic modes of increasing wave number are computed without changing the computational mesh. A good
level of accuracy is ensured up to three points per wavelength. As a first step toward relevant applications, the
propagation in nonconstant annular ducts, with/without wall treatment and with/without flow, is computed. The
numerical solutions compare favorably with the well-known analytical multiscale solutions.

Nomenclature
A, Bi , C = coefficients of wave equation (5)
ai

m , bi = coefficients of a discretized equation at node i
c = sound speed
Fm , Fm = mth discretization coefficient of φ
G = convected Green’s function
G = soft-wall annular duct mode
i = imaginary unit
k = acoustic wave number
M = dimensionless mean flow velocity
Mi = number of nodes in the i th stencil
N = number of fictitious sources (or duct modes)
n̂ = normal unit vector
P , �, � = mean-flow pressure, density, and potential
p, ρ, φ = acoustic pressure, density, and potential
q, σ = circumferential and radial mode orders
r , θ , z = cylindrical coordinates
Z = wall impedance
β = Prandtl–Glauert factor
γ = specific heats ratio
γn = intensity of the nth fictitious source (or mode)

Subscripts

m = mth node influence coefficient
n = nth source (or duct mode)
X , Y , Z = shape functions of space derivatives
∞ = undisturbed flow quantity

Superscripts

I = pseudoinverse matrix element
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i = evaluation at the node i
+ = right-moving propagation
− = left-moving propagation

Introduction

R ECENT trends to increase the bypass ratio of civil transport
turbofans are expected to further increase the fan contribu-

tion to the overall noise. Therefore, inlet geometry optimization,
acoustic lining, and active control have become a serious concern
of aeroengine manufacturers.

The sound transmission in a ducted mean flow is a complex prob-
lem. Some relevant effects of the mean flow on the sound propaga-
tion can be mentioned:

1) A viscous boundary layer modifies the acoustic impedance of
a solid surface. For a boundary-layer thickness much smaller than
the acoustic wavelength, an expression of the wall impedance was
obtained by Tester.1

2) Myers2 showed that, for a mean potential flow with superim-
posed acoustic disturbances, the acoustic boundary condition at an
impedance wall must account for the flow velocity and its space
derivatives.

3) Due to the flow nonuniformity, the sound propagation in a
varying-area duct is described by a wave equation with nonconstant
coefficients. This reduces the possibility of obtaining solutions in
terms of a modal expansion.

4) In turbomachinery configurations, the flow has a nonnegligible
swirling motion. Golubev and Atassi3 showed that an irrotational
swirling flow affects the duct modal behavior: the Doppler frequency
shift enables evanescent spinning modes (especially those opposite
to the swirl) to propagate both upstream and downstream. Moreover,
as further discussed by Golubev and Atassi,4 the presence of a mean
rotational swirling flow causes the acoustic and vorticity modes to
be coupled.

Rienstra’s5 analysis revealed that the modal sound transmission
in a nonswirling mean potential flow in a duct with slowly vary-
ing properties (cross section, flow, wall impedance) has an ap-
proximated multiscale solution. This was tested by Rienstra and
Eversman6 against a finite element solution of the same potential
flow problem for configurations that are representative of high-
bypass turbofan engines. A good agreement was obtained also for
high wave numbers and low circumferential mode orders when scat-
tering into higher radial modes can occur easily.

For hard-wall circular ducts, Rienstra’s analysis was extended by
Cooper and Peake7 to account for a rotational swirl in the mean
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CASALINO, ROGER, AND JACOB 737

flow. The resulting multiscale solution is more complicated than the
irrotational one, because the problem is not self-adjoint.

The multiscale approach, as developed by Rienstra, Cooper, and
Peake, is an essential tool for the design and optimization of a quiet
turbofan lined inlet. However, numerical predictions of sound trans-
mission in ducted flows must still be carried out for generic con-
figurations involving nonslowly varying parameters, generic flows,
and nonaxisymmetric geometries. Again, the multiscale solution
can be used for a preliminary validation of the numerical methods
employed.

In this paper we investigate the feasibility of a low-cost Green’s
function discretization (GFD) prediction of a duct acoustic field by
solving the acoustic potential equation linearized around a potential
mean flow. The GFD scheme is the same used by Di Francescantonio
and Casalino8 for sound propagation in external nonuniform flows.
It consists of using elementary solutions (Green’s functions) of the
locally uniform convected Helmholtz problem as local shape func-
tions tailored to the wave propagation problem. Hard- and soft-wall
annular ducts are considered to assess the GFD code Grefundia.9

Convergence tests are carried out by computing hard- and soft-wall
duct modes of increasing wave number without changing the com-
putational mesh. Good results are obtained for up to three grid points
per acoustic wavelength.

