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Preface

This work deals with that branch of Aeroacoustics concerning the noise generated by the interaction
between vortical flows and rigid surfaces. It is the outcome of a PhD research shared among the
Dipartimento di Ingegneria Aeronautica e Spaziale at Politecnico di Torino and the Laboratoire de
Mécanique des Fluides et d'Acoustique at Ecole Centrale de Lyon.

Results concerning a nominal two-dimensional flow, the rod-airfoil configuration, are brought to-
gether with a description of the noise generation mechanisms in fluid-body interactions.

The rod-airfoil configuration is the object of part I, where I summarized my analytical contribu-
tions to the vortex-airfoil interaction problem and to the development of numerical methodologies of
aeroacoustic prediction.

The description of the sound generation mechanisms in fluid-body interactions is the object of
part II. This constitutes the theoretical basis on which I founded my PhD education.

Therefore, part I constitutes my PhD Thesis and part II should be assumed as formally separated by
part I. However, because of the great engagement required by writing part H, my opinion and feeling
are to include it in the present work and to consider part I and part II as substantially joined. Of
course, part I is in its definitive form, because it represents the outcome of a time constrained research.
On the contrary, thanks to its formal autonomy, part II will be reviewed in the next future.

Damiano Casalino
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Preface to part I

The first part of the present work is concerned with the aeroacoustic characterization of a low Mach
number rod-airfoil configuration, in which vortices shed from the rod are intercepted by the airfoil,
generating aerodynamic sound. Such a configuration was conceived at the Laboratoire de Mécanique
des Fluides et d'Acoustique (LMFA) of the Ecole Centrale de Lyon (ECL) as an effective benchmark
for both analytical and numerical predictions of the aerodynamic noise from lifting surfaces in vortical
flows.

A preliminary analytical study of the aerodynamic and acoustic field in a rod-airfoil configuration
founds the basis for successive experimental and numerical investigations. Furthermore, two chapters
can be inserted in the larger context of the numerical methodologies of aeroacoustic prediction. These
are chapter 6 and chapter 7, the former dealing with a new interpretation of the acoustic analogy
approach, the latter concerning with the aeroacoustic treatment of a nominal two-dimensional flow.

Acknowledgments must be made to Prof. Michel Roger of ECL for the fatherhood of the rod-airfoil
experiment, and to Prof. Cianfranco Chiocchia of PT for having inspired to the author the analytical
approach for the vortex-airfoil interaction aerodynamics. The author is particularly indebted to Prof.
Chiocchia for his useful teachings in the field of unsteady aerodynamics.

11



12



i

Intro ion

The interaction between an unsteady flow and a solid structure immersed in the flow generates aero-
dynamic sound, even when the structure is sufficiently rigid to not vibrate under the action of the
fluid.

A flow perturbed by vortical disturbances is a particular case of unsteady flow. The vortical dis-
turbances can be produced by fluid motion relative to solid boundaries or by the instability of a free
shear-layer separated from a steady surface.

Velocity fluctuations in proximity of a solid boundary induce hydrodynamic pressure fluctuations.
This coupling mechanism between vortical and pressure fluctuations is commonly referred to as surface
blockage effect. The pressure field in the vicinity of the body feeds a far acoustic field. Thus, aerody-
namic sound is generated as a by-product of the surface blockage effect. If the characteristic size of the
body is not far higher than the acoustic wavelength, then the surface blockage effect provides a sound
generation mechanisni of dipole type.

A portion of the kinetic energy of a vortical flow can be directly converted into acoustic energy.
This sound generation mechanism is of quadrupole type and is related to the unsteady Reynolds stresses
in a turbulent flow. At low Mach numbers, the blockage effect provides a more effective conversion
mechanism of vortical kinetic energy into acoustic energy. Therefore, the dipole radiation dominates
on the quadrupole one.

In several engineering configurations devices are arranged so that downstream bodies are embedded
in the wakes from upstream bodies. Typical examples are those of a bank of heat exchanger tubes
in which vortices from upstream cylinders impinge on downstream cylinders, a turbomachinery stage
where the wakes from inlet vanes are chopped by the rotor blades, and a helicopter rotor whose blades
can interact with the tip-vortices shed from the preceeding blades. In the present study vortices are
shed from a rod and are convected towards a downstream airfoil. Both the rod and the airfoil generate
aerodynamic sound. However, the more effective aeroacoustic sources are located near the airfoil leading
edge where the vortical flow induces pressure fluctuations of higher amplitude.

A vortex-airfoil interaction is predominantly affected by three factors: the distance of the oncoming
vortex, the size of the vortex core and the orientation of the vorticity field with respect to the airfoil
leading edge.

When a vortex impinges directly onto an airfoil leading edge it is distorted and split, provided that
the leading edge is sufficiently sharp with respect to the vortex viscous core. When the vortex size is
quite smaller than the curvature radius of the leading edge, the interaction dynamics is strongly affected
by the geometrical configuration (airfoil angle of attack, offset between the vortex core and the leading
edge, etc.). Both the distortion of the vorticity field and the sensitivity of the vortex trajectory are due
to the nonlinear character of the flow.

In the present work we investigate the influence of the vortex distortion and the vortex trajectory
on the vortex-airfoil interaction noise. Experimental measurements of wall pressure correlations are
performed on the airfoil surface in order to detect the influence of the airfoil angle of attack on the

13



trajectory of the incident vortices. Analytical models of the vortex-airfoil interaction problem are
developed which allow to relate the acoustic radiation to the vortex kinematic in proximity of the airfoil.
Numerical solutions of the Navier-Stokes equations are performed in order to describe quantitatively
the vortical flow in the wake of the rod and past the airfoil.

The orientation of the incident vorticity with respect to the airfoil leading edge has a deep influence
on the physics of the vortex-airfoil interaction process. In terms of unsteady loading and sound gener-
ation, the most severe conditions occur when the airfoil leading edge is parallel to the vorticity vector.
Based on this assumption, a two-dimensional analysis is hereafter performed.

The flow past a circular rod remains two-dimensional up to Reynolds numbers of about 180. At
higher values, three-dimensional fluctuations are superimposed on the dominant vortex shedding. Con-
sequently, the pressure on the rod surface and the velocity in the near wake exhibit a random amplitude
modulation. Furthermore, due to the rapid distortion of the vorticity field near the airfoil leading edge,
a strong vortex-airfoil interaction is an intimately three-dimensional phenomenon.

Because of the intrinsic three-dimensional character of both the vortex dynamics in the wake of a
rod and a direct vortex-airfoil interaction, the flow in the rod-airfoil configuration is two-dimensional
only nominally. A spanwise statistical model is thus proposed as an alternative to a three-dimensional
aerodynamic computation. The model allows to perform aeroacoustic predictions on the base of a
two-dimensional aerodynamic field, but accounting for the three-dimensional character of the flow.

Aeroacoustic predictions of external flows are usually based on the acoustic analogy by Lighthill [1].
In the present work we use the Ffowcs Williams & Hawkings' [2] acoustic analogy formulation which
extends Lighthill's model to flows confined by surfaces in arbitrary motion. The traditional approach
based on a retarded time integral formulation is re-interpreted as an advanced time approach. This
new numerical methodology allows to perform an aeroacoustic prediction parallelly to an aerodynamic
simulation. Moreover, it does not require the iterative solution of a retarded time equation.

1.1 A Brief Description of the Vortex Dynamics in a Rod-Airfoil
Configuration

The main terminology used throughout part I is herein presented with reference to the rod-airfoil
configuration sketched in Fig.1.1, and to the following qualitative description of the vortex dynamics
in the rod-airfoil configuration.

Leading edge
Upper side

Trailing edge

vo0

Rod

4C,,/ / Airfoil

\ / Lower side
N

Airfoil wake,
Rod wake, trailing edge vortices

oncoming vortices

FIGURE 1.1: Rod-airfoil configuration.

The wake behind a rod is unstable at values of the Reynolds number higher than about 49. This
instability is responsible for an alternate and periodic formation of counter-rotating vortices: clockwise
and counterclockwise vortices shed from the upper and lower side of the cylinder, respectively. Thus, a
double row of staggered vortices is convected in the wake of the cylinder. This flow configuration was
analytically described by von Kármán in 1912 and is thus referred to as Kármán vortex street.
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1.2. THEORETICAL AND PRACTICAL RELEVANCE OF THE ROD-AIRFOIL CONFIGURATION 15

In 1878 Strouhal [3] had already observed that a rod of diameter d, moving at a velocity U, generates
sound of frequency fo = St U/d, where St is a constant. Later on, Rayleigh [4] related this tonal sound
emission to the periodic vortex shedding from the rod. As confirmed by innumerable experiments, the
Strouhal number St is equal to 0.19-0.20 in a wide range of Reynolds numbers.

In a rod-airfoil configuration the vortex street intercepts the airfoil. The resulting interaction gen-
erates aerodynamic forces on the airfoil and aerodynamic noise in the far field. This interaction can be
accompanied by a variety of mechanisms: vortex distortion near the airfoil leading edge, vortex split-
ting in two fragments convected along the two airfoil sides, boundary-layer separation and consequent
formation of secondary vortices at the leading edge, spanwise velocity fluctuations, etc. At the airfoil
trailing edge, the fluid viscosity is responsible for a vortex shedding process: a vortical wake is shed
by the trailing edge and is convected downstream of the airfoil. The intensity of the wake depends on
the instantaneous conditions of the flow past the airfoil. Therefore, the trailing edge vortex shedding
is an unsteady process. In the present work this is modeled as a continuous vortex-sheet as well as a
sequence of discrete vortices.

The pressure fluctuations induced by the oncoming vortical disturbances on the airfoil surface act
as acoustic sources. Clearly, the frequency of the radiated noise depends on the frequency of the
aerodynamic process. If the airfoil chord is much smaller than the acoustic wavelength, the far pressure
field is not affected by the way the sources are distributed upon the airfoil surface. In this case the
airfoil is acoustically compact and the acoustic field depends only on the total aerodynamic force exerted
on the airfoil. As a result, the directivity of the acoustic intensity is essentially that of a dipole with
a radiation axis normal to the free-stream direction. On the contrary, if the airfoil is not acoustically
compact, the directivity of the far pressure field depends on the source distribution upon the airfoil
surface. In this case, noise is mainly generated in proximity of the airfoil leading edge and is diffracted
by the remaining part of the airfoil.

1.2 Theoretical and Practical Relevance of the Rod-Airfoil Configu-
ration

Due to its physical completeness, the rod-airfoil configuration allows a basic investigation of different
sound generation mechanisms covering several aspects of practical interest. Therefore, the rod-airfoil
configuration is herein considered as an academic benchmark for numerical methods of aeroacoustic
prediction.

The rod-airfoil configuration combines true broad band noise with a narrow band noise generation.
The latter is due to the airfoil interaction with the Kármán vortex street. Since this flow configuration
is only partially coherent in time and in the spanwise direction, the radiated sound is not purely tonal.
The true broad band part of the acoustic spectrum is generated by the airfoil interaction with small
scale turbulent structures. These are convected in the wake of the rod as well as generated by the
ilnpact of large scale vortices onto the airfoil leading edge. Therefore, the rod-airfoil acoustic spectrum
is characterized by:

- a prominent peak corresponding to the Strouhal frequency;

- a slight broadening about the Strouhal frequency, which is clue to:

three-dimensional vortex dynamics in the wake of the rod and near the airfoil leading edge;
nonlinear effects during the impingement of large scale vortices onto the airfoil leading edge;

- A true broad band behaviour due to the airfoil interaction with small scale turbulent structures.

Many analytical formulations in linear aerodynamics describe the airfoil response to a turbulent
oncoming flow as a superposition of effects, each related to a sinusoidal velocity perturbation which
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is referred to as a gust. In a similar way, many aeroacoustic models describe the acoustic spectrum
radiated by an airfoil in a turbulent stream as resulting from the superposition of effects, each related
to one spectral component of the incoming vortical flow. In a rod-airfoil configuration the vortex street
in the wake of the rod acts as a periodic upwash gust convected past the airfoil. Therefore, placing a
rod ahead of an airfoil is an effective way to investigate the airfoil response to a gust of wavenumber
depending on the rod diameter, and to explore the limits of validity of some analytical models of
aeroacoustic prediction.

From a numerical point of view, the rod-airfoil configuration is a good benchmark for a Computa-
tional Fluid Dynamics (CFD) code. For the sake of a rod-airfoil aeroacoustic prediction, a CFD code is
required to simulate both the large scale coherent structures, which exhibit a quasi-periodic behaviour,
and the small scale turbulent structures, which exhibit a random behaviour. In the present study two-
dimensional unsteady Reynolds Averaged Navier-Stokes (RANS) computations are performed. These
are expected to reproduce:

- the large scale coherent structures in the wake behind the rod;

- nonlinear effects during a direct vortex-airfoil interaction, although constrained in a two-dimensional
domain.

The large scale vortices generate the radiation peaks at the Strouhal frequency and higher harmon-
ics. The nonlinear effects may be partially responsible for the acoustic spectral broadening about the
Strouhal peak.

1.3 Part I Overview

Part I is concerned with a low Mach number rod-airfoil configuration. The following subjects are
treated:

an analytical description of the unsteady aerodynamic field of a Kármán vortex street convected
past a Kármán-Trefftz airfoil;

an analytical description of the acoustic field generated by a vortex-airfoil interaction;

a parametric study of the vortex-airfoil interaction problem by using the approaches in items 1
and 2;

an experimental study of the rod-airfoil configuration;

the development of numerical methodologies and computational libraries' for aeroacoustic pre-
dictions based on the Ffowcs Williams & Hawkings' acoustic analogy formulation (FW-H);

an analytical modeling of the spanwise statistical behaviour of a nominal two-dimensional flow;

a RANS prediction2 of the unsteady flow in the rod-airfoil configuration for two airfoil angles of
attack, and an acoustic prediction based on the computed aerodynamic field.

rotor noise prediction code has been developed by the author in the present context. This is referred to as Advantia
throughout this work.

2The author's direct contribution to the RANS simulation is restricted to the mesh generation, to the computation
management and to the post-processing of the presented results. The existing CFD code Proust is used, which has been
developed in a turbomachinery context at LMFA.



The above seven items are the object of the next seven chapters. An overview of part I is reported
below.

In chapter 2 an analytical model of the aerodynamic vortex-airfoil interaction problem is presented.
The cirenlation theory is employed in order to describe, by means of a conformal mapping technique,
the kinematics of a given distribution of line-vortices convected past a thick cambered airfoil. A Kutta
condition is imposed at the airfoil trailing edge and results in a continuous vortex shedding in the airfoil
wake. In a first approach, the wake is described as a vortex-sheet convected along a rectilinear path at
the free-stream velocity. In a second approach, the wake is described as a distribution of line-vortices
freely convected at the local flow velocity.

In chapter 3 a characterization of the aeroacoustic source distribution on the airfoil surface is
performed by splitting the time derivative of the pressure field in four bilateral contributions. These
account for the oncoming vortex contribution, the airfoil wake contribution, the vortex-airfoil interaction
contribution and the wake self-interaction contribution. Furthermore, a matched asymptotic expansion
of the hydrodynamic pressure field past the airfoil and the far acoustic field is performed in order to
describe how the vortex kinematics past the airfoil affects the acoustic far field.

In chapter 4 the aerodynamic formulation developed in chapter 2 is exploited in order to predict
the unsteady aerodynamic field of a given distribution of line-vortices convected past an airfoil. The
pressure field on the airfoil surface is then used to calculate the radiated acoustic field by means of a
FW-H acoustic analogy formulation, as described in chapter 3.

In chapter 5 the rod-airfoil experiment is presented and the experimental results are discussed.
Emphasis is given to the effects of the airfoil angle of attack on both the acoustic far field and the
wall pressure field. The former is measured at about one acoustic wavelength from the airfoil mid-
point and exhibits the spectral behaviour described in section 1.2. The latter is described by means of
two-point statistical measurements on both the rod and the airfoil surface. The rod results provide a
description of the spanwise statistical behaviour of the vortex shedding process and give evidence of a
three-dimensional vortex dynamics in the wake of the rod. The airfoil results shed light on some effects
of the airfoil angle of attack on the trajectories of the oncoming vortices.

In chapter 6 results concerning the numerical validation of the rotor noise code Advantia are pre-
sented. Advantia was developed in the present context in order to perform aeroacoustic predictions on
the base of a FW-H acoustic analogy formulation. Several test cases are discussed, which show the
applicability of Advantia to:

- arbitrarily moving surfaces;

- penetrable integration surfaces;

- a listener moving at a constant velocity along an arbitrary path.

The classical retarded time formulation is herein re-interpreted as an advanced time formulation. This
offers the advantage of an acoustic prediction parallel to an aerodynamic prediction. Thus, the concept
of a post-process acoustic prediction is partially surpassed. Moreover, since the advanced tilne is an
algebraic function of the emission time, the advanced time approach does not require the iterative
solution of a retarded time equation.

In chapter 7 a description of the three-dimensional vortex dynamics in the wake of a rod provides the
conceptual basis for the development of a new aeroacoustic methodology for nominal two-dimensional
flows. The method is based on a spanwise statistical model that allows to perform aeroacoustic pre-
dictions by using a two-dimensional flow, but accounting, to some extent, for the three-dimensional
character of the real flow. The statistical approach is used to predict the noise generated by a circular
cylinder flow.

In chapter 8 results are presented of a numerical aeroacoustic characterization of the rod-airfoil
configuration. An unsteady RANS aerodynamic computation and a FW-H acoustic prediction are
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performed for two airfoil angles of attack. Both aerodynamic and acoustic results are checked against
experimental data.
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Vortex-Airfoil Interaction: Aerodynamic
Modeling

As discussed in section 1.1, an airfoil embedded in the oscillating wake of a cylinder is a source of
quasi-tonal noise. The acoustic radiation is maximum at the Strouhal frequency, being generated by
the interaction between the airfoil and the large scale vortices shed from the rod.

In the present chapter a semi-analytical model is developed for the vortex-airfoil interaction problem.
The flow is assumed to be two-dimensional, ideal, incompressible and irrotational. Therefore, the
circulation theory [5] and the conformal mapping technique are employed in order to determine the
unsteady pressure field induced by a line-vortex on the surface of a Kármán-Trefftz airfoil. A zero
velocity Kutta condition is imposed at the airfoil trailing edge. As a consequence, a vortical wake is
shed from the trailing edge into the field. Two approaches are used to describe the airfoil wake:

a fixed-wake model,

a free-wake model.

In the first approach, the airfoil wake is described as a vortex-sheet convected along a constant rectilinear
path at the free-stream velocity. The wake intensity 'y is thus determined by solving at each time-step
an integral equation for -y, with the right-hand side depending on the instantaneous positions of the
oncoming vortex. The kernel of the integral equation is a function of the geometrical parameters of the
airfoil.

In the second approach, the airfoil wake is described as a distribution of discrete vortices convected
at the local flow velocity. At each time-step a wake vortex is shed from the trailing edge and its
circulation is such that it cancels the velocity induced at the trailing edge by the other vortices in the
field.

The Kutta condition is a way to model the behaviour of a real viscous flow past a sharp trailing
edge. Thus, it is not a physical condition. As a consequence, spurious forces and spurious acoustic
sources may be generated at the trailing edge if the Kutta condition is not properly stated. In the
present chapter emphasis is given to the vortex shedding process concerning the generation of spurious
forces and spurious acoustic sources at the airfoil trailing edge.

The analytical model first developed for an isolated vortex convected past a Kármán-Trefftz airfoil
is then applied to a given distribution of line-vortices. Two distributions are considered:

a double row of counter-rotating vortices,

a circular cloud of equal vortices.

The former distribution is used to model a Kármán vortex street. The latter is used to describe a vortex
of finite size which can undergo a distortion in proximity of the airfoil leading edge. Furthermore, as
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shown in chapter 4, a Kármán vortex street can be also described as a double row of counter-rotating
clouds of line-vortices.

2.1 Introduction

A vortical flow on the surface of a body is a common source of unsteady loading, sound and vibrations.
In several engineering configurations devices are arranged so that downstream bodies are embedded

in the wakes from upstream bodies. Typical examples are those of a bank of heat exchanger tubes
in which vortices from upstream cylinders impinge on downstream cylinders, a turbomachinery stage
where the wakes from inlet vanes are chopped by the rotor blades, and a helicopter rotor whose blades
may interact with the tip-vortices shed from the preceeding blades.

A vortex-airfoil interaction is predominantly affected by four factors:

- the orientation of the oncoming vortex with respect to the airfoil leading edge,

- the distance of the oncoming vortex,

- the characteristic wavelength of the vorticity field,

- the mean flow incidence.

The orientation of the oncoming vorticity vector with respect to the airfoil leading edge depends
on the value of two angles. The first is that formed by the vorticity vector and its projection onto
the airfoil plane. The second angle is that formed by the projection of the vorticity vector onto the
airfoil plane and the airfoil leading edge. The latter angle is usually referred to as skew angle. Both the
unsteady pressure field on the airfoil surface and the vortex dynamics past the airfoil depend on these
two angles.

The effects of the vorticity orientation on the pressure field can be examined by considering a vortical
disturbance with spatial periodicity, frozenly convected past a thin airfoil. Such a flow configuration
is usually referred to as a gust. As shown by Graham [6] (see section 10.3.2 of part II), the space of
solutions of a gust-airfoil interaction problem can be divided into two sub-spaces, depending on the
value of a gust parameter. This parameter is related to the free-stream Mach number and to the skew
angle. In terms of unsteady loading and sound generation, the most severe conditions occur when the
airfoil leading edge is parallel to the vorticity vector. Therefore, two-dimensional analyses are commonly
performed, although a strong vortex-airfoil interaction is an intimately three-dimensional phenomenon.

The effect of the vorticity orientation on the vortex dynamics is mainly related to the distortion
of the vorticity field. This process takes different forms depending essentially n the orientation of
the vorticity vector and the thickness of the airfoil. A normal vortex-airfoil interaction, for example,
involves both a vortex bending and a vortex chopping. In the case of a thin airfoil, the vortex is chopped
but not significantly bended. The vortex chopping is accompanied by a compression of the vortex core
on one side of the airfoil and an expansion on the opposite side. Both the compressed and the expanded
portions of the vortex propagate away from the surface as the vortex moves along the airfoil. The terms
compression and expansion do not denote phenomena related to the compressibility of the fluid but to
the strength of the vorticity field. A review of this interaction mechanism is given by Marshall & Grant
{7].

A parallel vortex-airfoil interaction is accompanied by a deformation of the vorticity field in the
plane normal to the airfoil span. The smaller is the distance between the oncoming vortex and the
airfoil, the stronger is the vortex distortion. Hence, we will refer to as direct interaction a parallel
interaction with the vortex impinging directly onto the airfoil leading edge'. Accordingly, a nearly

'A direct interaction is commonly referred to in literature as head.on interaction.



b) Both the small scale and large scale vortex streets, at large values of the offset distance, are
convected along one side of the airfoil and preserve their structure.

direct interaction occurs when the deviation of the vortex trajectory from the airfoil plane is a small
fraction of the airfoil thickness.

The vorticity field is strongly distorted during a direct or nearly direct interaction. Furthermore,
the pressure field induced on the airfoil surface depends on the vorticity distribution especially when
the vortex is at a small distance from the airfoil. As a result, the vortex distortion must be taken into
account when a prediction is made of the unsteady loading and noise generated by a vortex-leading
edge interaction.

The characteristic wavelength of the vorticity field is the size of an isolated vortex, as well as the
wavelength of a gust. In the case of a Kármán vortex street from an upstream rod, for example, the
wavelength of the vorticity field is the distance between two vortices on the same row. The influence
of the gust wavelength on the unsteady flow past an airfoil is combined with the influence of the skew
angle. In fact, as shown by Graham [6], the gust parameter affecting the interaction dynamics depends
on both the skew angle and the gust wavelength. The influence of the size of an isolated vortex
can be related to the distortion of the vorticity field. The vortex distortion, in fact, is a nonlinear
rearrangement mechanism occurring when the curvature radius of the leading edge and the impinging
vortex have a comparable scale. On the contrary, when the vortex is of small size compared to the
curvature radius of the leading edge, say compact, the flow nonlinearity is responsible for a strong
dependence of both the vortex trajectory and the induced pressure field on the upstream position of
the vortex. In these terms the size of an oncoming vortex affects the dynamics of a vortex-airfoil
interaction. Moreover, as observed by Kaykayoglu & Rockwell [8], when a compact vortex moves along
the airfoil surface, it induces a wavelike pressure disturbance. The amplitude and the wavelength of
this convected disturbance affect both the resulting unsteady loading and interaction noise.

The mean flow incidence has a strong influence on a vortex-airfoil interaction. Effects related to
the flow acceleration past the leading edge (suction, boundary layer separation, etc..) are exalted by
the presence of an impinging vortical disturbance, with consequences on both the unsteady loading and
the sound generation. As shown by Goldstein et al. [9], the quadrupole noise from a loaded airfoil is
proportional to the mean flow circulation. At high airfoil angle of attacks, the quadrupole contribution
tends to become comparable to the dipole one. This is a consequence of the distortion of the impinging
vortical disturbances induced by the mean flow gradients in proximity of the airfoil leading edge.

Gursul & Rockwell [10] investigated the interaction between a vortex street and an elliptical airfoil.
Experiments were carried out in a water channel. The vortex streets impingingonto the elliptical airfoil
were generated by using upstream plates of different thickness. The Reynolds number based on the
plate thickness was in the range 309 - 619. The free-stream velocity was = 9.65 X 10_2 s and
kept constant in the experiments. Gursul & Rockwell showed that such interaction process is strongly
affected by two factors:

- the wavelength of the oncoming vorticity field, that is the distance between two next vortices on
the same row,

- the offset distance between the axis of the vortex street and the streamwise axis of the elliptical
airfoil.

Two vortex streets of different wavelength were considered: a large scale vortex street, and a small
scale vortex street. Thus, three flow configurations were observed:

a) both the small scale and the large scale vortex streets, at small values of the offset distance, are
split into two separate rows which embrace the airfoil.
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c) When one row impinges directly on the airfoil leading edge, only the large scale vortices are split
into less coherent structures. Moreover, these vortices are stretched in the cross-stream direction,
but no boundary-layer separation occurs. The small scale vortex street, on the contrary, behaves
as described in a) or in b).

Homer et al. [11] investigated the interaction between a vortex and a rotating blade. The blade had
an NACA-0015 symmetric section of chord 0.149 m. The wind tunnel speed was 47m/s, whereas the
rotor tip velocity was 59.25 rn/s. Different blade-vortex intersection configurations were investigated
by means of Particle Image Velocimetry (PIV) . During a direct blade-vortex interaction, the PIV data
showed some basic mechanisms. In proximity of the leading edge the vortex is first deformed and
then split into two fragments which are convected along the two airfoil sides. Because of the opposite
induction effect of the image vortex system, the convection velocity is different along the two airfoil sides.
The slower fragment spreads across the surface, whereas the faster one undergoes a slight distortion.
As the vortex fragments approach the trailing edge, secondary vortices are shed into the airfoil wake.
Finally, a further interaction occurs in the airfoil wake between the main vortex fragments and the
secondary vortices.

Lee & Bershader [12] investigated a direct blade-vortex interaction by means of holographic inter-
ferograms. The blade section was an NACA-0012 of 0.05 m chord and the span extended by 0.05 m.
The chord based free-stream Reynolds number was in the range 0.9 x 106 - 1.3 x 106. The free-stream
Mach number was in the range 0.5 - 0.7. Lee & Bershader observed that the impinging vortex induces
two opposite pressure peaks near the leading edge. These peaks collapse as the vortex passes above the
leading edge. As a consequence, a pressure wave is radiated from the airfoil into the field. Moreover,
a boundary-layer separation on the lower side of the leading edge was observed. This implies that the
effects related to the viscosity of the fluid play an important role in a strong blade-vortex interaction.

Boundary-layer separation and trailing edge vortex shedding are effects related to the viscosity of
the fluid. The latter have stimulated an exciting debate in the past on whether the presence of a
vortex-sheet behind an airfoil leads to a reduction of the noise radiation or not. Howe [13] considered
a turbulent eddy frozenly convected by a low subsonic flow along an acoustically compact airfoil. He
concluded that the imposition of a Kutta condition cancels the trailing edge diffraction contribution
and leads to a reduction of the airfoil interaction noise.

A review of the vortex-airfoil interaction problem can be found in chapter 10 of part II where
emphasis is given to the interaction noise generation. The problem of the trailing edge noise is reviewed
in chapters 8 and 9 of part H.

In the present chapter a semi-analytical model for the vortex-airfoil interaction problem is developed
on the base of the circulation theory [5]. The model is applied to describe the interaction between a
Kármán-Trefftz airfoil and a given distribution of line-vortices. The effects of the vortex distortion are
accounted for by describing the oncoming vortex as a cloud of line-vortices. The effects of the fluid
viscosity are modeled by employing a trailing edge Kutta condition.

2.2 The Aerodynamic Problem
In this section a discrete-vortex formulation of the aerodynamic problem is presented.

An ideal, incompressible, irrotational flow around a Kármán-Trefftz airfoil is herein described by
exploiting the circulation theory [5]. A conformal mapping technique is used to impose the boundary
condition on the airfoil surface. Additionally to a steady Kutta condition, a zero velocity unsteady
Kutta condition is imposed at the airfoil trailing edge. As a result, a vortical wake is shed into the field
and adds to the preexisting vortices convected past the airfoil.

In a first step, a free-wake formulation is developed by modeling the airfoil wake as a vortex-sheet
convected downstream at the free-stream velocity. As a result, an integral equation for the wake
intensity is obtained. In a second step, a free-wake formulation is developed by modeling the wake



as a distribution of discrete vortices. Emphasis is given to the unsteady Kutta condition and to the
existence of spurious acoustic sources at the trailing edge.

The model of an oncoming double row of counter-rotating vortices is presented, and its interaction
with the airfoil is discussed. Furthermore, a circular cloud of vortices is proposed as a way to describe
an oncoming vortex of finite size.

Some analytical results concerning the vortex-airfoil interaction problem are summarized in ap-
pendix 2 A. Some numerical aspects of the discrete-vortex method are discussed in appendixes 2 B, 2
C and 2 D.

2.2.1 Flow Model

In this subsection the theoretical background of the vortex method is briefly recalled in the light of the
present study.

An unsteady flow can be assumed to be incompressible if the following two conditions are satisfied

M«l (2.1)
LM
c0T (2.2)

where M, L and T are the Mach number, the length scale and the time scale of the flow, respectively.
The former is the steady-state condition of incompressibility, whereas the latter condition requires that
the time for an acoustic perturbation to cover the distance L is not greater than the time scale T of
the flow unsteadiness.

In the present study, a double row of counter rotating vortices is shed from a rod and is convected
past an airfoil of chord c = 0.lm. Although the origin of the double row is not directly taken into
account in tile analytical model, the resulting length and time scales govern the modeling choices. In
the experiments and simulations described in chapters 5 and 8, respectively, the double row of vortices
is shed from a d = 0.016m rod at the reduced frequency St fo d/V 0.2. Thus, the vortex shedding
period is

d 5dc
Ts = - (2.3)

J(,Vco C Vç

On the other hand, the time required by an oncolning vortex to cross the airfoil is

C
C -

vo0

Hence, the length scale L of the unsteady flow past the airfoil is e, whereas the time scale is

T = min (Tst,Tc)

As a result, the condition (2.2) provides M2 « 1. Since a free-stream Mach number Mo0 0.06 is
hereafter considered (Vo0 = 20m/s), both the conditions (2.1) and (2.2) are satisfied and the flow can
be supposed to be incompressible.

