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Abstract

The Ffowcs Williams and Hawkings’ acoustic analogy is combined in the time domain with a statistical
model in order to take into account the three-dimensional character of the vortex shedding process from a
rod in a uniform stream. By applying the model to a two-dimensional unsteady Reynolds averaged Navier–
Stokes flow computation, it is shown that the three-dimensional effects, like spectral broadening around the
shedding frequency, are partially recovered. The ad hoc statistical model relates a spanwise random
distribution of the vortex shedding phase and wall pressure modulations to an arbitrary spanwise
correlations. The phase distribution is applied to the tonal pressure signals of the computation and the
resulting ad hoc signals are fed into the acoustic analogy. The study is carried out for a rod based Reynolds
number of 2:2� 104 for which the rod wake is turbulent. Numerical results compare favourably to those of
an accompanying experiment.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The aerodynamic sound generated by the periodic vortex shedding from a circular cylinder is a
classical problem in aeroacoustics.
The Aeolian tones were first investigated by Strouhal [1] in 1878 by measuring the frequency of

the tonal emission from a stretched wire mounted on a hand-driven rotating apparatus. Strouhal
related the sound generation to the flow friction on the wire and observed that the tonal frequency
is given by f0 ¼ St U=d; where St is a constant, U is the velocity of the cylinder and d its diameter.
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This result was confirmed in 1879 by Lord Rayleigh [2] who first observed that the Strouhal
number St depends on the flow Reynolds number. Moreover, Rayleigh argued that, since the wire
vibrates perpendicularly to the stream, the sound could not be generated by the fluid friction.
Therefore, after B!enard’s 1908 observation of staggered vortices in a cylinder wake and von
K!arm!an’s 1912 stability analysis of a double row of counter-rotating vortices, Rayleigh [3] related
the wire tone emission and vibration to the periodic vortex shedding from the wire.
Among the several arguments in favour of Rayleigh’s fatherhood of the aerodynamic sound

theory1 that related to the Aeolian tones is well established. Indeed, as early as 1896, Rayleigh [5]
observed that even motionless cylinders in a fluid stream can produce a tonal emission and that
the coincidence of the vortex shedding frequency with the cylinder structural frequency only
increases the sound intensity.
Once the acoustic analogy theory was established by Lighthill [6] and Curle [7], Phillips [8]

succeeded in predicting the Aeolian tones on the basis of some flow quantities, namely the vortex
shedding frequency, the maximum lift coefficient induced by the counter-rotating vortices, and the
spanwise correlation length.
The spanwise correlation length accounts for the three-dimensional character of the flow. A

circular cylinder flow, in fact, remains two-dimensional up to Reynolds numbers of about 180. At
higher values, three-dimensional fluctuations are imposed on the dominant vortex shedding. As a
consequence, the wall pressure signals exhibit a random amplitude modulation. At very low
Reynolds numbers this behaviour is presumably related [9] to a cellular structure of the vortex
shedding, accompanied by vortex dislocations and oblique vortex shedding. At higher Reynolds
numbers cellular shedding has never been observed, despite the randomly modulated behaviour of
the wall pressure signals [10]. Therefore, vortex dislocations are likely to exist also at higher
Reynolds numbers.
An oblique vortex shedding causes a spanwise variation of the vortex shedding phase.

Furthermore, a statistical analogy exists between a random amplitude modulation and a random
dispersion of the vortex shedding phase. Therefore, an ad hoc statistical model for the vortex
shedding phase is described in the present paper. The model allows one to take into account, to
some extent, the three-dimensional character of the flow in an acoustic analogy prediction based
on a two-dimensional flow field.
The spanwise statistical method is validated on the base of Phillips’ [8] Aeolian tones model,

and by comparing experimental data with an acoustic analogy prediction of the sound from a
Re ¼ 2:2� 104 circular cylinder flow. The acoustic field is computed by applying the Ffowcs
Williams and Hawkings (FW–H) acoustic analogy to aerodynamic data computed on different
surfaces around the cylinder. The aerodynamic field is obtained from a two-dimensional
Reynolds-averaged Navier–Stokes (RANS) computation. The same hybrid CFD/FW–H
approach has been used by other authors [11–13] in order to validate the consistency of a FW–
H formulation applied to a penetrable integration surface.
Once the acoustic analogy is tested, the present approach can be also used as a good benchmark

for a CFD prediction, since the accuracy of the acoustic solution hinges on the accuracy of the
CFD solution.

1The reader is referenced to Doak’s review [4] for a suggestive dissertation on the Rayleigh’s fatherhood of the

aerodynamic sound theory.
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2. On the three-dimensional effects in the wake of a rod

The vortex dynamics in the wake of a bluff body is of increasing concern in many engineering
areas. Effects related to the intrinsic three-dimensional character of a nominal two-dimensional
flow must be taken into account in order to predict unsteady loading, vibrations and sound
generation.
The spanwise statistical model presented in this paper is concerned with the sound from a rod.

It is based on Phillips’ [8] intuition of a spanwise variation of the vortex shedding phase, and is
inferred by recent observations of the vortex dynamics in the wake of a rod.
Different three-dimensional effects have been observed in the wake of a rod. At low Reynolds

numbers, an oblique vortex shedding may occur, accompanied by discontinuities in the Strouhal–
Reynolds number relationship. These effects are related to each other and are both influenced by
the span end conditions, even for very high aspect ratios l=d: The Strouhal discontinuity observed
by Tritton [14] near Re ¼ 75 is caused by a transition from one oblique shedding mode to another
one [9]. This transition can be explained by a change in the shedding pattern from one where the
central flow is able to match the end conditions to one where the central flow is unable to match
the end conditions and generates a cell of higher shedding frequency. Up to three coexisting
frequency cells have been observed [15]. At the interface between two cells vortex dislocations

occur during periods in which vortices move out of phase with each other. The coexistence of cells
of different frequency results in a low-frequency quasi-periodic amplitude modulation of the
fluctuating quantities in the near wake. Furthermore, at the boundary between two cells, abrupt
phase jumps can take place at the amplitude modulation frequency.
The main three-dimensional effect observed at higher Reynolds numbers is a spanwise variation

of the vortex shedding phase, accompanied by a random amplitude modulation of the fluctuating
quantities in the near wake of the rod. Since the vortex shedding is not in phase along the rod
span, spanwise pressure gradients take place, which induce spanwise velocity fluctuations. Near
the end plates the spanwise component of the fluctuating velocity vanishes, leading to an
enhancement of the vortex shedding uniformity. Experiments conducted by Szepessy and
Bearman [10] in the high-Reynolds number range 1� 104–1:3� 105 show that a weak shedding
mode reappears somewhat periodically at about 10–20 times the Strouhal period, and has a
duration of about 3–7 shedding periods. Szepessy and Bearman also observed a phase shift
between a wall pressure signal in the rod mid-plane and a velocity signal near the rod, both taken
901 away from the flow direction. The phase shift increased with the separation distances between
the two transducers. Despite the amplitude modulation, no cellular vortex shedding was observed.