As a primary step toward applications of practical interest, the
sound transmission through an annular duct of varying cross section
is computed for four configurations: 1) hard-wall duct without flow,
2) soft-wall duct without flow, 3) hard-wall duct with flow, and 4)
soft-wall duct with flow. Numerical results are checked against the
analytical multiscale solution.5

Physical Model
Consider a compressible inviscid perfect isentropic irrotational

gas mean flow with superimposed linear harmonic acoustic distur-
bances of angular frequency ω. The flow density ρ̃, pressure p̃, ve-
locity ṽ, and velocity potential φ̃ can be split into mean (stationary)
parts and acoustic perturbations; that is,

ρ̃ = � + ρe−iωt (1)

p̃ = P + pe−iωt (2)

ṽ = c∞M + ∇φe−iωt , with ∇� = c∞M (3)

where M = U/c∞ is the local dimensionless mean flow velocity and
c∞ = (γ p∞/ρ∞)1/2 is the sound speed in the uniform (undisturbed)
mean flow, where pressure, density, and Mach number are p∞, ρ∞,
and M∞, respectively.

Linearization of the flow governing equation yields a relationship
between the acoustic pressure and the acoustic potential, that is,

p = ρ∞c∞(1 − A)1/(γ − 1)

[
ikφ − Mi

∂φ

∂xi

]
(4)

and an equation for the acoustic potential (see, e.g., Refs. 9 and 10),
that is,

(1 − A)
∂2φ

∂x2
i

− Mi M j
∂2φ

∂xi∂x j
+ (i 2k Mi − Bi − MiC)

∂φ

∂xi

+ k(k + iC)φ = 0 (5)

where k = ω/c∞ is the acoustic wave number and the coefficients
A= (γ − 1)(M2 − M2

∞)/2, Bi = 2 M j∂ M j/∂xi , and C = (γ − 1)
∂ M j/x j account for the local nonuniformity of the mean flow, which
has local thermodynamic properties

P = p∞(1 − A)γ/(γ − 1) (6)

� = ρ∞(1 − A)1/(γ − 1) (7)

In Eqs. (4) and (5), use of Einstein’s convention of index summation
has been made.

If the mean flow is uniform (as in a duct of constant cross section),
Eqs. (4) and (5) take the form

p = ρ∞c∞

(
ikφ − Mi

∂φ

∂xi

)
(8)

∂2φ

∂x2
i

− Mi M j
∂2φ

∂xi∂x j
+ i2k Mi

∂φ

∂xi
+ k2φ = 0 (9)

Throughout, Eq. (9) is referred to as the convected Helmholtz
equation.

In this paper we are concerned with the acoustic transmission
through ducts with soft walls. The impedance condition

k∇φ · n̂ + [k + iM · ∇ − i n̂ · (n̂ · ∇M)](p/Z) = 0 (10)

is therefore imposed on the duct surfaces. This condition was ob-
tained by Myers2 for a potential flow bounded by a smoothly curved
surface of acoustic impedance Z and normal unit vector n̂ pointing
into the wall.

Discretization Scheme
The GFD scheme developed by Di Francescantonio and Casalino8

is based on the interpolation formula proposed by Caruthers et al.11

for the Helmholtz equation (∇2 + k2)φ = 0. The formula was first
adapted to a convected wave propagation and was then used to obtain
a discretization scheme for Eq. (5).

Consider a generic domain Dm in which the acoustic potential
φ satisfies the convected Helmholtz equation, and suppose that the
values φm = φ(xm) are given in a certain number M of points xm

inside Dm . We are interested in modeling the potential field φ(x) in
the region Dm by using the given values φm .

Following the work of Caruthers et al.,11 we can assume that the
potential field is produced by an arbitrary distribution of N elemen-
tary sources, each having intensity γn and position xn . Therefore,
let us write

φ(x) =
N∑

n = 1

γn G(x, xn; M) (11)

where G(x, xn; M) is the Green’s function of Eq. (9). Setting
r = |x − xn|, Mr = M · (x − xn)/r , and β = √

(1 − M2), it reads

G(x, xn; M) = exp
[
(ikr/β2)

(−Mr +
√

M2
r + β2

)]
r
√

M2
r + β2

(12)

where the constant has been absorbed by γn . Requiring the satis-
faction of Eq. (11) at each point xm yields a set of M compatibility
conditions:

φm =
N∑

n = 1

γn Gmn, m = 1, M (13)

where Gmn = G(xm, xn; M). By fixing the source positions xn , for
instance, on the surface of a sphere centered in x, Eq. (13) yields a
linear system relating the N unknown γn to the M values φm . Al-
though a unique solution can exist only if N = M , Caruthers et al.11

proposed to use N > M to improve the quality of the reconstruc-
tion. Indeed, among the infinite solutions γn of system (13), we can
choose the one that ensures the values φm with a minimum cancella-
tion inside Dm . This intensity distribution is reasonably expected to
satisfy a condition of minimum variation in the norm L2 (minimum∑

n γ 2
n ), a condition that can be indirectly imposed by computing

the pseudoinverse matrix G I
nm of Gmn . The source intensities are

thus given by

γn =
M∑

m = 1

G I
nmφm, n = 1, N (14)

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Se

pt
em

be
r 

24
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
31

5 



738 CASALINO, ROGER, AND JACOB

Substituting Eq. (14) into Eq. (11) and commuting the sum operators
yields

φ(x) =
M∑

m = 1

Fm(x)φm (15)

where the functions

Fm(x) =
N∑

n = 1

G I
nm G(x, xn; M), m = 1, M (16)

play the role of shape functions tailored to the acoustic problem.
Equation (15) is the interpolation formula proposed by Caruthers
et al.11 with a minor modification to account for the convective
effects.