The dynamics of the vorticity field ci.' = V x y in an incompressible flow is governed by the equation

=(w.V)v+vV2w (2.6)

where D/Dt denotes the Lagrangian derivative. Equation (2.6) shows that the vorticity is a material
property of the fluid particles, convected at the local fluid velocity with some deformation and viscous
diffusion. Taking the integral of equation (2.6) on a material surface which is enclosed by a contour C

Dw
Dt
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and satisfy the relationships

and

provided that A satisfies the condition

/
FIGURE 2.1: Contour integration around a non-vanishing vorticity region.

shows that the circulation F about C can only change by diffusion of vorticity through the contour (see
Fig.2.1), namely

DF
dl

where

r=ffw.nds= v dl
iSA

A

v=V?5+V xA

V2= Vv

V2A - -v x y w

VA=0

(2.7)

(2.8)

and use of the Stokes' theorem has been made. The restriction of this result to ideal fluids was first
derived by Lord Kelvin and states that, for negligible viscosity, the circulation is conserved.

Given an arbitrary differentiable velocity field, there exists a scalar function q, called the scalar
potential, and a vector function A, called the vector potential, which are such that

According to Lamb [14], this result must be attributed to Hehnholtz and is usually referred to as the
Helmholtz decomposition theorem. It can be noticed that equation (2.12) can be always satisfied by
adding to A an inconsequential irrotational vector field V, namely

A' = A + V (2.13)

such that V2i7 = -v . A and A' satisfies equation (2.12).
The Helmholtz decomposition states that a vector velocity field can be decomposed into an irrota-

tional part Virr and a solenoidal part y501, such that

vs01 V x A and (2.14)

Jrr (2.15)

From equations (2.14) and (2.11) it follows that

= V x w (2.16)



whereas, from equations (2.10) and from the continuity equation

V. (pv) = 0

it follows that

v2= -
pDt

dz'V1(z,t) iffw(zIt)
z - z'

(2.17)

(2.18)

Hence, the dynamics of the vorticity field is described by the solenoidalpart of the velocity field, whereas
the acoustic aspects of the flow are related to the irrotational part of the velocity field.

The present study deals with a two-dimensional flow. In a two-dimensional flow, the term (w . V) y
which describes the rate of deformation of vortex lines, also called vortex stretching, vanishes and the
vorticity has only one component w in the direction normal to the flow plane. Thus, the vorticity
transport equation (2.6), neglecting viscosity, becomes

= 0 (2.19)

Moreover, a Lagrange stream function (x, y, t) can be introduced, such that

Usol = Wy, VSOI = E' (2.20)

the existence of i being guaranteed by the solenoid nature of y501. Evaluating V X VQ1 yields

V2b k = w k (2.21)

where k denotes the unit vector normal to plane of the flow. This Poisson equation for the stream
function & is equivalent to that for the solenoidal velocity (2.16), as can be verified by evaluating the
curl of equation (2.21). A solution of the Poisson equation (2.21) is

(x,y,t) = --- if w(x',y',t) ln Ir - r' dx'dy' (2.22)
A

where A denotes a fluid portion of non-vanishing vorticity and r - r'I = /(x - x')2 + (y - y')2. Thus,
differentiating under the integral sign provides

USOI
f[w(x',y,,t) dx'dy'

2ir j Irr'!2A

VS0,
i
if

w(x', y', t) (x - x')
dx' dy' (2.23)2ir rr'!2A

For a two-dimensional fluid motion a notation in complex variables is convenient and will be used
throughout the present chapter. Thus, introducing the complex velocity V01 = u501 + i vsa, equations
(2.23) can be written as

(2.24)

A

where z = z + y is the complex co-ordinate and dz' = dx' dy'. The superscript * denotes the complex
conjugate. The equivalence between the expressions (2.23) and (2.24) is guaranteed by the identity

1 (s - s') - i -
(2.25)z-z' z-z'!2
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If the vorticity is supposed to be confined to a number of points zj, the vorticity distribution is
given by

w(z) =>FjÖ(zzj) (2.26)

where Fj is the circulation of each line-vortex in the field. In this case the solenoidal velocity obtained
from equation (2.24) takes the form

V51(z) = (2.27)

Solution methods based on this kind of vorticity distribution are called discrete-vortex methods. Many
reviews of vortex methods for two-dimensional flows are available. The reader should refer to the works
of Clements & Maull [15], Saifman & Baker [16], Leonard [17], Aref [18] and Sarpkaya [19]. Furthermore,
some discrete-vortex methods applied to the vortex-airfoil interaction problem are described in section
10.4.1.1 of part II.

In the following subsections, an application of a vortex method to the vortex-airfoil interaction
problem will be discussed and attention will be drawn to the trailing edge problem.

2.2.2 The Kutta Condition and the Physical Role of Vortex Shedding
In actual flows, due to the action of viscous forces, vorticity is generated at solid boundaries. In a
high-Reynolds-number flow, the region with rotational flow is in general limited to a thin region near
the boundary. However, at sharp corners or on a strongly curved part of the boundary, the boundary
layer can separate, forming a free shear layer.

An inviscid flow model is devoid of the physical mechanism of the boundary layer separation which
must be forced by imposing a Kutta condition. At a sharp edge, in an unsteady potential flow, the
Kutta condition results in a generation of a thin vortical layer, which removes the singular behaviour
of the flow at the edge. As a result, the velocity remains finite at the separation point.

Different methods to impose the Kutta condition are quoted in literature. Depending on the way
in which the boundary conditions are satisfied, either by using a conformal Inapping or by using a
boundary element method, the implementation of the Kutta condition takes different forms. Since the
Kutta condition is not a physical condition but only a model of the flow behaviour near a trailing
edge, spurious effects can be generated by this model. Typically, spurious forces and spurious acoustic
sources may be produced. In the present chapter we show that a discrete-vortex model of the airfoil
wake, in which a vortex is shed at each time-step from the airfoil trailing edge and is convected at the
local flow velocity, does not introduce significant spurious forces and spurious acoustic sources.

The physical effects of the vortex shedding from a trailing edge on the vortex-airfoil interaction noise
are discussed in chapters 8 and 9 of part II. In a quite simplified picture of the flow, we see that the
vortex shedding lias a smoothing effect on the flow behaviour at the trailing edge. In other words, the
boundary layer separation from a sharp edge reduces the suction forces due to the acceleration of the
flow past the edge. This smoothing effect ultimately results in a reduction of both the aerodynamic
forces and the acoustic sources2 in proximity of the trailing edge.

A simple model problem solved by Howe [20] and described in section 6.5 of part II illustrates the
role of the vortex shedding on the interaction noise. Consider a line-vortex in proximity of the edge of
a semi-infinite rigid plate (x <0, y = 0). By assuming, for simplicity, that the shed vorticity rolls up
into a concentrated vortex, the total radiated sound at r = r(cos o, sino), as r -* 00, is given by

2Physical forces and acoustic sources, indeed.

psin(O/2) f, 1Pk1 -i- r ÍP1p(r,t)
r»,/ r LDt] ' '[.Dtjr

(2.28)



where F and Fsh are the circulation of the oncoming and shed vortex, respectively. The function is
the imaginary part of the complex potential W q5* + i = i /x + i y of an ideal flow past the edge.
The terms {D/Dt] denote the rate at which the vortex path crosses the streamlines of the ideal flow
past the semi-infinite plate, evaluated at the retarded position of the vortex. Hence, becauseF and 1'sh
have opposite signs and the oncoming and shed vortices cross the streamlines const in the same
direction, the sound generated by the shed vortex tends to cancel the sound generated by the oncoming
vortex. As a general result, the vortex shedding process reduces the trailing edge contribution to the
interaction noise.

2.2.3 A Fixed-Wake Formulation of the Vortex-Airfoil Interaction Problem

In this subsection an analytical model of the vortex-airfoil interaction problem is presented. Use of the
conformal mapping technique is made in order to describe the unsteady flow past a Kármán-Trefftz
airfoil. The vorticity shed from the airfoil trailing edge is supposed to be convected at the free-stream
velocity along a constant rectilinear path.

e

z

Vco
Cambered airfoil ()

FIGURE 2.2: Kármán-Trefftz conformal mapping.

Consider a Kármán-Trefftz conformal transformation which maps the outer region of a circle in the
complex (-plane into the outer region of an airfoil in the complex z-plane, namely

- (0/4)
+ 1/4) + - 1/4)

(229)z
((+1/4)°((-1/4)°

where O = 2 - e/ir, with e denoting the value of the trailing edge angle. The circle has its center at
= + ii7. It intersects the real axis at TE = 1/4 and lias radius R = ./(TE - eC)2 + i. The

point TE maps into the airfoil trailing edge XTE = 0/4, as sketched on Fig.2.2.
Performing the change of variable (' = (- ( and letting a line-vortex of circulation F occupy the

position (, the complex potential field can be written as

W((') =W + W + W (2.30)

where W. denotes the steady potential of a Kármán-Trefftz airfoil in the otherwise uniform flow, W,
is the contribution of the oncoming vortex, and W,,, is the potential of the wake shed from the airfoil
trailing edge, as required by an unsteady Kutta condition. In the present study the Kutta condition is
imposed by requiring that the flow velocity is finite at the trailing edge.

Quantities in the following expressions are all made dimensionless by the free-stream velocity V
and by the airfoil chord.

The steady contribution is given by

R2 FW3((') = e'(' + (2.31)
( 2mr
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where a is the airfoil angle of attack and F, = 47r R sin(a + fi) is the airfoil steady circulation which
depends on the airfoil camber fi tan1 [77C/(eTE - )] and the airfoil angle of attack a. The steady
circulation F3 is chosen such that a steady Kutta condition is satisfied at the trailing edge.

The vortex contribution has the following expression

D2 \pr .LIC IW(Ç') = i - ln(' - - in(' - + ln('}
27r

where the first and the second term describe the potential fields of a vortex at Ç and its image within
the circle, respectively. The third term denotes the potential of a vortex which has been placed at the
center of the circle in order to cancel the effect of the image vortex when the oncoming one is infinitely
far from the airfoil (see Fig.2.3). Clearly, when more than one oncoming vortex is present in the field,
formulae accounting for the vortex induction must be extended by summation.

Finally, by describing the airfoil wake as a vortex-sheet on the real axis c, extending from TE to
F, the wake contribution takes the form

W(') =
-i-- f

{in('
-

- ln(('
- ) }

y () (2.33)

where 'y() is the specific circulation of the shed vorticity and eF is the downstream end of the wake
(see Fig.2.2).

Y()

vo0

FIGURE 2.3: Aerodynamic configuration in the Ç-plane.

Now, in order to account for the flow unsteadiness, the motion of the oncoming vortex must be
taken into account in the complex formulation. Therefore, the following history is assumed to describe
the vortex-airfoil interaction process.

A vortex of given intensity is located at an arbitrary upstream position, sufficiently far from
the airfoil. As a result, a vanishing velocity is induced at the trailing edge and the vortex-sheet
has a vanishing circulation 'y. The circulation around the airfoil is thus initially due to the only
steady-state contribution F.

As the vortex moves towards the airfoil, a wake is progressively shed from the trailing edge,
allowing the Kutta condition to be instantaneously fulfilled. The instantaneous reaction of the
flow around the airfoil is a consequence of both the incompressible and inviscid character of the
flow: the flow perturbations induced by the oncoming vortex propagate at an infinite velocity, no
relaxation effects occur at the trailing edge.

The trajectory of the oncoming vortex is instantaneously perturbed from the steady-state stream-
lines by the induction of the whole vorticity field, namely, the image vortex, the wake already
shed into the field and the image system of the wake.

2 *
Rel

(2.32)



The circulation of the wake progressively shed from the trailing edge depends on the instantaneous
perturbation induced by all the preexisting vortical disturbances (the oncoming vortex, the wake already
shed and the respective images) at the trailing edge. A physically consistent condition requires that the
velocity induced at the trailing edge is finite. This condition is equivalent to a zero velocity condition
applied onto TE in the circle plane. Hence, the circulation of the vortex-sheet can be determined by
requiring that it induces a velocity at TE which exactly cancels the velocity induced by the preexisting
vortical disturbances. This is the form of the unsteady Kutta condition adopted in the present fixed-
wake approach.

Since the steady potential satisfies the Kutta condition at the trailing edge by definition, the zero
velocity Kutta condition in the circle-plane takes the form

(V*)eTE
(dWv) + (dW\

&E d )eTE0
Introducing equations (2.32) and (2.33) into equation (2.34), setting = R e' and rearranging,

we obtain

= Fq(() (2.35)

where
i i

q5 (Ce) = R eß - + R eß '*R eß - R
(2.36)

Clearly, when more than one oncoming vortex are present in the field, the expression of çS must be
extended by summation.

Then, changing to the airfoil-plane and using the identity 'y(x) dx = 'y() d lead to the integral
equation

JXTE+Vt
x+0/4

XTE
{ 4 R cos - ( - j

} (x) dx = Fq5 () (2.37)

The upper limit of integration results from having supposed that the wake is convected at the free-

t=tl

tt2

tt3

f 2RCcosß+TE
J&E Re'ß ( - CTE)

FIGURE 2.4: Vortex shedding from the trailing edge as the airfoil moves towards an upstream vortex.

stream velocity V along the real axis X.
As the vortex approaches the airfoil, new vorticity is generated and convected downstream. Equiv-

alently, as the airfoil moves towards the vortex (see Fig.2.4) it leaves back a wake at rest3. Therefore,
space and time are in the present analysis two explicit forms of a saine convective variable (x - Vt). It
is thus expedient to express the wake in a body reference frame by means of the Calilean transformation
a = x + xl'E + r, with T V t. As a result, equation (2.37) takes the form

fT
ra+0/2{ 1 4R cos ß 1 ( - ) j } (a) da = Fq5 () (2.38)

3A wake at a rest herein denotes a non convected wake.

(2.34)
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with the initial condition -y (0) = 0. This condition is consistent with the assumption of zero initial
velocity at the trailing edge.

Interestingly, for (, = O and O = 2, which correspond to a flat-plate, the kernel in equation (2.38)
reduces to

r+1 o
rO.

which is the same of the integral equation obtained by Wagner [21] for an impulsive start of a flat-plate
at a small incidence.

2.2.4 The Oncoming Vortex Trajectory

The known term , as stated in equation (2.36), is a function of the vortex position (, at the current
time r. The related position in the z-plane is given by

where z° is the initial position of the vortex. Making use of the Routh's theorem, the convection velocity
VC takes the form

(dT"\ (dÇ\ . F (d2<jdz2'\
(zr)

- )Ç '4ir dC/dz )

where = W +i (F/2ir) In ((' - is the overall complex potential deprived of the vortex self-
contribution. A vortex, in fact, cannot induce on itself.

Since the vortex velocity VC is an implicit function of time, equation (2.38) must be solved by
successive updates of the vortex position. Moreover, in order to account for the wake contribution, an
integral extending from O to r must becalculated at each time-step. The numerical aspects related to
the time integration are described in appendix 2 B.

The numerical simulation is started by locating the vortex at a distance from the airfoil such that
the velocity VeTE induced at the trailing edge is a fraction e of the free-stream velocity V. Therefore,
as e goes to zero, IzI goes to infinity and e behaves like a cut-off parameter for the Kutta condition.
The (dimensionless) velocity induced by the oncoming vortex at TE has modulus

VTE = I(i) (2.42)
ir

where (, ) are the initial co-ordinates of the vortex and the function j is defined in equation (2.36).
Hence, setting VTE = e yields

ire= - (2.43)
2F

If the value of y is prescribed, equation (2.43) provides two values of x: the upstream one gives the
initial position of the vortex, whereas the downstream one can be used as a stop flag for the numerical
simulation.

2.2.5 A Free-Wake Formulation of the Vortex-Airfoil Interaction Problem

The integral equation (2.38) provides the circulation of a vortex-sheet convected at the free-stream
velocity along the real axis and satisfying the zero-velocity Kutta condition at the airfoil trailing edge.

The airfoil wake can be also described as a distribution of discrete vortices convected at the local flow
velocity. This free-wake model permits to investigate the effects related to a fixed wake approximation
which is very frequently made in analytical aeroacoustics.

(2.39)

(2.41)

z (r) = z + LT vc (zr) dr' (2.40)
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a) >0.

Fw(t)
F

a) Discrete-
vortex/feeding-
sheet system.

b) <0.

FIGURE 2.5: Vortex roll-up at a sharp trailing edge.

In order to impose a physically consistent Kutta condition we can form the following qualitative
picture of the unsteady flow in proximity of the trailing edge. We suppose that the shed vorticity rolls
up into a spiral vortex-sheet of overall circulation F(t), as sketched in Fig.2.5. Since the pressure is
continuous across the vortex-sheet, applying the unsteady Bernoulli equation along a circle enclosing
the rolled-up vortex-sheet yields

12 2
(va - Vb) Vsheet (va - Vb) - dt

where, as shown in Fig.2.5, Va and vb denote the velocities tangential to the sheet, and Vsheet =
(Va + vb) /2 is the local convection velocity of the vortex-sheet.

If the vortex-sheet is supposed to be concentrated in a line-vortex of circulation F(t), as shown in
Fig.2.6(a), then the existence of a feeding-sheet must be idealized, which connects the line-vortex to
the trailing edge. The feeding-sheet allows the vorticity shed from the trailing edge to be injected into
the wake vortex. In this case, since the velocity is continuous across the feeding-sheet, applying the

FIGURE 2.6: Unsteady Kutta condition.

unsteady Bernoulli equation along a circle around the line-vortex provides a time-dependent pressure
jump across the feeding-sheet, namely

b) Nascent vortex at a trailing
edge.

(2.44)

APab =

As a result, a pressure force acts on the feeding-sheet which is given by

dF= ip-- (z - ZTE)

(2.45)

(2.46)

As argued by Brown & Michael [22], the pressure force on the feeding-sheet must be balanced by a
Magnus force generated by assuming that the wake vortex is convected at a velocity which is different
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from the local flow velocity, namely

Fm = ipF(t) - (2.47)

where J,7* is the complex conjugate of the local velocity potential deprived of the wake vortex self-
contribution. Therefore, balancing the pressure and the magnus force yields

V(z) = Z - ZTE dF
P dt (2.48)

This differential equation provides a force-free correction of the free vortex convection velocity V =
dW*/dz calculated by means of equation (2.41). It can be observed that the correcting term vanishes
if the strength of the vortex is constant in time.

The distributed system of forces F and Fm involves an unbalanced torque which generates a
spurious reaction force on the edge surface. Peters & Hirschberg [23] argued that this unbalanced
torque generates a spurious quadrupole edge noise contribution.

An emendation of Brown & Michael [22] equation was proposed by Howe [24] in order to cancel the
spurious quadrupole acoustic sources. The vortex convection velocity satisfies the differential equations

d

dXw
(2.49)

where x = (x1 , xw2 ) is the instantaneous position of the vortex, y0 = (vo1 , vo2 ) is the free vortex
velocity and 'I'-(x) is the stream function conjugate to (x), (x) denoting the velocity potential
of an incompressible flow past the surface of the airfoil that has unit speed in the i-direction at large
distance from the airfoil. The stream function W(x) satisfies the Cauchy-Riemann relations

awj
Ox, - 0X2

0X2 - Ox,

and can be assumed to vanish on the surface of the body.
In the present study the wake is modeled as a distribution of discrete-vortices whose circulation is

hold constant in time. Therefore, in principle, a spurious pressure force may act only on the feeding-
sheet connecting the trailing edge to a nascent vortex. The circulation of a nascent vortex, in fact,
increases, in a time-step, from zero to the value required by the Kutta condition. A force-free shedding
model should require an iterative solution of equation (2.49) in the time interval (r3', T3), convecting
a progressively fed vortex from the trailing edge up to a formation location at which both the Kutta
condition and equation (2.49) are satisfied. However, the fictitious pressure force vanishes when the
length of the feeding-sheet tends to zero. A simplified treatment is thus proposed by adding, at
each time-step, a vortex at a small distance IF downstream of the trailing edge (see Fig.2.6(b)). The
formation length 1F is a parameter of the numerical simulation. The circulation of the nascent vortex
is thus determined by applying the Kutta condition onto the trailing edge. More precisely, at each time
step T3 a wake vortex is added at the formation position. Its circulation F is chosen such that the
velocity induced at the trailing edge cancels the velocity ViTE generated by all the other vortices in the
field, i.e.

(2.50)

V'
(2.51)



where V1 is the velocity induced at the trailing edge by a unit circulation vortex located at the formation
position.

The numerical scheme used to convect each wake vortex is described in appendix 2 B. Furthermore,
since a distribution of line-vortices at a small distance from each other is numerically unstable, a blob-
vortex method is employed in order to prevent the vortex trajectories to undergo a chaotic behavior.
This methodology is described in appendix 2 C and consists in replacing the singular kernel of a line-
vortex by an artificial viscous core. Finally, as discussed in appendix 2 D, a vortex amalgamation
procedure can be used in order to improve the computational performances of the discrete-vortex
method, without affecting the accuracy of the numerical prediction.

2.2.6 The Cloud of Oncoming Vortices

In order to investigate the effect of the vortex distortion during a direct vortex-airfoil interaction, the
oncoming vortex can be modeled as multiple, discrete-vortex elements clustered in a circular cloud.

The numerical diffusion of a cloud can be reduced by using a high-order time integration scheme to
convect each vortex, and by assuming vortex elements of equal area. In the present work, a four-step
Runge-Kutta time integration algorithm is used to convect a single oncoming vortex, as well as each
vortex in a cloud (see appendix 2 B). Furthermore, vortices of equal circulation are disposed on circles of
different radius with uniform angular spacing. Hence, a condition of constant area elements is ensured
by the radial spacing law

ro = O (first vortex in the center of the cloud)

As a result, the size of the cloud is an implicit function of the parameter rClOUd.

The aspect ratio of each vortex element is a strong function of the radial distance. Nevertheless,
the vortex trajectories seem to have a quite regular behaviour. Fig.2.7 shows the evolution of a cloud
of 101 vortices. The value of the dimensionless inner size is TcIoud = 0.01. Interestingly, the initial outer
radial compression allows a convergence towards a state of dynamical equilibrium in which an external
shell of high vorticity encloses a core of nearly uniform vorticity distribution. Furthermore, as shown
in Fig.2.7, secondary structures appear in the external shell.

It is interesting to compare the evolutions of the two clouds of equal size plotted on Fig.2.8. The first
on Fig.2.8(a) is a non uniform radial distribution of vortices with inner size rCIOUd = 0.001. The second
on Fig.2.8(b) is a uniform radial distribution of vortices. As shown in Fig.2.9, the non uniform radial
distribution preserves the size of the cloud. Conversely, the cloud with a uniform radial distribution
undergoes a strong diffusion. After 100 time-steps these two clouds appear as plotted on Fig.2.l0. A
non uniform radial vortex distribution clearly results in a less chaotic evolution of the cloud.

(2.52)
r1 rCIOUd (rClOUd is a parameter of the problem) (2.53)

rk /2r2_1 - r_2 for k 2 (2.54)
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FIGURE 2.9: Cloud evolution (frame rate: 20/ir). a): Non uniform radial distribution; b) uniformradial
distribution.
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a) Non uniform radial dis- b) Uniform radial distribu-
tribution. tion.

FIGURE 2.8: Starting distribution of vortices in a cloud (t = 0).
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a) The starting
cloud is that of
Fig.2.8(a).
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b) The starting cloud is that of
Fig.2.8(b).

FIGURE 2.10: Clouds at t = lOOAy.
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FIGURE 2.11: Interaction between a Kármán vortex street and an airfoil.

2.2.7 The Double Row of Counter-Rotating Vortices

In order to evaluate the acoustic radiation from an airfoil embedded in the wake of a rod, we use the
Kármán model of a double row of counter-rotating vortices.

As sketched in Fig.2.11, the distance between the rows is b and the distance between two next
vortices on the same row is a. Upper and lower vortices are uniformly staggered so that each vortex on
the upper row is above the mid-point of two vortices on the lower row.

A Kármán vortex street is an infinite double row of uniformly spaced counter-rotating vortices. The
complex velocity potential of this flow configuration is [25]

W(z) = i - ln(sin
[

(z - ib/2)]) - i - in(sin
[

(z - a/2 + ib/2)])

where z = x + i y and F has the sign of the upper vortices. Since an infinite row does not induces
any velocity on itself the upper row advances with a velocity induced by the lower row and vice versa.
It should be found by differentiating equation (2.55) that the convection velocity of a Kármán vortex
street in a uniform flow is

(2.56)

where y accounts for the mutual induction effect. It is given by

which yields the equilibrium aspect ratio

F f ir!,
v - tanh -2a

and is negative if the upper vortices rotate clockwise. As a result, a Kármán vortex street translates
slower than the free-stream.

The model of a Kármán vortex street also provides the following stability condition

0.281

(2.55)

(2.57)

(2.58)

(2.59)
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The distance a depends on the diameter d of the cylinder. If fo denotes the vortex shedding
frequency from the originating rod, it results that

which yields a 5 d for a Strouhal number of 0.2.
The circulation F of the vortices can be evaluated by using the expression proposed by Sallet [26]

for the lift coefficient induced by a Kármán vortex street on a cylinder, namely

Cimax = 2T'd (i 3IviI)
(2.61)

which can be solved in F with a value of Cimax $ 0.8.
The complex potential (2.55) can be differentiated with respect to z in order to determine the

velocity field. It is interesting to determine the zipwash4 velocity y along the axis of the vortex street
(y = O in (2.55)). Following Ref. [25], the upwash velocity is given by

2ir I b'\ sin(2irfo t)v(t) = F coshi ir J
2 (2.62)a aj cos2(2irfo t) - cosh (ir)

where the dominant frequency fo is defined in (2.60). A Fourier decomposition of the upwash velocity
(2.62) permits to describe a Kármán vortex street as a superposition of harmonic upwash gusts. Thus,
setting

with

where S

q5=2R

I

Vn
foJ2fo

v(t) e1 n2irfot dt7
and using the known integral

f sinxsin(nx) d - J for a2 < i
Jo i - 2acosx + a2 X - a_(n+1) for a2 > 1

yields the harmonic gust components [27]

i2irFv = with n odd (2.66)a{cosh(ir) [i +tanli(ir)]}

Interestingly, the upwash velocity induced by the Kármán vortex street along its axis exhibits only odd
harmonics.

When more than one oncoming vortex are present in the field, formulae accounting for the vortex
induction must be extended by summation. For example, if N denotes the number of vortices in a
double-row, the right-hand side of the integral equation (2.38) takes the form

V00 vfo = St = -
d a

(&E - cos /3 + 7/ sin 3
2 2(&Ev) +'q

(2.60)

(2.64)

(2.65)

(2.67)

4The velocity normal to the axis of the vortex street constitutes an upwash velocity for an airfoil embedded at zero
angle of attack in the vortex street (see Fig.2.11).

n=00
v(t) = :i:

ve0t (2.63)
fl=- 00

N

n=1
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2.2.8 The Aerodynamic Force on the Airfoil

The oncoming vortex and the airfoil wake induce an unsteady pressure field on the airfoil surface. As a
consequence, an unsteady aerodynamic force F and an unsteady aerodynamic moment M are exerted
on the airfoil.

A way to predict F and M consists in integrating the unsteady pressure field upon the airfoil surface.
By supposing that the fluid is ideal, the density is constant and that the fluid motion is irrotational,
the pressure field p is related to the velocity field y via the generalized Bernoulli equation

+p+v2=J(t) (2.68)

where 4' denotes the velocity potential and .(t) is an arbitrary function of time, usually specified by
the boundary conditions. A dimensionless complex form of equation (2.68) is given by

Cp(z,r) = 1 V(z,r) V*(z,r) _2(W(Cr))
OT C(z)

where

(2.70)
pvco

is the pressure coefficient and V is the complex velocity in the airfoil-plane z. The analytical expressions
of the complex potential and velocity field can be found in appendix 2 A.

A more effective way to predict the unsteady aerodynamic forces exerted by a perfect, incompress-
ible, irrotational two-dimensional flow on a body is offered by the circulation theory of Kármán &
Burgers {5}.

The equation of motion for an ideal and incompressible fluid can be written as

Ou / u2\ +uxw+f

where f denotes an external force per unit mass. Equation (2.71) shows that the term u X w acts as
an equivalent body force called the vortex force.

Integrating equation (2.71) upon a fixed volume V yields

fffudv=_ff(+) dS+fffuxwdV+ffffdV

In this equation the left-hand side is the rate of change of momentum of the fluid inside V.
A body moving relatively to a fluid can be replaced kinematically by a distribution of image vorticity.

This concept, together with balance considerations made on equation (2.72), leads to a relationship
between the aerodynamic force exerted on the body and the rate of change of the hydrodynamic
impulse. More precisely, in a two-dimensional flow the following quantities can be defined:

- hydrodynamic impulse

I=ffwrxícdA

- hydrodynamic angular impulse

A = _íffwr2dA

(2.69)

(2.71)

(2.72)

(2.73)

(2.74)



Hence, the total impulse and angular impulse of a given distribution of line-vortices in the presence
of a body are given by

1= and A=k
i

r (2.75)

where a summation over all the vortex pairs (oncoming and image vortices) constituting the flow system
has been performed. Finally, the force and the moment exerted by the fluid on the body are given by

F= and (2.76)

which shows that the aerodynamic force exerted on the body only depends on the kinematics of the
vortex pair system.

2.3 Conclusions

In this chapter we described an analytical model for the vortex-airfoil interaction problem. The formu-
lation was based on the circulation theory and on a Kármán-Trefftz conformal mapping.

The unsteady, incompressible flow of a given distribution of line-vortices past a thick and cambered
airfoil was described by using image vortices inside the airfoil. Furthermore, an unsteady Kutta condi-
tion was applied by requiring the velocity to be finite at the airfoil trailing edge. As a result, a vortical
wake was shed into the field.

Two models of the airfoil wake were described: a fixed-wake model and a free-wake model. The
former consists in a vortex-sheet convected at a constant velocity along a rectilinear path, whereas the
latter consists in a distribution of discrete-vortices shed from the trailing edge and convected at the
local flow velocity. In a fixed-wake model the Kutta condition leads to an integral equation for the wake
circulation. The kernel of this equation depends on the geometrical parameter of the airfoil (thickness,
camber and trailing edge angle), and the right-hand side depends on the position and circulation of the
oncoming vortex. In a free-wake formulation an algebraic equation is solved at each time-step in order
to determine the circulation of a nascent vortex that satisfies a zero velocity Kutta condition at the
trailing edge.

In chapter 4 results obtained by nieans of the fixed-wake model will be compared to results obtained
by means of the free-wake model. Therefore, the main interest in a fixed-wake formulation lies on the
possibility of investigating the physical consistency of an approximation which is commonly made in
both unsteady aerodynamics and aeroacoustics.

The main results of the present chapter are essentially two:

- the analytical description of the aerodynamic force exerted on tue airfoil as a function of the
vortex pair kinematics;

- the analytical description of the potential and velocity field past the airfoil.

In chapter 3 the aerodynamic force and moment exerted on the body will be interpreted as sources
of aerodynamic noise. Furthermore, the potential and velocity field will be used to characterize the
aeroacoustic source distribution on the airfoil surface.

2.3. CONCLUSIONS 39
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FIGURE 2.12: Kármán-Trefftz conformal mapping.

In this appendix the analytical results of a vortex-airfoil interaction problem are presented. The
airfoil is obtained by transforming a circle in the (-plane into a Kármán-Trefftz airfoil in the zplane
via the conformal mapping transformation

(2.77)

where

(2.78)

with e denoting the value of the trailing edge angle (see Fig.2.12). The circle is defined as

(=(+Re'° /3<0<2irß (2.79)

where

Cc = + iîi (2.80)

is the center of the circle,

R = v"(TE )2 + (2.81)

is the radius of the circle and

fi = tana ( 7c

) (2.82)'TE -
is the airfoil camber. The circle point corresponding to O = /3 maps into the airfoil trailing edge XTE.

In the following paragraphs, the expressions of the complex potential field, velocity field and accel-
eration field of an isolated vortex convected past a Kármán-Trefftz airfoil are reported. Subscripts s, y
and w denote steady, vortex and wake contributions, respectively. If more than one oncoming vortex is
present in the field, formulae accounting for the vortex contribution must be extended by summation.