3. Experimental investigation

An experiment is carried out in the small anechoic room of the Ecole Centrale de Lyon
ð6 m� 5 m� 4 mÞ; where air is supplied by a low-speed subsonic anechoic wind tunnel.
The reference configuration is a d ¼ 0:016 m rod extending by l ¼ 0:3 m in the span direction.

The rod is fixed between two parallel rectangular plates and is placed into the potential core of a
partially flanged rectangular jet. The inflow velocity is VN ¼ 20 m=s; corresponding to
MN ¼ 0:06 and Re ¼ 2:2� 104: The experimental set-up is sketched in Fig. 1.

D. Casalino, M. Jacob / Journal of Sound and Vibration 262 (2003) 815–844 817



Acoustic measurements are taken at a distance r ¼ 1:38 m from the rod mid-point, at various
observation angles in the mid-span plane. A Br .uel and Kj.aer type 4191 microphone with a Br .uel
& Kj.aer type 2669 preamplifier is used for these measurements. Data acquisitions are carried out
with a spectral resolution of 2 Hz; from 0 to 6400 Hz; and the number of averages is 400. The
Br .uel & Kj.aer software Pulse is used for the signal acquisition and processing.
Measurements of wall pressure fluctuations were performed in order to investigate the

statistical behaviour of the vortical flow in the wake of the rod. The experimental arrangement is
sketched in Fig. 2. The rod is constituted of two parts. One part is fixed, the other can rotate
around the rod axis. Six pressure pinholes are drilled on the rod: one on the movable section, the
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Fig. 1. Experimental set-up.
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Fig. 2. Rod configuration. Pressure pinholes of 0:5 mm diameter are drilled on the rod surface and communicate with

external condenser microphones. Five probes are on the fixed section, whereas only one probe is on the movable

section. The distance between the movable probe and the fixed one closest to the mid-span section is b ¼ 2 mm:
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others on the fixed one. The fixed probes are located 901 away from the streamwise direction. The
pinholes communicate with external condenser microphones through capillary tubes [16]. Hence,
two-point coherence and correlation measurements can be performed with both angular and
spanwise spacing.

3.1. Acoustic measurements

In Fig. 3 the acoustic power spectral density measured around the rod is plotted.
Aeolian tones are detected at each observation angle, as revealed by the prominent peak at the

frequency f0 ¼ 250 Hz; corresponding to a typical Strouhal number of 0:2:
Both the Strouhal peak and the second harmonic peak at f ¼ 3f0 are generated by the unsteady

lift induced on the rod by the K!arm!an vortex street. A first harmonic peak at f ¼ 2f0 arises away
from the azimuthal position y ¼ 901 and increases towards y ¼ 0: This peak is related to the
unsteady drag induced on the rod.
All the peaks exhibit a significant broadening around the harmonic frequencies. Such a

behaviour is of main concern in the present work and is presumably due to the three-dimensional
nature of the vortex shedding process. As previously discussed, pressure fluctuations on the rod
surface undergo a randomly modulated quasi-periodic behaviour. A similar behaviour is thus
expected in the far pressure field, resulting in broadened harmonic peaks.
In Fig. 3(a) the rod sound is compared to the noise from the jet alone. At frequencies higher

than about 2000 Hz the rod spectrum is likely to be contaminated by the background noise.

3.2. Wall pressure measurements

In Fig. 4 the coherence at the Strouhal frequency and the correlation coefficient are plotted.
Both these quantities are defined in Appendix A. The reference probe is at Zd ¼ 0; Zd denoting the
distance from the mid-span plane made dimensionless by the rod diameter. Data are fitted by a
Gaussian expð�Z2d=2L2

gÞ function, with Lg ¼ 4:7 for the coherence function, and Lg ¼ 6:6 for the
correlation coefficient. The vortex shedding process is therefore correlated upon a distance of
about 6:5d:
Cross-spectrum measurements of the fluctuating pressure are also made between a fixed

reference probe at 901 away from the streamwise direction and probes at different angular
positions f; with an angular step of 51:
As shown in Fig. 5(a), the cross-spectrum peaks when the movable probe is at f ¼ 1001: This

experimental inaccuracy can be indeed justified to some extent. As sketched in Fig. 2(b), a
circumferential skew s between the fixed and the closest movable probe results in the skew angle
bCtan�1½d sinðf� p=2Þ=2b�; where b ¼ 2� 10�3 m is the spanwise distance between the fixed and
the movable probe. In other words, the angle b measures the deviation of the movable probe from
the vertical axis cutting through the fixed probes. A skew angle b ¼ 351 corresponds to f ¼ 1001:
Fig. 5 shows that also the coherence at the Strouhal frequency is maximum when the movable
probe is at f ¼ 1001; but it is almost maximal over a wide range of angles. Hence, bC351 could be
interpreted as a time-averaged vortex shedding angle. This discussion is quite far from being a
quantitative analysis of the three-dimensional effects in the wake of a rod. The phenomenology is
indeed intrinsically complex and not completely understood at present time. Nevertheless,
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measurements such as those described in this paper may be used to investigate the three-
dimensional vortex dynamics in the wake of a rod.
In Fig. 5 the angular coherence at the Strouhal frequency and its peaks at the first and

second harmonics are plotted against the angular position of the movable probe. At the
Strouhal frequency the coherence is almost one from fC601 to fC1201; the maximum being
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Fig. 3. Power spectral density of the rod noise at different observation angles. Comparison with the jet-alone noise at

y ¼ 901:
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reached when the movable probe is at about f ¼ 1001: Conversely, at higher harmonics, the
coherence is maximum when the movable probe is at f ¼ 901: Surprisingly, the first harmonic
peak of coherence reaches a local minimum at f ¼ 1001; where the Strouhal peak is maximum.
The wall pressure signals corresponding to the maximum cross-spectrum amplitude are plotted

in Fig. 6. Interestingly, weak amplitude cycles reappear somewhat periodically at about 15–20
times the Strouhal period, and have a duration of about 4–5 shedding periods.
Finally, in Fig. 7 the wall pressure signals taken at f ¼ 901 along the rod span are plotted. Both

a phase shift between signals and sporadic phase jumps can be noticed. A similar behaviour was
observed by Szepessy and Bearman [10] in the Reynolds number range 1� 104–1:3� 105:
In this section some effects related to the three-dimensional character of a circular cylinder flow

have been described. The spanwise loss of coherence, the wall pressure random amplitude
modulation, and the phase shift between signals at different spanwise locations give evidence of
the three-dimensional structure of the wake behind the rod.
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4. Aerodynamic computation