Consider a discretized domain and let xi
m denote one of the Mi

nodes constituting the stencil of the node xi . Suppose that the node
i itself is considered to be within the Mi nodes. Two strategies
are now presented, which allow formulation of a discretization
scheme based on Eq. (15). The first can be derived from the work of
Caruthers et al.11; the second was proposed by Di Francescantonio
and Casalino.8

Caruthers et al. Scheme
Interpolation formula (15) can be regarded as a compatibility

condition between the acoustic potential at the Mi nodes of the
stencil i . Because the verification of Eq. (9) is ensured by the fact
that shape functions (16) are combinations of elementary solutions
of the same governing equation, a solution of Eq. (9) can be obtained
by only requiring the verification of some boundary conditions. This
is the approach used by Caruthers et al.11 that leads to the following
discretization scheme:

Mi∑
m = 1

ai
mφi

m = 0, with ai
m =

{
1 if xi

m ≡ xi

−Fi
m otherwise

(17)

where the influence coefficients of Fi
m = Fm(x)i must be computed

by excluding the node i from its stencil.
Numerical results11,12 show that this GFD scheme is able to re-

construct an acoustic field with only two to three points per wave.
However, it can be applied only in cases for which the Green’s func-
tion of the governing equation is known or when it can be computed
in an approximate form.13

Di Francescantonio and Casalino Scheme
A more general GFD approach consists of effectively discretizing

Eq. (9) by means of shape functions for the derivatives of φ(x),
obtained by differentiating shape functions (16). For example, the
first-order x derivative reads

φx (x) =
M∑

m = 1

Fm X (x)φm (18)

with

Fm X (x) =
N∑

n = 1

G I
nm Gx (x, xn; M), m = 1, M (19)

Therefore, by using a collocation technique to discretize Eq. (9), we
obtain a linear system

M∑
m = 1

ai
mφi

m = 0

with coefficients

ai
m = (

1 − M2
x

)
Fi

m X X + (
1 − M2

y

)
Fi

mY Y + (
1 − M2

z

)
Fi

m Z Z

− 2Mx My Fi
m XY − 2Mx Mz Fi

m X Z − 2My Mz Fi
mY Z

+ i2k
(

Mx Fi
m X + My Fi

mY + Mz Fi
m Z

) + k2 Fi
m (20)

The node i can be considered to be within the Mi nodes of its stencil.
In this case the influence coefficients of φi verify the following
property:

Fi
m =

{
1 if xi

m ≡ xi

0 otherwise
(21)

As pointed out in Ref. 8 all the coefficients ai
m in Eq. (20) are iden-

tically null, as obtained by differentiating elementary solutions of
the governing equation. Some corrective action is therefore neces-
sary for the method to make sense. The strategy adopted in this paper
is to distribute the fictitious sources over two spheres, the first having
a smaller radius and containing a larger number of sources and the
second having a greater radius and containing only a few sources.
Furthermore, the second sphere is indeed a four-dimensional hyper-
sphere, and a four-dimensional norm is used to evaluate the term
r = |xn − x| in the Green’s function. This prevents the shape func-
tions from being exact solutions of the governing equation without
spoiling their suitability to describe a wave field. Some details con-
cerning this GFD approach and the hypersphere are reported in
Appendices A and B.

Boundary Conditions
Boundary conditions given as analytical expressions involving

the potential and its derivatives can be discretized by using the
same shape functions used for the governing equation, according
to Di Francescantonio and Casalino’s GFD approach. The node i
can thus be considered to be within the Mi nodes of its stencil, and
three-dimensional distributions of fictitious sources can be used,
because the shape functions do not verify the boundary conditions.
This approach is used in this paper to discretize Myers’s impedance
condition (10).