In the expressions below, the wake contribution is supposed to be generated by a fixed vortex-sheet
lying on the real axis i. In the case of a free-wake model, the integral over the wake must be replaced
by a summation over the wake vortices.

Potential field

Ws ((')

WV ((')

Ww ((')

Velocity and acceleration field

V*(z) =
Dz \

Vj*(z,T) = k (,
-

2ir0z
av* = k---(z,r)

V(z,T)

DV*
--(z,T)

Dz (('_
i

- 2irDzJ0

+iln('= e'°(' +
2ir

R2F C'= -i - {n(' - - ln((' + in (' }i

= In
_' \-- ( I I

L (IR2/()(a)dcr

where V denotes the vortex convection velocity in the z-plane.

First order time derivatives of the potential field

Dwv R2/t'*2 (ç\*
V* (2.91)k cISij

DT
(z, T) = i k, (F () VC + (F - R/(* Dz)

PTDW fT

DT
(z, T) = j -

'y(a) da + _L /
R/(j2

'y(a) da (2.92)r 2irj0 ('R/( DT

Second order time derivatives of the potential field

D2 W

8-i2
(z,T)

D2 Wi,,

D-i-2
(z,T)

i i 1\
- Ç_R/(* +[1 1

- ( (F - R/(] y(a) da

1 (D V - k R/(,*2 f D(\ *
(/)2 8z), Dz ((_R/(*)2 0z)
I i R/(2 i DC

((F (1)2 + ( - R/()2 J
y(a) da

- liDo vi +ik1k2
L (' DT2

V C) D( R2/(*2 82(1*R (2(/(1* _R2'\ )*
- ¡k * +k C V

('*2 ((1(1* - R)2 j
(F - R/(* 0r2 (2.93)

2

LT' (F)2 y(a) da

+
2 LT - () y(a) da

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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rrR(2('_R) (aç 2

-
J *2 (ç( - R)2

(a) da

PT R/2 (o2''\
I I

+ J ('R/( a2)7)d5
where

- (f.c) V2 + Aôz) ,

with A denoting the vortex acceleration in the z-plane.

Mapping rules

2 (aj - a2)2
- 0a1b2a2b1

52( 12 b1 - b2 alc2 a2cI i
t\ôz

L a1a2 aib2a2b1j
fi

212fl
lflg2f2gl- 2 (12_fl)2

U(a r) f1h2 - f2h1
+ (f192 - f291) (92 91)- 2(f2_fl)2 (f2f1)

where

ai =(C±1/4)°
2

b1 =O((±1/4)°'

9 =0(0_1) ((±1/4)9_2

fi = (r -
1

91 = (T -

h1 (-1) (r_cy)_2
o

/
f2

1 / 0\'
92 = - a +

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

h2=j_i) (_+) (2.101)
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Appendix 2 B

Time Integration Schemes

In this appendix the time integration schemes used in the numerical solution of the vortex-airfoil
interaction problem are described. These are concerned with: i) the trajectory of an oncoming vortex,
ii) the integral equation in a fixed-wake formulation, iii) the trajectory of a wake vortex in a free-wake
formulation.

The trajectory of an oncoming vortex is calculated by numerical integration of equation (2.40) by
means of a four-step Runge-Kutta time integration scheme. The velocity of the vortex is computed
at regular time intervals by means of equation (2.41) and the position is updated according to the
four-step scheme

1_
2

CZtJ

z = + V(z)-' v( 2)

z =4 + (V(z') +2Vc(z) +2Vc(z) +V(z)) (2.102)

where LT denotes the time integration step.
The integral equation (2.38) is solved by a second-order collocation scheme where the singularity at

u = T 5 numerically integrated. At the time-step r3, equation (2.38) can be written as

f{ 4Rcosß [i
T'

where the known term is given by

T'-1 (
f i - 4R cosß [1

(T
Jo

By setting T - u Lr (1 - s), equation (2.103) takes the form

fK(s) y(s) ds = f(i)
whose kernel is given by

K(s) = t {i - 4Rcosß [i - (i +

f(T') =Fçb(((r')) -

(T - u + 0/2)

] }T-U

45

du = f(T') (2.103)

] } 'y (u) du (2.104)T_U)

(2.105)

0/2 \fl
(2.106)}(1 - s)) j
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Assuming a parabolic behaviour of -y(z) in the interval (-1, 1) provides

(z2 z\ 2 (2 X
7(z) ='Yj-2 - +'yj_i (z + i) +'Yj +

which can be substituted into equation (2.105) yielding

z2 z\
dz

= 1j-2 I K(x) - - - dz - f K(z) (z2 + i) dz + f(r') (2d08)
(x2

z)
Jo Jo

These integrals can be evaluated numerically taking their limit values for z * 1. Thus, setting

= Hm f K(z) (Ç +
dz (2.109)

= hm f K(z) (x2 + i) dz (2.110)

12 = hm f K(x) ( dz (2.111)x-+10 2 2

leads to
f(ri') IjI'.,,_i I91',_9= (2.112)

In a free-wake formulation, the trajectory of each wake vortex is computed by the Adams-Bashfort
second order scheme, i.e.

(2.107)

which is stable when applied to a nonlinear equation. The convection velocity V = V(z) is calculated
by means of equation (2.41).

= + ¿t (ii lVi2) (2.113)



Appendix 2 C

Blob-Vortex Method

In this appendix we describe the method used to desingularize the kernel of a line-vortex.
The velocity induced by a line-vortex at its own location is singular. As a consequence, a line-vortex

method is numerically unstable and the trajectories of the vortices have a chaotic behaviour as their
number increases or the time-step decreases. Aref [18] demonstrated that a system of line-vortices in
free space, moving under their mutual induction effect, is chaotic if the number of vortices is equal to
or larger than 4. Instabilities may be damped by smoothing the velocity in a small region, called core,
around the center of the vortex. Methods based on a desingularised vortex core are called blob-vortex
met hods.

A line-vortex located in zj induces the following velocity

v*(z) =FKBS(Z-Z) (2.114)

where KBS(Z) = i/2irz is the Biot-Savart kernel. A simple desingularisation method is based on a
viscous core upon which the vorticity w is uniformly distributed, say Rankine vortex core. If the core
is supposed to be a circle of radius ô, the Stokes theorem yields

L
a

w 2ir r dr = F

Thus, since w is constant within the vortex core, it results that

The velocity induced in the field for JzI > ô is equal to the velocity induced by a line-vortex, whereas
in the core region zj < ô the Stokes theorem yields

Fw=-
52

V(r)27rr=f wdA
A(r)

and, by substituting (2.116)
F

2ii-ö2
r

Concluding, by assmning a Rankine vortex core, the desingularised kernel takes the form

K(z) Kßs(z) V (Izi)

where
I JzJl

D(!zI) = min

47

(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)
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FIGURE 2.13: Effect of the cut-off distance 6 on the Rankine blob-vortex model (2.120). 5 = 0.01;
----8=0.05; ---8=0.1.

The core parameter 6 plays the role of an artificial viscosity. It allows the vorticity to have a finite
value and to occupy a small but finite region rather than being zero everywhere except at the vortex
location where it is infinite. The diffusion of the vorticity within the core is artificial. The cut-off
distance 5 is indeed a parameter of the computation method and is not cumulative in time.

The induced velocity v*(z) = F K(z - z) reaches its maximum at a distance 5 from the center. It
thus results that

6 = .-:-. (2.121)
max

As shown in Fig.2.13(a) the radial derivative of the tangential velocity v*(z) is discontinuous at the
cut-off distance 8. Therefore, a different desingularised kernel may be proposed in order to smooth the
induced velocity around the maximum value. The desingularised kernel (2.120) can be approximated
by the Gaussian kernel

(2.122)

where the new core parameter fi replaces the cut-off distance 5. The induced velocity takes the form

F .2
V(r) = (1 - e) (2.123)

The tangential velocity reaches its maximum value at a distance r 1.1208 fi from the center of the
vortex. It thus results that

Vmax 0.1016 (2.124)

The parameter fi may be chosen in order to ensure the same value of Vmax or the same maximum
velocity radius of the desingularised kernel (2.119). In the first case fi 0.8922 5, while in the second
case f2 0.6382 5. In Fig.2.14 the velocity resulting from the desingularised kernels (2.120) and (2.122)
are compared, the latter for the core parameters fi and f2.

The core kernel (2.122) has a physical relevance. By supposing that the vorticity field w depends
only on the radial distance r, equation (2.6) takes the form

(2.125)
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K(z) = KBS(Z) z!

62 + z!2

and by Beale & Majda [29], i.e.

z12"\
akexP(_bk -)}

(2.126)

(2.127)

A comparison between equations (2.123) and (2.127) shows that the parameter fi has an artificial viscous
nature, although its effect is not cumulative in time. Thus, a desingularised kernel based on equation
(2.122) is well consistent with the viscous diffusion occurring in a vortex core. Finally, it should be
observed that

fw (r) 2irr dr = F (2.128)

for each value assumed by the variable 4vt. Thus, the Gaussian blob-vortex model (2.122) is integrally
equivalent both to a line-vortex, namely w(z) F 5(zzj), and to a Rankine blob-vortex model (2.119).

Different blob-vortex models have been proposed in the past. The most commonly used desingu-
larised kernels are those proposed by Sculley [28], i.e.

(2.129)

(2.130)

a) Desingularised induced velocity. b) Desingularised viscous kernel.

FIGURE 2.14: Comparison between the Rankine blob-vortex model (2.120) and the Gaussian blob-vortex
model (2.122). 6 = 0.05; - - - -fi = 0.0446; - - -fi = 0.0319.

where z' is the laminar viscosity of the flow. If w is supposed to be initially zero everywhere except for
r = 0, equation (2.125) has the analytical solution
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In the present work the Gaussian desingularised kernel (2.122) is used, which corresponds to the
first term of Beale & Majda's model (2.130). The core parameter /3 is related to a fixed maximum value
of the induced velocity, i.e.

¡3 = 0.1016_i_ (2.131)
max



Appendix 2 D

Amalgamation

In this appendix we describe a technique which permits to improve the computational performances of
a free-wake discrete vortex method.

When a free-wake model is used, the number of shed vortices increases progressively as the com-
putation goes on. Thus, in order to contain the computational time, the maximum number of vortices
instantaneously present in the field can be fixed to an arbitrary value N. At the (N + 1)th time-step
the first vortex is amalgamated with the second one and takes index 2. Then the nascent vortex takes
index 1. At the next time-step the second and the third vortex are amalgamated while the (N + 2)th
nascent vortex takes index 2. Analogously for successive time-steps.

As shown by Lamb [14], a convected system of line-vortices in free space is characterized by some
invariants. An amalgamation process involves only three quantities, namely the circulation of the
vortices and their co-ordinates. Consequently, only the total circulation and the position of the center
of vorticity can be conserved during an amalgamation process. Hence, the circulation and the position
of the resulting vortex are

Fnew = F1 + F2 (2.132)

and
F1z1 + F2 Z2

Zfl = (2.133)
new

In the presence of a physical surface, the velocity induced by the amalgamated vortex can differ
considerably from the velocity induced by the separated vortices. However, ifa sufficiently large number
N of coexisting vortices is assumed, the distance between the airfoil and the downstream end of the
wake where amalgamation occurs is such that the amalgamation rocess affects the flow past the airfoil
only negligibly.
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3

Vortex-Airfoil Interaction: Acoustic Modeling

In this chapter we are concerned with an analytical description of the vortex-airfoil interaction noise.
The aerodynamic formulation developed in chapter 2 provides a conceptual basis for an aeroacoustic
characterization of the vortex-airfoil interaction problem.

In the first section, an acoustic analogy approach based on the Ffowcs Williams & Hawkings [2]
formulation is described. It shows that the main sound generation mechanism is related to the time
derivative of the pressure field on the airfoil surface. Therefore, an analytical decomposition of the
wall pressure field is proposed as a way to investigate the aeroacoustic source distribution on the airfoil
surface. The same approach is employed to investigate the effects of the Kutta condition on the sound
generation.

In the second section, a linear aeroacoustic model proposed by Howe [30] is used to describe the
noise generated by a double row of counter-rotating vortices convected past a flat-plate.

In the final section, a low Mach number model is proposed for the vortex-airfoil interaction noise.
It is based on a matched asymptotic expansion of the hydrodynamic pressure field near the airfoil and
the acoustic far field. This approach allows to relate the multipole structure of the far pressure field to
the aerodynamic force and moment exerted on the airfoil.

3.1 Acoustic Analogy Approach

The Ffowcs Williams & Hawkings [2] (FEW-H) acoustic analogy approach, in the form described in
chapter 6, can be used to predict the aerodynamic noise generated by vortical disturbances convected
past a Kármán-Trefftz airfoil.

The unsteady aerodynamic field necessary for the acoustic analogy prediction is supplied by the
semi-analytical methodology developed in chapter 2.

The FW-H analogy is applied by integrating the aerodynamic field upon the physical surface of
the airfoil. In addition, the observer and the airfoil are supposed to translate at the same velocity
V(cos a, sin a).

At low free-stream Mach iiumbers the aerodynamic noise from a fluctuating flow field in proximity
of a rigid surface is essentially due to the pressure fluctuations induced on the surface. Thus, the noise
contribution generated directly by the velocity fluctuations can be neglected. Accordingly, in the present
study, the quadrupole-noise contribution (6.43) is neglected and no volume integrations are performed.
Furthermore, the unsteady contribution of the thickness-noise (6.41) vanishes identically because the
airfoil has a constant forward velocity and the observer is fixed in a reference frame moving with the
airfoil. Therefore, only the loading-noise contribution (6.42) is taken into account. This requires the
pressure field and its time derivative to be defined on the airfoil surface. The loading-noise contribution
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(6.42) tailored to the present case reduces to

rPd r.i n,r2p (x t) = M I dZ I i C dC
2ir j Jc ( r)

+
1L/2

dZ [[Cr] I - M) + (Mr - M2)
d (3.1)2irJ0 R2 (lMr) R2 (lMr) J

where Pd = poV/2 denotes the free-stream dynamic pressure, C is the wall pressure coefficient, £
and L = i/c are the dimensionless contour and span of the airfoil, respectively, R is the dimensionless
distance between the listener and a point source on the airfoil surface, ñ is the unit outward normal
vector to £ and i is the unit vector in the radiation direction. The square brackets E...] enclose quantities
evaluated at the dimensionless retarded time

M7+VM+1MTretTRM 1M (3.2)

where Mr is the surface Mach number in the radiation direction. Equation (3.1) assumes that the
three-dimensional flow necessary for the acoustic prediction is obtained through a spanwise repetition
of a two-dimensional flow.

Interestingly, equation (3.1) shows that the far field depends on the time derivative of the wall pres-
sure coefficient, -whereas the near field depends on the pressure coefficient. Furthermore, the constants
behind the far field and the near field integrals are proportional to M and M, respectively.

3.2 Aeroacoustic Sources

The loading-noise contribution (3.1) depends on the wall pressure coefficient and its time derivative.
Therefore, the pressure coefficient must be determined in order to perform an aeroacoustic prediction.
In chapter 2 we proposed a semi-analytical methodology to describe the incompressible, potential field
past a Kármán-Trefftz airfoil. Hence, the Bernoulli equation can be used to determine the unsteady
pressure field, i.e.

Cp(z,r) = 1V(z,T) V*(z,T) _2(W((,i-)) (3.3)
i- ((z)

where C is the pressure coefficient and V is the complex velocity in the complex airfoil-plane z.
In order to scrutinize the noise generation mechanisms during a vortex-airfoil interaction, the time

derivative of G has been analytically obtained, that is

This expression can be split into four contributions, according to the interaction mechanism by which
such contributions are originated, i.e.

vortex contribution:
DV D2WV\

Dr2 )

wake contribution:
OT/ ¿1W\

Di-2 )

= _V* - V 2R
DT

(D2 w
'T ((z)

(3.4)

(3.5)

(3.6)



where subscripts y and w denote the oncoming vortex and wake contributions, respectively. This
analytical decomposition is used in chapter 4 to investigate the reciprocal influence of the nonlinear
interaction mechanisms on the airfoil unsteady loading and sound generation. The analytical expressions
of the various terms involved in the time derivative of the pressure coefficient are listed in appendix 2 A'.

A final remark concerns the presence of fictitious sources at the trailing edge. As discussed in
chapter 2, the Kutta condition is applied in the circle plane by requiring that the velocity in the point
eTE is zero. Numerically this results in a vanishing but non zero velocity at the airfoil trailing edge XTE.
As a consequence, because of the singular behaviour of d/dz as ( - eTE, aeroacoustic source terms
involving V + V do not vanish identically and fictitious sources can be generated in proximity of the
trailing edge. Thus, exactly at the trailing edge, a zero velocity condition will be explicitly imposed.
As a result, the source term at the trailing edge has the form

o 2(a2w'\ ja2ww- - - 2 0r2 (3.9)

Conversely, terms evaluated at a small distance from the trailing edge will he assumed as representative
of the flow behaviour in the neighborhood of the trailing edge.

3.3 A Linear Model for the Vortex-Airfoil Interaction Noise

airfoil wake

FIGURE 3.1: Interaction between a thin airfoil and a line-vortex.

Consider a flat-plate of chord c (c/2 Ç x1 c/2, x2 = 0) in a low Mach number stream, such that
M « 1. Suppose that a vortex of circulation F is convected at the free-stream velocity V along the
path z2 h, parallel to the airfoil chord (see Fig.3.1).

In the low Mach number limit the airfoil is acoustically compact (c « )., ) denoting the acoustic
wavelength). Thus, following Howe [30) (pp. 186-191), the two-dimensional vortex-airfoil interaction
generates the far pressure field

sinO I w
p(r,O,w) 2V2i rco

F2(w)e'T for *00 (3.10)

'The wake contributions in appendix 2 A are defined for a fixed-wake model. Therefore, if a free-wake model is used
the integral over the wake must be replaced by a summation over the wake vortices.
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c) vortex-wake interaction contribution:

CPVW = _2R(T/ç)

d) wake self-interaction contribution:

(3.7)

(3.8)
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where O is the angle to the mean flow and F2 is the force exerted on the fluid in the normal direction
to the flat-plate. Transforming back to the time domain yields2

p(r, O, t)
SiflO f /F2(w) e_ (t-ne0) dw

2/2iri cor _

In a linear aerodynamic context, the force exerted on the fluid by a thin airfoil embedded in a
frozenly ccinvected harmonic gust has been obtained by Sears (see section 4.3 of part II) in the form

ff(t)etdt and 1(t) = fj(w)e_tdw.

(3.11)

A peak of radiation occurs when the vortex passes by the airfoil leading edge (t = -c/2 V00). Conversely,
the acoustic pressure has a regular behaviour as the vortex passes by the trailing edge. This behaviour
is a consequence of the aerodynamic transfer function used in equation (3.11). As shown in section 4.3
of part II, the Sears' solution is obtained for a flat-plate with a vortex-sheet behind the trailing edge.
The vortex-sheet smoothes the singular behaviour of the flow at the trailing edge. On the contrary, a
singular behaviour persists at the leading edge.

The linear model described in this section can be applied to describe the interaction between a
Kárinán vortex street (see Fig.2.1 i) and a thin airfoil of chord c at zero angle of attack. In this case
the acoustic pressure in the far field takes the form

n (V00 t + c/2 - n a/2) (c/2)/(b/2)2p(r,O,t) -p0FV00 sinO IM00 I 'c;-' (-i)
Ln=-oo + (V00 t + c/2 - n a/2)2 /(b/2)2 iTI0

(3.17)4ir 1

Then, substituting r Cimax2 V00 d, as from equation (2.61), and assuming an airfoil span i yield

-V2/MsinOpoCimaxid (1)"(V00t+c/2na/2)c/(b/2)2p(r,O,t)= 00

Ln=-oo i + (Voo t + c/2 - n a/2)2 /(b/2)2 lt-rIco
(3.18)

Interestingly, this model provides a fifth-power scaling law for the acoustic intensity, i.e.

IcM (3.19)

2The Fourier transform pair herein used is J(w) = (2ir)

F2(w) = -ircpou2(w)

where 2 is the upwash velocity induced by
convected along the constant path X2 = h is

x2, t) =

The corresponding vorticity wave in the Fourier

( weVS2v)
the gust and S is the
described by the vorticity

F6(xi - Vt) 8(x2 -

space is

r
6(22 h) ¿ vo0

Sears' function (4.47). The
field

h)

(3.12)

vortex

(3.13)

(3.14)-= ' riir y00

As shown in section 10.3.1 of part II, a vorticity wave generates an upwash velocity

-r h
Vu2(w) = (3.15)2

e e'
4ir Vc,c,

Thus, substituting into equation (3.12) and integrating equation (3.11)

I (V00t+c/2) c/h2 i

in the limit h « c yield

for r - co (3.16)
poFV, sinO /M0,c,p(r,O,t)

4 V rc/2 Li + (V00t+c/2)2/h2]t_,0
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FIGURE 3.2: Spectrum of the acoustic pressure obtained from equation (3.18) with loo counter-rotating
vortices. The following values have been used: d = 0.0 16 m, V = 20 m/s, a = 5d, b = 0.03 a,

Moo

FIGURE 3.3: Maximum peak value of the acoustic radiation obtained from equation (3.18). The same
parameters as in Fig.3.2 have been assumed. The free-stream velocity is increased up to the value
V = 20 In/s.

The acoustic analogy formulation (3.1) shows that, at the leading order in the far field, the acoustic
intensity from a compact airfoil scales as M. The discrepancy between these results is due to the
fact that the model described in this section is based on a true two-dimensional field. On the contrary,
equation (3.1) is obtained for a two-dimensional flow past a finite span airfoil. This configuration
corresponds to a three-dimensional acoustic field. Another interesting result is the r112 dependence
of the far pressure field on the observer distance.

In Fig.3.2 the spectrum of the acoustic pressure obtained from equation (3.18) is plotted. A Kármán
vortex street of 100 vortices convected at a velocity V = 20 rn/s has been considered. The radiation
peak has a value of 99.5 dB. It is interesting to observe that only odd harmonic peaks arises (fo, 3fo,..-).
This is a clear consequence of the fact that, as shown in subsection 2.2.7, the upwash velocity induced
by a Kármán vortex street along its axis exhibits only odd harmonics.

In Fig.3.3 the acoustic intensity against the free-stream velocity is plotted. The results show the
fifth-power radiation law.

It is interesting to compare the two-dimensional linear model (3.18) of the noise radiated by a flat-
plate embedded at zero incidence in a Kármán vortex street with a three-dimensional linear model.
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The acoustic far field of a stationary airfoil in a low Mach number turbulent stream can be evaluated
by means of the formula

with

provides the acoustic spectral components

sin OIpn(r,O) =nfoIFI (3.23)

The lift spectral components F can be evaluated by meañs of Sears' analysis described in subsection
4.3 of part II. It follows that

F = I irpcVS Ivn (3.24)

where Sn denotes the modulus of the complex Sears' function (4.47) evaluated at the nth discrete
frequency

n!=ri/° (3.25)

and y,1, denotes the nth spectral component of an upwash impinging gust. In subsection 2.2.7 we
obtained the following expression for the upwash velocity along the axis of a Kármán vortex street

v, = I n with ri odd (3.26)
a {cosh(ir) [i + tanh(7r)] }

Considering the approximated Sears' function expression (4.63) of part II gives

Sn=

Ipn(T,0)I =

p(r, O, t) =
sinO [8F1

4ircor T=tr/co
where F denotes the fluctuating lift induced on the airfoil. Thus setting

F = fof° F(t) e n2uifot dt
-7

ncirfo/V + 0.1811
0.1811 + l.569ncirfo/V +2ir(ncirfo/V)2

(3.20)

(3.22)

(3.27)

Thus, introducing (3.26) and (3.27) into (3.24) provides the lift spectral components F that can be
substituted into (3.23) in order to evaluate the acoustic spectral components Pn It thus results that

VMsin0 PO27r2CImaXStIC n
r a {cosh(ir)[1+tanh(ir)]}'

/ nc7rfo/V+0.1811

V 0.1811 + 1.569ncirfo/ V + 2ir(ncirfo/V)2

where use of F Cimax2 V, d, as from equation (2.61), has been made.
The far pressure field in (3.28) shows that a three-dimensional model provides a sixth-power scaling

law for the acoustic intensity, i.e.
I o M (3.29)

Furthermore, the far pressure field exhibits a r dependence on the observer distance. Comparing
these results to those obtained through a two-dimensional model confirms that the I o M and the
p r'2 predicted by (3.18) are a consequence of the two-dimensional character of the field.

(3.28)

F(t) = (3.21)
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FIGURE 3.4: Spectrum of the acoustic pressure obtained from equation (3.18) with loo counter-rotating
vortices (2D) and from equation (3.28) (3D). The same parameters as in Fig.3.2 have been assumed.
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3.4 A Matched Asymptotic Expansion Model of the Vortex-Airfoil
Interaction Noise

Many problems in acoustic have solutions that can be found in the form of a perturbation series

P = PO + EPI + E2P2 +... (3.30)

where p is the pressure (or the acoustic velocity potential) and E is a small dimensionless frequency
parameter, say Helmholtz number. When the solution has different expansions in the near and far
field, the problem of determining the function p becolnes a singular perturbation problem. In this

200 500 1000 5000 10000 50 000
f (Hz)

FIGURE 3.5: Spectrum of the acoustic pressure obtained from equation (3.28). The same parameters as
in Figs. 3.2 and 3.4 have been assumed. = 0.3, - - - - = 0.03.

In Fig.3.4 a comparison is shown between the two-dimensional result (3.18) and the three-dimensional
result (3.28).

Finally, in Fig.3.5 a comparison is shown between the acoustic pressure obtained from equation
(3.28) and two values of the aspect ratio b/a of the Kármán vortex street. lt is interesting to observe
that, at a higher aspect ratio, the harmonic peaks IpnJ exhibit a monotonic decreasing behaviour as n
increases.



Ideal matching boundary

FIGURE 3.6: Matched asymptotic expansion: inner region.

case, separate series must be developed in the near and far field and a method of matched asymptotic
expansions must be employed to determine the correct form of each expansion in view of the other, and
to determine all the unknown functions and constants appearing in both series by matching the inner
and the outer expansions.

By assuming an ideal irrotational flow, the aerodynamic compressible field around the airfoil can be
described by the potential equation derived in section 1.4 of part II, with suitable boundary conditions
imposed on both the airfoil surface and the wake downstream of the trailing edge. This equation has
the form

=0 with (3.31)

c2 = c - ( - 1) V - V0
('y - 1) (3.32)

2

where c00 is the speed of sound at infinity. Equation (3.31) is uniformly valid, in the near and far field,
and can be used to determine an inner and an outer expansion of the potential field.

3.4.1 Inner Problem

The length scale of the inner region is the airfoil chord3 i. Thus, by supposing that a typical variation
of the flow occurs with a circular frequency w, terms in equation (3.31) stay in the ratio

w212 wV00i
M2 = 1 (w*M)2 :w*M : M = 1: 2: EM00: M (3.33)1: : : 00

00 00

where w* = w i/V00 is the reduced circular frequency and

E = w*M00 (3.34)

It follows that, for E « i and M00 « 1, equation (3.31) reduces to the Laplace equation

Vç=0 (3.35)

where the subscript x denotes differentiation with respect to the inner co-ordinates (x, 4) = (xi/i, x2/i).

31n this section, c denotes the local speed of sound and i denotes the airfoil chord.
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3.4.2 Outer Problem

In the outer region the velocity potential is that of an acoustic disturbance propagating in a moving
medium, as described by a linearized form of equation (3.31). Following the analysis of section 1.4 of
part II, the linearized potential equation has the form

a2
2 at2+2V0o V
00

axat+ ooax2)

1 92p' =0-
00

n=00 P00

p' (r', O, w) = / a(k) Z1,1 (-yr') e dk
fl-00

1/2p' (r') exp(i k0 r') f(0) as r' *

is obtained with Z, (-yr') = ('yr'), where H2 denotes the Hankel function of second kind.

(3.36)

where q5' = V00x is the potential of the acoustic disturbance. Then, using a Galilean change of
variable z' = z V00t, equation (3.36) can be put into the form of the classical acoustic wave equation

i
'- '-'W" 'P 2
00

Since the acoustic pressure p' is linearly related to the acoustic potential qS', the same wave equation is
also satisfied by p', namely

(3.37)

(3.38)

The length scale L of the outer region is the acoustic wavelength ). For convenience L is set to )/2ii-.
Furthermore, the acoustic time scale is the same as the aerodynamic one. In other words, a near field
perturbation of circular frequency w generates an acoustic disturbance of the same frequency. As a
result, all terms in equation (3.31) have the saine order.

Let us introduce the outer co-ordinates (x,x) = (x/L,x2/L) = (ko x',k0 x2), where k0 is the
acoustic wavenumber. From the definition (3.34) it follows that

e = kol = 2ir (3.39)

Hence, when the Helmholtz parameter e tends to zero, the inner and the outer length scales become
asymptotically disparate.

In cylindrical co-ordinates (r', O'), with

z' = z - V00 t = r' cos O', y' y = r' sin 0' (3.40)

the wave equation (3.38) becomes

ii a /,a\ 1 a2 i a2)lr)_ÌP =0 (3.41)

which describe the propagation of acoustic disturbances in a convected frame of reference. The general
solution of equation (3.41), in the frequency domain, is

(3.42)

where k = w/c00 and 'y = sgn(ko) /Ik
k21

or /Ik -
k21

according as ¡kI ko I, respectively. The
function Z(x) is any linear combination of Bessel functions (see Ref.[30} (pp. 64-65)). A solution with
an outgoing wave behaviour

(3.43)
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and

In outer co-ordinates (r° = r'/L, 0') the Fourier transform of equation (3.41) has the form

118f 0\ 182 )--1r°+------+1 '-0r° 8r0 Oro) r02 8012 J" -

J42) (x)
-2iln(x) as x-+0

ir
fX\

H2)(x)
i (n-1)!

2)ir

H<IvI, T2«,vI

(3.44)

Hence, looking for elementary solutions in the form p' = cos(nO + a), equation (3.44) reduces to an
equivalent Bessel equation

11 8 / 8\ / 2 \)<-_ + -- + 1)3. q = 0 (3.45)

For outgoing waves at infinity the solutions are Hankel functions of second kind (r°).
The Hankel functions H7Ç2 (r°), for small and large values of the argument, have the following

asymptotical behaviour [31]

as x-+0 (3.46)

H)(x) exp{-i [x - (n/2 + 1/4) ir]} as x oo, with n fixed (3.47)

3.4.3 Solution and Matching

Consider now an isolated vortex approaching the airfoil, as sketched in Fig.3.6. The wavelength of the
resulting acoustic perturbation is of order

i
A 's-. (3.48)

Hence, the outer and the inner co-ordinates are related by

r° = 2ir M r (3.49)

At a very low Macli number, as relevant to many industrial and marine applications, an incompressible
solution is a good approximation of the flow behaviour up to some distance from the airfoil, say

= k Rc (Rc 1/4), where k is some constant. Therefore, the analysis described in section 2.2 can
be used to obtain an outer limit of the inner solution to which the outer solution can be matched.
The matching boundary is ideally fixed at a distance r°1 = ir k M/2. We remark that the matching
distance r does not define a real matching boundary. The matching, in fact, is between asymptotic
expansions. The necessity of defining an ideal matching distance will be clear later.

Equation (2.69) provides the unsteady pressure field in the incompressible inner region. Therefore
it can be used to find an outer expansion of the inner hydrodyriamic pressure field.

The vortex contributions (2.32) and (2.87) include a steady term which is related to the presence
of a vortex in the center of the circle (e-pIane). Let then W,, and V,, denote the unsteady part of (2.32)
and (2.87), respectively.