The compressible finite volume RANS code Proust [17] is used in the current investigation.
Both the convective fluxes and the viscous terms are evaluated by using a second order centred
scheme. The solution is advanced in time by using an explicit second order scheme based on a five-
step Runge–Kutta factorization.
Non-reflecting boundary conditions and grid stretching in the outer domains are used in order

to reduce spurious reflections of acoustic waves.
The turbulence model used is the two-equations Wilcox [18] k–o model, where k is the

turbulent kinetic energy and o is related to the turbulent dissipation. The inflow conditions and
the flow parameters are r

N
¼ 1:225 kg=m3; VN ¼ 20 m=s; pN ¼ 101 253:6 Pa and m

N
¼ 1:78�

10�5 kg=m s: The turbulent kinetic energy has a uniform initial value of 0:01 as measured in
experiments. The inflow boundary conditions remain the same throughout the computation.
An approximated steady potential flow is used as initial solution. Furthermore, a strong line-

vortex in proximity of one separation point on the cylinder is added to the initial field in order to
induce a vortex shedding as soon as the computation is started, and thus to accelerate the
convergence to a periodic flow.
The computational mesh is based on 197� 193 points. It is circumferentially clustered in the

wake region. The minimum circumferential spacing, at the rod base point ðf ¼ 01Þ; is 2:5� 10�3d;
and the thickness of the mesh wall layer is 5� 10�4d:
The computational time-step is 6:25� 10�8 s; corresponding to about 5� 105 iterations per

aerodynamic cycle. 2048 aerodynamic fields are stored for the acoustic computation, covering
8:04� 10�2 s:

5. Acoustic computation

The rotor noise code Advantia [19] is used for the acoustic prediction. For the purposes of the
present investigation, only surface integrals are computed, since at low Mach numbers, the volume
sources give a vanishing contribution to the acoustic radiation. The consistency of this approximation
is checked by comparing acoustic results obtained from different integration surfaces.
For the sake of the present work Advantia exploits the retarded time penetrable FW–H

formulation proposed by Brentner and Farassat [20].
By setting a reference length lref ; a reference velocity Uref ; a reference time lref =Uref and a

reference dynamic pressure pd the thickness and loading noise expressions in Ref. [19] take the form

2p
pd

p0QðX; yÞ

¼
Z

f¼0

’Vi #ni þ ’qi #ni þ ðVi þ qiÞ’#ni

Rð1� MrÞ
2

þ
ðVn þ qnÞfR ’Mr þ ðMr � M2Þ=Mref g

R2ð1� MrÞ
3

� �
ret

dS

�
Z

f¼0

Mor

’Vi #ni þ ’qi #ni þ ðVi þ qiÞ’#ni

Rð1� MrÞ
2

� �
ret

dS
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�
Z

f¼0

Mor
’MrðVi þ qiÞ #ni

Rð1� MrÞ
3

� �
ret

dS

�
Z

f¼0

f2MorMr � MorM
2 � MoiMið1� MrÞ � MorM

2
r gðVi þ qiÞ #ni

Mref R2ð1� MrÞ
3

" #
ret

dS

�
Z

f¼0

ðVi þ qiÞ #niMor

Mref R2ð1� MrÞ

� �
ret

dS; ð1Þ

2p
pd

p0LðX; yÞ ¼
Z

f¼0

Mref wr

Rð1� MrÞ
2

� �
ret

dS þ
Z

f¼0

lr � lM

R2ð1� MrÞ
2

� �
ret

dS

þ
Z

f¼0

Mref lrfR ’Mr þ ðMr � M2Þ=Mref g

R2ð1� MrÞ
3

� �
ret

dS: ð2Þ

Both the observer X and the integration surface f ¼ 0 move at the constant velocity cMo ¼ �VN
#i

and the flow at infinity is at rest. Dots on quantities denote time derivatives with respect to the
dimensionless source time. Square brackets enclose quantities evaluated at the retarded time yret

obtained from the dimensionless retarded time equation

yret ¼ y� ðXðyÞ � YðyretÞÞMref ; ð3Þ

where YðyretÞ is a source point on the integration surface at the retarded time yret: Quantities in
Eqs. (1) and (2) are all described in Appendix B.
2048 aerodynamic fields are used for the acoustic computation (about 24 vortex shedding

cycles, tend ¼ 8:04� 10�2 s and Df ¼ 12:19 Hz). The observation distance from the airfoil mid
point is r ¼ 1:38 m (kr ¼ 6:37 for a typical Strouhal number St ¼ 0:2). Integrations are performed
upon the cylinder surface and upon penetrable surfaces around the cylinder. The aerodynamic
field on both physical and penetrable surfaces is extracted directly from the CFD solution and a
Gaussian quadrature is used to compute the surface integrals. The rod span is discretized by 20
equal segments.
In order to deal with truncated time series, data are multiplied by the Tukey weighting function

wðtÞ ¼ 0:815½1� cosð2pt=tendÞ� before performing Fourier analyses. The energy of the original
signals is preserved by scaling the windowed data.

6. The spanwise statistical model

At Reynolds numbers higher than about 180 the flow past a circular cylinder is three-
dimensional. This causes the wall pressure fluctuations to exhibit a modulated behaviour. The
quasi-periodic amplitude modulation observed at low Reynolds numbers is related [9] to a cellular
structure of the vortex shedding. Spanwise inhomogeneities such as boundary layers upon the end
plates,2 non-uniform inflow conditions or a spanwise-varying diameter induce the formation of
cells, i.e. regions of constant shedding frequency along the rod span. At the interface between two
cells an abrupt frequency jump occurs. The interaction between two neighbouring cells of

2The end conditions affect the vortex shedding over the entire rod span, even for aspect ratio of the order of 100.
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frequency fa and fb; respectively, induces a beat behaviour at the frequency jfa � fbj: When the
vortices in two adjacent cells are nearly in phase, their mutual interference generates an oblique
vortex shedding. Conversely, when two cells are out of phase, a contorted vortical structure, say
vortex dislocation, is produced. Hence, oblique shedding, vortex dislocation and cellular shedding
are different aspects of the same phenomenology. At higher Reynolds number random amplitude
modulations have been observed [10], accompanied by spanwise phase shift and jumps along the
rod span.
Both an oblique vortex shedding and a random amplitude modulation can be related to a random

variation of the vortex shedding phase. Therefore, an ad hoc spanwise statistical model is first
developed on the base of Phillips’ [8] model and successively applied to the rod noise prediction.