A different approach, which is closer to the Caruthers et al. GFD
method, is used to formulate inlet/exhaust conditions for the duct
terminations. Suppose that the duct considered is a portion of an
infinite soft-wall duct inside which the acoustic field has the general
modal form (see Appendix C)

φ(x) =
N∑

n = 1

γnGn(x)

with

Gn(x) = �n(z, r) exp

(
iqθ + i

∫ z

µn(ξ) dξ

)
(22)

where n = n(q, σ ) denotes a cumulative mode order index, and q
and σ are the circumferential and radial mode orders, respectively.
Suppose that the total number of radial and circumferential modes
is such that N > M , with M denoting a certain number of given
values φm at points in the neighborhood of x, where the acoustic
field has modal structure (22). Therefore, we can write a set of M
compatibility conditions:

φm =
N∑

n = 1

γnGn(xm) =
N∑

n = 1

γnGmn, m = 1, M (23)

By least-squares inversion we obtain

γn =
M∑

m = 1

G I
nmφm, n = 1, N (24)

Finally, substitution in Eq. (22) yields the interpolation formula

φ(x) =
M∑

m = 1

Fm(x)φm (25)

where

Fm(x) =
N∑

n = 1

G I
nmGn(x), m = 1, M (26)

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Se

pt
em

be
r 

24
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
31

5 



CASALINO, ROGER, AND JACOB 739

are shape functions that ensure the required modal structure of the
acoustic field in the neighborhood of x. Interpolation formula (25)
is now used to obtain inlet/exhaust nonreflecting conditions.

Nonreflecting Exhaust Duct Condition
This condition consists of using formula (25) as a compatibility

condition between the potential at the node i and the potential at the
other nodes of the stencil. Therefore, for example, a right-outgoing
propagation without ingoing reflections can be discretized as

Mi∑
m = 1

ai
mφi

m = 0

with

ai
m =

{
1 if xi

m ≡ xi

−F + i
m otherwise

(27)

where

F + i
m =

N∑
n = 1

G + I
nm G+

n (xi ) (28)

G+
n (xi ) = �n(z

i , r i ) exp

(
iqθ i + i

∫ zi

µn(ξ) dξ

)
(29)

Nonreflecting Inlet Duct Condition

This condition consists of imposing an incident wave on the in-
let section without blocking the outgoing propagation of a possible
backscattered wave. Consider, for example, a right-going incident
wave φinc. A nonreflecting condition for the left-outgoing propaga-
tion of the scattered wave can be can be written as

φsc(x) =
M∑

m = 1

F−
m (x)φm sc (30)

Therefore, substitution of φsc = φ − φinc yields the discretized non-
reflecting inflow condition

Mi∑
m = 1

ai
mφi

m = bi

with

ai
m =

{
1 if xi

m ≡ xi

−F−i
m otherwise

, bi = φi
inc −

Mi∑
m = 1

F−i
m φi

m inc (31)

Method Consistency
In this section we assess the consistency of the GFD approach by

computing the transmission of the right-going cut-on mode (q = 5,
σ = 2) through an annular duct of inner radius r1 = 0.5, outer radius
r2 = 1, and axial length Lz = 1.15. Computations are performed by
increasing the acoustic wave number k and without changing the
computational mesh. Three configurations are considered: 1) a hard-
wall duct crossed by M∞ = 0.3 flow, 2) a soft-wall duct without flow,
and 3) a soft-wall duct with M∞ = 0.3 flow. For the soft-wall con-
figurations, only the external surface is treated with an impedance
wall Z = ρ∞c∞(2 + i), whereas the inner surface is acoustically
rigid. The computational mesh consists of Nz = 15, Nθ = 70, and
Nr = 15 points in the axial, circumferential, and radial directions,
respectively. A radially nonuniform mesh spacing is used; that is,

r = r1 + r2

2
+ r1 − r2

2
cos

(
i − 1

Nr − 1
π

)
, i = 1,Nr (32)

The numerical solutions are checked against the analytical ones
(denoted as φa) by computing the amplitude- and phase-relative L2

errors, defined as

ErrA =

√√√√∑N
i = 1

(|φi | −
∣∣φi

a

∣∣)2

∑N
i = 1

∣∣φi
a

∣∣2
, ErrP =

√∑N
i = 1 min{ϕ1, ϕ2}

2π
√
N

(33)

where N is the number of grid points and

ϕ1 = [
arg(φi ) − arg

(
φi

a

)]2
, ϕ2 = [

2π −
∣∣arg(φi ) − arg

(
φi

a

)∣∣]2

(34)

The influence of the computational mesh on the accuracy of the
GFD scheme is illustrated by considering the number of grid points
per acoustic wavelength in the axial, circumferential, and radial
directions; that is,

N λ
z = 2π/k�z, N λ

θ = 2π/kr2�θ, N λ
r = 2π/k�r (35)

where

�z = Lz/(Nz − 1), �θ = 2π/Nθ

�r = (r2 − r1)/(Nr − 1) (36)

The stencil topologies used for these computations are shown in
Fig. 1. For the nodes in the inner domain the 27-node stencil (Fig. 1a)
is used. For the nodes on the boundaries both the 18-node (Fig. 1b)
and the 27-node stencils (Fig. 1c) are used. The latter enables the
increase of the order of the discretization scheme.