Because noise is generated when vortices experience an interaction with the airfoil, it can be assumed
that, in the outer limit of the inner region, the velocity induced by the oncoming vortex and by the
wake vortices (vortex-sheet in the case of a fixed-wake model) are such that

(3.50)
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As a result, the square velocity in equation (2.69) can be approximated as

M2 + {v8 ( + v)
} (3.51)

Hence, the unsteady pressure coefficient takes the form

C(Z,T) 2{V3 (3.52)

where h = Id(IdzI2. It is shown in Fig.3.7 that far enough from the circle center, h tends to the unitary
value, uniformly around the airfoil.
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FIGURE 3.7: Polar plot of h = d(/dzI2 for a Kármán-Trefftz conformal mapping of a circle of radius
R = 0.25 into a 12% thickness airfoil of unitary chord. The quasi-elliptical curve is obtained at a
distance r = 14/5R from the center of the airfoil. The quasi-circular curve is obtained at a distance
r = 10R from the center of the airfoil.

Furthermore, by assuming that both the oncoming vortex and the wake vortices are at small distance
from the airfoil, the expressions (2.33), (2.32), (2.87) and (2.88) can be approximated by introducing
the following Taylor series truncated at the second order

1 Rn(c c/(v ) - fl( - 2t'2t'*2
' 'v,(++ '2f, i. 1_._-- - 7)

( (I R/(*)' i ' R D4- (i+ c "'c- (,(*

Then, by setting

= r,,e'8'r' i9- re
the complex potential and velocity field become

jF 1rR 1rR1
v(z,T)

L c'c + 2 ('2(2
J

(3.53)

(3.56)

(3.54)

(3.55)



As a result

WV + Ww = 2ÇT) + 2 2r27-«T)

V + V = 2ir(l2T) + 2,3fl(r)

where the complex functions Ç and 7-1 are defined as

f(a)ei0wda
Jo

7-1(r) = 71r + 7-1 r _Rc4ei200 + [y(a) r R ei 2O da
V JO w

Finally, substituting into equation (3.52) and setting

('= re° =

leads to the following expression for the unsteady pressure coefficient

Ww(z,r)
r r 2 - R2 i r - R4'I I I

J LT'c + 2
'2*2] y(a) da'' r_R

2ir' { + '2l2]i fr fr2 R2 r4 R41
o

w C1Y(a)d
L

:e;l* '2/-'*2
w w

hF3E3
{7-lr sin(30 a) 7-li cos(30 - a)}+ 21r2r03 {ÇsinO+ ÇcosO} +

hF8E4
{Çrsina Çicosa} +

irr°4 21r2r04
{7-1 sin(20) + 7-Lt cos(20)}

hRE5
lrro5 {?-1 sin a cos a}

(3.65)

(3.66)

This form of the pressure field is assumed as outer limit of the inner behaviour and inner limit of the
outer behaviour. It is ideally evaluated at a distance r = irkM42, with k sufficiently large to ensure
a second order inner approximation, but sufficiently small to ensure r°1 «1.

Before matching the outer to the inner solution, the latter should be expressed in a moving frame
of reference using the Galilean transformation x' = x r to change (r, O) into (r', O'). However, to first-
order accuracy, (r, O) can be replaced by (r', O') into equation (3.66). This approximation is physically
consistent with the fact that noise is mainly generated when the oncoming vortex is in the vicinity of
the airfoil, where r and O are approximately equal to r' and O'.

In view of the outer limit of the inner solution (3.66), the general outer solution

= AThH2) cos(nO + a) (3.67)

C(z,r) {rsinO_ icosO}

+ /22 {r sin(20 - a) - Çj cos(20 a)} 202 {
sin(20) - 71j cos(20)}
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(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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determined in subsection 3.4.2 can be put into the form

P(1)H(2)(ro) sinO + Q(1)H2) (r°) cosO

+ P(2)H2)(r0) sin(20) + Q(2) H2 (r°) cos(20)

+ P2)H2)(r0) sin(20 - a) + QH2) (r°) cos(20 - a)
+ P(3)H2)(r0) sin(30) + Q(3) H2 (r°) cos(30)

+ P3)H2)(r0) sin(30 - a) + QH2) (r°) cos(30 - a)

-0
p,

Then, taking the limit as r° -+ O, using the asymptotic expressions (3.46) and comparing to (3.66) yield

p(l) Pd*r
p(2) =

he2 r

p(3) = o
3)

=pd172r

P'K1
= PdÖr

Q1K1 =Pdi
e2P2K2 Pd2irro2'ItT

e2Q2K2 = Pd2 O27'i

he2P2K2 Pd02Çr
he2QK2 Pd02i

P3K3 = O

Q3K3 = O

he3
PA3)K3 Pd037Lr

he3Q)K3 = Pd?li
where the symbol f denotes the Fourier transform of f, Pd is the free-stream dynamic pressure
and K1, K2 and K3 are the small argument asymptotic limits of the Hankel functions, namely

21 4i 1K1 = ---, K =irr° irr°
Thus, the coefficients P and Q can be expressed as

16 iK3=--ir ro3

Q(I) =Pdi
=Pdi

Q) Pd2i
= o

Q) = PdL

(3.68)

(3.69)

(3.70)

(3.71)

Concluding, equation (3.68) with coefficients defined in (3.71), describes a far pressure field which
satisfies an outgoing wave behaviour and matches the inner pressure field generated by a low Mach
number vortex-airfoil interaction.
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3.4.4 Discussion

The complex functions Ç and 7L have an important physical meaning. As shown in section 2.2.8,
a vortex convected past a body induces a force which is proportional to the rate of change of the
hydrodynamic impulse of the flow, that is, the hydrodynamic impulse of the pair system constituted
by the vortices in the field and their images. The hydrodynamic impulse of a vortex is defined as the
product of the circulation and the distance of the vortex from a reference point. Therefore, when a
vortex is in proximity of a circle (see Fig.2.3), the lift and drag components of the dimensionless force
per unit span are given by

c1=->r= d írR
drl r

d
Cd

dT
2

,_ d írR
dr r sinov}r

Then, using equation (3.63) and considering, for simplicity, only the oncoming vortex contribution,
yield

Cz+iCd= (3.74)

Therefore, the rate of change of the real part of Ç, determines the lift contribution, whereas the rate
of change of the imaginary part of ÇÇ, determines the drag contribution.

In a similar way it can be demonstrated that the rate of change of the function ?-L is related to
the aerodynamic moment exerted on the airfoil. Thus, 7-t,, can be interpreted as a complex form of the
hydrodynamic angular impulse of the flow with respect to the origin .

The acoustic pressure (3.68) has the form of a multipole expansion where the dipole and quadrupole
terms are of the order of e and e2, respectively, as resulting from first- and second-order time derivatives.
Therefore, it can be concluded that:

the unsteady aerodynamic force exerted on the airfoil generates dipole contributions of first order
in e (terms p(l) and Q(l) containing Ç);

the unsteady aerodynamic Inoment exerted on the airfoil generates quadrupole contributions of
second order in e (terms p(2) and Q(2) containing 9-t);

the hydrodynamic impulse of the flow generates quadrupole contributions of second order in e
(terms 2) and Q containing c.

The far field behaviour can be investigated by using the asymptotical expression (3.47) of the Hankel
functions. At the leading order and at an observation angle O = ir/2, the acoustic pressure takes the
forin

Pd i (er-3r/4)P - re

Hence, provided that for a vortex-airfoil interaction problem the Helmholtz number is e 2ir M, the
vortex-airfoil interaction noise is given by

- o ' Pd i (2irMr,or-3ir/4)P' =

cosûv} (3.72)

(3.73)

(3.75)

(3.76)

Equation (3.76) exhibits a fifth-power scaling law of the acoustic intensity and a r112 dependence
of the far pressure field on the observation distance. These results are in agreement with those obtained
in section 3.3 by using a two-dimensional linear model (see equation (3.18)).



The analysis developed in this subsection is based on a fixed-wake model, as indicates by the
functions Ç(r) and 7-1(r) in (3.63) and (3.64), respectively. However, the formulation can be straight-
forwardly extended to a free-wake model by replacing the wake-integrals in the expressions of Ç(r) and
7-1(r) by summations over wake vortices.

As an interesting result, the functions Ç(r) and 7-1(T) in (3.63) and (3.64), respectively, show that
a wake fixed on the real axis r, O results in unbalanced forces and moments on the airfoil. As a
consequence, when a fixed-wake model is employed the dipole and quadrupole acoustic contributions
may be overpredicted.

3.5 Conclusions

In this chapter we proposed analytical formulations to describe the acoustic radiation from a vortex-
airfoil interaction.

An acoustic analogy formulation was presented, relating the far pressure field to the pressure fluc-
tuations on the airfoil surface. Moreover, an analytical decomposition of the time derivative of the
pressure field was proposed as a way to investigate the effects of nonlinear interaction mechanisms on
the aerodynamic sound generation.

A two-dimensional linear model proposed by Howe [30] and based on the Sears' gust response
function was applied to describe the sound generated by a double row of counter-rotating vortices
convected past a flat-plate. It was shown that noise is generated when the vortex passes by the
leading edge, and not when it passes by the trailing edge. Furthermore, when a flat-plate is embedded
symmetrically in a double row of counter-rotating vortices only odd harmonics acoustic peaks are
generated. Finally, consistently with the two-dimensionality of the model, a fifth-power scaling law of
the acoustic intensity was obtained (I o M).

A matched asymptotic expansion model was developed on the base of the analytical results of
chapter 2. The model related the multipole structure of the acoustic far field to the aerodynamic force
and moment induced by an oncoming vortex and the airfoil wake on the airfoil. More precisely, a
force generates a dipole radiation, whereas a moment generates a quadrupole radiation. A fifth-power
law of the acoustic intensity was found in agreement with other two-dimensional models. The explicit
dependence of the acoustic pressure on the vortex kinematics past the airfoil is an interesting aspect of
the proposed model.

3.5. CONCLUSIONS 67
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4

Vortex-Airfoil Interaction: Results and
Discussion

In this chapter we present numerical results concerning with the vortex-airfoil interaction problem.
Numerical predictions are made on the base of the aerodynamic and acoustic formulations developed
in chapters 2 and 3, respectively.

The aerodynamic problem is solved by means of the discrete-vortex method described in section 2.2.
The physical consistency of a fixed-wake approximation is investigated by checking fixed-wake results
against free-wake results. In particular, the influence of the wake model on the wall pressure at the
airfoil trailing edge is examined.

The acoustic field is predicted by means of the Ffowcs Williams & Hawkings [2] approach described
in section 3.1. A parametric study is performed in order to investigate the effects of the free-stream
velocity, the vortex distortion and the airfoil geometry.

Finally, numerical predictions of the noise radiated by a Kármán-Trefftz airfoil embedded in a double
row of counter-rotating vortices are compared with experimental measurements of the noise generated
by an NACA-0012 airfoil in the wake of a cylinder.

Unless otherwise stated, the following geometrical and flow parameters are used in the numerical
simulations. The airfoil chord and span are c = 0.1 m and i = 0.3 m, respectively. The acoustic
predictions are made at a distance r = 1.4 m from the airfoil mid point. Both cambered and symmetrical
airfoils are considered. The non zero thickness airfoils have a e = 15.5° trailing edge angle, and a
12%percentage thickness. A symmetrical airfoil, obtained with the conformal mapping parameters

= 0.01264 and = 0, provides a good approximation of au NACA-0012 airfoil. The circulation
of the oncoming vortex is obtained through an approximated form of equation (2.61) and results in
the dimensionless value F 2Cimaxd/C, where d and Cjmax are the diameter and the maximum lift
coefficient, respectively, of a hypothetical upstream cylinder from which the oncoming vortex is shed.
It is always assumed d/c = 0.16. When a double row of vortices is considered, the distance between
two next vortices on the same row is a 5d, to which a Strouhal number of 0.2 corresponds. The flow
parameters are V = 20 rn/s, p 1.225 kg/rn3 and p = 101253.6 Pa. The viscous core parameter (see
equation 2.131) has a dimensionless value /3 = 0.01016M/Mmax, with Mmax 0.3.

When labels are not included in figures these refer to spatial co-ordinates expressed in m. Further-
more, the scales in the y-direction have been frequently shrank in order to enhance the plot resolution.

4.1 Effects of the Vortex Convection Velocity

In this section we investigate some effects related to a vortex frozen convection hypothesis. This
hypothesis is commonly incorporated by idealized analytical models and consists in supposing that
the incident vortex is convected along a rectilinear path at a constant velocity. The frozen convection

69
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approximation is herein referred to as fixed vortex path approximation. We consider a clockwise line-
vortex convected towards a flat-plate at zero angle of attack. This flow configuration is such that a
fixed vortex path is physically consistent with a free vortex path, provided that the effect of the vortex
self induction near the flat-plate can be neglected. The vortex is initially located at a distance of
0.005m from the plane of the plate and its circulation is determined by assuming Cimax = 0.1. Results
obtained by considering a fixed vortex path are checked against results obtained by assuming a free
vortex path. In the first case a fixed-wake formulation is employed, whereas, in the second case, a
free-wake formulation is employed.

4.1.1 Aerodynamic Results

In Fig.4. i(a) the vortex trajectories for the case of a fixed vortex path and that of a free vortex path are
plotted. The results show that the leading edge induction effect perturbs the vortex trajectory from a
parallel streamline. Furthermore, downstream of the trailing edge, the free-wake formulation provides
a slightly diverging vortex path. The wake circulation is plotted in Fig.4.1(b). When a fixed vortex
path is assumed, the peak is slightly anticipated because of the greater vortex convection velocity'.
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a) Vortex trajectory.
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FIGURE 4.1: Interaction between a vortex and a flat-plate. Comparison between free-wake and frozen
convection results: free vortex path and free wake, - - - - fixed vortex path and fixed wake.

The flat-plate considered in this section is indeed a Joukowski2 airfoil of very small thickness ('-'
5 x 10-6), which offers the advantage of a quasi-singular behaviour of the flow at the leading edge. It
is plotted on Fig.4.2 where the distribution of the numerical pressure probes on the flat-plate is shown.
These are numbered in a counterclockwise progression from 0, the nearest point to the trailing edge
on the upper side of the plate, to 149, the nearest point to the trailing edge on the lower side of the
plate. The distance between points O and 149 from the analytical location of the trailing edge is about
6 x 105m.

The vortex distribution in the free wake at different time-steps is plotted on Fig.4.3. The first
vortices shed in the field (see Fig.4.3(a)) are the trailing edge response to the impulsive introduction of
the oncoming vortex when the computation is started. On the contrary, the two wake perturbations in

'In the case of a free convection, in fact, the velocity induced by the image vortex is opposed to the free-stream velocity
2A Joukowski airfoil is a Kármán-Trefftz airfoil with a vanishing trailing edge angle.
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FIGURE 4.2: Flat-plate.

Figs.4.3(b) and 4.3(c) are the response to the vortex passage nearby the leading edge and nearby the
trailing edge, respectively.
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FIGURE 4.3: Vortex distribution in the wake behind the flat-plate at different time-steps during the
passage of a line-vortex. In each figure ripples from right to left are caused by: a) the impulsive
introduction of the oncoming vortex when the computation is started, b) the vortex passage by the
leading edge, e) the vortex passage by the trailing edge. Only ripples a) and b) can be seen in Fig.4.3(a),
whereas ripples b) and c) can be seen in Figs.4.3(b) and 4.3(c).

The unsteady force on the flat-plate is plotted in Fig.4.4. A slight difference occurs in the lift
component as the vortex passes by the leading edge and by the trailing edge. The quasi-singular
behaviour predicted for the drag component is a consequence of the quasi-singular behaviour of the
flow at the leading edge.

In Fig.4.5 the pressure coefficient in the trailing edge region is plotted. Fixed- and free-vortex path
results are compared. It is interesting to notice that a reduction of the pressure jump at the trailing
edge can be obtained when a free vortex convection is assumed. This is a consequence of the fact that a
vortex force3 is generated when a vortex is convected at a velocity different from the local flow velocity.

3The vortex force is proportional to V- {w (v, - v)}, where o.o denotes the vorticity7 v, is the vortex convection velocity
and y is the flow velocity at the vortex location (see also section 2.2.8).
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a) Drag coefficient. b) Lift coefficient.

FIGURE 4.4: Unsteady force on the flat-plate induced by a line-vortex: free vortex path, - - - -
fixed vortex path.

4.1.2 Acoustic Results

In Fig.4.6 the acoustic pressure generated by the interaction between the vortex and the flat-plate is
plotted. This has been computed by means of the acoustic analogy approach described in section 3.1.
Because of the quasi-singular behaviour induced by the vortex at the airfoil leading edge, a radiation
peak occurs when the oncoming vortex passes nearby the leading edge (see Fig.4.6(a)). On the contrary,
when the vortex passes nearby the trailing edge, only a vanishing acoustic disturbance is generated.
Furthermore, as shown in Fig.4.6(b), when both the oncoming vortex and the airfoil wake are freely
convected at the local flow velocity, a slight increase of the trailing edge contribution to the noise
radiation occurs. This behaviour is consistent with Howe's [13] analysis, as discussed in subsection
10.3.5 of part II.

From the results shown in the present section it follows that, in the case of a flat-plate at zero
angle of attack, a fixed vortex path approximation together with a fixed wake approximation leads
to consistent results. This legitimates the frozen convection assumption made by many authors, in
aerodynamics as well as in aeroacoustics, when dealing with thin airfoils at small angle of attack. An
idealized model based on the frozen convection hypothesis has been described in section 3.3. This
model describes the noise generated when a line-vortex is convected past a flat-plate. In the following
subsection, the analytical prediction based on this linear model are compared with the numerical results
obtained by considering the same idealized flow configuration.

4.1.3 Comparisons with Howe's Analytical Model

In Fig.4.7 the acoustic pressure generated by the interaction between a flat-plate and a clockwise
frozenly convected line-vortex is shown. The circulation of the vortex is determined by supposing a
value Cimax = 0.1. The distance between the vortex trajectory and the flat-plate is Yv = 0.001 in. The
noise prediction is made at a distance r = 5 m from the plate mid point. The analytical behaviour
predicted by the linear model (3.16) is compared to the numerical prediction obtained by employing a
fixed vortex path and a free wake formulation.

The linear model is consistent with a two-dimensional field, an aerodynamic and acoustic field
indeed. In the numerical computation a flat-plate of span i = 0.3 m is considered to which the
radiation parameter ki i corresponds. Thus, the flat-plate cannot be assumed as acoustically two-
dimensional. Nevertheless, the results compare favorably, especially for the negative peak of the leading
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a) Leading edge contribution.
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FIGURE 4.5: Pressure coefficient in the trailing edge region of a flat-plate induced by a line-vortex:
point 0, - - - - point 149.
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FIGURE 4.6: Acoustic pressure at 900 to the flow. Free vortex path, - - - - fixed vortex path.

edge contribution. On the contrary, the numerical solution underestimates the positive peak. This is
presumably due to the fact that the numerical solution is based on a thin airfoil and not on a zero-
thickness plate. Thus, only a quasi-singular flow behaviour is predicted at the leading edge. On the
contrary, the analytical solution is based on the Sears' response function which provides a singular
behaviour at the leading edge.
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4.2 Effects of the Vortex Distortion

In this section we investigate the effects of the vortex distortion during a direct vortex-airfoil interaction.
Results obtained by describing the oncoming vortex as a circular cloud of 101 vortices are compared
with those obtained by concentrating the overall circulation in a line-vortex. The same comparison
is made for the case of a non direct vortex-airfoil interaction by locating the vortex at a distance
Yv = 0.01 m above the airfoil chord line. The circulation of the impinging vortex is determined by
assuming Cimax = 0.05. The vortex rotates clockwise. A fixed-wake formulation is employed.

4.2.1 Aerodynamic Results

The vortex trajectory for the direct interaction case is plotted on Fig.4.8. The isolated vortex passes
below the airfoil. Conversely, the cloud is split into two fragments passing above and below the airfoil.

a) Isolated vortex trajectory. b) Cloud of 101 vortices at different time-steps.

FIGURE 4.8: Head-on vortex-airfoil interaction.

In the case of a non direct vortex-airfoil interaction, the oncoming cloud undergoes only a slight
distortion and its trajectory is the same as if it was concentrated in a line-vortex. This is shown in
Fig.4.9.

FIGURE 4.9: Non direct vortex-airfoil interaction: Yv = 0.01 m. Isolated vortex trajectory and a cloud
of 101 vortices at different time-steps.

The circulation shed in the wake is traced in Fig.4.10. During the direct interaction of the airfoil
with an isolated vortex, the flow at the trailing edge is also strongly perturbed. As a consequence, the
wake circulation is three times higher than that generated by an interaction with a cloud of vortices.

During a non direct interaction, the oncoming vortex is only slightly distorted. Furthermore, as
shown in Fig.4.10(b), the flow at the trailing edge remains unaffected by the spatial vorticity distribution
of the incident vortex.

In Fig.4. lithe unsteady force induced by an isolated vortex is compared to the force induced by a
cloud of vortices. Due to the vortex splitting, a significant difference occurs especially in the case of a
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FIGURE 4.11: Unsteady force on the airfoil during a vortex airfoil interaction. Isolated vortex: drag,
- lift; cloud of vortices: - - - - drag, - - - lift.

4.2.2 Acoustic Results

The vortex distortion and its consequent splitting are responsible for a reduction of the unsteady force
exerted on the airfoil. Furthermore, as shown in Fig.4.12(a), a substantial reduction of the noise
radiation occurs when the impinging vortex is described as a cloud of vortices. This reduction is
particularly important in the noise contribution from the trailing edge. On the contrary, as shown in
Fig.4.12(b), when a non direct interaction occurs the acoustic pressure is not affected by the size of the
vortex. In this case, a line-vortex method can provide consistent results.

Finally, in Fig.4.13 the directivity of the vortex-airfoil interaction noise is plotted. It is interesting
to notice that, in the case of a direct interaction, the vortex distortion and its consequent splitting yield
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a) Direct interaction: Yo = 0. b) Non direct interaction: Yo = 0.01 m.

FIGURE 4.10: Dimensionless circulation of the vorticity shed into the wake of the airfoil ('7Lr).
Isolated vortex, - - - - cloud of vortices.

direct interaction. Conversely, in the case of a non direct interaction the vortex size has no significant
effect on the unsteady force exerted on the airfoil.
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FIGURE 4.12: Acoustic pressure at 900 to the flow generated by a vortex-airfoil interaction.
Isolated vortex, - - - - cloud of vortices.

a substantial reduction of the noise level. Therefore, the vortex size and the vortex distance from the
airfoil play a crucial role during a direct vortex-airfoil interaction.
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4.2.3 An Example of Vortex Splitting
In order to emphasize the distortion process during a direct vortex-airfoil interaction, the circulation
of an intense and large-scale vortex (Cimax = 0.5) is distributed upon a cloud of 197 vortices.

As shown in Fig.4.14, in proximity of the leading edge, the vortex is first deformed and then split
into two fragments which are convected along the two sides of the airfoil. Due to the opposite induction
effect of the image vortex system, the convection velocity of these two fragments is different. The upper
fragment is slower and spreads across the surface. On the contrary, the lower fragment undergoes only
a slight deformation after the splitting has taken place.

FIGURE 4.14: Direct interaction between a cloud of 197 clockwise vortices and an airfoil. First column:
frames i to 8, second column: frames 9 to 16.

As these two fragments approach the trailing edge, secondary vortices are shed into the airfoil wake.

4° 60-40 -20 0 20
SPL (dB)

a) Direct interaction: y,, = O. b) Non direct interaction: y,, = 0Ml m.



This is shown in Fig.4.15 where the wake circulation exhibits two peaks of equal sign. These correspond
to the passage of the lower and upper fragments by the airfoil trailing edge.
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FIGURE 4.15: Airfoil wake circulation generated during a direct vortex-airfoil interaction. T denotes the
dimensionless time.

The behaviour described in this subsection is in qualitative agreement with the PIV observations
made by Homer et al. [11] and discussed in section 2.1.

The time lag between the interaction of the two half vortices with the airfoil trailing edge generatès
two distinct acoustic disturbances. This effect is of fundamental importance at higher free-stream Mach
numbers for two reasons:

- as discussed in chapter 9 of part II, the fluid viscosity permits the flow singularity at a trailing
edge to be smoothed. However, due to a characteristic relaxation time of the fluid) the singular
behaviour is smoothed only partially at high frequencies. In other words, the Kutta condition
is not completely satisfied at high frequencies. As a consequence, the conversion mechanism of
kinetic energy into acoustic energy at a trailing edge is enhanced at high frequencies. In gust-
airfoil interaction problems, a higher free-stream Mach number corresponds to higher frequencies
in the airfoil reference frame. Thus, the trailing edge contribution becomes important at high
Mach numbers.

- At high free-stream Mach numbers, the airfoil is no more acoustically compact. As a consequence,
the airfoil leading edge and trailing edge generate two independent acoustic contributions.

In a rod-airfoil configuration, the generation of two distinct acoustic disturbances, together with the
strong nonlinear effects occuring when the vortex impinges on the airfoil leading edge, are likely to be
responsible for a spectral broadening of the acoustic radiation about the main frequency.

0,24 0,27 03
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4.3 Effects of the Airfoil Camber

In this section we investigate the effects of the airfoil camber. The following discussion aims indeed to
emphasize the nonlinear character of the interaction problem. When the oncoming vortex is described
as a line-vortex, that is physically consistent only at high Reynolds numbers, the flow nonlinearity is
responsible for a strong, and even critical4, dependence of both the vortex trajectory and the induced
pressure field on the geometrical parameters of the problem. On the contrary, when the impinging vortex
and the curvature radius of the airfoil leading-edge have a comparable scale, the flow nonlinearity acts
as a rearrangement mechanism of the vorticity field during the vortex distortion. The latter aspect has
been described in section 4.2. Here we demonstrate that even a slight variation of the airfoil geometry
can yield remarkably different results when a line-vortex model is used.

We consider two cambered airfoils, namely /3 = ±2° (see Fig.2.12 for the definition 01/3). A clockwise
line-vortex is initially located at the transverse distance Yv = 0.005 m from the airfoil chord line. The
vortex circulation is determined by assuming Ctm 0.1. Both a fixed- and a free-wake formulation
are used and the results are compared.

4.3.1 Aerodynamic Results

The vortex trajectory is traced in Fig.4.16. In the case of a positive camber, the fixed- and the free-wake
formulations provide nearly the same vortex path. Conversely, in the case of a negative camber, the
vortex trajectories differ downstream of the trailing edge. Therefore, a small variation of the airfoil
camber results in a strong difference of the vortex trajectory. The divergence of the vortex trajectory
shown in Fig.4.16(b) for the free-wake case is caused by an interaction with the airfoil wake. Therefore,
free-wake results are more physically consistent than those obtained by means of a fixed-wake approach.

The wake circulation obtained by a free-wake formulation for two values of the airfoil camber is
plotted in Fig.4.17. Consistently with the different trajectories of the oncoming vortex, a more intense
generation of vorticity occurs in the case of a negative camber.

The unsteady force induced by the vortex on the airfoil at the two values of the airfoil camber is
plotted in Fig.4. 18. A comparison is made between fixed- and free-wake results. In the case of a positive
camber, the fixed- and the free-wake formulations provide a similar behaviour. However, significant
differences occur as the vortex passes by the trailing edge when the effects related to the wake become
more important. In the case /3 = 2°, the trailing edge contribution to the aerodynamic force depends
on whether the wake is supposed to be fixed or free. An explanation of this behaviour can be found
by examining the vortex trajectory near the trailing edge. As shown in Fig.4.19, when a fixed-wake
formulation is employed, the vortex crosses the trailing edge steady streamline. Conversely, when a
free-wake model is used, the vortex is convected above the trailing edge streamline.

The airfoil wake is plotted at different time-steps in Figs. 4.20 and 4.21 for /3 = 20 and /3 = 2°,
respectively. In both the positive and negative camber cases, the wake is perturbed in three points (see
Figs. 4.20(c) and 4.21(c)). The first perturbation on the downstream end of the wake is the response
to the impulsive introduction of the oncoming vortex when the computation is started. The second
perturbation, in the center of the wake, is generated when the vortex passes nearby the airfoil leading
edge. Finally, the third perturbation is caused by the vortex passage by the trailing edge. The time
amplification of the leading and trailing edge wake perturbations is related to the wake strength at
these points. In Figs. 4.20 and 4.21 the oncoming vortex appears as an isolated point above the airfoil.

4Actually, the existence of critical flow configurations, such as an airfoil angle of attack for which the vortex impinges
directly on the airfoil leading edge [32], is a by-product and a drawback of an ideal flow modeling. The sensitivity of the
interaction dynamics to the configuration parameters can be reduced by introducing a random perturbation of the vortex
position computed at each time-step. A random walk method, in fact, is commonly exploited to introduce diffusive effects
in an otherwise ideal flow.
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4.3.2 Acoustic Results

The noise resulting from the vortex-airfoil interaction described in this section is plotted in Fig.4.22.
In both the positive and negative camber cases, the trailing edge contribution to the acoustic pressure
depends on the model used to describe the wake. Furthermore, concerning the main object of the present
investigation, the noise level exhibits a strong dependence on the airfoil camber. Therefore, nonlinear
effects may lead to erroneous results whenever a line-vortex model is used, though not adequate to
describe the physics of the interaction process.
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4.4 The Unsteady Pressure Field on the Airfoil Surface

In this section we investigate the unsteady pressure field on the airfoil surface. The case of a fi = 2°
cambered airfoil discussed in section 4.3 is subsequently considered. The analytical decomposition of
C described in section 3.2 is used to scrutinize the reciprocal role of the various nonlinear interaction
mechanisms in the generation of aerodynamic sound. Emphasis is given to the trailing edge contribution,
in relation to the wake model adopted.

4.4.1 Trailing Edge Behaviour

In the example discussed in section 4.3, differences have been observed for the case /3 = 2°, depending
on whether a fixed- or a free-wake model are used. The origins of these differences can be found in the
surface pressure field in proximity of the trailing edge

The points on the airfoil where the pressure coefficient is calculated are shown in Fig.4.23. These
are numbered in a counterclockwise progression from 0, the nearest point to the trailing edge on the
upper side of the airfoil (see Fig.4.23(b)), to 149, the nearest point to the trailing edge on the lower
side of the airfoil. Point 74 denotes the leading edge. The distance of the points O and 149 from the
analytical location of the trailing edge is about 2 x IO m.

In Fig.4.24 a pressure jump is shown to exist between points O and 149 as the vortex passes by
the trailing edge (see Fig.4.19). The dimensionless amplitude of this jump is 0.19 for the fixed-wake
results, and 0.07 for the free-wake results. This difference is mainly due to the different trajectory of
the vortex in the two cases. In fact, as already pointed out, when a fixed-wake formulation is used, the
vortex crosses the steady streamline from the trailing edge. Conversely, when a free-wake formulation
is used, the vortex convects above the trailing edge streamline.

Although the velocity at the trailing edge should vanish, as required by the instantaneous fulfilment
of the Kutta condition, the time derivative of the pressure coefficient has a non zero value due to the
second order time derivative of the complex potential (see equation (3.9)). This is plotted in Fig.4.25
where a comparison between fixed- and free-wake results shows that a free-wake model results in a
reduction of the time rate of the pressure coefficient at the trailing edge.
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4.4.2 Aeroacoustjc Sources Characterization

In this subsection we investigate the behaviour of the nonlinear interaction terms Ó, CP, CPVW and
on the airfoil surface. These terms have been analytically defined in section 3.2. The numerical

probe distribution along the airfoil is shown in Fig.4.23. In order to compare the values that a nonlinear
term takes in two different points of the airfoil, all the values have been multiplied by the local length
of the discrete airfoil element dL.

The maximum values reached by the nonlinear interaction terms are plotted in Fig.4.26(a). It can be
observed that the vortex and the wake contributions tend to converge in proximity of the airfoil trailing
edge (points O and 149). Analogously, the vortex-wake and the wake-wake interaction contributions
reach nearly the same maximum values near the trailing edge. Furthermore, the nonlinear interaction
contributions related to the oncoming vortex (y, vw) have a non symmetrical behaviour on the two
sides of the airfoil. Conversely, the contributions related to the airfoil wake (w, ww) exhibit a quasi
symmetrical pattern.