6.1. Phillips’ model

Consider a motionless rod of diameter d and span l in a fluid stream with velocity VN: Set
lref ¼ d and Uref ¼ VN in Eqs. (1) and (2). Consider a fixed observation point r0dðcos y; sin y; 0Þ;
r0 being the dimensionless observation distance from the rod mid-point and y the angle away from
the streamwise direction.
In the geometrical ðr0b1Þ and acoustical ðMNr02pStb1) farfield limits, provided that an

integration upon the rod surface is made, Eqs. (1) and (2) reduce to

p0ðr0; y; tÞ ¼
pdMNr0 sin y

4p

Z l=2d

�l=2d

dZd

R2ð1þ MNr0 cos y=RÞ2
#ri

Z
L

½ ’Cp� #ni dl; ð4Þ

where pd ¼ r
N

V2
N
=2 is the free-stream dynamic pressure and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ Z2d

q
is the dimensionless

distance between the observer and a point source on the rod, with Zd denoting the dimensionless
spanwise co-ordinate. The time derivative of the pressure coefficient is evaluated at the
dimensionless retarded time

tret ¼ t� RMN: ð5Þ

Supposing an observer sufficiently far from the rod, such that r0bl=2d; yields

p0ðr0; y; tÞ ¼
pdMN

4pr0ð1þ MN cos yÞ2

Z l=2d

�l=2d

dZd #ri

Z
L

½ ’Cp� #ni dl: ð6Þ

Finally, neglecting the unsteady drag component by substitutingZ
L

½ ’Cp� #ni dlC� ½ ’Cl � #j ð7Þ

into Eq. (6) leads to the compact dipole Aeolian tones radiation

p0ðr0; y; tÞ ¼
�pdMN sin y

4pr0ð1þ MN cos yÞ2

Z l=2d

�l=2d

½ ’Cl� dZd : ð8Þ

Although the vortex-induced fluctuating lift may be of the same amplitude along the rod span,
the phase of the lift may vary stochastically as *jðZdÞ: Thus, following Phillips [8], the fluctuating
lift coefficient can be written as

ClðZd ; tÞ ¼ Cl max expf�ið2p St tþ *jðZdÞÞg: ð9Þ
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Substituting Eq. (9) into Eq. (8) yields

p0ðr0; y; tÞ ¼
ipdMN St Cl max l sin y

2r0dð1þ MN cos yÞ2
e�i½2p St ðt�MNr0Þ�

Z þ1=2

�1=2
e�i *jðZÞ dZ; ð10Þ

where Z is the spanwise co-ordinate made dimensionless by the rod span. Hence, the acoustic
intensity is given by

I ¼ Idet

Z þ1=2

�1=2

Z þ1=2

�1=2
expf�ið *jðZ1Þ � *jðZ2ÞÞg dZ1 dZ2; ð11Þ

where

Idet ¼
r
N

V6
N

C2
l max St2 l2 sin2 y

32c30r
2
0d

2ð1þ MN cos yÞ4
ð12Þ

denotes the farfield sound intensity of a deterministic flow (fully correlated along the rod span). If
the correlation length is small compared to the rod span, the double integral in Eq. (11) can be
approximated as Z þ1=2

�1=2

Z þ1=2

�1=2
expf�ið *jðZ1Þ � *jðZ2ÞÞg dZ1 dZ2C

Z þN

�N

rðZÞ dZ; ð13Þ

where the correlation coefficient rðZÞ ¼
Rþ1=2
�1=2 expf�ið *jðZ1Þ � *jðZ1 þ ZÞÞg dZ1 can be reasonably

supposed to be Gaussian or Laplacian. In the first case it results that

rðZÞ ¼ exp �
Z2

2L2
g

 !
and I ¼ Idet

ffiffiffiffiffiffi
2p

p
Lg; ð14Þ

whereas in the second case

rðZÞ ¼ exp �
jZj
Ll

� 

and I ¼ Idet2Ll : ð15Þ

6.2. The method of the phase variance distribution

The fluctuating pressure on the rod surface at 901 away from the streamwise direction is
representative of the fluctuating lift. Thus, for two spanwise locations one can write p1ðtÞ ¼
P cosð2p f0t þ *j1Þ and p2ðtÞ ¼ P cosð2pf0t þ *j2Þ: The related cross-correlation function is given by

C12ðYÞ ¼E½p1ðtÞp2ðt þYÞ�

¼
P2

2
E½cos *j1 cos *j2�cosð2pf0YÞ �

P2

2
E½cos *j1 sin *j2�sinð2pf0YÞ

þ
P2

2
E½sin *j1 cos *j2� sinð2pf0YÞ þ

P2

2
E ½sin *j1 sin *j2�cosð2pf0YÞ; ð16Þ

where E½ � denotes the expected value.
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Taking the first point in Z ¼ 0 and setting *j2 ¼ *j; reduces Eq. (16) to

C12ðYÞ ¼
P2

2
E½cos *j�cosð2pf0YÞ �

P2

2
E½sin *j�sinð2pf0YÞ: ð17Þ

This is equivalent to supposing that the flow is statistically homogenous along the rod span and
that the random phase *j denotes indeed a random phase shift. The corresponding spanwise
correlation coefficient is given by

rðZÞ � C12ð0Þ ¼ E½cos *j� ð18Þ

whereas the coherence function is given by

GðZ; f Þ ¼
jS12ðZ; f Þjffiffiffiffiffiffiffi

S11

p ffiffiffiffiffiffiffi
S22

p ¼ E½cos *j�dðf � f0Þ � E½sin *j�dðf � f0Þ; ð19Þ

where the cross-spectrum S12 is the Fourier transform of the cross-correlation function given in
Eq. (17).
Random phase shifts may occur for different and independent causes: inflow non-uniformity,

surface roughness, etc. According to the central limit theorem, this is sufficient to suppose that the
random variable *j has a Gaussian probability density. Physically this corresponds to a condition
of maximum entropy, namely, the less structured or deterministic condition. In the present case, it
is assumed that random perturbations from the incoming and surrounding turbulent flow (the rod
is located in the potential core of a jet) are mainly responsible for the spanwise coherence loss of
the deterministic shedding. Hence, not the shedding itself, but its deviation from periodicity is
directly related to the surrounding turbulence and can thus be modelled by a Gaussian
probability.
Hence, assume a spanwise phase distribution with a Gaussian probability density P; whose

variance w is zero on the rod mid-span plane ðZ ¼ 0Þ and increases symmetrically towards the rod
extremities ðZ ¼ 71=2Þ; i.e.,