Tables 1–4 show results obtained for the three test cases. The
corresponding errors are plotted against the axial grid parameter
N λ

z in Fig. 2.
The error curves in Fig. 2 show that a good level of accuracy is ob-

tained with three points per acoustic wavelength for configurations

Table 1 Prediction of the hard-wall duct mode (q = 5, σ = 2,
M∞ = 0.3); the 18-node stencil (case 2) is used on the boundaries

k Nλ
z Nλ

θ
Nλ

r ErrA ErrP

15 5.10 4.67 11.7 1.61E−3 4.86E−4
19 4.02 3.68 9.26 5.07E−3 8.22E−4
23 3.32 3.04 7.65 1.48E−2 4.18E−3
27 2.83 2.59 6.51 3.44E−2 4.66E−3

Table 2 Prediction of the soft-wall duct mode (q = 5, σ = 2,
M∞ = 0); the 18-node stencil (case 2) is used on the boundaries

k Nλ
z Nλ

θ
Nλ

r ErrA ErrP

15 5.10 4.67 11.7 6.17E−4 9.39E−5
19 4.02 3.68 9.26 2.22E−3 4.12E−4
23 3.32 3.04 7.65 5.69E−3 1.07E−3
27 2.83 2.59 6.51 1.06E−2 1.87E−3

a)

b)

c)

Fig. 1 Two-dimensional representation of the computational stencil
for a) the inner nodes and b, c) the boundary nodes.
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740 CASALINO, ROGER, AND JACOB

Table 3 Prediction of the soft-wall duct mode (q = 5, σ = 2,
M∞ = 0.3); the 18-node stencil (case 2) is used on the boundaries

k Nλ
z Nλ

θ
Nλ

r ErrA ErrP

15 5.10 4.67 11.7 1.18E−2 2.45E−3
19 4.02 3.68 9.26 2.08E−3 1.59E−3
23 3.32 3.04 7.65 3.21E−2 7.14E−3
27 2.83 2.59 6.51 1.01E−1 1.72E−2

Table 4 Prediction of the soft-wall duct mode (q = 5, σ = 2,
M∞ = 0.3); the 27-node stencil (case 3) is used on the boundaries

k Nλ
z Nλ

θ
Nλ

r ErrA ErrP

15 5.10 4.67 11.7 1.59E−3 3.21E−4
19 4.02 3.68 9.26 7.88E−3 1.07E−3
23 3.32 3.04 7.65 1.10E−2 2.57E−3
27 2.83 2.59 6.51 2.68E−2 6.91E−3

a)

b)

Fig. 2 Prediction of the hard- and soft-wall duct mode (q = 5, σ = 2).
Relative L2 error vs the axial grid parameter Nλ

z ; a) amplitude error
and b) phase error: ♦, hard-wall with flow; �, soft-wall without flow;
�, soft-wall with flow; +, soft-wall with flow; and 27-node stencil used
on the boundaries.

1 and 2. Higher errors are produced for configuration 3 unless a
27-node stencil is used on the boundaries. Indeed, impedance con-
dition (10) involves second-order derivatives of φ and, thus, requires
a greater number of stencil nodes to be properly discretized.

As further proof of the robustness of the GFD approach, the higher
duct mode (q = 10, σ = 3) is computed on the same grid. The wave
number is k = 25, the Mach number is M∞ = 0.3, and the walls
are rigid. The discretization factors are N λ

z = 3, N λ
θ = 3.06, and

N λ
r = 2.80. Plots of the acoustic field and the local relative amplitude

error are shown in Fig. 3. The amplitude- and phase-relative L2

errors are ErrA = 2.79 × 10−2 and ErrP = 1.86 × 10−2, respectively.

Fig. 3 Real part of the numerical potential field (top) and local ampli-
tude error (bottom); k = 25, M∞ = 0.3, q = 10, and σ = 3. Dirichlet con-
ditions are imposed on the inlet/outlet terminations.

Nonconstant Duct Results
In this section, preliminary results for a more relevant application

are presented. The GFD technique is used to compute the trans-
mission of the right-going acoustic mode (q = 5, σ = 2) of wave
number k = 10 through an annular duct of diverging cross section
with/without flow and with/without acoustic treatment on the ex-
ternal wall. The axial duct length is Lz = 6, the inner radius is
r1 = 0.5, and the outer radius varies from rl = 1 to rr = 1.25 for
Lz/3 ≤ z ≤ 2Lz/3 with the law

r2(z) = (rl + rr )/2 + (rl − rr/2) cos[(z − Lz/3)3π/Lz] (37)

The computational mesh consists of Nz = 120, Nθ = 70, and
Nr = 15 points in the axial, circumferential, and radial directions,
respectively. Radial grid-spacing law (32) is used.