In Fig.4.26(b) the time-steps at which the four contributions reach their maximum values are plotted
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a) Fixed-wake results. b) Free-wake results.

FIGURE 4.24: Pressure coefficient induced by a line-vortex onto the trailing edge region of a cambered
airfoil: point O, - - - - point 149. Comparison between fixed- and free-wake results.
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FIGURE 4.26: Aeroacoustic sources distribution on the surface of a cambered airfoil. Free-wake formulation.
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for the free-wake case. Values are gathered in three regions. The first is a line at t const, related to
the time at which the vortex passes by the airfoil leading edge. The second is a line with slope related
to the vortex convection velocity. The third region is a line at t const related to the time at which
the vortex passes by the airfoil trailing edge. Thus, two types of disturbances can be distinguished.
Simultaneous disturbances at the airfoil leading edge and trailing edge, and wavelike disturbances.
The latter convect at the vortex velocity and represent the trace on the airfoil surface of the vortex
passage. Thus, the wavelike contributions peak only on the crossed side of the airfoil. Only the vortex
contribution and the vortex-wake interaction contribution can produce wavelike disturbances. On the
contrary, the wake contribution and the wake-wake self interaction contribution arise only when the
vortex passes by the trailing edge.
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FIGURE 4.27: Vortex trajectory in proximity of the trailing edge.
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FIGURE 4.28: Normalized time derivative of the pressure coefficient. Point 0: Trailing edge region.
Free-wake results. Vortex, - - wake, - - - - vortex-wake, - - - wake-wake contributions.

In Figs. 4.28, 4.29 and 4.30 the time trace of the nonlinear interaction terms ÓPV, CPw' CPVW and
in three points of the airfoil are plotted. A free-wake model has been employed. Values have

been normalized by the corresponding maximum values plotted in Fig.4.26(a).
In the trailing edge region (Fig.4.28), the vortex and the wake contributions add beforethe vortex has

passed by the trailing edge (time-step 362 in Fig.4.27). Then they generate opposite effects. Conversely,
the vortex-wake and the wake-wake interaction contributions generate opposite effects during the whole
passage of the vortex by the trailing edge.

In the maximum thickness point (Fig.4.29), the vortex contribution has a peak at the time at which
the vortex passes by the point itself. As previously discussed, this constitutes a wavelike disturbance and
represents the trace of the vortex passage along the airfoil surface. Moreover, the vortex contribution
is also characterized by leading edge and trailing edge disturbances. In the limit of an incompressible
flow approximation, these disturbances reach simultaneously each point of the airfoil. The vortex-
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FIGURE 4.29: Normalized time derivative of the pressure coefficient. Point 44: Maximum thickness
point. Free-wake results. - vortex-wake, - - - wake-wake contributions.
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FIGURE 4.30: Normalized time derivative of the pressure coefficient. Point 74: leading edge. Free-wake
results. vortex, - - wake, - - - - vortex-wake, - - - wake-wake contributions.

wake interaction contribution, in the maximum thickness point, exhibits a dolninant wavelike nature.
However, also a trailing edge disturbance can be observed. Filially, the wake contribution and the
wake-wake contribution peak only when the vortex passes by the trailing edge.

At the leading edge (Fig.4.30), the vortex contribution exhibits a peak corresponding to the time
at which the vortex passes by the leading edge itself. Clearly, at this location it is not possible to
distinguish between a wavelike disturbance and a leading edge disturbance. The vortex-wake interaction
contribution exhibits comparable peaks at times at which the vortex passes by the leading edge and
by the trailing edge, respectively. Finally, the wake and the wake-wake interaction contributions arise
when the vortex passes by the trailing edge.

The four contributions Cfl,, C, and can be integrated upon the airfoil surface in
order to investigate the effect of the nonlinear interaction mechanisms on the time derivative of the
aerodynamic force exerted on the airfoil. In Fig.4.31 the time derivative of the lift coefficient generated
when the vortex is nearby the trailing edge is plotted. As shown in Fig.4.31 (a), the vortex and the
wake contributions generate opposite effects. Thus, a partial cancelation results. This happens before
the vortex has passed by the trailing edge.
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FIGURE 4.31: Time derivative of the lift coefficient generated by the vortex passage by the airfoil trailing
edge. Airfoil camber /3 = 2°. Free-wake formulation.
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4.5 Effects of the Free-Stream Velocity

In this section we consider a symmetrical airfoil embedded at a zero angle of attack in a double row of
10 counter rotating line-vortices. The circulation of each vortex is determined by assuming Cimax = 0.5.
The aspect ratio of the double row is b/a = 0.281 (see Fig.2.11).

A fixed-wake formulation is employed, which consists in a rectilinear vortex-sheet continuously shed
from the trailing edge and convected downstream of the airfoil at the free-stream velocity (see Fig.2.2).
As pointed out in section 4.1, the fixed-wake formulation provides consistent results when the airfoil is
at a zero angle of attack.

The oncoming vortices are initially located at a given distance upstream of the airfoil. Notwith-
standing the small velocity induced at the trailing edge, vorticity is initially shed in response to the
impulsive variation of the flow with respect to a steady configuration when the computation is started.
Hence, the initial generation of vorticity is a consequence of the non fulfillment of the initial condition
'y (0) = 0, '-y denoting the wake circulation per unit length.

Due to the finite extent of the double row of vortices, only a quasi-periodic state of the flow can be
achieved. As a result, the initial and final transitory phases exhibit a different behaviour.

Computations have been performed at three Mach numbers, namely M {0.02, 0.06, 0.18}.
Clearly, in terms of dimensionless variables, the aerodynamic problem is the same for the three cases.

4.5.1 Aerodynamic Results

The trajectories of the incident vortices and the wake circulation are shown in Fig.4.32. The scattering
of the vortex paths is due to the finite extent of the double row. As a consequence, a quasi-periodic
wake circulation is shed into the field.
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a) Trajectories of the incident vortices.

FIGURE 4.32: Interaction between an airfoil and a Kármán vortex street made of 10 line-vortices.

In Fig.4.33 the airfoil lift and drag coefficients are plotted. It is interesting to notice that a lift
cycle ends every two oncoming vortices (dominant frequency 2fo), whereas a drag cycle ends every time
a vortex approaches the airfoil (dominant frequency fo). This is because the drag is mainly due to
the pressure suction at the leading edge which does not depend on the oncoming vortex sign. On the
contrary, the lift is due to the upwash velocity whose sign depends on the oncoming vortex sign.
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FIGURE 4.33: Unsteady force on the airfoil embedded in a double row of 10 counter rotating line-vortices.
Cd;----Cl.

4.5.2 Acoustic Results

Acoustic predictions have been performed at a distance r = l.4m. The radiation parameter kr at the
three values of Moe has the values kr = {2.2, 6.6, 19.8}. Thus, only at the highest Mach number the
observation points are in the acoustic far field.

The acoustic pressure at different Mach numbers is shown in Fig.4.34. The related spectra are
traced in Fig.4.35.
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FIGURE 4.34: Acoustic pressure generated by an airfoil in a double row of lO counter-rotating line-
vortices. O - 45°; - - - O = 900.

The effect of the Mach number on the noise level is shown in Fig.4.36. The directivity pattern in
Fig.4.36(a) is essentially the same at the three values of Moe. However, as shown in Fig.4.36(b), the
noise level depends on both Moe and the observation angle O. At lower values of Moe the power law
exponent is a weak function of O and lias a mean value of about 5.7. At higher values of Moe the power
law exponent exhibits a more pronounced dependence on O and its mean value is of about 5.9. This
behaviour reflects the tendency of the acoustic directivity to exhibit lobes as the ratio between the
acoustic wavelength and the airfoil chord decreases (see for example Ref. [33]).
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a) O 450 b) O = 900.

FIGURE 4.35: Spectrum of the acoustic pressure from an airfoil in a double row of 10 counter-rotating
line-vortices. M = 0.02; M 0.06; - - - -M = 0.18.
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FIGURE 4.36: Noise intensity levels at different free-stream Mach numbers generated by an airfoil in a
double row of 10 counter rotating line-vortices.
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4.6 Effects of the Airfoil Angle of Attack

In this section we investigate the effects of the airfoil angle of attack. A double row of 16 counter-rotating
vortices is convected past an airfoil at two values of the airfoil angle of attack, namely a = {0°, 4°). The
aspect ratio of the double row is b/a = 0.2. The circulation of each vortex is determined by assuming
Cimax = 0.6. Previous investigations [32] showed that when a line-vortex model is used there exists a
critical angle of attack at which one row impinges directly on the airfoil leading edge. This causes a
dramatic increase of the noise levels. Such a behaviour is of the same nature of that investigated in
section 4.3. It is related to the nonlinearity of the problem in relation to the size of the impinging
vortex. Therefore, in order to reduce the sensitivity of the interaction process to the trajectories of the
vortices, a cloud of vortices is herein considered. The circulation of each vortex is shared among 37
vortices of equal strength. The resulting vortex size is slightly smaller than the airfoil thickness.

The effects of the wake modeling are not investigated in the present example. Thus, a fixed-wake
formulation is employed.

4.6.1 Aerodynamic Results

The arrangement of the oncoming vortices is shown in Fig.4.37.

c = 00.

*j.

40

FIGURE 4.37: Interaction between an airfoil and a Kárrnán vortex street of 16 clouds of vortices at two
values of the airfoil angle of attack.

In Fig.4.38 the unsteady lift and drag coefficients induced by the vortex-street are traced. Only a
quasi-periodical behaviour takes place for the reasons already explained in section 4.5.

4.6.2 Acoustic Results

The spectrum of the acoustic pressure at different observation angles is shown in Fig.4.39. The main
peak at the frequency of 250 Hz has nearly the same value for the two airfoil angles of attack. However,
in the case of a non zero angle of attack, a peak arises at the first harmonic (f = 500 Hz).

The presence of a peak at the first harmonic can be physically explained in terms of deviation from a
flow configuration characterized by an upwash fluctuating velocity with only odd harmonics. As shown
in subsection 2.2.7, such a configuration takes place only when the airfoil is embedded symmetrically
in the double row of vortices. When the airfoil has a nonzero angle of attack (a = 4° in the present
case), both the upper and lower rows of vortices pass above the leading edge. In addition, the lower
row vortices are partially split on the airfoil leading edge (see Fig.4.37(b)). The two-dimensional linear
model developed in section 3.3 can be used to validate this interpretation. Let us translate the oncoming
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FIGURE 4.38: Unsteady force on the airfoil induced by a double row of 16 counter-rotating vortices at
two values of the airfoil angle of attack: drag coefficient, - - - - lift coefficient.

double row of vortices of the quantity Ym in the normal direction to the flat-plate (see Fig.2.11). Then
equation (4.1) takes the form

p(re t,,) -
(4.1)

irico

The resulting acoustic spectrum obtained with a value Ym = b/lO is plotted in Fig.4.40, where it is
compared to the symmetrical case Ym O. It can be observed that peaks at even harmonics arise when
a non symmetrical interaction occurs.

Thus, the rise of even harmonics can be inferred to a shift between the axis of the double vortex
row with respect to the leading edge, regardless of the fact that this shift is due to a nonzero angle of
attack or not.
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a) a = 00. b) a 40

FIGURE 4.41: Interaction between an airfoil and a double row of 16 clouds of vortices at different angles
of attack. Each cloud is constituted of 50 line-vortices.

4.7 Comparison with Experimental Results

In this section we compare experimental data of the noise radiated by an NACA-0012 airfoil in the
wake of a cylinder, with a numerical prediction of the noise radiated by an airfoil in a Kármán vortex
street.

A Kármán-Trefftz airfoil approximating an NACA-0012 airfoil is used in the computation, and
the Kármán vortex street is described as a double row of 16 counter-rotating vortices. The aspect
ratio of the double-row is b/a = 0.25. The oncoming vortices are described as circular clouds of 50
equal-strength vortices. The circulation of each cloud is determined by assuming a value Cimax = 0.65,
whereas the external size of each cloud is 5 x iO in. A free-wake model is employed.

The parameter Cimax is related to circulation of the oncoming vortices by the relation

2Cl d
C

which is a dimensionless approximated form of (2.61). The vortices, in fact, are supposed to be shed
from an upstream rod on which a harmonic lift coefficient Cimax sin(2irfot) is induced. In the present
computation we adopted a value Clmax = 0.65 which is in agreement with the Navier-Stokes computation
described in chapter 7 (see Table 7.1).

Two interaction problems have been solved at two values of the airfoil angle of attack, namely
a = {0°,4°}.

We present some aerodynamic results and then we compare the experimental and the predicted
sound spectra. The experimental data used in this section are the same as those discussed in chapter
5.

4.7.1 Aerodynamic Results

In Fig.4.41 the distribution of the oncoming vortices and their interaction with the airfoil wake is shown.
In the case a = 40 the lower row vortices and the airfoil leading edge interact directly. Due to the image
vortex system, the lower row vortices exhibit a stronger attitude to pass above the leading edge. As
a consequence, the lower row vortices are predominantly convected along the upper side of the airfoil.
This behaviour is illustrated on Fig.4.42 where snapshots of the vortex distribution past the airfoil are
shown. In both cases a = 0° and a = 40, the oncoming vortices are partially disorganized as they pass
by the airfoil leading edge.

The airfoil wake circulation is plotted in Fig.4.43. A quasi periodical behaviour can be observed for
the case a = 0°. In the case a = 4° more pronounced transient effects related to the finite extent of
the vortex street can be noticed.

In Fig.4.44 the unsteady force exerted n the airfoil is plotted. A less pronounced transient behaviour
can be observed.
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FIGURE 4.42: Snapshots of a double row of counter-rotating vortices past an airfoil at a = 4°. Each
vortex is constituted of 50 line-vortices.
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FIGURE 4.44: Unsteady force on the airfoil induced by a double row of 16 counter rotating vortices at
different angles of attack: drag coefficient, - - - - lift coefficient.

4.7.2 Acoustic Results

In Fig.4.45 acoustic numerical results are checked against experimental data at different observation
angles. The results clearly show that the value Cjmax = 0.65 used in the present computation provides a
good agreement between the experimental data and the numerical prediction at the Strouhal frequency
(fo = 250 Hz). Moreover, the overall levels agree fairly well up to the third harmonic (4fo). At higher
frequencies the experimental levels are far below the numerical ones. This is not surprising because the
aerodynamic prediction cannot feature all the aspects of the vortex dynamics. As it will be discussed
in chapters 5 and 7, three-dimensional effects play an important role in the rod-airfoil configuration.
These effects are not accounted for by a two-dimensional flow simulation.

Interestingly, for a = 4° the numerical solutions exhibit pronounced peaks at the first harmonic
(2fo = 500 Hz). As already discussed in section 4.6, this behaviour is due to a non symmetrical interac-
tion between the airfoil and the double row of vortices. More precisely, the presence of even harmonics
in the acoustic spectrum at an observation angle O = 90° can be explained in the following way. The
velocity fluctuations induced along the axis of the vortex street result from a Fourier combination of
only even harmonics. This velocity has a nonzero component in the direction normal to the airfoil
chord, acting as an upwash velocity. As a consequence, the spectrum of the lift induced on the airfoil
exhibits even harmonics. Since, the lift fluctuations are responsible for the acoustic radiation at an
observation angle O = 90°, the presence of even harmonics in the acoustic spectrum can be consistently
explained.

As an important result, first harmonic peaks appear also in the experimental data, although their
amplitude remain quit smaller.

A physical explanation of the higher amplitude levels predicted at the higher harmonics (2fo, 3fo,...)
can be found in the following items.

The amplitudes of the higher harmonic peaks are sensibly affected by the reciprocal positions
between the vortices and the airfoil. As a consequence, any random perturbation of the vortex
positions results in a reduction of the time averaged peaks of the airfoil response. In other words,
the statistics smear the level of the high harmonic peaks.

High frequency wall pressure fluctuations undergo a more important viscous dissipation.

0,04 0,05
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As it will be discussed in chapter 7, the spanwise statistical behavior of the flow in the wake of a
cylinder has a dominant influence on the acoustic radiation at high harmonics.
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4.8 Conclusions

In this chapter we applied the analytical formulations developed in chapters 2 and 3 in order to in-
vestigate the sound generation mechanisms in a vortex-airfoil interaction. The discrete-vortex method
based on the Kármán-Trefftz conformal mapping was used to describe an incompressible, high Reynolds
number vortical flow past a flat-plate and past a thick and cambered airfoil. Moreover, effects related
to the finite size of the oncoming vortex were modeled by distributing the circulation of the vortex
upon a cloud of line-vortices.

The analytical decomposition of the surface pressure field showed that the pressure disturbances on
the airfoil surface include wavelike contributions, convected together with the vortex, and synchronized5
contributions related to the vortex passage by the leading edge and by the trailing edge. Because of
the vanishing wavelength of a line-vortex, a wavelike contribution generates only negligible effects when
integrated upon the airfoil surface. On the contrary, the integrated effects are maximum when the
vortex passes by the leading edge. This only acts as an effective acoustic source. Because of the vortex
shedding from the trailing edge, the nonlinear interaction mechanisms cancel each other at the trailing
edge. As a consequence, the airfoil trailing edge gives only a negligible contribution to the acoustic
radiation.

We employed both a fixed-wake and a free-wake model in order to investigate the limits of a fixed-
wake approximation. Therefore, we found that the wake model can have a strong influence on the
acoustic radiation, but only through an influence on the oncoming vortex trajectory.

We showed that the role of the flow nonlinearity can be decisive when an oncoming vortex is
described as a line-vortex. Even a small variation of a geometrical parameter can cause a significant
variation of the oncoming vortex trajectory and the resulting interaction noise. Therefore, results must
be interpreted with care when the conditions of interaction are critical.

We investigated the distortion of a vortex during a direct vortex-airfoil interaction. A reduction of
the noise levels was observed when the vortex is split by the airfoil leading edge.

We found a sixth-power scaling law of the acoustic intensity from an airfoil in a Kármán vortex street
(I oc M). This confirms the compact dipolar character of the acoustic radiation from a rod-airfoil
configuration at low Mach numbers.

A low Mach number linear model was used to explain the presence of a first harmonic peak in the
noise radiated from an airfoil in a Kármán vortex street. It was shown that even harmonic peaks are
generated by non symmetrical interactions.

We calculated the noise generated by a double row of counter-rotating vortices convected past an
airfoil. The appearance of a first harmonic peak in the noise spectrum when the airfoil is at a positive
angle of attack was related to the impingelnent of the lower row of vortices on the airfoil leading edge.
Finally, comparing results with experimental data showed that the analytical approach accounts for the
basic features of the interaction process, allowing an accurate prediction of the noise at the Strouhal
frequency. However, significant discrepancies were found at higher harmoiiics. These are related to the
fact that the present flow model is a crude approximation of the real flow, as it will be discussed in
chapters 5, 7 and 8.

5The synchronized character is a by-product of an incompressible treatment.
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Rod-Airfoil Experiment

In this chapter we present experimental results concerning the rod-airfoil configuration. The first
section is devoted to the description of the experimental set-up and to the definition of the measurement
protocol. The second section is concerned with the analysis and discussion of the experimental results.
The third section describes a visualization experiment that was performed in a water channel by using
the hydrogen bubble technique. The latter experiment was aimed to a qualitative investigation of the
vortex dynamics in the rod-airfoil configuration.

5.1 Experimental Set-Up

The rod-airfoil experiment was carried out in the small anechoic room of the Ecole Centrale de Lyon
(6m x 5m x 4m), where air is supplied by a low speed subsonic anechoic wind tunnel.

The reference configuration is an NACA-0012 airfoil downstream of a rod. Both the airfoil and
the rod are fixed between two parallel plates and placed into the potential core of a partially flanged
rectangular jet.

The airfoil lias a chord c 0.1 m and can rotate around its mid point, allowing non symmetrical
configurations to be explored. The distance between the airfoil mid point and the center of the rod is
b 0.162 in. The rod diameter is d = 0.016m. Both the airfoil and the rod extend by i = 0.3m in the
spanwise direction. The experimental set-up is sketched in Fig.5.1.

5.1.1 Acoustic Measurements

Acoustic measurements are performed at a distance r 1.38m from the airfoil mid point, at various
observation angles in the airfoil mid span plane. A Brüel & Kjäer type 4191 microphone with a Brüel
& Kjäer type 2669 preamplifier is used for these measurements.

The sound pressure level directivity as well as spectra are measured for various flow configurations:
different free-stream velocities and different airfoil angles of attack.

The rod-alone configuration and the background noise (no airfoil, no rod) are also measured in order
to check the airfoil contribution to the rod-airfoil configuration noise.

Coherence between the surface pressure field, in proximity of both the airfoil leading and trailing
edge, and the acoustic pressure field at an observation angle of 90° away from the streamwise direction
is measured.

Data acquisitions are carried out with a spectral resolution of 2Hz, from O to 6400 Hz, and the
number of averages is 300. The Brüel & Kjäer software Ptlse is used for the signal acquisition and
analysis.
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a) Overview of the rod-airfoil configuration.

Upperside

Lower side

b) In-plane view of the rod-airfoil configura-
tion.

FIGURE 5.1: Experimental set-up. The suction side for positive angle of attack is referred to as upper
side, whereas the pressure side is referred to as lower side. Geometrical and flow parameters: d =
0.016m, c = 0.1 m, b = 0.162m, i = 0.3m, r = 1.38m, V = 20 rn/s.

5.1.2 Surface Pressure Measurements

The turbulent flow around the airfoil is described by measuring both the correlation coefficient and the
coherence function between pressure fluctuations at two separated points on the airfoil surface. The
same technique is also used to investigate the statistical behaviour of the vortex shedding along the rod
span. The statistical quantities used in the present work are described in appendix 5 A.

The pressure fluctuations on the surface of the airfoil are measured by means of pressure transduc-
ers. Each of them is constituted of a long metallic capillary tube which is connected to a condenser
microphone through a pinhole in the wall. The capillary section is gradually increased in order to
permit the insertion of the microphone. A PVC tube of 2 m length is applied at the extremity of the
capillary in order to suppress the backward reflections of pressure waves at the outlet section. The
PVC tube is closed on the free extremity in order to prevent a mean flow within the capillary. A sketch
of the probe is shown in Fig.5.27 of appendix 5 B.

The wave propagation in the capillary tube induces a phase shift as well as an attenuation of the
pressure signal translnitted to the microphone. Furthermore, the presence of discontinuities in the
section of the capillary is the cause of wave reflections. This results in a modulation of the pressure am-
plitude measured by the microphone which depends on the frequency of the propagating disturbances.
An analytical transfer function [34] is used to relate the measured pressure amplitude to the wall pres-
sure at the inlet hole. It accounts for both the viscous amplitude attenuation and the wave reflections
at the discontinuities of the capillary section. The analytical expression of the transfer function is
reported in appendix 5 B.

The pressure probe distribution on the surface of the airfoil is shown on Fig.5.2. Probes are drilled
only on the upper side of the airfoil, that is the suction side for a positive airfoil angle of attack.

5.2 Experimental Results

In this section we discuss the main results of the present experimental investigation.

C
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FIGURE 5.2: Distribution of the pressure transducers on the surface of the airfoil. Co-ordinates are
expressed in mm.

5.2.1 Acoustic Measurements
5.2.1.1 Isolated rod noise

In order to check the airfoil contribution to the noise radiated by the rod-airfoil configuration, mea-
surements of the noise radiated by an isolated rod are initially performed. In Fig.5.3 the spectrum of
the acoustic pressure generated by the rod is compared to the spectrum of the noise radiated by the
jet. The spectral contribution at frequencies less than 150 Hz is not considered because i) the far field
assumption is not matched at these frequencies, ii) the jet contribution and vibrations are dominant
in that range. The results clearly show that the free jet gives a negligible contribution to the noise
radiated when a rod is placed into the jet. Furthermore, the noise generated by the rod exhibits a
dominant peak centered at the shedding frequency fo = 258 Hz, corresponding to a Strouhal number
of 0.21 (d = 0.016m, V = 2Oin/s). Secondary peaks also arise at the first and second harmonics (2fo
and 3fo, respectively).

The dominant peak of the rod noise is essentially generated by the lift component of the aerodynamic
force, whose frequency coincides with the vortex shedding frequency. The lift, in fact, completes a cycle
every two vortices shed in the flow. Odd harmonics in the rod spectrum are also related to the lift
component. Conversely, the peak at the first harmonic is generated by the drag component of the
aerodynamic force whose frequency is twice the Strouhal frequency. The drag, in fact, is not affected
by the sign of the vortex circulation, thus it completes a cycle every time a vortex is shed1.

'Although the drag contribution should vanish at an observation angle of 900, a normal position of the observer with
respect to the airfoil chord results in the observation angle °rod tan' (rib) = 830 with respect to the rod. Therefore
the unsteady drag contributes to the acoustic field at the first harmonic. Moreover, the rod is located slightly downstream
of the bluffed extremity of the duct. Therefore, the diffraction caused by the edges is responsible for a different acoustic
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FIGURE 5.3: Spectrum of the acoustic pressure at different observation angles. Background noise
(jet noise), - - - - rod configuration.
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behaviour with respect to that of an isolated rod.

FIGURE 5.4: Spectrum of the acoustic pressure at an observation angle of 90° away from the flow.
Comparison between the noise radiated by an isolated rod and by the rod-airfoil configuration:
rod noise, - - - - rod-airfoil noise.

5 . 2. 1 .2 Rod-airfoil configuration noise

In Fig.5.4 the noise generated by the isolated rod at the free-stream velocity of 20 rn/s is compared to
the noise radiated by the rod-airfoil configuration. The results show that the rod noise is far below the
sound generated when an airfoil is placed into the wake of the rod. Around the main peak the rod-
airfoil configuration is 17 dB louder than the rod alone configuration. Furthermore, a slight variation
of the Strouhal frequency is caused by the presence of the airfoil. In the case of an isolated rod, the
main peak occurs at the frequency fo = 260 Hz, corresponding to a Strouhal number of 0.21, whereas,
when the airfoil is placed into the wake of the rod, the main peak occurs at the frequency fo = 246 Hz,
corresponding to a Strouhal number of 0.2. Thus a question arises: could the airfoil have a back reaction
effect onto the vortex shedding from the rod? Unfortunately, we did not performed measurements in
order to give an answer to this question. However, even supposing that a weak back reaction exists,
the noise amplification observed for the rod-airfoil configuration cannot be attributed to a feed-back
enforcing mechanism. The distance between the rod and the airfoil, in fact, is sufficiently large to
suppose as quite improbable the existence of self-sustained oscillations such those occurring in a flute
or in the organ pipes. In other words, if a back reaction effect is responsible for the observed noise
amplification, this effect should have a hydrodynamic character.

Another interesting aspect is the airfoil influence on the frequency distribution of the acoustic energy.
The results show that the presence of the airfoil in the wake of the rod contributes to the broadening
of the main peak. Moreover, a true broad band acoustic field is generated, which extends over a quite
large frequency range. Therefore, the acoustic radiation from the rod-airfoil configuration arises at the
privileged Strouhal frequency, but also exhibits a spectral broadening around the Strouhal frequency
and a broad band spectral behaviour in a larger frequency range.

5.2.1.3 Airfoil noise

As shown in Fig.5.4, the noise radiated by the rod-airfoil configuration exceeds by 17 dB the noise
radiated by the rod alone. Therefore, the rod-airfoil acoustic radiation is essentially generated by the
airfoil interaction with rod wake, say airfoil noise.

In Fig.5.5 the spectrum of the airfoil noise is plotted at different observation angles and for different
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FIGURE 5.5: Spectrum of the acoustic pressure radiated by the airfoil at different angle of attack.
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FIGURE 5.6: Directivity of the radiation peak at zero angle of attack: ** experimental data, - - - - K +
20 log (sin O).

TABLE 5.1: Airfoil noise at different observation angles: peak levels.

angles of attack. It is interesting to observe that a first harmonic peak appears only when the airfoil is
at nonzero angle of attack. On the contrary, a second harmonic peak is present at the three values of
the airfoil angle of attack.

In Fig.5.6 the directivity of the acoustic intensity2 radiated by the airfoil is shown for the case a = 00.
Unfortunately, the measurements are not in a sufficient number to detail a true sound directivity.
Nevertheless, comparing with a dipolar sin 0-pattern shows that the directivity of the airfoil noise
seems to fit a dipolar radiation. The values of the Strouhal peak of radiation, for different angles of
attack, are reported in Table 5.1. The results show that the airfoil angle of attack has only a negligible
effect on the noise levels at the Strouhal frequency. On the contrary, differences can be found in the
spectral behaviour at higher frequencies. As already pointed out, the first harmonic peak appears only
when the airfoil has a nonzero angle of attack. This effect is presmnably due to a loss of symmetry of
the interaction process. In the following of this chapter we will discuss the meaning of this assertion.

In Fig.5.7 we show the coherence function between the acoustic pressure at an observation angle of
90° and the wall pressure at the airfoil leading edge and trailing edge. The coherence with the leading
edge is maximum at the Strouhal frequency where it takes a value of about 0.9. This value is not
hardly affected by the airfoil angle of attack. Nearly the saine value is reached by the coherence with
the trailing edge at the Strouhal frequency. Another interesting result is the broadening of the main
coherence peak with the leading edge. This gives evidence of the non linear effects, such as the vortex
distortion near the leading edge.

As already discussed in section (4.7), the appearance of first harmonic peaks in the acoustic spectra

2lntegration over the main peak of radiation has been performed.
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FIGURE 5.7: Coherence between the radiated noise at an observation angle O = 90° and the wall pressure
at the airfoil leading edge and trailing edge: probe i at x/c = 0.02, - - - - probe 16 at x/c = 0.95.
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FIGURE 5.8: Qualitative picture of an interaction between a double row of counter-rotating vortices and
an airfoil at different angle of attack.

of Fig.5.5 can be related to the non symmetrical interaction between the airfoil and the vortices shed
from the rod. The velocity induced by a double row of counter-rotating vortices along the axis of the
row exhibits only even harmonics. When the airfoil is at a nonzero angle of attack, such a velocity has
a nonzero upwash component which is responsible for the generation of a lift with even harmonics.

A different, but not contradictory, interpretation of the phenomenon can be found by considering
the coherence plotted on Figs. 5.7(b) and 5.7(c) between the acoustic field and the airfoil at a = 4° and
a = 4°, respectively. In both cases, coherence peaks arise at the first harmonic whose amplitude is
smaller than that at the Strouhal frequency. These first harmonic peaks are higher for the case a = 4°
than for the case a = 4°. Hence, we can form a qualitative picture of the flow around the airfoil
at different angles of attack. Fig.5.8 shows a possible scenario of the effect that changing the angle of
attack has on the vortex trajectories. The lines show typical vortex trajectories past the airfoil, whereas
the broken lines indicate the trajectory of a vortical fragment generated by a vortex splitting at the
leading edge.

In the symmetrical case (Fig.5.8(a)), the trajectories of the vortices embrace the airfoil, generating
a gust-type flow perturbation. As shown in subsection 2.2.7, the upwash velocity results from a Fourier
combination of only odd harmonics (2m - 1) fo of a main frequency fo V/a, where a is the distance
between two vortices on the same row.

When the airfoil is at a nonzero angle of attack (Figs. 5.8(b) and 5.8(c)), the vortices on one of the
two rows undergo a stronger interaction with the airfoil leading edge. Therefore, by supposing that the
impinging vortices are split into two fragments and that the dominant one is convected along the broken
lines, by considering the fact that pressure transducers are located on the upper side of the airfoil, the
different behaviour observed in Figs. 5.7(b) and 5.7(c) can be consistently explained. Interestingly, the
behaviour predicted in section 4.7 by means of a discrete vortex method and pictured in Fig.4.42 is in
agreement with the qualitative picture on Fig.5.8.