Pð *j; ZÞ ¼
expð� *j2=ð2wðZÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pwðZÞ
p : ð20Þ

Clearly, a spanwisely increasing variance accounts for the intrinsic phase shift nature of *j: Two
methods are described below to determine the value of r and G:
If *x denotes a random variable with probability density Pð *xÞ; the expected value of a generic

function f ð *xÞ is given by E½f ð *xÞ� ¼
RþN

�N
f ð *xÞPð *xÞ d *x: Thus, applying this fundamental property to

Eq. (19) leads to

E½sin *j� ¼
Z þN

�N

sin *j
expð� *j2=ð2wÞÞffiffiffiffiffiffiffiffiffi

2pw
p d *j ¼ 0 ð21Þ

and

E½cos *j� ¼
Z þN

�N

cos *j
expð� *j2=ð2wÞÞffiffiffiffiffiffiffiffiffi

2pw
p d *j ¼ exp �

w

2

� �
; ð22Þ

where use of the known integral
RþN

�N
cosðbxÞ exp½�ax2� dx ¼

ffiffiffiffiffiffiffiffiffiffiffi
ðp=aÞ

p
expð�b2=ð4aÞÞ has been

made. Therefore, when *j is a random variable with a symmetric probability density, the
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coherence function can be also interpreted as the correlation coefficient, i.e.,

GðZ; f Þ ¼ rðZÞdðf � f0Þ: ð23Þ

Another method for evaluating E½cos *j� is to consider the Taylor series of cos *j; writing

E½cos *j� ¼ E
XN
n¼0

ð�1Þn

ð2nÞ!
*j2n

" #
¼
XN
n¼0

ð�1Þn

ð2nÞ!
E½ *j2n�: ð24Þ

Since *j has a Gaussian density probability, it results that

E½ *j0� ¼ 1 and; for nX1;

E½ *j2n�1� ¼ 0

E½ *j2n� ¼ ð2n � 1Þð2n � 3Þ �? � 3 � 1 � wn:

Thus, substituting into Eq. (24) and performing some algebra, i.e.,

E½cos *j� ¼
XN
n¼0

ð�1Þn

ð2nÞ!
ð2n � 1Þð2n � 3Þ �? � 3 � 1 � wn

¼
XN
n¼0

ð�wÞn

2nð2n � 2Þð2n � 4Þ �? � 4 � 2

¼
XN
n¼0

ð�w=2Þn

nðn � 1Þðn � 2Þ �? � 3 � 1

¼
XN
n¼0

1

n!
�

w

2

� �n

¼ exp �
w

2

� �
ð25Þ

the same result as in Eq. (22) is obtained.
Concluding, the spanwise correlation coefficient at f ¼ 901 on the rod surface takes the form

rðZÞ ¼ exp �
w

2

� �
: ð26Þ

Two variance distributions are considered as demonstrative examples, leading to a Gaussian
and a Laplacian correlation coefficient, respectively. These are
(a) a quadratic variance distribution

wðZÞ ¼ 4wmaxZ2 ð27Þ

yielding

rðZÞ ¼ exp �
Z2

2L2
g

 !
ð28Þ

with

wmax ¼ ð2LgÞ
�2; ð29Þ

(b) a linear variance distribution

wðZÞ ¼ 2wmaxjZj ð30Þ
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yielding

rðZÞ ¼ exp �
jZj
Ll

� 

ð31Þ

with

wmax ¼ L�1
l : ð32Þ

Here Lg and Ll denote the Gaussian and Laplacian correlation lengths, respectively, made
dimensionless by the rod span.
The correlation coefficients obtained from a quadratic and a linear spanwise variance of the phase,

respectively, are plotted in Fig. 8. Numerical values, obtained from a randomly generated Gaussian
distribution of *j; are compared with the Gaussian and Laplacian functions of the span spacing Z:
By assuming a lift coefficient with the same phase distributions used to plot the correlation

coefficients in Fig. 8, Eq. (4) provides the acoustic radiation plotted in Fig. 9. Interestingly, an
amplitude modulation can be observed in the acoustic signals, resulting in a spectral broadening
around the Strouhal peak.
In Fig. 10(a) the acoustic intensity obtained from Eq. (11) by assuming a Gaussian and a

Laplacian correlation coefficient, as in Eqs. (14) and (15), respectively, are compared to the
acoustic intensity obtained from Eq. (4) with a Gaussian distribution of the lift phase *j along the
rod span. Deviations from Phillips’ prediction are only due to the fact that the rod has been
supposed to be finite for the numerical integration of Eq. (4). Thus, erroneous predictions can be
made if the Phillips’ model is applied to ‘‘short’’ rods. In this case, in fact, the approximation (13)
is not consistent.

6.3. Random amplitude modulation versus spanwise phase dispersion

The random amplitude modulation observed at high Reynolds numbers can be described as

pðtÞ ¼
P

2
½cosð2pf0tÞ þ cosð2p *fmtÞ�; ð33Þ
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Fig. 8. Correlation coefficients resulting from random phase distributions with a quadratic (27) and a linear (30)

spanwise variance of the vortex shedding phase. Lengths are made dimensionless by the rod span. (a) Gaussian

correlation coefficient. Comparison between the analytical expression (28) and numerical values obtained by means of

the quadratic variance distribution (29). —— Lg ¼ 0:222; — — Lg ¼ 0:444; - - - - Lg ¼ 0:666: (b) Laplacian correlation

coefficient. Comparison between the analytical expression (31) and numerical values obtained by means of the linear

variance distribution (32). —— Ll ¼ 0:222; — — Ll ¼ 0:444; - - - - Ll ¼ 0:666:
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where *fm denotes a random frequency which differs from f0 only slightly. Upon setting *fb ¼
f0 � *fm; *fb being the random beat frequency ð *fb5f0Þ; Eq. (33) yields

pðtÞ ¼ P cos 2p f0 �
*fb

2

� 

t

� �
cos 2p

*fb

2
t

� 

CP cosð2pf0tÞ cosðp *fbtÞ: ð34Þ

At two different spanwise positions the pressure signals are

p1ðtÞ ¼ P cosð2pf0tÞ cosðp *fb1tÞ; p2ðtÞ ¼ P cosð2pf0tÞ cosðp *fb2tÞ: ð35Þ
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Fig. 9. Sound from a compact rod at a distance r0 ¼ 138 and an observation angle y ¼ 901; obtained by forcing a