The numerical solutions are checked against the analytical ones
and are obtained by using Rienstra’s multiscale approach reported
in Appendix C. As in Ref. 6, the numerical predictions are car-
ried out by using the approximated mean velocity field obtained by
Rienstra.5
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CASALINO, ROGER, AND JACOB 741

a) Top: ||φ||, bottom: ||φa||

b) Top: ϕ, bottom: ϕa

c) Top: Re||φ||, bottom: Re(φa)

d) A =
∫ r2

r1
||φ(z)||2r dr: ——, φ; - - - -, φa

Fig. 4 Case 1: comparison of numerical (φ) and analytical (φa) solutions; ϕ denotes the phase of φ.

a) Top: ||φ||, bottom: ||φa||

b) Top: ϕ, bottom: ϕa

c) Top: Re||φ||, bottom: Re(φa)

d) A =
∫ r2

r1
||φ(z)||2r dr: ——, φ; - - - -, φa

Fig. 5 Case 2: comparison of numerical (φ) and analytical (φa) solutions; ϕ denotes the phase of φ.
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742 CASALINO, ROGER, AND JACOB

a) Top: ||φ||, bottom: ||φa||

b) Top: ϕ, bottom: ϕa

c) Top: Re||φ||, bottom: Re(φa)

d) A =
∫ r2

r1
||φ(z)||2r dr: ——, φ; - - - -, φa

Fig. 6 Case 3: comparison of numerical (φ) and analytical (φa) solutions; ϕ denotes the phase of φ.

a) Top: ||φ||, bottom: ||φa||

b) Top: ϕ, bottom: ϕa

c) Top: Re||φ||, bottom: Re(φa)

d) A =
∫ r2

r1
||φ(z)||2r dr: ——, φ; - - - -, φa

Fig. 7 Case 4: comparison of numerical (φ) and analytical (φa) solutions; ϕ denotes the phase of φ.
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CASALINO, ROGER, AND JACOB 743

Four cases have been considered: 1) hard-wall duct without flow,
2) soft-wall duct without flow, 3) hard-wall duct with flow, and
4) soft-wall duct with flow. For soft-wall configurations, the wall
impedance on the outer surface is Z = ρ∞c∞(2 + i). For configura-
tions with flow, the Mach number in the left (nondiverging) duct por-
tion is M∞ = 0.3. Computations are performed by using the 18-node
stencil (Fig. 1b) for the inlet/outlet sections, and the 27-node stencil
(Fig. 1c) for the inner and outer duct walls.

In Fig. 4 results for case 1 are illustrated. The compatibility of
the boundary conditions with the duct modal behavior ensures a
good level of accuracy. The amplitude modulation of the numerical
solution (Fig. 4d) is due to a wave diffraction from the diverging
section of the duct.

Results for case 2 are illustrated in Fig. 5. The agreement between
numerical and analytical solution is quite good. The wave scat-
tering effects previously observed are now controlled by the wall
impedance. Therefore, no amplitude modulation occurs in the com-
puted acoustic field. Primary results for this configuration were pre-
sented in Ref. 14. It was shown that, when hard-wall modes are em-
ployed to discretize the inlet/outlet conditions for a soft-wall duct,
the numerical solution is contaminated by spurious oscillations.

Results for case 3 are illustrated in Fig. 6. The numerical and
analytical solutions compare favorably. The slight amplitude modu-
lation of the numerical solution is due to convective and geometrical
scattering effects in the diverging section of the duct.

Finally, results for case 4 are shown in Fig. 7. Again, the numerical
and analytical results are in quite good agreement.

Conclusions
The GFD technique was used to predict the sound transmission

in ducted potential flows. A consistency study was performed by
computing the propagation in a constant annular duct with and with-
out acoustic treatment on the walls. A high level of accuracy was
obtained with only three grid points per acoustic wavelength. A par-
ticular point was the advantage of using an extended computational
stencil to discretize the Myers boundary condition.

A first attempt to use the GFD approach for relevant duct con-
figurations was made by computing the propagation in a diverging
duct with/without flow and with/without acoustic treatment on the
walls. For the soft-wall configurations, the numerical solutions com-
pared quite favorably with the multiscale solutions. For the hard-wall
configurations, a slight axial amplitude modulation occurred in the
numerical solution. This was due to wave scattering effects in the
diverging section of the duct.

The next step involves applying the GFD method to realistic tur-
bofan inlet configurations. Furthermore, in view of exhaust noise
predictions, preliminary tests of duct propagation in the presence of
support struts are going to be carried out.

Appendix A: Properties of the GFD Method
A first interesting aspect of the GFD approach is that, for each

computational stencil, both the number of nodes and their position
with respect to the collocation node i are arbitrary. Hence, a GFD
code can be indifferently used with regular, irregular, structured,
and unstructured meshes. The arbitrariness of the stencil definition
also permits control of the order of the formulation. In the present
implementation the stencil includes nodes directly connected with
the node i , but a higher order formulation can be obtained by con-
sidering a second layer of nodes.