In Fig.5.9 the effect of the free-stream velocity onto the airfoil noise is shown. The acoustic spectra
obtained with four values of the free-stream velocity V are plotted in Fig.5.9(a). In Fig.5.9(b) the
intensity of the main peak is plotted against the logarithm of V. A linear interpolation provides a
sixth-power radiation law, which is that of a compact aeroacoustic dipole.
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Fixed probes

Movable probe

FIGURE 5.10: Rod configuration. Pressure pinholes of 0.5mm diameter are drilled on the rod surface
and communicate with external condenser microphones. 5 probes are on the fixed section, whereas only
one probe is on the movable section. The distance between the movable probe and the fixed one closest
to the mid span section is b = 2 mm.

5.2.2 Spatial Coherence and Correlation Measurements

5.2.2.1 Rod configuration

In order to characterize the statistical behaviour of the vortical flow in the wake of the rod, preliminary
measurements of wall pressure fluctuations are performed on the rod surface. The Reynolds number
based on the rod diameter is 2.2 x (d = 0.016m, V = 20m/s). The experimental arrangement is
sketched in Fig.5.10. The rod is constituted of two parts. One part is fixed, the other can rotate around
the rod axis with respect to the fixed part. 6 pressure pinholes are drilled on the rod: i on the movable
section, the others on the fixed one. The fixed probes are located 90° away from the streamwise
direction. The pinholes communicate with external condenser microphones through capillary tubes.
Therefore, two-point coherence and correlation measurements cari be performed with both angular and
spanwise spacing.

In Fig.5.11 the coherence at the Strouhal frequency and the correlation coefficient are plotted. Both
these quantities are defined in appendix 5 A. The reference probe is at i = 0, ij denoting the distance
from the mid-span plane, made dimensionless by d. Data are fitted by a Gaussian exp (ii2/2L)
function, with L9 4.7 for the coherence function, and L9 6.6 for the correlation coefficient. The
vortex shedding process is therefore correlated upon a distance of about 6.5 d.

In Fig.5.12 the Strouhal peaks of coherence measured at different inflow velocities V are plotted
against the separation distance i. The logarithm of the coherence ln [F(i7, f)] is well fitted by a
quadratic polynomial. Hence the spanwise coherence, in the explored velocity range, is well fitted by
a Gaussian function of the separation distance 77. The correlation length L9 versus the free-stream
velocity is plotted in Fig.5.13. Accordingly to literature [35], L9 decreases at increasing values of V.

Cross-spectrum measurements of the fluctuating pressure are also made between a fixed reference
probe at 90° away from the streamwise direction and probes at different angular positions q5, with an
angular step of 50
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FIGURE 5.11: Spanwise coherence and correlation coefficient on the rod surface at = 90° (logarithmic
scale). "Experimental data, Gaussian interpolation.

As shown in Fig.5.14(a), the cross-spectrum peaks when the movable probe is at q5 = 100°.
This experimental inaccuracy can be indeed justified to some extent. As sketched in Fig.5.10(b),
a circumferential skew s between the fixed and the closest movable probe results in the skew angle
ß tan1 [dsin( - ir/2) /2bJ, where b = 2 x i0 m is the spanwise distance between the fixed and
the movable probe. In other words, the angle fi measures the deviation of the movable probe from to
the vertical axis cutting through the fixed probes. A skew angle fi = 35° corresponds to q5 = 100°.
Fig.5.14(b) shows that also the Strouhal coherence peak is maximum when the movable probe is at
1 = 1Ø0° but it is almost maximal over a wide range of angles. Hence, /3 35° could be interpreted

as a mean vortex shedding angle. This discussion is quite far from being a quantitative analysis of the
three-dimensional effects in the wake of a rod. The phenomenology, in fact, is intrinsically complex
and not completely understood at present time. Nevertheless, we believe that measurements as those
described in this paper can be used to investigate the three-dimensional vortex dynamics in the wake
of a rod.

In Fig.5.14(b) the angular coherence at the Strouhal frequency and its peaks at the first and second
harmonics are plotted against the angular position of the movable probe. At the Strouhal frequency,
the coherence is almost i from q5 60° to ç5 c 120°, the maximum being reached when the movable
probe is at about 100°. Conversely, at higher harmonics, the coherence is maximum when the movable
probe is 90° away from the streamwise direction. Surprisingly, the first harmonic peak of coherence
reaches a local minimum at çS = 100°, where the Strouhal peak is maximum.

The wall pressure signals corresponding to the maximum cross-spectrum amplitude are plotted in
Fig.5.15. Interestingly, weak amplitude cycles reappear somewhat periodically at about 15-20 times
the Strouhal period, and have a duration of about 4-5 shedding periods.

Finally, in Fig.5.16 the wall pressure signals taken at q5 = 90° along the rod span are plotted. A
phase shift can be observed between signals at different spanwise positions. Furthermore, phase jumps
occur sporadically. A similar behaviour was observed by Szepessy & Bearman [36] in the Reynolds
number range i x iü - 1.3 X iO5.

In this subsection we have described some effects related to the three-dimensional character of a
circular cylinder flow. The spanwise loss of coherence, the wall pressure random amplitude modulation,
and the phase shift between signals at different spanwise positions give evidence of the three-dimensional
structure of the wake behind the rod.

a) Coherence function In(r). b) Correlation coefficient ln(p).
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FIGURE 5.12: Experimental measurements of the spanwise coherence on the rod at different inflow
velocities: ++ experimental data, quadratic interpolation, q denotes the spanwise separation
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5.2.2.2 Rod-airfoil configuration

In Fig.5.17 the power spectral density of the fluctuating pressure at the airfoil leading edge and trailing
edge is plotted. The results seem to confirm the qualitative picture of the interaction dynamics de-
scribed in Fig.5.8. At zero angle of attack the fluctuating upwash velocity exhibits only odd harmonics
(fo, 3fo, . . .). As a consequence, no significative peaks arise at the first harmonic. Conversely, when the
airfoil is at a non zero angle of attack, a first harmonic peak appears.

Differences in the wall pressure spectra can be noticed between the cases at positive and negative
angle of attack. At a = 4° the main peak of the wall pressure spectrum at the leading edge is lower
than that at a = 4°. On the contrary, the first harmonic peak is higher at a = 4°. The latter
observation is consistent with the flow model of Fig.5.8(b): both the upper and lower row vortices pass
above the instrumented side of the airfoil. In addition, the former observation could be explained by
supposing that a vortex impinges on one side of the leading edge (the lower side for a = 4° and the
upper one for a = 4°), and then it is swept out the opposite side. Therefore, more intense pressure
fluctuations occur on the side of the leading edge where the vortex impinges. This is true if the suction
effect induced on the opposite side is less important than the head-on effect on the impinging side.

Another interesting aspect is that the Strouhal peak of the wall pressure at the leading edge is two
orders of magnitude higher than that at the trailing edge. This can be explained by considering two
factors:

a leading edge is a discontinuity of the flow accompanied by a nearly singular behaviour. On
the contrary, the behaviour of the flow at the trailing edge is smoothed by effects related to the
viscosity of the fluid. Typically, unsteady vortex shedding.

A vortex is weaker after it has passed by the airfoil leading edge. As a consequence, it induces
weaker pressure fluctuations near the trailing edge.

Finally, it can be noticed that the Strouhal peak at the trailing edge is higher for a = 4° than
for a = 4°. Again, the flow picture proposed in Fig.5.8 gives a simple explanation for this different
behaviour.

In Fig.5.18 the streamwise coherence of the wall pressure fluctuations near the airfoil leading edge
is plotted. The coherence is maximum at the Strouhal frequency. More interestingly, the broadening
of the coherence decreases as the separation distance increases. Roughly, this is a consequence of
a wider variety of turbulent structures which are coherent on smaller distances. As a final remark,
comparing the plots on Figs. 5.17(b) and 5.17(c) shows that the airfoil angle of attack affects only
the first harmonic peak of coherence at the greatest separation distance (probes 1-7). In other words,
the coherence of the flow is nearly the same on a portion of the airfoil extending about 0.15 c from
the leading edge. At a greater distance the coherence depends on whether the impinging vortices pass
predominantly above or below the leading edge, accordingly to Fig.5.8.

The wall pressure streamwise coherence in the airfoil trailing edge region is plotted on Fig.5.19. The
coherence peaks again at the Strouhal frequency. However, compared to the leading edge coherence
of Fig.5.18, the separation distance seems to have a different effect on the main peaks. At small
values of the separation distance the main peak of coherence emerges only slightly from a broadband
behaviour. Hence, turbulent structures in a wide range of characteristic wavelengths provide nearly
the same contribution to the small distance streamwise coherence. It is interesting to notice that a
first harmonic peak of coherence appears only in the case a = 4°. This behaviour is consistent with
the flow picture on Fig.5.8, according to which an impinging vortex is predominantly convected along
the upper or lower side of the airfoil, depending on whether the angle of attack is negative or positive,
respectively.

In Fig.5.20 the spanwise coherence in the trailing edge region is plotted. Spanwise coherence gives a
good picture of the spatial coherence of turbulence, since it is not biased by the mean flow convection.
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FIGURE 5.17: Power spectral density of the wall pressure at the airfoil leading edge and trailing edge
for different angles of attack. Probe i (leading edge), - - - - probe 16 (trailing edge).
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FIGURE 5.19: Streamwise coherence in proximity of the airfoil trailing edge for different angles of attack.
Coherence between Probe 10 at x/c = 0.70 and: i) Probe 11 at x/c = 0.80, ii) - Probe 12 at
x/c = 0.90, iii)- - - -Probe 16 at x/c = 0.95.
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Plots on Fig.5.20 show that the overall turbulence has only a weak spatial coherence, whereas the rod
vortices have large spanwise coherence. Again, the presence of lower row vortices is felt by probes in
the case a = 4°, as revealed by the presence of the first harmonic peak.

In Figs. 5.21 and 5.22 the correlation coefficient in proximity of the airfoil leading edge and trailing
edge is plotted. Unfortunately, the two-point correlation measurements are not in a sufficient number
to give quantitative informations. Nevertheless, the influence of the airfoil angle of attack on the
spatial correlation can be qualitatively described. Moreover, the effects related to the rod vortices are
enlightened by showing the same results for an isolated airfoil (no rod) with a turbulent boundary
layer3.

In Fig.5.21 the correlation coefficient is plotted against a streamwise and spanwise separation dis-
tance, in the case of a rod-airfoil configuration. The results show that the airfoil angle of attack has
only a negligible influence on the slope of the curves. On the contrary, the correlation levels are notably
affected by the airfoil angle of attack. Interestingly, the effect of the angle of attack is opposite in the
leading edge region (Fig.5.21(a)) and in the trailing edge region (Figs. 5.21(b) and 5.21(c)). Again,
this behaviour is consistent with the flow picture of Fig 5.8, according to which at a = 4° upper row
vortices impinge on the upper side of the leading edge and are swept out the lower side of the airfoil.

In Fig.5.22 the correlation coefficient in the trailing edge region of an isolated airfoil (no rod) is
plotted. The results show that the airfoil angle of attack has only a negligible effect on both the
streamwise and spanwise correlation. Hence, the behaviour described in Fig.5.21 in the presence of a
rod is likely to be caused by the presence of the incident vortices.

Finally, in Fig.5.23 the correlation coefficients measured on the isolated airfoil are compared to those
measured in a rod-airfoil configuration. The results show that the large-scale vortices have an influence
on both the level and the slope of the correlation curves.

3Transition on the isolated airfoil (no rod) was tripped by means of strip along the span of the airfoil.
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5.3 A Hydrogen Bubble Visualization Experiment

A visualization experiment was carried out in the Hydra water channel of the Politecnico (li Torino.
The experimental set-up is a one-to-one reproduction of the rod-airfoil configuration used in the

aeroacoustic experiments. The reference configuration is an NACA-0012 airfoil (chord: c OJ in
thickness: 0.012m) located 0.112 ni downstrearni of the rod, both extending by 1 0.3 in in the spanwise
direction. The two bodies are fixed between two plexiglass end-plates and the whole set is introduced
into a rectangular water channel. Water is towed at a velocity of about 0.2 rn/s at which the installation
assures an inflow turbulence level of about 0.01. The Reynolds nunìher is about 2500, corresponding
to a shear-layer transition regime. The experimental set-up is shown in the photograph of Fig.5.24,

Electrolysis4 is used to generate a thirì layer of hydrogen bubbles front a tungsten wire of 50 um
diameter, This is stretched in the mid-span plane and located two rod diameters downstream of the
rod base point. Ari electrical field is created between the tungsten wire and four lateral copper plates.
The little hydrogen bubbles trapped by the Kárinán vortex street and convected towards the airfoil are
then used to visualize the vortex dynamics in the rod-airfoil configuration.

FIGURE 5.24: Set-up of the rod-airfoil hydrogen bubble visualization experiment.

Although the cylinder flow regime is the same in this experiment and iìì tite CV D iilations
performed in the present work (shear-layer transition regime), only qualitative colnparislis can be
made between the observed vortex dynamics and the numerical prediction discussed later on in the
present work (see the RANS computations described in chapter 8).

4The hydrogen bubble technique was proposed by Clutter et al. [37]. It is based on tie physical phenomenon of
electrolysis and is used to visualize flow streamlines past a body immersed in a water stream. A tliïn 'vire of IO to 50 pm
diameter is stretched in the water perpendicular to the mean flow direction. This wire (tungsten or platinum, preferably)
forms the negative electrode of a DC. circuit, the surface of the body acting as the positive electrode. Hard vater is
sufficient, as well as a supply voltage between 10 and 250 volts. Hydrogen bubbles with a (liameter between one-half and
one wire diameter are Produced at the negative wire electrode. After a short transient, bubbles are produced uniformly
A flat light beam parallel to the wire is then used to enlighten the bubble filrn



Out of the scope of the present work, we attempt to describe a phenomenon observed during the
visualization experiments.

The transverse distance between two successive vortices in the wake of the rod undergoes a random
variation.

About 1-to-3 shedding cycles of Low Transverse Amplitude (LTA) occur randomly each 5-to-7
shedding cycles of High Transverse Amplitude (HTA).

During LTA-cycles head-on interactions between time oncoming vortices and the airfoil leading
edge take place. Conversely, during HTA-cycles time Kármán vortex street tenderly embraces the
airfoil.

A notable increasing of the shedding frequency acconìpaiiies the occurrence of LTA-cycles.

We give two explanations of such a phenomenology, the first invoking the intrinsic three-dimensional
character of a circular cylinder flow, the second referring to an in-plane stability condition.

Suppose that the vortex shedding frequency is not constant along the span of the cylinder, which
is roughly equivalent to suppose a non parallel vortex shedding. Hence, higher frequencies are
associated to a streamwise compression of the Kármán vortex street, whereas lower frequencies
result in a strearnwise dilatation of the vortex street. By neglecting all the out-of-plane vortex
induction effects, the von Kármán stability condition can be roughly applied resulting in a constant
aspect ratio of the Kármáii vortex street along the rod span. As a consequence, higher shedding
frequeiicies are accompanied by a lower transverse vortex spacing. This simplified picture is in
agreement with the amplitude modulation of the near-wake signals quoted in literature [36J.

It is straightforward to demonstrate that a single infinite row of counter-rotating line-vortices re-
alizes a condition of instable equilibrium. Consequently, its probability to be naturally established
is essentially zero. However, if the presence of an airfoil in the wake of the rod has the effect of
increasing the domain of attraction of the vortex aligned condition, then the random occurrence
of such a limit cycle can be consistently explained.
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FIGURE 5.25: Siiapshots of the Kármán vortex street embracing
Figures are counterclockwisely arranged.

he rfoil at zero angle of attack.
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5.4 Conclusions

In this chapter we experimentally investigated the acoustic field radiated by a rod-airfoil configuration,
and the statistical behaviour of the fluctuating pressure field on both the rod and the airfoil surface.

Acoustic measurements showed the features listed below.

- The airfoil noise exhibits a dominant peak at the Strouhal frequency, which emerges from a
broadened spectrum.

- The noise radiated by the rod-airfoil configuration is about 17 dB above the noise radiated by an
isolated rod.

- Placing the airfoil into the wake of the rod also affects the frequency of the acoustic radiation peak.
We did not performed measurements in order to check the existence of back reaction effects on the
vortex shedding process due to the presence of the airfoil. However, even supposing that a weak
back reaction exists, it is quite improbable that the observed noise amplification is due to some
feed-back enforcing mechanism. Thus, the airfoil interaction with the vortices shed from the rod
is the dominant cause of the noise amplification observed when the airfoil is placed downstream
of the rod.

- The presence of the airfoil also contributes to the broadening of the Strouhal peak of the acoustic
spectrum. Moreover, the true broad band spectral character of the acoustic radiation is enhanced
by the presence of the airfoil.

- The airfoil angle of attack has a negligible effect on the acoustic levels at the Strouhal frequency.

- When the airfoil is at zero angle of attack, the acoustic spectrum at an observation angle of 900
exhibits only odd harmonic peaks (fo and 3fo). On the contrary, when the airfoil is at a non
zero angle of attack, a peak at the first harmonic (2fo) appears. This effect was explained by
considering that, when the airfoil is not symmetrically embedded in the wake of the rod, the
spectrum of the upwash velocity induced by the vortex street exhibits even harmonics.

Acoustic measurements at different free-stream velocities provided a sixth-power law of the acoustic
intensity. This is not surprising at a low Mach number. The main sound generation mechanism is thus
of dipolar type. Furthermore, since the airfoil is acoustically compact, i.e.

c0 dC«A7.SM (5.1)

the directivity pattern is expected to be that of a compact dipole. This was not contradicted by the
measurements.

Wall pressure measurements confirmed the aerodynamic origin of the first harmonic peak of the
noise radiated when the airfoil is at a non zero angle of attack. A qualitative picture of the vortex-
airfoil interaction was proposed in order to describe the influence of the angle of attack on the vortex
trajectories. Such a qualitative picture was in agreement with measurements of coherence made between
the acoustic and the wall pressure fluctuations. Interestingly, the behaviour predicted numerically in
section 4.7 and described in Fig.4.42 agrees with the qualitative picture proposed in this chapter.

Coherence and correlation measurements of the wall pressure along the rod span provided a cor-
relation length of the vortex shedding process of about 6.5 rod diameters. Furthermore, coherence
measurements between points at different angles in the mid span plane of the rod gave evidence of a
three-dimensional structure of the rod wake. These results are in agreement with the behaviour quoted
in literature [36]. As an important result, three-dimensional effects are expected to be quite important
in the rod-airfoil configuration.
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Statistical measurements of the pressure fluctuations on the airfoil surface gave a further evidence of
the existence of large, coherent vortical structures shed from the rod. These undergo a strong distortion
at the airfoil leading edge, but continue to live all over the airfoil.

Finally, wall pressure measurements showed that the pressure fluctuations at the leading edge are
two orders of magnitude higher than those at the trailing edge. This is not surprising because a leading
edge is typically a region of quasi singular flow behaviour. On the contrary, the flow singularity at the
trailing edge is smoothed by the vortex shedding process. In addition, the vortex interaction with the
leading edge results in a weakening of the vortex. As a consequence, a weaker pressure field is induced
by the vortex as it passes by the trailing edge.

In the final section of the present chapter we described a visualization experiment carried out in
the Hydra water channel of the Politecnico di Torino. Hydrogen bubbles generated by electrolysis
were used to visualize the large-scale vortical structures shed from the rod and convected towards
the airfoil. The observations revealed the sporadic and random occurrence of vortex shedding cycles
characterized by a higher Strouhal frequency and vortices nearly aligned along the wake axis. We
proposed two explanations of this behaviour, the first based on the three-dimensional character of the
vortex dynamics in the wake of the rod, the second based on a hypothetic effect due to the presence of
the airfoil.
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Appendix 5 A

Coherence Function and Correlation Coefficient

The coherence function between two signals x(t) and y(t) is defined as

F(f)
=

(5.2)

where S(f) is the cross-power spectral density, i.e.

S(f) = TF {C(r)} (5.3)

with

C(r) =limfx(t)y(tr)dt (5.4)

and TF denoting the Fourier transform.
For an ergodic process, C(r) can be interpreted as the correlation function between x(t) and y(t).
The correlation coefficient p is defined as

C(0) f°°,S(f)df
(55)C(0) C(0) - fffS(f) dffS(f) df

Only in the case of two monochromatic signals of frequency fo it results that

p = F(fo) (5.6)

Thus, in a rod-airfoil configuration p gives the correlation coefficient of the main vortices, whereas, in
the case of an isolated airfoil, it gives the overall correlation (all frequencies).
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Appendix 5 B

Transfer Function of the Pressure Transducer

e
r

11190mm

12=230mm

L=270 mm

FIGURE 5.27: Pressure probe.

An analytical expression of the transfer function H for a capillary pressure probe has been proposed
in [34]. It allows to correct the amplitude of the pressure fluctuation measured by the microphone P3,
in order to obtain the amplitude of the pressure Po at the probe inlet, namely

PVC tube

In the case of a capillary tube made of three segments of different lengths, i.e. l, 12 and 13, and different
sections, i.e. S1, S2 and S3 (see Fig.5.27), the transfer function is given by

H
8

exp {- [aili - a2 (12il) + a3 - l2)]} (5.8)

where quantities are defined as follows. The parameter a accounts for the viscous attenuation in the
ith section. As proposed by Pierce [38] it is given by

a=3=/' [i+']
S (5.9)

where w is the frequency of the propagating disturbance, i is the dynamic viscosity of the fluid, Pr
is the Prandtl number and L/S denotes the ratio between the perimeter and the section of the duct.
Assuming standard quantities it approximately results that

0.0 102

CO ri

135

(5.10)

4=0.5 mm
_

4=07mm 04=1.06mm 4,=1.5mm

PS
(5.7)



where r- is the radius of the ith section. f and e are complex functions whose real and imaginary
parts are given by

Ir + {Jr cos [2K2 (12 - li) - J sin [2K2 (12 - l)]]} exp {-2a2 (12 - li)}
Il- = I + {J cos [2K2 (12 - l) + J sin [2K2 (12 - l)}]} exp {-2a2 (12 - 1)}

e,. Pr cos (2K111) e2ahh1 - P sin (2K111) e_2ahhl

+Qr cos {2 [K2 (12 - li) + K1l1}} e_2[2(l2_h1)hh1]

-Qj sin {2 [.1(2 (12 - i1) + .Kl}} e_2[Q2(l2_h1)+chh1]

= Picos (2K111) e2'1' + P,. sin (2K111) e2(hh1
+Q cos {2 [K2 (12 - l) + K1l1]}
+Qr sin {2 [K2 (12 - l) + K1l1]} e_2[2(l2_h1)hhhi

where

'r =ACBD,
J,.EFBD,
Pr EC+BD,
Qr AF+BD,

A=1+a, B

D=d, E=1
K1K2 + 21a=

K?+a
K3K2 + c3a2= K+a

I =BC-}-AD
J1=EDBF
P= EDBC
Q=BFAD with
=b, C=1+4

s2 s3a, F=1c andsi s2

b
K1a2 - K2a1

-
K2a3 - K32

K+c
The complex wavenumbers k- account for the viscous attenuation and are given by

k = K + i a-
K=+a with i=1,2,3

co

The quantity Z0 denotes the inlet probe impedence and is given by

Zo w2S0 8w/3
poco - c 2ir ' 3x3/2

(5.11)

(5.12)

(5.13)

(5.14)

where S0 is the inlet section.
In Fig.5.28, the transfer function of the pressure probe sketched in Fig.5.27 is plotted. The sensibility

s of the microphone has been taken into account, and the curve represents indeed the function H/s.
An example of corrected wall pressure spectrum is plotted on Fig.5.29. It shows that high frequency
oscillations of the measured pressure are due to a selective probe response.

The transfer function presented in this appendix was used to adjust the amplitude of the measured
spectra.
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FIGURE 5.28: Transfer function of a capillary pressure probe.
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6

Acoustic Analogy Formulation

In this chapter we describe the acoustic analogy formulation used throughout the present work. It is
based on a retarded time solution of the Ffowcs Williams & Hawkings equation (FW-H), and allows
noise predictions from aeroacoustic sources in complex motion. Farassat's thickness and loading noise
formulation lA [39] and Brentner's quadrupole noise formulation Q1A [40] are exploited and extended
to a moving observer. These formulations are based upon a penetrable integration surface and upon
time derivatives taken analytically inside the integrals.

The retarded time formulation is herein interpreted as an advanced time formulation, which allows
a computation of the acoustic pressure field as the CFD simulation is processed. This new aeroacoustic
methodology is implemented in the rotor noise prediction code Advantia [41], developed by the author
in the present context.

In this chapter we first describe the acoustic analogy formulation. Then, results concerning the
numerical assessment of the computer code Advantia are presented.

6.1 Introduction

Today's technological maturity of the aerospace technology concerning performances and efficiency, even
more stringent certification rules and the increased sensitivity of the community result in an increasing
attention to safety, emission and noise.

Low noise requirements are particularly important for aircrafts operating in and nearby populated
areas. This is the case of civil helicopters and civil transport jets in landing and take-off conditions.
Since a great deal of progress has been made in understanding the sound generation mechanisms, more
attention is currently devoted to the development of accurate and efficient prediction methods.

Nowadays two different large groups of numerical methods are available, one based on the Computa-
tional AeroAcoustic approach (CAA), the other based on integral formulations. CAA methods consist
in solving the flow governing equations including acoustic fluctuations by means of classical CFD meth-
ods (finite difference, finite volume, finite elements, etc.) with high accuracy (low-dispersion) numerical
schemes. Thus, reasonable cost solutions are restricted to near field predictions. On the contrary,
integral methods allow to propagate a near field information to the far field with a computational cost
that does not depend on the observation distance. The near field information can be obtained by means
of the integral method itself as in Boundary Element Methods (BEM), or by means of a CFD/CAA
method, as in a hybrid approach.

Hybrid methods are the domain of the acoustic analogy approach. This approach is based on the
ideal assumption of separating the sound generation mechanism from its pure propagation. Thus, the
flow governing equations are arranged in the form of a wave equation where all the terms discarded
by a wave propagation pattern are gathered at the right-hand side and interpreted as source terms.
Depending on both the reference wave equation and the mechanism that generates the pressure dis-
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turbances (free turbulent flows, turbulent flows bounded by solid surfaces, etc.), the acoustic analogy
approach leads to different formulations. The first model was proposed by Lighthill [1] and describes
the noise generated by a turbulent portion offluid in an otherwise quiescent unbounded medium. Later
on, Lighthill's model was extended by Ffowcs Williams & Hawkings [2] (FW-H) to flows confined by
surfaces in arbitrary motion.

The FW-H analogy is the most appropriate theoretical support for understanding the mechanisms
involved in the generation of aerodynamic sound from bodies in complex motion. This is typically the
case of a helicopter rotor. The rotating wing of a helicopter generates aerodynamic noise by different
mechanisms: the fluid displacement due to the blade thickness, steady and unsteady blade loadings,
rotating shocks, blade-vortex interactions, blade-turbulence interactions. In the FW-H equation these
mechanisms appear as source terms of an inhomogeneous wave equation.

The first solutions of the FW-H wave equation were obtained by integrating the pressure field upon
the physical surface of the body. This strategy confines all the flow nonlinearities into a volume integral
extended over a domain exterior to the body. Because of the computational cost required by an accurate
prediction of this volume integral, for several years only the linear effects due to the body thickness
and aerodynamic loading have been predicted by means of the FW-H analogy.

An important source of rotor noise is indeed related to the compressibility effects occurring in the
blade tip region. At values of the advancing tip Mach number higher than 0.85, shock waves appear
in the flow field around the rotor, which generate an annoying impulsive noise. A prediction the so-
called High-Speed Impulsive (HSI) noise requires the nonlinear effects to be taken into account in the
FW-H analogy. An alternative to the computation of the volume term in the FW-H equation consists
in using methods based on Kirchhoff's theorem. These methods relate the acoustic field to the pressure
field upon a control surface enclosing the blade and all the near-blade flow nonlinearities. As in the
FW-H analogy, a CFD computation provides the flow data upon the integration surface.

For several years the Kirchhoff formulations has been considered as an ineluctable alternative to
the FW-H analogy for the prediction of high-speed rotor noise. Only recently, di Francescantonio
[42] has shown that the FW-H analogy can be extended to a penetrable control surface and that the
surface integrals account for all the nonlinear terms enclosed by the integration surface. In response
to di Francescantonio [42], Brentner & Farassat [43] pointed out that, although di Francescantonio
was the first to apply the FW-H analogy to a Kirchhoff-type integration surface, Ffowcs Williams
had already described several implications of a penetrable surface formulation. Moreover, Brentner &
Farassat discussed in great detail the conceptual difference between a Kirchhoff formulation anda FW-H
penetrable formulation. Their analysis is ari example of both elegance and effectiveness. lt shows that,
since the Kirchhoff equation follows from a linear wave equation, its application to acoustic analogy
predictions requires the integration surface to be placed in the linear flow region. On the contrary,
since a FW-H equation is an exact rearrangement of the flow governing equations, the placement of
the integration surface is only a matter of convenience as long as the quadrupole sources are taken into
account by the surface integration. Thus, the FW-H analogy allows accurate noise predictions even
wnen the integration surface is not in the linear flow region.

In this chapter we are concerned with a retarded time integral solution of the FW-H equation.
The mathematical formalism is that of Farassat & Succi [39] and Brentner [40], extended to a moving
observer. A penetrable surface formulation is considered, as proposed by di Francescantonio [42] and
Brentner & Farassat [43].

The retarded time formulation is hereafter interpreted as an advanced time formulation. This allows
to compute the acoustic field as the CFD simulation is processed. The advanced time approach offers
the following advantages.

1. Since the acoustic time-step is typically several orders of magnitude greater than the aerodynamic
time-step, the computational time for the noise prediction at each acoustic time-step may be
smaller than that required by the CFD simulation to cover an acoustic time-step. In this case,
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Vo

Integration Surfuice: S

FIGURE 6.1: Scheme of the FW-H acoustic analogy. The flow field enclosed by the integration surface
S isreplaced by a quiescent fluid (po, Po, U = O). The vectors u and y denote the velocity of the flow
and the velocity of the integration surface, respectively. The listener moves at the constant velocity y0.

provided that a parallel architecture is used, the acoustic prediction has a negligible computational
cost.

The advanced time is an algebraic function of the observer and point source location at the
emission time. Therefore, no iterative solutions of the retarded time equation must be performed
at each time-step.

The advanced time projection of the source status at a given time is univocal. Thus, the ap-
plication of the advanced time formulation to sources in supersonic motion does not require a
modification of the computational algorithms.

No disk-recording of the flow time history is necessary for the purpose of the acoustic computation.

This new aeroacoustic methodology is implemented in the rotor noise prediction code Advantia [41],
developed by the author in the present context.

6.2 Aeroacoustic Formulation

Unsteady flows generate pressure fluctuations by different mechanisms. These fluctuations partially
propagate as acoustic waves within the fluid medium. The acoustic analogy suggests to separate the
sound generation mechanisms from its propagation. This can be made by arranging the flow governing
equations in the form of a wave equation, where all the terms not accounted for by a given wave
propagation pattern are moved at the right-hand side and interpreted as source terms.

The first acoustic analogy model was proposed by Lighthill [1]. It describes the sound generation
from turbulent velocity fluctuations and propagating in an unbounded medium at rest. The physical
adequacy of the acoustic analogy model is discussed in chapter 5 of part II. In the present chapter we
focus on the extension of Lighthill's theory to account for the presence of solid surfaces in the field.

6.2.1 The FW-H Equation

The FW-H equation is the most general form of Lighthill's acoustic analogy. It can be obtained by
using generalized functions in order to embed the exterior flow problem in unbounded space.

Let f(x, t) = O be a control surface whose points move at the velocity v(x, t). The surface f = O
is defined such that Vf = ñ, where ñ denotes the unit normal vector which points out of the surface.