Gaussian correlation coefficient into Eq. (4): (——) Lg ¼ 0:222; (— - —) Lg ¼ 0:444; (- - - -) Lg ¼ 0:666: The values

d ¼ 0:016 m; l ¼ 0:3 m; VN ¼ 20 m=s; Cl max ¼ 0:75; r0 ¼ 138 and y ¼ 901 have been used in the computation. (a) Time

trace of the acoustic pressure; (b) spectrum of the acoustic pressure.
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Fig. 10. Sound intensity from a rod for different values of the correlation length. Comparison between Phillips’

analytical results and the compact dipole formulation (4), with a randomly generated spanwise phase distribution of the

unsteady lift coefficient. (a) Gaussian spanwise correlation coefficient; (b) Laplacian spanwise correlation coefficient

(——) Compact dipole formulation; (- - - -) Phillips’ model.
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The resulting correlation coefficient is given by

rðZÞ ¼ E½cosfpð *fb1 � *fb2Þtg�: ð36Þ

This expression coincides with that given in Eq. (18) if the random quantity pð *fb1 � *fb2Þt is
interpreted as a random phase *j: This holds if the random process is ergodic, which is the case of
the flow considered in the present study.
A major consequence of this statistical equivalence is that the spectral broadening observed in

experiments around the Strouhal peak can be partially explained and modelled through a
spanwise randomness of the vortex shedding phase.

6.4. Aeroacoustic implementation of the statistical model

Statistical pressure measurements on the rod surface provide the correlation coefficient rðZÞ:
This can be related to a variance spanwise distribution wðZÞ ¼ �2 lnfrðZÞg: Then, wðZÞ is used to
generate a random phase sequence *jðZi; tjÞ along the rod span.
Consistently with the observed vortex shedding behaviour, phase jumps are only permitted

sporadically every two or three shedding cycles. Furthermore, jump synchronization at two
different spanwise sections is avoided by slightly randomizing the time at which the phase jump
occurs.
The random phase is then converted into a random perturbation of the retarded time

by writing

*tretðZ; tÞ ¼ tretðZ; tÞ þ
*jðZ; tretðZ; tÞÞ

2p St
; ð37Þ

where tretðZ; tÞ denotes the deterministic retarded time obtained from the dimensionless retarded
time equation (3).
The aeroacoustic prediction can thus be performed by forcing into Eqs. (1) and (2) a spanwise

random dispersion of the retarded time *tretðZ; tÞ: This is equivalent to introduce a loss of
coherence into the spanwise repetition of the two-dimensional aerodynamic field.
Interestingly, the same two-dimensional aerodynamic field can be used to predict the acoustic

pressure by using different seeds of the random phase distribution. Then, averaged acoustic
spectra can be computed in a similar way as in the experiments.

7. Aerodynamic results

In Fig. 11, contours of the turbulent kinetic energy shows the vortical structures in the wake of
the rod. These induce the aerodynamic force plotted in Fig. 12. The Strouhal frequency f0 is about
293 Hz and the corresponding Strouhal number is 0:23; which slightly differs from the
experimental value of 0:2: The unsteady lift exhibits odd harmonics ðf0; 3f0;yÞ; whereas the
unsteady drag exhibits even harmonics ð2f0; 4f0;yÞ: This is because the vortices shed from either
sides of the cylinder give the same contribution to the drag and opposite contributions to the lift.
The amplitude of the fluctuating lift is Cl max ¼ 0:65 which is greater than the experimental value
of 0:5 [24,10]. This discrepancy can be partially explained by considering that the experimental
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Fig. 11. Kinetic turbulent energy during a vortex shedding period. Snapshots clockwisely disposed.
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Fig. 12. Aerodynamic force on the cylinder: (——) Cl ; (- - - -) Cd : Signals (left), spectra (right).
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vortex shedding is not fully correlated along the rod span and thus results in smaller lift
fluctuations. It is interesting to notice that the two-dimensional RANS prediction only features a
deterministic flow unsteadiness, providing a periodic flow behaviour. The spectral broadening
around the Strouhal frequency in Fig. 12(a) is indeed a by-product of the signals truncation,
whose effects can be reduced by a data windowing, but not completely removed.
Fig. 13 shows the wall pressure coefficients at f ¼ 01 and f ¼ 901: A comparison between

Figs. 12 and 13 shows that the wall pressure at the base point ðf ¼ 01Þ and the drag have similar
spectral behaviours. Analogously, the wall pressure at f ¼ 901 and the lift also do. This confirms
Phillips’ assumption of considering the wall pressure signal at f ¼ 901 as representative of the
fluctuating lift. The base suction coefficient is �CpB ¼ 1:01 which is smaller than the experimental
value of about 1:2 [21].
Counter-rotating vortices are shed from the cylinder at a Strouhal number St ¼ 0:23: The

overprediction of the vortex shedding frequency from a two-dimensional rod is a common CFD
result [22] which can be explained to some extent. As argued by Roshko [23], the length of the
mean recirculating region behind the rod results from a dynamic equilibrium between the base
suction coefficient, the pressure distribution upon the recirculating bubble and the mean Reynolds
stresses ru0v0 in the separated flow region. Hence, higher Reynolds stresses correspond to shorter
mean recirculating regions. In a 3-D flow a part of the energy extracted from the mean flow is used
to maintain spanwise velocity fluctuations. As a consequence, the mean recirculating region
extends farther from the cylinder and the Strouhal frequency is smaller than in a computed 2-D
flow.
Letting /S denote the local average of a quantity over a vortex shedding period, the following

quantities are plotted in Figs. 14 and 15:

* mean pressure coefficient, i.e.,

/CpS ¼
/p � pNS
1
2
r
N

V2
N

; ð38Þ
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Fig. 13. Pressure coefficient on the cylinder surface. (——) f ¼ 901; (- - - -) f ¼ 01: Signals (left), spectra (right).
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* root-mean-square pressure coefficient, i.e.,

Cpr:m:s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðCp �/CpSÞ2S

q
; ð39Þ

* dimensionless mean velocity, i.e.,

/VS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/uS2 þ/vS2

p
VN

; ð40Þ

* dimensionless root-mean-square velocity, i.e.,

Vr:m:s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðunx=VN þ vny=VN �/VSÞ2Sþ 2

3
/kS

q
: ð41Þ

(a) (b)

(c) (d)