A second interesting aspect of the GFD approach lies in the pecu-
liarity of the shape functions, which are designed specifically for the
problem to be addressed. Hence, two computational stencils that are
geometrically identical can have different discretization coefficients,
depending on the wave number and the local flow. In comparing with
the classic finite element (FE) or finite difference (FD) methods, the
high accuracy and resolution of the present GFD scheme is a conse-
quence of the narrower space in which the solutions are sought. In
FE methods, the shape functions are such that, with a sufficiently re-
fined discretization, they can model a completely generic function.
In the GFD method, on the contrary, the shape functions can de-
scribe only the specific set of functions that locally satisfy the wave

equation for a given wave number. Therefore, even if the discretiza-
tion were greatly refined, it would be impossible to reconstruct a
generic field (e.g., a constant one) that is not a solution of the wave
equation for the considered wave number. In FD methods, the sum
of the discretization coefficients of a generic derivative is identically
zero, allowing the reconstruction of a constant solution. This prop-
erty is not respected by the GFD scheme, because a constant field
is not a solution of the wave equation for a nonzero wave number.
Interestingly, for a vanishing wave number, the GFD method pro-
vides discretization coefficients that are identical to those of an FD
method.

Appendix B: Hypersphere
In the GFD scheme described in Ref. 8, the fictitious sources are

distributed over the four-dimensional hypersphere:

xn = r cos(ψn) cos(βn) cos(αn)

yn = r cos(ψn) cos(βn) sin(αn)

zn = r cos(ψn) sin(βn), wn = r sin(ψn)

where n is the cumulative index over the polar indices (i, j, k)
providing

ψn = 2πk/N3, k = 1, N3

βn = −π/2 + π j/(N2 + 1), j = 1, N2

αn = 2π i/N2 + 2π j/N1 N2, i = 1, N1

The poles [0, 0, ∓ r cos(ψn), r sin(ψn)] are also included.
In the present paper, the governing wave equation is discretized

by distributing N = 217 sources over two spheres: a hypershere
of radius r = 200λ and parameters N1 = 3, N2 = 3, and N3 = 3,
and a sphere of radius r = 20λ and parameters N1 = 14, N2 = 13,
and N3 = 1. Boundary conditions are discretized by distributing
N = 184 sources over a sphere of radius r = 20λ and parameters
N1 = 14, N2 = 13, and N3 = 1. The quantity λ denotes the acoustic
wavelength.

Appendix C: Soft-Wall Slowly Varying Duct
Consider an annular duct with nonconstant properties: cross sec-

tion, flow, and wall impedance. A multiscale solution has been ob-
tained by Rienstra5 by supposing slowly varying properties. It has
been used in this paper to validate the numerical solutions.

The multiscale method is based on the hypothesis that the length
scale of a geometrical (flow) variation is much smaller than the
duct diameter. The slow variable Z = εz can therefore be used as
an explicit variable, where ε denotes the ratio between the variation
length scale and the duct diameter.

A ducted axisymmetrical mean flow can be written as

M = Mz(Z , r; ε)ez + Mr (Z , r; ε)er (C1)

where the axial dimensionless velocity can be related to a given
(dimensionless) cross-sectional mass flux F by writing

Mz(z) = ρ∞r 2
∞ F

�(z)
[
r2(z)2 − r1(z)2

] (C2)

In a slowly varying duct the mean flow is nearly uniform: its axial
component depends only on Z , and small axial mass variations can
only be balanced by a small radial flow component. We can therefore
write

Mz(Z , r; ε) = M0(Z) + O(ε2) (C3)

Mr (Z , r; ε) = εM1(Z , r) + O(ε3) (C4)

P(Z , r; ε) = P0(Z) + O(ε2) (C5)

�(Z , r; ε) = �0(Z) + O(ε2) (C6)
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744 CASALINO, ROGER, AND JACOB

where

P0(Z) = p∞
{

1 − [(γ − 1)/2]
[

M0(Z)2 − M2
∞
]}γ /(γ − 1)

(C7)

�0(Z) = ρ∞
{

1 − [(γ − 1)/2]
[

M0(Z)2 − M2
∞
]}1/(γ − 1)

(C8)

The axial velocity is given by

M0(Z) = ρ∞r 2
∞ F

�0(Z)
[
r2(Z)2 − r1(Z)2

] (C9)

where the mean density �0(z) is to be determined numerically, for
a given value of M∞, by using Eq. (C8).

Making use of the so-called WKB (Wentzel, Kramers, and
Brillouin) assumption, the acoustic potential can be described as
a superposition of modelike solutions of the form

φqσ (z, r, θ; ε) = �(Z , r; ε) exp

[
iqθ + i

∫ z

µ(ξ) dξ

]
(C10)

where µ(Z) is the axial wave number. By expanding
� = �0(Z , r) + ε�1(Z , r) + · · · and µ = µ0 + O(ε2), and substi-
tuting in the governing equations and Myers’s boundary condition
of wall impedance Z , Rienstra5 obtained a Bessel-type equation in
r for �0, which allows us to write the slowly varying mode as

�0(Z , r) = N (Z)Jq [α(Z)r ] + M(Z)Yq [α(Z)r ] (C11)

The radial eigenvalue α and the ratio M/N are determined by bound-
ary conditions. These yield

αr2 J ′
q(αr2) − ζ2 Jq(αr2)