Listener

Integration Volume: V
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Using generalized flow variables, the flow portion enclosed by the surface, i.e. f < O, can be replaced
by a quiescent fluid and a surface distribution of sources which restore the conservative character of
the field. Therefore, the generalized continuity and the linear momentum equations can be written as

[(p - PO) H(f)]
+

[pnH(f)J Q8(f) with

Q=poUñ and

\ Pol PO
(6.1)

and

[oui H(f)] + [(p Uj + P) H(f)] = L 8(f) with
x-1

= Pj ñj + pn (u - v) and
Pj=(ppo)82_r (6.2)

where Q 5(f) and L 5(f) denote surface source distributions of mass and linear momentum, respectively.
The following generalized derivatives have been used in equations (7.212) and (7.213)

OHf)
= 8(f) = 8(f)v

H(f)
= 8(f) .L = 8(f)ñ

Oxj Ox2

Outside of the source region, the fluid can be considered at rest and equations (6.1) and (6.2) can be
arranged in the form of a standard wave equation describing the propagation of an acoustic disturbance
p' in a quiescent medium, i.e.

D2p'E
¡ 1 82

(6.5)

where c is the sound speed in the quiescent medium.
If the flow perturbations are included, equations (6.1) and (6.2) can be arranged into the FW-H

equation where the flow perturbations appear as source terms of the standard wave equation. Therefore,
by subtracting the divergence of equation (6.2) to the time derivative of equation (6.1), the differential
form of the FW-H equation can be obtained, i.e.

02 8 002 {(p - PO) 2 H(f)} = 8 8 {T H(f)} - - {L 8(f)} + - {Q8(f)} (6.6)x2 X3 X2

where

= p unj + (p' - c2p') Sj - (6.7)
is the well-known Lighthill's stress tensor.

If the density perturbations are small, as usually happens at the observation distances, the term
(p - PO) c2 can be replaced by p', and equation (6.6) can be interpreted as an inhomogeneous wave
equation for the acoustic pressure p'.

In the aeroacoustic literature, the three source terms on the right-hand side of equation (6.6) are
known as the quadrupole, loading and thickness source terms, respectively. The thickness and loading
terms are surface distributions of sources, as indicated by 8(f). When the control surface encloses
a physical surface, the thickness source accounts for the fluid displacement produced by the body
motion, and the loading source accounts for the unsteady loading exerted by the body on the fluid.
The quadrupole source is a volume distribution of sources, as indicates by H(f). This accounts for all
the flow nonlinearity in the domain exterior to the control surface. In the case of a body moving in an
otherwise quiescent fluid, the flow nonlinearities are due to the body motion and may consist of vortical
disturbances, shocks and local sound speed variations.
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6.2.2 The FW-H Equation versus the Kirchhoff Equation

The technique of the generalized function can be also applied to the standard linear wave equation
D2p' = O, in order to replace the acoustic field in the region f < O by an elementary quiescent fluid
p' O. A distribution of sources on the surface f = O is thus necessary to maintain the fictitious
discontinuities introduced in the original field. Considering the generalized derivatives

(p' H(f)) = H(f) - M p' 5(f) (6.8)

('H(f))} = -.-H(f) - - (p'M5(f)) (6.9)

(p' H(f)) = Vp' H(f) + p' ñ 5(f) (6.10)

(p'H(f)) = V2p'H(f) + Vp' n 8(f) + V. (p'ñö(f)) (6.11)

and subtracting equation (6.11) from equation (6.9), the generalized linear wave equation leads to the
Kirchhoff (K) equation for a moving surface, i.e.

D p H(f) = - ';;: 5(f) - {Mp 8(f)} - {p ni 8(f)}i , I (/ n '-'P i , L' ,
/:3 \ i ;:

(6.12)

where M is the local normal Mach number of the surface f = O.
The Kirchhoff formula for a subsonically moving surface was firstly derived by Morgans [44] in 1930.

The derivation of this formula was based on classic analysis and was lengthy. The simpler procedure
described above was proposed by Farassat & Myers [45] in 1988. It shows the effectiveness of the
generalized function technique.

The Kirchhoff equation is valid for any physical problem governed by the standard linear wave
equation. In acoustics it governs the propagation of linear flow perturbations in a medium at rest
and felt by the control surface S : f = O. In aeroacoustics, the linear perturbation on S are the
result of all sources, regardless to their nature (linear or nonlinear, quadrupole or not, etc.), located
in the interior domain f < O. As a consequence, in aeroacoustics the Kirchhoff approach is only valid
for S surrounding the nonlinear flow region. Moreover, the Kirchhoff equation does not account for
any aerodynamic source located in the exterior domain f > 0, or on the surface itself. In particular,
only quadrupole source terms enclosed by S are taken into account and nonlinear aerodynamic sources
located on S are not handled. It follows that the use of the Kirchhoff approach in practical applications
is quit limited. This is because unsteady flows extend over a large distance in the streamwise direction
(e.g. jets, wakes, etc.) and would require very large integration surfaces and very large flow region
accurately predicted.

This formal difficulty is removed by the FW-H equation. Being an exact rearrangement of the
flow governing equations, this intrinsically accounts for the nonlinear flow perturbations on both the
integration surface and the exterior domain.

The Kirchhoff formulation is attractive because no volume integration is necessary. For this reason
it was used in past years for rotor noise predictions at high-speed tip Mach numbers, provided that,
sufficiently far from the aerodynamic source region, the input acoustic pressure p' and its derivatives
ap'/at and i9p'/ôn are compatible with the wave equation D2p' = 0.

More recently [42], the FW-H formulation has been applied to rotor noise predictions by integrating
the aerodynamic data upon a penetrable control surface. Since the surface source terms in equation
(6.6) are compatible with the flow governing equations, the placement of the integration surface in
a FW-H approach is only a matter of convenience as long as the quadrupole sources are taken into
account by the surface integration. Thus, the FW-H analogy allows accurate noise predictions even
when the control surface is not in the linear flow region. This is the main advantage of the FW-H
aeroacoustic formulation on the Kirchhoff method.
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The equivalence between the FW-H formulation and a Kirchhoff method in the linear flow region
can be easily verified by introducing the linear approximations p' p'/c2 and u u « 1 into equation
(6.6). Thus, concerning the thickness noise source, it results that

Ui_-
PO C

, M,PO Un 5(f) p 5(f) + pzij ij 5(f) (6.13)

and

lp¿11e 5(f)} + uì 5(f) L {pui} + puje {}
- ---{ '5(f)l-5(f)--pnj--{vn8(f)}9tc J Du

where use of the relation
(9 8(ñ 5(f)) = b-- (v,, 5(f))

has been made. Analogously, the loading noise source reduces to

5(f)8p' u5(f)Op' a_(p'ñj5(f))(uv)--+
c2

pu(v5(f))
- (p'û5(f)) vn6(f)p' pu(v5(f)) (6.16)

where use of the linearized continuity equation

a lôp'
(6.17)

(6.14)

(6.15)

has been made. Finally, substituting the linearized expressions (6.14) and (6.16) into equation (6.6),
and neglecting the nonlinear quadrupole contribution, yields the Kirchhoff equation (6.12).

6.2.3 The Retarded Time Formulation of the FW-H Equation
The FW-H equation (6.6) is an exact rearrangement of the continuity and momentum equation gener-
alized to an unbounded fluid. The flow field enclosed by a control surface is replaced by an elementary
flow (p = PO and u = O) and fulfillment of the flow governing equations is ensured by surface source
distributions which ultimately act as sources of sound.

Physical surfaces possibly enclosed by the control surface have been removed and substituted
by equivalent surface source distributions. Therefore, the Green's function of the unbounded three-
dimensional space can be used to solve equation (6.6). The free-space Green's function is defined as
G 5(g) ¡r, where g = t - r - r/c and r = Ix - yl- Here x and t are the observer position and
the observer (reception) time, respectively, whereas, y and r are the source position and the source
(emission) time, respectively. The fornial solution of equation (6.6) is thus given by

4p'(x, t) f f
5(t - r - r/c)

dV drr
0

f f
5(t - r - r/c)

L dS drr

+ L f f
5(t - r nc)

Q dS dr (6.18)
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9g

18 r
dS++

Jf=o Lr(l_Mr)]ret

+ :tJfJ 1 dS- r(lMr)jt

N

f Q(r)5(g(r))=
Q

(T,)

= l+M,.
Or

fi [=r2(l_Mr)]
dS

ret

where the properties of the 5function have been exploited in order to reduce volume integrals to
corresponding surface integrals. Now, a change of the integration variable can be carried out by using
the well-known formula

(6.19)

the sum being taken over all the zeros r of the retarded time equation g = 0. When the source is in
subsonic motion, there exists one and only one solution of the retarded time equation for any reception
time. Conversely, when the source is in supersonic motion, more than one solution may exist. This
physically accounts for the fact that impulses emitted at different times can be detected at the same
time. The time-source derivative of g is given by

(6.20)

where Mr = M î is the component of the source Mach number vector in the direction of the observer,
= (x - y) ¡r denoting the unit vector in the radiation direction. The term 1 - MrJ accounts for

a dilatation or contraction of the observer time scale respect to the source time scale, depending on
whether the source moves far away from or towards the observer, respectively. This effect is known as
Döppler effect.

Let us suppose that the source elements in equation (6.18) are in subsonic motion and let us denote
as [] evaluation at the retarded time

Ix - y(T*)I= t
C

Then, applying (6.19) and (6.20) to the integral expression (6.18) yields

02 f I T i4irp = ôxôx Ji>o Lr' - Mr)jt
dV

O f L
dS- Jí=oLr(l_Mr)iret

+ f [ M)]
dS (6.22)

This is the retarded time solution of the FW-H equation (6.6). It is interesting to notice that the
change of variable used to integrate the 5function 5(g) generated a singular behaviour at the transonic
condition Mr = 1. Fortunately, this singularity is a mathematical artefact and can be removed by
applying a different change of variables. The reader should refer to chapter 7 of part II for a description
of these different formulations and a discussion on the nature of the transonic singularity.

Starting from equation (6.22) different expressions of the retarded time formulation can be obtained
in order to improve the practical relevance of the FW-H analogy. A first modification consists in
transforming the space derivatives into time derivatives. This can be done by using the relation [46]

O f L
dSJi=o Lr(1_Mr)Jret

(6.21)

for the loading noise, and twice the same chain for the quadrupole noise. Hence, it follows that

1 82 f Trr 1 1 8 f 1 3 Trr - i f 1 3 Trr - i
= [r( _Mr)Jr -J Lr21_MrirY+JJ>o Lr31Mr]rY

(6.24)

f f L
dS ' f L

dS 6 23-Jf=o {r(lMr)jret Jí=o {r2(l_Mr)Jret . )
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A second modification consists in moving the time derivatives inside the integrals. This is generally
convenient for numerical purposes and can be made, as shown by Farassat & Succi [39] and Brentner
[40], by using the rule

where

4irp(x, t)

a
at

X

1 d
lMr ar

- o

p (lïn+un)-
= L r(1Mr)2 ]

Lr = L L = L

X] ret

together with the following relations

= CMr (6.26)

aj i c M - c M
6 27

{ri + c (M - M2)} (6.28)

In equation (6.25) the symbol I indicates derivatives taken at fixed observer position. It finally results
that

p'(x,t) =p'Q(x,t) +p'L(x,t) +p'T(x,t) (6.29)
where the expressions of the thickness, loading and quadrupole noise1 are reported below.

Thickness noise

r pou (rItfr+c(M. _M2))
+ dS (6.30)J10 T2 (1 - Mr)3

ret

where M is the Mach number vector of a source point on the integration surface, and the remaining
terms are defined as

UUjij, U=Uui,
Mr=Mi'íi, Ir=P'Iifj (6.31)

Dots on quantities denote time derivatives with respect to the source time r. A comprehensive descrip-
tion of all the involved quantities is given in appendix 6 A.

Loading noise

i'[ Lr

]
dS4irp(x,t)

r(1M,.)
ret

{

L,.LJ
]

dS+ f r2 (1 - Mr)2 ret

ÍLT
(rïitr + c (Mr - M2))]

dS (6.32)+
L

r2(1_Mr)3cf0

LM LM

ret

(6.25)

(6.33)

1Subscripts refer to the flow quantity that generates the pressure perturbation, that is, Q, L and for the thickness,
loading noise and quadrupole noise, respectively.

dS

ret



Quadrupole noise
1K1 K2 K3147P(x7t)=f[_+__+_-I dV

J ret

with

Trr +TrT+31'rr ) r TrK1= (1M)3 (1M)4 +(1_Mr)5
4 Ta,. +2 Tp + M,.

K2
(1 - M,.)2 (1 - M,.)3

3 {(1_M2) 2J'IT MI[T'1> 6JtI,. (1_M2' Tj Tr+
(1_M,.)4 (1_M,.)5

- (i - M2) 6 (i - M2) TM,. 3 (1 - M2)2 Tr,.K3= (6.35)(1M)3 (1_M,.)4
+

(1_M,.)5

where T,.,. = íj j is the double contraction of the Lighthill's stress tensor and the other terms
are defined as

TMM=TMM, TMr=TMíj, T,.=TiJIffj
TM,.=TM'í, Trrïjrirj, T,.,.1rjr (6.36)

In the above expressions M is the Mach number vector of a volume source fixed in the body reference
frame.

The quadrupole noise expression (6.34) is similar to that obtained by Brentner [40]. However, in
Brentner's paper the volume integral in equation (6.34) is carried out in two stages. First, an integration
of the aerodynamic quantity in the direction normal to the rotor disk is performed, providing the
quantity

Qij=fTdz (6.37)
f>o

which does not depend on the observation point. Second, an integration on the rotor disk is performed
by using the same expressions as in (6.35), but with Qj at tile place of This approximation is
justified by the fact that the helicopter transonic HSI-noise is maximum in the plane of the rotor. In
this case, as shown in chapter 7 of part II, Brenner's procedure is nearly exact.

A final modification consists in extending the integral formulation to an observer moving at a
constant velocity cM0. This can be done by interpreting the time derivative of the thickness noise in
equation (6.24) as a Lagrangian derivative. The other time derivatives, in fact, have been obtained by
using the relation (6.25) where derivatives are taken at fixed observer position. It thus results that

4Kp'Q(x,t) f [T(c0_I,.)]
ret

dS+cMoif [r(1°_Ir)]t dS

Proceeding as in equation (6.23) to translate the space derivatives into time derivatives, yields

¡ ¿9 f I p0U i47rpQ(x,t)
= -j Lr1_Mr]ret

dS

r 1p0fJM0,.1 rpounMo,.1
Jj=o Lri _Mr)jret

dS
JfO [r2(1_M,.)]ret

dS

(6.34)

(6.38)

where Mor = M0 i is the observer Mach number vector in the radiation direction. Finally, moving
the time derivative inside the integral, yields
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Thickness noise for a moving observer

47rp'(x,t)
= f

[o(ünun)1
dS+f ÍPoUn(r&+c(Mr_M2))1

1=0 r(1Mr)2 j 1=0
L

r2(1_Mr)3 jret

I IMOTP0(nul)1
=°

L r(1Mr)2 j ret

dS_f

M2 MorMr(1 -
f1=0

[roc {2MorMrMor
r2 (1Mr)3

J FMorOCU1
- f=0 [r2 (1_Mr)jret

dS

where { iret denotes evaluation at the retarded time

T* =
«t) - y(r*)J

C

6.2.3.1 Non-dimensionalized FW-H Integral Equation

The formulation coded in Advantia is a non-dimensionalized form of equations (6.39), (6.32) and (6.34).
In view of interfacing to a finite volume CFD code, the flow field is expressed in conservative variables
(p, AUj, pE,), where E is the specific total internal energy. Furthermore, since CFD solutions are
commonly computed in a body reference frame, the flow velocity u is deprived of the velocity y of the
control surface.

Thus, introducing a reference length 1ref, a reference velocity Uref, a reference time lref/Uref and
a reference dynamic pressure Pd = Po Uf/2, the following non-dimensionalized expressions can be
obtained (see appendix 6 B)

V R'f+M'.M2l1
!Ep(X,O) = f Viii, + çui, + (V2 + qì) h m 'n r Mref X dS

Pd J10 R (1 - Mr)2 R2 (1 - Mr)3
ret

M
J= or

R (1 - Mr)2

- I MorÌ!tr(Vj+qj)ñj
Jj=o R (1 - Mr)3

f 1(Vj+qj)ftjM0rl
- 1=0 {MreR2 (1 - Mr)] ret

dS

FMor PoMrUn i

L
r (1_Mr)3j

2ir MrefXr dS + f F
Ar - AM i

= f= [R (1 Mr)2]t R2 (1 Mr)2]tPd

MrM2 ìi

+ fÍMref
Ar { R Mr + Mref J

I

f=0 I R (1 - Mr)3
dS

ret

Mr)

dS

_MorM,?}Unl
i ret

(6.39)

(6.40)

or or rj
- f [{2MorMr_M M2MorMr(1 Mr) M M21> (V2+q)

M R2h1_Mr)3ref

dS

(6.41)

(6.42)
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2ir
PTP, O) = f [M + Mref + dV with

Pd Jf>O
ref R ret

K "rr
+ & 'E'rr +3 Mr

+ rr
(lMr)4 (lMr)5

_ii 4'i'Mr+2r +Mr'I'jjK2
= (1 M)2 (1 Mr)3

+
{(1_M2) rr_2rMr_MiAi Wrr} 6& (1_M2) Wrr

(lIkfr)4 (111'Ir)

K3
2'J!MM - (i - M2) 'I' 6 (i M2) WMr

+
(i _M2)2 Wrr

(644)(lMr)3 (lMr)4 (lMr)5
where square brackets enclose quantities evaluated at the retarded time °ret obtained from the dimen-
sionless retarded time equation

°ret = O - (X(0) - Y(Oret)) JWref (6.45)

In this expression the current time O is the observer time, whereas °ret is the retarded source time.

6.2.4 The Advanced Time Formulation

The retarded time approach consists in evaluating the signal received at a given time2 t through a
summation of all the disturbances reaching the observer at the same time t. Depending on the source
location in the integration domain and the kinematics of both the observer and the integration domain,
these disturbances are emitted at different retarded times and cover different distances before to reach
the observation point.

In this chapter we propose an advanced time approach. This merely consists in using a retarded
time approach, but from the point of view of the source. Therefore, at a given time3 the contributions
from the integration domain are calculated, based on the current aerodynamic data and the current
kinematics of the integration domain. At each computational time and for each source element, the
time at which the corresponding disturbance will reach the observer is calculated and is referred to as
advanced time. The observer location at the advanced time is used to calculate the relative position
between the observer and a point source. The signal is finally re-composed in the observer time domain
through a summation over all the computed contributions.

Let us consider the retarded time equation

Ix(t) - y(Tret)
Tret t

C

At an observer time t + Y this yields

Tret = t +

Thus, setting Iet t leads to

jx(t + Y) - y(T,'et)I
C

x(t+T) y(t)!
C

21n a retarded time approach the computational time is the reception time.
31n an advanced time approach the computational time is the emission time.

(6.43)

(6.46)

(6.47)

(6.48)

6.2. AEROACOUSTIC FORMULATION 149



rjMoi±/(rjMoj)2+r2(1 Md)
c(1M)

r 1Mor±/Mtr+1_M}
cl 1Mi

The quantity t + T is the time at which a disturbance emitted by a source element y at the time t will
reach the observer x. Thus, it is interpreted as the advanced time

tadv = t + Y (6.49)

Let us suppose that the observer moves at the constant velocity cM0. Equation (6.48) can be solved
in T, providing

(6.50)

where r = X (t) 'y(t) is the radiation vector and Mor = j M0 is the observer Mach number vector
in the radiation direction. Since a signal cannot be received before it is emitted, the quantity T must
be positive. Notice that the T depends only on the observer velocity and not on the source velocity.
The following cases can be distinguished:

stationary observer: M0 = 0. Only the solution T+ = nc is a physical solution.

Observer in subsonic motion: M0 < i

Mor± '/M,2r+a2 >0 (6.51)

with a2 = 1 - M. Hence, only the solution 7 is a physical solution.

Observer in supersonic motion: M0> 1

d'Mj_M{MMorM0j+(1_M}- 1Mi JMr+1Mo2 (6.54)

Mor ± \/Mo2r - a2 <0 (6.52)

with a2 = 1 + M. Hence,

observer moving far away from the source: Mor > 0. Both solutions T do not match the
physical condition T> 0.
observer moving towards the source: Mor < 0. Both solutions T± are physical solutions,
provided that Mor < /M - 1.

In the present study we assume a subsonic observer velocity. Thus, only the solution is considered
and the advanced time is given by

r(t) íMor(t)+v/Mor(t)+i_Mo2
tadv t + i - M (6.53)

It is interesting to notice that a source time t corresponds only to one value of the advanced time tadv.
This happens for any velocity of the source. Furthermore, the advanced time expression is given in an
explicit forin.

The implementation of the advanced time formulation does not require a modification of the source
terms in the integrals (6.41), (6.42) and (6.43). However, difficulties may arise in the reconstruction
of the signal. Due to the Döppler effect, in fact, an equally spaced discretization of the source time
domain does not correspond to an equally spaced discretization of the observer time domain. This can
be understood by taking the time derivative of expression (6.53), i.e.
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FIGURE 6.2: Advanced time versus current time for a source in constant motion at different Mach
numbers in the direction of a fixed observer. The source initial distance from the observer is r0 =
100m and the sound speed is e0 = 300 rn/s. Source Mach numbers: M0 = 0, - M0 = 0.33,
----M0=0.66,---M0=1,---Mo=1.33,-----M0-1.67.

where M denotes the source Mach number. Considering, for simplicity, a fixed observer position yields

dtadv = i - M (6.55)

and in discretized form

4The same discretization used in the source computation is used in the advanced time domain.

(6.56)

where L\t is the computational time-step. In Fig.6.2 the advanced time is plotted for a fixed observer
and a source moving at different velocities y0 along a rectilinear trajectory. The source intercepts the
observation point at t0 = r0/v0, r0 being the initial distance of the source. For t < to and subsonic
source velocities the curves have positive slopes, with values O < 1 - Mr 1. This situation corresponds
to a contraction of the advanced time scale. For t < to and supersonic source velocities the curves have
negative slopes. Thus, signals emitted before are detected after. Finally, for t > t0 the curves have
positive slopes, with values i - Mr > 1. This situation corresponds to a dilatation of the advanced time
scale. When the computed disturbances are sampled on an equally spaced advanced time domain4, the
following situations can take place:

only one contribution p from the source element S falls in the interval [ti, tj+h]adv;

no contribution from the source element S is projected in the interval [ti, t2+u]adv

more than one contribution from tile source element S fall in the interval [ti, t3Iadv

Since the Döppler factor is already accounted for in the source terms, contributions () must not
be added, but used to determine a suitable contribution p. A summation over all the source elements



must be made as a final step, namely p-1 = providing the pressure value at the advanced time
jLt. The procedure used in this work to build-on the pressure signal in the advanced time domain is
described in appendix 6 C. It is essentially based on a linear interpolation. Although more accurate
schemes can be implemented, the one herein proposed is a good compromise between accuracy and
simplicity.

6.3 Numerical Assessment of Advantia

In this section we describe a numerical assessment of the FW-H analogy formulation implemented in
the rotor noise predictor code Advantia.

The quadrupole contribution can be neglected at low Mach numbers. Thus, for the purposes of the
present study, only the thickness and loading noise contributions, as defined in equations (6.41) and
(6.42), respectively, are considered.

Advantia is a three-dimensional code in which the integral formulation is implemented by means
of a first order isoparametric description of the aerodynamic data and of a Gaussian quadrature on
both surface and volume elements. In the present work the FW-H acoustic analogy is applied to the
circular cylinder flow in chapter 7 and to the rod-airfoil configuration in chapter 8. In both cases a
two-dimensional aerodynamic field is computed and the three-dimensional aerodynamic field necessary
for the acoustic prediction is recovered by a spanwise repetition of the two-dimensional solution. In
order to validate this procedure, tests involving two-dimensional geometries are first discussed. Later
on, a three-dimensional assessment is performed in order to validate the advanced time formulation in
the case of a complex relative motion between the observer and the integration surface. The assessment
strategy is the following: first, the far field radiated by a set of elementary acoustic sources is obtained
directly from analytical expressions and is referred to as analytical solution; second, the analytical
solution upon a control surface is propagated into the far field by means of the analogy formulation
and is referred to as numerical solution; third, the numerical solution is compared to the analytical
solution. Monopoles and point forces are used as elementary acoustic sources. These are kept in motion
in the three-dimensional tests. A two-dimensional scattering problem is also examined, whose analytical
solution is based on a series expansion.

The assessment procedure described in this chapter allows to check the linear contributions of
the FW-H formulation. This is because we use analytical solutions of the standard wave equation.
In chapter 7, Advantia will be used to predict the aerodynamic sound from an isolated rod. This
configuration constitutes an aerodynamic benchmark of the FW-H formulation.

6.3.1 Two-dimensional Tests

In this section we assess a two-dimensional employment of Advantia by considering the following test
cases:

the scattering of a plane wave by a rigid cylinder (see Fig.6.3(a));

the radiation from a pair of cylindrical monopoles (see Fig.6.3(b)).

6.3.1.1 Test 1

Consider a plane acoustic wave of wavenumber k traveling in a direction z perpendicular to the axis
of a rigid cylinder of diameter D, as sketched in Fig.6.3(a). The incident pressure is given by Pi =
P exp{i k (z - c t) } and the pressure of the scattered wave at large distance r from the cylinder is (see
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Ref. [47])

p3(r, O, t) Pp(0) exp{i k (r - ct)} with

b8(o)
= Emsin('yrn)exp(i 7m)cos(mO) and

m=O

E01, Em=2 for m>0

1nte ation surface

FIGURE 6.3: 2D test cases scheme.

The total pressure on the surface of the cylinder is given by

m=O

Inte ration surface

00
cos(mO) firmpw(O,t) = exp(ikct)

Em
exp{i 7m)Í

X

(6.57)

(6.58)

The phase angles 7m and the amplitudes Em are complex combinations of Bessel functions. For k D = 6
they take the values listed in Table 6.1. Only the first nine values are considered, provided that, for
m > 9, the phase angles 7m and the amplitudes Em do not give significative contributions to the
summations in equations (6.57) and (6.58), respectively.

The wall pressure Pw is introduced into equation (6.42) as input data for the analogy approach.
Then a numerical integration is performed upon a long cylinder of span b (k b = 100), with a spanwise
discretization of about 10 segments per wavelength. The far field numerical solution (kr = 300) is
compared to the analytical solution in equation (6.57). In Fig.6.4(a) the scattered acoustic intensity,
obtained for different numbers of circumferential discretization segments, is plotted. Overlapping of the
numerical solutions shows that the deviation from the analytical solution is due to the approximated
form of equation (6.57). The maximum relative error of 0.057 occurs at O = 00. The time trace of the
scattered acoustic pressure at O = 00 is plotted in Fig.6.4(b).

Observer Observer

a) Test 1. b) Test 2.

k

k

k

k
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TABLE 6.1: Phase angles and amplitudes for scattering and radiation from a cylinder: kD = 6

a) Directivity pattern of the scattered acous-
tic intensity.
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FIGURE 6.4: Acoustic validation of FW-H formulation. Scattering of a plane wave by a cylinder:
kD = 6, kr = 300. Analytical solution, - - numerical solution (5 points per wavelength),
- - - - numerical solution (7 points per wavelength), - - - numerical solution (10 points per wavelength).

m ym(deg) Em m 'ym(deg) Em

0 133.76 0.9389 5 -1.530 2.2610
1 54.240 0.4597 6 -0.130 8.9670
2 . -1.990 0.4319 7 -0.010 40.860
3 :25.09 0.4175 8 -0.000 212.60
4 -11.01 0.6965 9 -0.000 1249

0.1635 01665 0.1695 0.1725 0.1755
t (s)

b) Time trace of the scattered acoustic pres-
sure at an observation angle 9 = 00.
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FIGURE 6.5: Acoustic validation of FW-H formulation. Radiation from a pair of non-compact monopoles
at distance h. Analytical solution, - - - - numerical solution.

6.3.1.2 Test 2

The pressure and the radial velocity generated by a two-dimensional monopole source are5 (see Ref. [47]
(pp. 356-363))

p poc7rdU\/_ exP{i [k (r - Ct)] - (6.59)

Ur rdU\/_ exp{i [k (r - ct)] - (6.60)

Consider two monopoles (k = 6.28m1, kd = 6.28 10-e and U = 1 m/s) placed in (0,±h/2) and
pulsating with opposite phase (see Fig.6.3(b)). The pressure and velocity field induced on a long
cylindrical surface (kb = 100) of radius a (ka = 12.57) and center in the origin are introduced into
equations (6.41) and (6.42). The integration surface is discretized with about 5 and 10 segments per
wavelength along the circumference and the span of the cylinder, respectively. The numerical solution
at a distance r (kr = 125.6) is then compared to the analytical solution. The radiated acoustic
intensity obtained for two values of h is plotted in Figs.6.5(a) and 6.5(b). The numerical and the
analytical solutions agree fairly well. The maximum relative errors is 0.025 for kh = 8.976 and 0.024
for kh = 1.257.

5A two-dimensional monopole source can be modeled as an infinite-span conipact cylinder (k d « 1) with cross-section
pulsating at the velocity y,. = U exp(i kct) (k is the acoustic wavenumber and d is the cylinder diameter.)



6.3.2 Three-dimensional Tests

In this section we investigate the capability of Advantia in predicting the noise radiated by acoustic
sources in complex subsonic motion. The following test cases are examined:

acoustic monopoles translating and rotating with respect to an observer which translates at a
constant velocity, as sketched in Fig.6.6;

radial dipoles rotating and translating with respect to a fixed observer, as sketched in Fig.6.16;

axial dipoles rotating and translating with respect to a fixed observer, as sketched in Fig.6.23.

The first test case is performed in order to validate the penetrable surface formulation and the thickness
noise extension to a moving observer. The second and the third test cases are performed in order to
show the feasibility of an advanced time prediction of the noise from a high-speed rotor.

6.3.2.1 Test i

Harmonic monopoles of equal amplitude q = 0.1 kg/s, phase and frequency f are located on the vertices
of a regular polygon. These monopoles rotate around the axis of the polygon at the frequency 12, and
around a vertical axis at the frequency fi. The source distances from these normal axes are h and
a, respectively. The system translates at the velocity y1, and the observer translates at the velocity
y0. The monopoles are enclosed by a control spherical surface rotating around the vertical axis at the
frequency fi.

The sound radiated by a moving harmonic monopole and received by a moving observer is used as
analytical solution, namely

DI Q(t) ]p(x,t) Po
[47rr(1__Iktr)jret

(6.61)

u(x,t) = ¿& [47rr2 Mr)] t

(6.62)

where D/Dt denotes a convective time derivative (see Ref. [48J, pp. 269-275). These expressions provide
both the far field acoustic solution and the aerodynamic field on the integration surface6. The latter is
defined in terms of the acoustic pressure p', its time derivative j3, the acoustic velocity u and its time
dérivative u'. These quantities are evaluated numerically through a retarded time approach.

Several cases are considered in order to check the following aspects of the formulation:

the advanced time approach,

the penetrable control surface formulation,

the moving observer extension of the thickness noise.

In the present work, no attempt has been made to characterize the numerical accuracy of the spa-
tial discretization. The surface integration is performed upon a sphere of radius 0.5m, with a polar
discretization of 24 x 24 elements. A Gaussian integration is performed by using 4 points on both quad-
rangular and triangular elements. A linear isoparametric interpolation is used to define the aerodynamic
quantities at the collocation points.

Concerning the time discretization, 200 time-steps per acoustic period are initially used for different
configurations. Later on, computations are performed for one configuration down to 20 time-steps per
acoustic period.
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TABLE 6.2: Test 1: geometrical and kinematic parameters. N is the number of acoustic monopoles; f
is the acoustic frequency; fi and f2 are the rotation frequency around the vertical and the horizontal
axes, respectively; v, is the forward velocity of the sources; y0 is the observer translation velocity;
M is the maximum Mach number of the integration surface; M0 is the observer Mach number; ErrL
denotes the relative L-error; Fig. indicates the label of the corresponding figure. All the quantities are
expressed in SI units. Computations are performed with a time discretization of 200 time-steps per
acoustic period.