Fig. 14. Mean and fluctuating flow past the cylinder. (a) /VS; (b) Vr:m:s; (c) /CpS; (d) Cpr:m:s:
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Here nx ¼ /uS=/VS and ny ¼ /vS=/VS are the components of the mean flow direction and
/kS denotes the mean turbulent kinetic energy.3

The mean velocity field in Figs. 14(a) and 15(c) highlights the recirculating region behind the
rod. It can be observed that the downstream point of minimum /VS at ðx=d ¼ 1:2; y ¼ 0Þ
coincides with the point of maximum Vr:m:s: (see Fig. 15(c)). Conventionally, such a point defines
the vortex formation length lF : Measurements made by Szepessy and Bearman [10] over a wide
range of Reynolds numbers and rod aspect ratios show a vortex formation length of about 1:5d:
Thus, consistently with Roshko’s [23] model, a two-dimensional computation provides a smaller
mean recirculating region behind the rod.
Fig. 15(a) shows the pressure field on the rod surface. The Cpr:m:s: peaks at f ¼ 911; which

marks the mean location of the separation point.
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Fig. 15. Mean and fluctuating flow past the cylinder. (a) Wall pressure field: —— /CpS; - - - - Cpr:m:s; (b) pressure field
in the wake of the rod ðy ¼ 0Þ: —— /CpS; - - - - Cpr:m:s; (c) velocity field in the wake of the rod ðy ¼ 0Þ: —— /VS;
- - - - Vr:m:s:

3Eq. (41) is based on the hypothesis of local isotropy of the turbulent velocity field, i.e., k ¼ 3
2

u0u0; where u0 is the

Reynolds fluctuating component of the velocity field in the x direction. Clearly, in the framework of unsteady RANS

modelling, a fluctuating k only makes sense if the averaging time is longer than that associated with the slowest

turbulent motions, but is much smaller than the time scale of the flow unsteadiness (the vortex shedding period in the

present study).
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In Fig. 16 the predicted Strouhal peak of the cross-spectrum between a wall pressure signal at
f ¼ 901 and that at different f around the cylinder is checked against the experimental data.
Discrepancies in the separated flow region can be observed up to fC501: Furthermore, as
previously discussed, the measured cross-spectrum peaks at f ¼ 1001:
The cross-spectra peak values at the first and second harmonics are plotted in Fig. 16(b) and (c),

respectively. A fairly good agreement arises between experimental data and numerical predictions.
Because of the major contribution given by the rod base point to the first harmonic ð2f0Þ
fluctuations, the first harmonic peak of the cross-spectrum is maximum when the movable probe is
at f ¼ 01: In addition, a local maximum occurs at the angular position f ¼ 851: At the second
harmonic (3f0) the computed cross-spectrum peaks when the movable probe is at f ¼ 121; whereas
the experimental data exhibit a maximum at about f ¼ 251: Furthermore, both the numerical and
the experimental cross-spectra exhibit a local maximum when the movable probe is at f ¼ 951:
Comparisons between numerical and experimental values of some representative quantities are

summarized in Table 1.

8. Acoustic results

In this section acoustic results are presented and discussed. The three-dimensional flow
necessary for the acoustic computation is recovered by a spanwise repetition of the computed
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Fig. 16. Peaks of the normalized cross-spectrum amplitude jS12=maxðS12Þj between a reference probe at f ¼ 901 and

probes at different f: (a) f ¼ f0; (b) f ¼ 2f0; (c) f ¼ 3f0: ð3Þ Experimental data; (——) RANS results.
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two-dimensional flow. A deterministic repetition is referred to as 2-D, whereas, a randomly
perturbed repetition is referred to as 3-D (spanwise statistical model). The wave propagation is of
course three-dimensional, since the three-dimensional free space Green function is used in the
FW–H integral formulation.
Firstly, the consistency of the no-quadrupole approximation is checked by comparing 2-D

results obtained from different integration surfaces. Secondly, 2-D and 3-D results are checked
against experimental data.
In Fig. 17(b) the sound directivities computed through Eqs. (1) and (2) applied to the surfaces in

Fig. 17(a) are plotted. The agreement within 1 dB; which is fairly good, shows both the
consistency of the penetrable surface FW–H formulation and the physical adequacy of neglecting
the quadrupole contribution in the acoustic prediction.
The corresponding pressure signals computed at y ¼ 901 from the four integration surfaces are

plotted in Fig. 18. The relative differences Dp0=maxðjp0jÞ between the S1 results and those from S2
to S4 are plotted in Fig. 19. Significant discrepancies occur only for the outer surface S4 and are

Table 1

Comparison between experimental data and RANS results

Experimental Numerical

St 0:2a 0:234
Cl max 0:5a,c 0:65
Cd 1:1a 0:95d

�CpB 1:2b 1:01
lF 1:5c 1:2

aExperimental data from Schewe [24].
bExperimental data from Williamson [21].
cExperimental data from Szepessy and Bearman [10].
dExperimental data from the predicted drag coefficient does not account for the viscous stresses.
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Fig. 17. Directivity pattern (right) obtained by integrating upon different surfaces (left) around the cylinder: (——) S1

(cylinder surface r ¼ 8� 10�3 m); (....) S2 ðr ¼ 9:11� 10�3 mÞ; (- -) S3 ðr ¼ 1:67� 10�2 mÞ; (— —) S4 ðr ¼ 3:58�
10�2 mÞ: 2-D computations.
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likely to be due to a degraded CFD accuracy far from the cylinder. The spectra of Dp0=maxðjp0jÞ in
Fig. 19(b) exhibit peaks at both even and odd harmonics. Although the reciprocal influence
between physical and numerical effects on the observed discrepancies cannot be established
without computing the volume contribution, these results confirm that the quadrupole
contribution can be neglected in the present low Mach number aeroacoustic prediction.
In Figs. 20–22, 3-D computations are checked against 2-D computations and experimental

measurements. A Gaussian correlation length of 5d is used in the spanwise statistical model. The
computed acoustic spectra at each observation point are obtained by averaging over 100 spectra,
each obtained with a different value of the random generation seed.
In Fig. 20 a comparison is shown between 2-D and 3-D acoustic signals. The random phase

distribution along the rod span clearly results in a randomly amplitude modulation.
In Fig. 21, 2-D and 3-D computations are checked against experimental data. The measured

power spectral density have been integrated upon frequency intervals of Df ¼ 12 Hz:
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Fig. 18. Acoustic pressure signals computed from: (——) S1; (....) S2; (- -) S3; (— —) S4. 2-D computations at an

observation angle y ¼ 901:
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Fig. 19. Relative difference between S1 results and results from: (....) S2; (- -) S3; (— —) S4. 2-D computations at an