αr2Y ′
q(αr2) − ζ2Yq(αr2)

= αr1 J ′
q(αr1) + ζ1 Jq(αr1)

αr1Y ′
q(αr1) + ζ1Yq(αr1)

= − M(Z)

N (Z)

(C12)

where

ζi = i�2�0ri

ωZi
, i = 1, 2 (C13)

� = c∞(k − µ0 M0) (C14)

µ0 = − M0 k0

β2
0

± 1

β2
0

√
k2

0 − β2
0 α2 (C15)

k0 = ω

C0
(C16)

β2
0 = 1 − c2

∞ M2
0

C2
0

(C17)

Finally, the amplitude N (Z) is such that(
π/2

N

)2

E0 =
[

�0k0�r 2
2

2

(
1 − j2 − ζ 2

2

α2r 2
2

)
+ �0 M0 c∞

�
ζ2

]/

[αr2Y ′
q(αr2) − ζ2Yq(αr2)]

2

−
[

�0k0�r 2
1

2

(
1 − j2 − ζ 2

1

α2r 2
1

)
− �0 M0c∞

�
ζ1

]/

[αr1Y ′
q(αr1) + ζ1Yq(αr1)]

2 (C18)

where � = ± √
(1 − β2

0 α2/k2
0) and E0 is an arbitrary integration

constant having the dimensions of energy. The square root to be
chosen is such that the continuity of N along Z is ensured. The pre-
ceding analytical expression is equally valid for hollow and annular
ducts and constitutes the main result of Rienstra’s formulation.

Acknowledgment
The authors are grateful to Paolo di Francescantonio for his valu-

able comments.

References
1Tester, B. J., “Some Aspects of ‘Sound’ Attenuation in Lined Ducts

Containing Inviscid Mean Flows with Boundary Layers,” Journal of Sound
and Vibration, Vol. 28, 1973, pp. 217–245.

2Myers, M. K., “On the Acoustic Boundary Condition in the Presence of
Flow,” Journal of Sound and Vibration, Vol. 71, No. 3, 1980, pp. 429–434.

3Golubev, V. V., and Atassi, H. M., “Sound Propagation in an Annular
Duct with Mean Potential Swirling Flow,” Journal of Sound and Vibration,
Vol. 198, No. 5, 1996, pp. 601–616.

4Golubev, V. V., and Atassi, H. M., “Acoustic-Vorticity Waves in Swirling
Flows,” Journal of Sound and Vibration, Vol. 209, No. 2, 1998, pp. 203–222.

5Rienstra, S. W., “Sound Transmission in Slowly Varying Circular and
Annular Lined Ducts with Flow,” Journal of Fluid Mechanics, Vol. 380,
1999, pp. 279–296.

6Rienstra, S. W., and Eversman, W., “A Numerical Comparison Be-
tween the Multiple-Scales and Finite-Element Solution for Sound Propa-
gation in Lined Flow Ducts,” Journal of Fluid Mechanics, Vol. 437, 2001,
pp. 367–384.

7Cooper, A. J., and Peake, N., “Propagation of Unsteady Disturbances in a
Slowly Varying Duct with Mean Swirling Flow,” Journal of Fluid Mechanics,
Vol. 445, 2001, pp. 207–234.

8Di Francescantonio, P., and Casalino, D., “Green’s Function Discretiza-
tion Scheme for Sound Propagation in Nonuniform Flows,” AIAA Journal,
Vol. 37, No. 10, 1999, pp. 1161–1172.

9Casalino, D., “Un Metodo Numerico per lo Studio dello Scattering e
della Propagazione del Suono in Mezzi non Omogenei,” M.S. Thesis, Dipar-
timento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Turin,
Italy, 1997.

10Astley, R. J., and Bain, J. G., “A Three-Dimensional Boundary Element
Scheme for Acoustic Radiation in Low Mach Number Flows,” Journal of
Sound and Vibration, Vol. 109, No. 3, 1986, pp. 445–465.

11Caruthers, J. E., French, J. C., and Raviprakash, G. K., “Green’s Func-
tion Discretization for Numerical Solution of the Helmholtz Equation,” Jour-
nal of Sound and Vibration, Vol. 187, No. 4, 1995, pp. 553–568.

12Caruthers, J. E., Engels, R. C., and Raviprakash, G. K., “A Wake Ex-
pansion Computational Method for Discrete Frequency Acoustic Within
Inhomogeneous Flows,” AIAA Paper 96-1684, May 1996.

13Caruthers, J. E., French, J. C., and Raviprakash, G. K., “Recent De-
velopments Concerning a New Discretization Method for the Helmholtz
Equation,” AIAA Paper 95-117, May 1995.

14Casalino, D., Roger, M., and Jacob, M., “Prediction of Sound Propa-
gation in Ducted Potential Flows Using Green’s Function Discretization,”
AIAA Paper 2003-3246, May 2003.

M. Ahmadian
Associate Editor

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Se

pt
em

be
r 

24
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
31

5 