observation angle y ¼ 901:
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Furthermore, in order to take into account the aerodynamic Strouhal frequency overprediction,
the experimental data ðf ; dBÞ have been scaled to ðf 0; dB0Þ; i.e.,

f 0 ¼
Stnum

Stexp

f ; dB0 ¼ dB þ 20 log
Stnum

Stexp

� 

; ð42Þ

where the level correction accounts for the fact that the sound level is proportional to the vortex
shedding frequency, as shown in Eq. (10).
As expected from a deterministic flow prediction, 2-D results only exhibit harmonic peaks

without spectral broadening. On the contrary, forcing an ad hoc random behaviour permits to
better fit the broadband noise levels. Moreover, the harmonic peaks are better predicted by 3-D
computations.
At frequencies higher than about 3000 Hz the sound pressure level is underestimated. However,

as previously pointed out, the experimental data are likely to be contaminated by the background
noise which persists over a wider frequency range.
In Fig. 22 the 3-D prediction of the noise directivity is compared to the measured one.

Numerical results have been obtained by adding the Fourier contributions in the overall
frequency range, i.e., ½12 Hz; 12:4 kHz�; whereas the experimental values have been obtained by
integrating the power spectral density upon the frequency range ½100 Hz; 1000 Hz�: The agreement
is good. Furthermore, a dipole-type sin y interpolation of the experimental data shows that the
maximum radiation occurs at an observation angle slightly greater than 901: This is confirmed by
the numerical prediction.

9. Conclusions

A hybrid Aeolian tones RANS/FW–H aeroacoustic prediction was performed at a Reynolds
number of 2:2� 104:
A deterministic periodic flow was predicted through a two-dimensional RANS approach. The

Strouhal frequency was overestimated and the vortex formation length was underestimated. These
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Fig. 20. Acoustic signals: (——) 2-D computation; (- - - -) 3-D computation.
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results can be justified by invoking the fact that, in a two-dimensional computation, all the energy
extracted from the mean flow is used to maintain in-plane fluctuations.
The application of the FW–H acoustic analogy to penetrable integration surfaces around the

cylinder showed that the direct contribution of the detached eddies to the overall sound remains
negligible, even though the lower end of the spectrum might be affected by surrounding
broadband jet noise.
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Fig. 21. Acoustic spectrum: ð3Þ experimental data; (——) 3-D computation; (— —) 2-D computation.
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Acoustic results based on the spanwise repetition of the computed two-dimensional flow only
featured the spectral harmonic peaks. Therefore, in order to partially recover the three-
dimensional character of the flow, a statistical behaviour of the vortex shedding phase was forced
into the spanwise repetition of the aerodynamic field. Phase lags were modelled on the basis of
two-point statistical measurements and allowed the acoustic signals to undergo ad hoc amplitude
modulations. As a consequence, the spectral broadening around the shedding frequency and its
harmonics was quite well featured by merely performing a two-dimensional aerodynamic
computation.
This type of approach is a promising tool wherever full three-dimensional flow computations

are not affordable (as in turbomachines, for instance): two-dimensional unsteady RANS provides
a deterministic unsteady flow to which the statistical model may be applied.

Appendix A. Coherence function and correlation coefficient

The coherence function Gxy between two signals xðtÞ and yðtÞ is defined as

Gxyðf Þ ¼
jSxyðf Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sxxðf ÞSyyðf Þ
p ; ðA:1Þ

where Sxyðf Þ is the cross-power spectral density Sxyðf Þ ¼ TFfCxyðtÞg; with

CxyðtÞ ¼ lim
T-N

1

T

Z T

0

xðtÞyðt � tÞ dt ðA:2Þ
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Fig. 22. Directivity pattern: (——) 3-D computation; ð		Þ experimental data; (— —) K sin y interpolation.
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and TF denoting the Fourier transform. For an ergodic process CxyðtÞ can be interpreted as the
correlation function between xðtÞ and yðtÞ: The correlation coefficient r is defined as

r ¼
Cxyð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cxxð0ÞCyyð0Þ
p ¼

R
N

�N
Sxyðf Þ dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

N

�N
Sxxðf Þ df

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
N

�N
Syyðf Þ df

q : ðA:3Þ

In the case of two tuned monochromatic signals it results that r ¼ Gxyðf0Þ:

Appendix B. Symbols in the FW–H acoustic analogy

The aerodynamic field is introduced into Eqs. (1) and (2) in terms of conservative quantities:
the flow density r; the linear momentum r *ui; *ui being the relative velocity of the flow with
respect to the integration surface f ¼ 0; the specific total internal energy rE and the
specific kinetic turbulent energy rk: A description of all the involved quantities is reported
as follows:

pd ¼ 1
2
r0U

2
ref ; y ¼ tUref =lref ; Mref ¼ Uref =c;

Vi ¼ vi=Uref ; Vn ¼ Vi #ni; *ui ¼ ui � vi;

X ¼ x=lref ; Y ¼ y=lref ;

#ri ¼
Xi � Yi

jX� Yj
; R ¼ jX� Yj;

Mi ¼ vi=c; Mr ¼ Mi #ri; ’Mr ¼ ’Mi #ri; Mor ¼ Moi #ri;

s ¼
r
r0
; qi ¼

ðr *uiÞ
ðr0Uref Þ

; e ¼
ðrEÞ

ðr0U
2
ref Þ

; k ¼
ðrKÞ

ðr0U
2
ref Þ

;

Cp ¼ 2 ðg� 1Þ e �
qiqi

2s
� k

h i
�

p0

2pd

� �
;

’Cp ¼ 2ðg� 1Þ ’e �
qi ’qi

s
þ ’s

qiqi

2s2
� ’k

� �
;

li ¼
Cp

2
#ni þ Viqn þ

qiqn

s
;

wi ¼
’Cp

2
#ni þ

Cp

2
’#ni þ ’Viqn þ Við ’qi #niÞ þ Viðqi

’#niÞ þ
’qiqn

s
þ

qið ’qi #niÞ
s

þ
qiðqi

’#niÞ
s

�
qiqn

s2
’s;

qn ¼ qi #ni; lM ¼ liMi; lr ¼ li #ri; wr ¼ wi #ri:

In the above expressions p0 and r0 are the quiescent fluid pressure and density, respectively, Mo

denotes the observer Mach number, #ni is the unit vector pointing out of the integration surface
and upper dots denote derivatives with respect to the dimensionless time y: The loading-noise
term wi is the dimensionless time derivative of li:
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Other details concerning the rotor noise code Advantia and the implemented FW–H
formulation can be found in Refs. [19,25].
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