The observer initial position is the same for all the presented cases, say x = (10, 10, 10) m, as well
as the rotation radiuses a = 1 in and h = 0.1 m. The remaining parameters are listed in Table 6.2.

In Figs. from 6.7 to 6.13 numerical results obtained with 200 time-steps per acoustic period are
checked against the analytical solutions. The plots show that the agreement between the numerical
and the analytical solutions is good for all the investigated configurations. The relative L-errors, say

maxi Pum Peo
ErrL = (6.63)

maxi Pieo

for the different configurations are listed in Table 6.2.
In Fig.6.14 the relative L2-error for Case I, say

ErrL2
>1j (pum _eo)2

- j (peo)2

is plotted against the number of samples N3 per acoustic period, from N3 = 20 up to N5 = 200. The
numerical solutions corresponding to three values of N3 are plotted in Fig.6.15. The acoustic signatures
exhibit a significant phase error only for N5 = 20.

6Tiie term aerodynamic is indeed extended to denote an acoustic field.

(6.64)

N f fi f2 v, M M0 ErrL Fig.
A i loo 0 0 (0,0,0) (0,0,0) O O 1.36E-2 6.7(a)
B 4 110 0 0 (0,0,0) (0,0,0) o O l.31E-2 6.7(b)
C 1 100 20 0 (0,0,0) (0,0,0) O O 1.52E-2 6.8(a)
D 4 110 20 0 (0,0,0) (0,0,0) o O 8.45E-3 6.8(b)
E 1 100 20 49 (0,0,0) (0,0,0) O O 1.57E-3 6.9(a)
F 4 110 20 43 (0,0,0) (0,0,0) O O 8.26E-3 6.9(b)
G 1 100 20 49 (50,40,30) (0,0,0) 0.76 0 1.88E-2 6.10(a)
H 4 110 20 43 (50,40,30) (0,0,0) 0.76 0 6.79E-3 6.10(b)
I 1 100 20 49 (50,40,30) (-lo, -30,-50) 0.76 0.17 3.34E-5 6.11(a)
J 4 110 20 43 (50,40,30) (-10, -30,-50) 0.76 0.17 4.19E-3 6.11(b)
K 1 100 20 49 (50,40,30) (-20, -60, -100) 0.76 0.35 2.60E-2 6.12(a)
L 4 110 20 43 (50,40, 30) (-20, -60, -100) 0.76 0.35 5.79E-4 6.12(b)
M i loo 20 49 (100, 80, 60) (-10, -30, -50) 0.97 0.17 5.40E-2 6.13(a)
N 4 110 20 43 (100,80,60) (-10, -30,-50) 0.97 0.17 9.45E-2 6.13(b)
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Integration Surface

Moving Observer

J t

Vy

FIGURE 6.6: Scheme of Test 1. A set of equal monopoles are located on the vertices of a regular polygon.
These monopoles rotate around the axis of the polygon at the frequency f2, and around a vertical axis
at the frequency fi. These two axes of rotation are normal to each other. The system translates at the
velocity v, and the observer translates at the velocity y0. The surface integration is performed upon a
sphere. It encloses the monopoles and rotates around the vertical axis at the frequency fi.

Monopole Source

FIGURE 6.7: Test 1. Case A (left) and Case B (right). - Analytical solution, - - - - Numerical solution.
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FIGURE 6.8: Test 1. Case C (left) and Case D (right). Analytical solution, - - - - Numerical solution.

FIGURE 6.9: Test 1. Case E (left) and Case F (right). - Analytical solution, - - - - Numerical solution.
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FIGURE 6.10: Test 1. Case G (left) and Case H (right). - Analytical solution, - - - - Numerical solution.
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FIGURE 6.11: Test 1. Case I (left) and Case J (right). Analytical solution, - - - - Numerical solution.
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FIGURE 6.14: Test 1, Case I. Relative L2-error versus the number of time-steps per acoustic period.
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FIGURE 6.15: Test 1, Case I. Numerical solutions for three values of the number of samples N per
acoustic period: N3 = 200, ErrL2 = 8.24 x 10_2; - - - -N3 = 75, ErrL2 = 1.68 x 10f; - N3 =
20, ErrL2 = 6.05 x 10'.
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6.3.2.2 Test 2

A radial compact dipole is described as a small disk with a pressure jump uniformly distributed upon
its surface. One and three disks at a constant angle from each other are considered, rotating around
a vertical axis at the frequency fi. The system translates at the velocity whereas the observer is
fixed.

The sound radiated by a moving dipole is used as acoustic analytical solution (see Ref. [48], pp.
269-275), namely

r.ÉcMF r.L+c(1_M2)
p'(x, t) = + (r. F) (6.65)4ircr2 (1Mr) 4ircr3(1Mr)

ret

where M denotes the dipole Mach vector number and F is the unsteady force exerted on the fluid.
Dots on quantities denote time derivatives.

Several cases are considered in order to check the feasibility of an advanced time prediction of the
noise from a subsonic high-speed rotor. The rotation frequency is kept constant at the value f = 10 Hz,
as well as the observation point x = (5,4,3) m. Different Mach numbers are obtained by varying both
the radius a and the forward velocity A point force of modulus F = 1000 N is introduced in the
field through a pressure jump uniformly distributed on the surface of a small disk. This is obtained by
flattening a sphere with a polar discretization of 5 X 5 elements7. One or three disks at a constant angle
from each other are considered. The parameters for the different configurations are listed in Table 6.3.

Concerning the time discretization, 1000 time-steps per rotation period are initially used for different
configurations. Later on, computations are performed for one configuration down to 100 time-steps per
rotation period.

TABLE 6.3: Test 2: geometrical and kinematic parameters. N is the number of acoustic dipoles; a is
the distance from the axis of rotation; v, is the translation velocity of the sources; M is the maximum
Mach number of the integration surface; ErrL denotes the relative L-error; Fig. indicates the label of
the corresponding figure. All the quantities are expressed in SI units. Computations are performed
with a time discretization of 1000 time-steps per rotation period.

In Figs. from 6.17 to 6.20 numerical results obtained with 1000 time-steps per rotation period
are checked against analytical solutions. The plots show that, as in Test 1, the agreement between
the numerical and the analytical solutions is good for all the investigated configurations. The relative
L-errors, as defined in (6.63), for the different configurations are listed in Table 6.3.

TIn this case the surface discretization has no influence on the accuracy of the solution. Simply, it provides a further
check of the Gaussian integration procedure and other coded libraries.

N a v M1, ErrL Fig.

A 1 1 (0,0,0) 0.18 7.10E-5 6.17(a)
B 3 1 (0,0,0) 0.18 1.17E-4 6.17(b)
C 1 3 (50,50,50) 0.81 6.49E-5 6.18(a)
D 3 3 (50,50,50) 0.81 2.59E-5 6.18(b)
E 1 5.4 (0,0,0) 0.998 1.03E-4 6.19(a)
F 3 5.4 (0,0,0) 0.998 1.25E-5 6.19(b)
G 1 2 (100, 100, 100) 0.88 7.35E-5 6.20(a)
H 3 2 (100, 100, 100) 0.88 1.24E-4 6.20(b)



Integration Surface

FIGURE 6.16: Scheme of Test 2. A radial compact dipole is described as a small disk with a pressure
jump uniformly distributed upon its surface. One and three disks at a constant angle from each other
are considered, rotating around a vertical axis at the frequency fi. The system translates at the velocity
vi,, whereas the observer is fixed.
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FIGURE 6.17: Test 2. Case A (left) and Case B (right). - Analytical solution, - - - - Numerical solution.

In Fig.6.21 the relative L2-error 6.64 for Case H is plotted against the number of samples N3 per
rotation period, from N3 = loo up to N3 = 1000. The numerical solutions corresponding to three
values of N3 are plotted in Fig.6.22. The acoustic signatures show a significant phase error only for
N3 = 100.
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FIGURE 6.18: Test 2. Case C (left) and Case D (right). Analytical solution, - - - - Numerical solution.
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FIGURE 6.20: Test 2. Case G (left) and Case H (right). - Analytical solution, - - - - Numerical solution.
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FIGURE 6.19: Test 2. Case E (left) and Case F (right). - Analytical solution, - - - - Numerical solution.
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6.3.2.3 Test 3

An axial compact dipole is described as a small disk with a pressure jump uniformly distributed upon
its surface. Three and four disks at a constant angle from each other are considered, rotating around
a vertical axis at the frequency fi. The system translates at the velocity vi,,, whereas the observer is
fixed. Equation (6.65) provides the acoustic analytical solution. In the present case the force has a
constant direction, thus F = 0.

As in Test 2, several cases are considered in order to check the feasibility of an advanced time
rotor-noise prediction. The rotation frequency is kept constant at the value fi = 10 Hz, as well as the
observation point x = (5,4,3) m,. Different Mach numbers are obtained by varying both the radius a
and the forward velocity A point force of modulus F = 1000 N is introduced in the field through
a pressure jump uniformly distributed on the surface of a small disk. This is obtained by flattening
a sphere composed of 5 x 6 elements. Three or four disks at a constant angle from each other are
considered. The parameters for the different configurations are listed in Table 6.4.

Concerning the time discretization, 1600 time-steps per rotation period are initially used for different
configurations. Later on, computations are performed for one configuration down to 160 time-steps per
rotation period.

TABLE 6.4: Test 3: geometrical and kinematic parameters. N is the number of acoustic dipoles; a is
the distance from the axis of rotation; v, is the translation velocity of the sources; M is the maximum
Mach number of the integration surface; ErrL denotes the relative L-error; Fig. indicates the label of
the corresponding figure. All the quantities are expressed in SI units. Computations are performed
with a time discretization of 1600 time-steps per rotation period.

In Figs. from 6.24 to 6.25 numerical results obtained with 1600 time-steps per rotation period are
checked against analytical solutions. The plots show that, as in Test 1 and Test 2, the agreement
between the numerical and the analytical solutions is good for all the investigated configurations. The
relative L-errors, as defined in (6.63), for the different configurations are listed in Table 6.4.

In Fig.6.26 the relative L2-error 6.64 for Case D is plotted against the number of samples N3 per
rotation period, from N3 = 160 up to N3 = 1600. The numerical solutions corresponding to three values
of N3 are plotted in Fig.6.27. The acoustic signatures exhibit a small phase error only for N3 = 160.

N a v, M ErrL Fig.

A 3 1 (0,0,0) 0.18 3.00E-3 6.24(a)
B 3 3 (0,0,0) 0.55 1.89E-5 6.24(b)
C 3 3 (100, 100,0) 0.97 1.03E-3 6.25(a)
D 4 3 (100,100,0) 0.97 3.53E-4 6.25(b)

166 CHAPTER 6. ACOUSTIC ANALOGY FORMULATION



Integration Surface-'

FIGURE 6.23: Scheme of Test 3. An axial compact dipole is described as a small disk with a pressure
jump uniformly distributed upon its surface. Three and four disks at a constant angle from each other
are considered, rotating around a vertical axis at the frequency fi. The system translates at the velocity
vi,, whereas the observer is fixed.
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6.3.3 Discussion

The feasibility of an advanced time aeroacoustic prediction has been proven through several test cases.
The relative L-errors in Tables 6.2, 6.3 and 6.4 show that a high level of accuracy has been obtained
even in the case of surfaces moving at high Mach numbers, provided that a sufficient number of samples
per period is used. Consistently, an increasing phase-error appears as the time-step is increased. This
effect has been emphasized by evaluating the L2-error. Thus, we showed that:

the advanced time approach can be successfully applied to hybrid CFD/FW-H aeroacoustic pre-
dictions.

The accuracy of the numerical prediction is not significantly affected by the kinematics of the
problem, even at very high source Mach numbers.

The FW-H integral formulation based on a penetrable control surface provides consistent results
even when the integration surface rotates and translates at high velocities. The definition of
aerodynamic quantities and their time derivatives on a rotating penetrable surface is a complicated
matter. For this reason we believe that the test cases herein discussed constitute an original aspect
of the present work.

The thickness noise extension to a moving observer is consistent with an advanced time approach.

The acoustic assessment of Advantia can be successfully concluded with the awareness that: the
thickness and the loading noise contributions from a high-speed, but subsonic surface can be accurately
predicted through an advanced time formulation, which is more effective and simple than a classic
retarded time formulation.

6.4 On the Feasibility of a Hybrid CFD/FW-H Aeroacoustic Predic-
tion

In the preceeding section we showed that a FW-H formulation can be successfully applied to the pre-
diction of complex acoustic fields, provided that a consistent acoustic field is inputedon the integration
surface. In the case of a penetrable control surface, the acoustic field is expressed in terins of acoustic
pressure, acoustic velocity and related time derivatives.

Throughout the present work the FW-H formulation is used to predict the aerodynamic noise from
vortical flows bounded by surfaces moving at constant velocities. Since the nunierical methodology
implemented in Advantia propagates the near field information to the far field at a very high level of
accuracy, the accuracy of the aeroacoustic prediction depends only on the accuracy of the aerodynamic
solution and its time derivative on the integration surface.

6.5 Conclusions

-

In this chapter we showed that a retarded time solution of a generic wave equation can be computed
through an advanced time approach.

When applied to the aerodynamic noise prediction, the advanced time formulation allows to pro-
gressively build the time trace of the radiated acoustic pressure by using aerodynamic data as early as
these are computed by an aerodynamic solver. Hence, the traditional concept of a post-process acoustic
prediction is partially surpassed. The practical advantages offered by this methodology are:

the feasibility of an aeroacoustic prediction running parallelly to an aerodynamic prediction;

no disk recordings of the aerodynamic data are necessary for the sake of an aeroacoustic prediction;



the advanced time is an algebraic function of the observer and point source location at the emission
time. Therefore, no iterative solutions of the retarded time equation must be performed, resulting
in an increased efficiency of the numerical algorithms.

Minor results of the present study are:

the thickness noise extension to a moving observer with time derivatives taken inside the integrals;

a formulation of the integral FW-H equation in terms of dimensionless quantities, with velocities
defined in the body reference frame.

Non trivial test cases were performed in order to assess the consistency of the advance time for-
mulation. These were chosen in order to test all the numerical procedures involved in a rotor noise
prediction.

No attempt was made in the present work to exploit the advanced time approach in the transonic
regime. Nevertheless, we believe that an examination of the transonic singularity in the spirit of an
advanced time prediction could suggest the way of an ad-hoc treatment of this regime.

As a final remark, the feasibility of an acoustic prediction running parallelly to an aerodynamic
prediction could be of primary importance in the evaluation of volume contributions.
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Appendix 6 A

Symbols Used in the FW-H Formulation

The aerodynamic field is introduced in equations (6.41), (6.42) and (6.43) in terms of conservative
variables, namely, the flow density p, the linear momentum pj, iij being the relative velocity of the
flow with respect to the integration surface f = O, the specific total internal energy pR and the specific
kinetic turbulent energy pK. A description of all the involved quantities is reported below

Pd = Po Uf, O = t Uref/Iref, Mref = Uref/C, Vi = Vj/Uref, Vn = Vñ

XX/lref, YY/lref, R=IX-YI
M=v1/c, Mr=Mi'?i, Ir=1ttjíj, Jtr=A1ifi, Mor=Moi'?i
-. - p (pij) (pR) (pK)uu,v, a--, q , e

2 2po (PO Ure) (po Uref) (Po Uref)

qjqj POC=2 ('yl) [e --k] -
2cr 2Pd

qjqj .qjqjCp=2('l)1e+a_k
Aj = fij + V1 q +

qj q
2 a

Xi = -j-fi + --ñi+Viqn+Vi(i)+Vi(qiñi)

.fl\ qi qjnj
'12 'i Z \ / 'jj'jfl+ + + a

Wii=+aV1+qj+qiVi+( a_1)
a ref

= q1ñ, Ajtí = A1 M, A A Xr Xi ij
= 'l'MM, '1Mr hIM = 'IJMr, h'rr =

h'Mr'T!ijMi'1j, rr='ij1ij, rr=ijfi#j
In these expressions Po and po are the quiescent fluid pressure and density, respectively, M0 denotes
the observer Mach number, ñ is the unit vector pointing out of the integration surface and upper
dots denote derivatives with respect to the dimensionless time O. The loading-noise term Xi is the
dimensionless time derivative of A2. In a similar way both 1J!,j and '1Jj can be obtained from the
quadrupole noise term
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Appendix 6 B

Nomenclature

c Sound speed in quiescent medium
Pressure coefficient

HO, ö() Heaviside and Dirac delta functions
K kinetic turbulent energy
1ref Reference length
E Total internal energy
M Mach number of the surface f O

Mref, Ure Reference Mach number and reference velocity
M0 Observer Mach number vector
Mor Observer Mach number vector in the radiation direction

Unit outward normal vector to the iiìtegration surface
PO Pressure in quiescent medium
p', p' Pressure and density disturbances
Pd Reference dynamic pressure
R Dimensionless distance between observer and a source point

Radial unit vector
O time and dimensionless time

Lighthill's stress tensor
Flow velocity
Flow velocity relative to the integration surface

1/ Velocity and dimensionless velocity of the surface f = O
X Observer position and dimensionless observer position
Y Source position and dimensionless source position

8jj Kroììecker delta
'y Specific heat ratio

Xi Loading noise source terms
p, AUj, pE, pKAerodynamnic conservative quantities
Po Flow density in quiescent medium
p Flow density
o-, qj, e, k Dimensionless aerodynamic conservative quantities

Viscous stress tensor
Quadrupole noise source terms

n2 Wave operator

Superscripts

Time derivative
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Subscripts

n Projection in the normal direction
r Projection in the radiation direction

Abbreviations

BEM Boundary Element Method
CAA Computational AeroAcoustics
CFD Computational Fluid Dynamics
FW-H Ffowcs-Williams & Hawkings
RANS Reynolds-Averaged Navier Stokes
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Appendix 6 C

Interpolation Scheme in the Advanced Time
D o main

In this appendix we describe the procedure used in the present work to build-on the acoustic signal in
the advanced time domain.

At each source time-step j and for each source element i, the advanced time 9adv and the corre-
sponding elementary sound contribution p' are computed. Then, the quantities

b) if p O (already computed), then

pi--p,
Pw jwiw

= P' - Pw
w=O

ti
.Jadv int(- (6.66)

dv- - Jadv

are computed, adv denoting the advanced time-step and w the normalized difference between tdv and
the discrete advanced time advt.

Successively, the elementary sound contribution p is computed by means of a case-procedure which
depends on whether a contribution p has been already computed or not, that is

a) if p O (not computed), then

175

(6.67)

(6.68)

(6.69)

Both the values of p and w are stored. It is straightforward to verify that, once w = O has been set
by a first execution of block b), successive executions do not affect the value of p.

Fin ally, a summation over all the source elements, say pi = > p, provides the pressure value at
the advanced time-step adv

(6.70)

(6.71)

(6.72)
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7

Spanwise Statistical Modeling of a Circular
Cylinder Flow

In this chapter we propose a new method for the prediction of the aerodynamic sound generated by a
nominal two-dimensional flow past a bluff body, which generates pulsating vortical disturbances at a
privileged frequency.

The method is applied to the prediction of the noise radiated by a circular cylinder flow, with a
twofold aim in mind:

to show how three-dimensional effects can be taken into account by an acoustic analogy prediction
based on a two-dimensional flow;

to show the feasibility of an aerodynamic noise prediction through a hybrid RANS/FW-H formu-
lat ion.

In the first part of the present chapter we describe the underlying physics of the vortex dynamics in
the wake of a rod, with emphasis given to oblique vortex shedding and other three-dimensional effects.

In the second part we describe a statistical model of the flow around a rod, based on the idea of a
spanwise random variation of the vortex shedding phase. An analogy in terms of spanwise correlation
coefficient is also illustrated between a spanwise random phase variation and a low frequency random
amplitude modulation of the pressure field on the rod surface.

In the final part of the chapter we present results concerning a RANS prediction of the flow past
a circular cylinder at a Reynolds number of about Re = 2.2 x and results of a FW-H prediction
of the aerodynamic noise at about one acoustic wavelength from the cylinder. Both aerodynamic and
acoustic results are checked against experimental data.

7.1 Introduction

The aerodynamic sound generated by the periodic vortex shedding from a circular cylinder is a classical
problem in aeroacoustics.

The Aeolian tones were first investigated by Strouhal [3] in 1878 by measuring the frequency of the
tonal emission from a stretched wire mounted on a hand-driven rotating apparatus. Strouhal related
the sound generation to the flow friction on the wire and observed that the tonal frequency is given by
fo = St U/d, where St is a constant, U is the velocity of the cylinder and d its diameter.

This result was confirmed in 1879 by Lord Rayleigh [49] who first observed that the Strouhal number
St depends on the flow Reynolds number. Moreover, Rayleigh argued that, since the wire vibrated
perpendicularly to the stream, the sound could not be generated by the fluid friction. Therefore, after
Bénard's 1908 observation of staggered vortices in a cylinder wake and von Kármán's 1912 stability

177



178 CHAPTER 7. SPANWISE STATISTICAL MODELING OF A CIRCULAR CYLINDER FLOW

analysis of a double row of counter-rotating vortices, Rayleigh [4] related the wire tone emission and
vibration to the periodic vortex shedding from the wire.

Among the several arguments in favor of Rayleigh's fatherhood of the aerodynamic sound theory'
that related to the Aeolian tones is well established. Indeed, as early as 1896, Rayleigh [51] observed
that even motionless cylinders in a fluid stream can produce a tonal emission and that the coincidence of
the vortex shedding frequency with the cylinder structural frequency only increases the sound intensity.

Once the acoustic analogy theory was established by Lighthill [1] and Curle [52], Phillips [53]
succeeded in predicting the Aeolian tones on the basis of some properties of the flow, namely the vortex
shedding frequency, the maximum lift coefficient induced by the counter-rotating vortices, and the
spanwise correlation length.

The spanwise correlation length accounts for the three-dimensional character of the flow. A circular
cylinder flow, in fact, remains two-dimensional up to Reynolds numbers of about 180. At higher values,
three-dimensional fluctuations are imposed on the dominant vortex shedding. As a consequence, the
wall pressure signals exhibit a random amplitude modulation. At very low Reynolds numbers this
behaviour is presumably related [54] to a cellular structure of the vortex shedding, accompanied by
vortex dislocations and oblique vortex shedding. At higher Reynolds numbers cellular shedding have
never been observed, despite the randomly modulated behaviour of the wall pressure signals [36].
Therefore, vortex dislocations are likely to exist also at higher Reynolds numbers.

An oblique vortex shedding causes a spanwise variation of the vortex shedding phase. Furthermore,
a statistical analogy exists between a random amplitude modulation and a random dispersion of the
vortex shedding phase. Therefore, an ad hoc statistical model for the vortex shedding phase is described
in the present chapter. The model allows to take into account, to some extent, the three-dimensional
character of the flow in an acoustic analogy prediction based upon a two-dimensional flow field.

The spanwise statistical method is validated on the base of Phillips' [531 Aeolian tones model, and
by comparing experimental data with an acoustic analogy prediction of the sound froma Re = 2.2 x iO4
circular cylinder flow. The acoustic field is computed by applying the Ffowcs Williams & Hawkings
(FW-H) acoustic analogy to aerodynamic data computed on different surfaces around the cylinder. The
aerodynamic field is obtained from a two-dimensional RANS computation. The same hybrid CFD/FW-
H approach has been used by other authors [55] [56] [57] in order to validate the consistency of a FW-H
formulation applied to a penetrable integration surface.

Once the acoustic analogy is tested, the present approach can be also used as a good benchmark
for a CFD prediction since the accuracy of the acoustic solution hinges on the accuracy of the CFD
sOlUtiOIl.

7.2 Vortex Dynamics in the a Wake of a Circular Cylinder

In this section we describe the vortex shedding regimes in the wake of a circular cylinder. A more
exhaustive discussion on the subject can be found in Ref. [58].

In Fig.7.1, experimental values of the base suction coefficient C are shown 2 versns the Reynolds
number. The presence of discontinuities in the behaviour of the base suction coefficient is related to
the existence of different unsteady flow regimes at different Reynolds numbers.

Re <49: laminar steady regime (up to A). In this regime the wake of the cylinder is constituted
by two symmetrical recirculating bubbles whose length grows as the Reynolds number increases.

'The reader should refer to Doak's review [50] for a suggestive dissertation on the Rayleigh's fatherhood of the aero-
dynamic sound theory.

2The base Suction coefficient is defined as the suction coefficient (Cr) at = 0, that is, the downstream stagnation
point on the cylinder. As sketched in Fig.5.10(a), ç denotes the angle away from the streamwise direction.
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FIGURE 7.1: Base suction coefficient versus the Reynolds number (after [58], figure 3).

49 <Re < 140 - 194: laminar vortex shedding regime (AB). In this regime the recirculation
region develops instabilities whose amplitude and amplification rate grow as the Reynolds number
increases. Consequently, the Reynolds stresses in the near wake increase, the vortex formation length3
decreases and the base suction coefficient increases. The origin of this primary instability is known to
be the result of a Hopf bifurcation and scales with the cylinder diameter.

190 Re < 260: wake transition regime (BC). This regime is characterized by a high inter-
mittency of the flow related to the wake transition to three-dimensionality. Indeed, the transition to
three-dimensionality involves two discontinuous changes of the three-dimensional instability, the for-
mer having a hysteretic nature4. These discontinuities mark two different mode of three-dimensional
instability, which are referred to as mode A and mode B (to not be confused with the flow regimes A
and B in Fig.7.1). Streamwise vortices are originated both in mode A and mode B. In mode A these
vortices are due to the deformation of primary vortices, whereas in mode B these vortices are related
to local shedding-phase dislocations along the span of the cylinder.

260 < Re 1000: increasing disorder in the three-dimensional fine-scale (CD). This
regilne is characterized by a fine three-dimensional structure which becomes increasingly disordered as
the Reynolds number increases. As a consequence, the two-dimensional Reynolds stresses decrease, the
vortex formation length decreases and the base suction coefficient increases. The local maximum of the
base suction in C is likely to be caused by a resonance between the frequency fsL of the shear layer
instability and that 1k of the primary Kármán street instability. The shear-layer instability develops by
the action of a Kelvin-Helmholtz mechanism. Hence, it scales with the thickness of the separated shear
layer which is a small fraction of the cylinder diameter. Consequently, the length and time scales of the
shear-layer instabilities are much smaller than those related to the primary wake instability. However,
a resonance between these two instability Inechanisins occurs at a particular value of the Reynolds

3The vortex formation length is conventionally defined as the distance of a point downstream to the cylinder where
the velocity fluctuation level has grown to a maximum.

4The Reynolds at which the discontinuity occurs depends on whether the flow speed is increased or decreased.
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number. In fact, as found by Prasad & Williamson [59], the following result holds

ISL (Re 0.62

1k k262) (7.1)

which yields Ist = 1k at a Reynolds number of 262, which corresponds to the condition marked as C in
Fig.7.1.

1000 < Re < 200000: shear-layer transition regime (DE). This regime is characterized by
increasing Reynolds stresses, a decreasing vortex formation length and, consistently, by an increasing
base suction coefficient. This behaviour is due to the fact that the Kelvin-Helmholtz instabilities are
essentially two-dimensional and contribute to the increase of the two-dimensional Reynolds stresses.

200000 < Re: critical transition (EG). In this regime a separation-reattachment occurs upon
only one side of the body. This is accompanied by a drastic reduction of the drag coefficient.

Supercritical regime (GH). In this regime the flow is symmetric with two separation-reattachment
bubbles, one on each side of the cylinder. The Strouhal number rises to a value of 0.3-0.4, which is
consistent with the retarded separation and the thiner wake width.

Boundary-layer transition regime (HJ). In this regime transition to turbulent regime occurs
before the separation takes place. A periodic vortex shedding is observed also in this fully turbulent
regime.

7.2.1 Three-Dimensional Effects

The vortex dynamics in the wake of a bluff body is of increasing concern in many engineering areas.
Effects related to the intrinsic three-dimensional character of a nominal two-dimensional flow must be
taken into account in order to predict unsteady loading, vibrations and sound generation.

The spanwise statistical model presented in this paper is concerned with the sound from a rod. It
is based on Phillips' [53] intuition of a spanwise variation of the vortex shedding phase, and is inferred
by recent observations of the vortex dynamics in the wake of a rod.

Three-dimensional flow on a circular cylinder can be influenced by a number of factors which can
have an extrinsic origin, for instance the boundary layer on the end plates, or an intrinsic origin,
as those arising from natural instabilities. Furthermore, different three-dimensional effects have been
observed at low and high Reynolds numbers.

7.2.1.1 Three-Dimensionality at Low Reynolds Numbers

Low-Reynolds-number cylinder wakes are characterized by discontinuities in the Strouhal-Reynolds
number relationship, and by oblique vortex shedding. These characteristics of the wake are related
to each other and are both influenced by the conditions at the ends of the cylinder, even at high
aspect ratios (lid). The Strouhal discontinuity observed by Tritton [60] near Re = 75 is caused by a
transition from one oblique shedding mode to another one [54]. This transition can be explained by
a change in the shedding pattern from one where the central flow is able to match the end conditions
to one where the central flow is unable to match the end conditions and generates a cell of higher
shedding frequency. Up to three coexisting frequency cells have been observed [61]. At the interface
between two cells vortex dislocations occur during periods in which vortices move out of phase with each
other. The coexistence of cells of different frequency results in a low frequency quasi-periodic amplitude
modulation of the fluctuating quantities in the near wake. Furthermore, at the boundary between two
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cells, abrupt phase jumps can take place at the amplitude modulation frequency. In Fig.7.2 an example
of velocity fluctuations at different spanwise positions across two frequency cells is shown. The near-end
fluctuations have a lower frequency, say fa. The central fluctuations have a higher frequency, say fb.

jill ed Ii , i, h ,¿44, f 4 ji. I i
z/D9O

dVJAAMJJXIV4)1\
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FIGURE 7.2: Time traces of velocity fluctuations along the span of a cylinder in a uniform flow at a
Reynolds number Re=99.6. z/D denotes the spanwise distance from the mid-plane, made dimensionless
by the cylinder diameter D. The letters D along the time axis denote vortex dislocation (after [54],
figure 22).

The resulting amplitude modulation has a frequency ft - fa. The abrupt phase jumps at the interface
between the near-end and the central frequency cell result in vortex dislocations. A sketch of a three
frequency cells vortex shedding is shown in Fig.7.3.

7.2.1.2 Three-Dimensionality at High Reynolds Numbers

The main three-dimensional effect observed at higher Reynolds numbers is a spanwise variation of the
vortex shedding phase, accompanied by a random amplitude modulation of the fluctuating quantities in
the near wake of the rod. Since the vortex shedding is not in phase along the rod span, spanwise pressure
gradients take place, which induce spanwise velocity fluctuations. Near the end plates the spanwise
component of the fluctuating velocity vanishes, leading to an enhancement of the vortex shedding
uniformity. Experiments conducted by Szepessy & Bearman [36] in the high-Reynolds number range
i x iO4 - 1.3 x iO5 show that a weak shedding mode reappears somewhat periodically at about 10-20
times the Strouhal period, and has a duration of about 3-7 shedding periods. Szepessy & Bearman also
observed a phase shift between a wall pressure signal in the rod mid plane and a velocity signal near
the rod, both taken 900 away from the flow direction. The phase shift increased with the separation
distances between the two transducers. Despite the observed amplitude modulation, no cellular vortex

a

fc
FIGURE 7.3: Three frequency cells coexisting along the span of a cylinder in a uniform flow with end plates.

fb

r/D. 19.2
a)t'
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shedding was observed.

7.3 A Statistical Method for Aeroacoustic Predictions
At Reynolds numbers higher than about 180 the flow past a circular cylinder is three-dimensional. This
causes the wall pressure fluctuations to exhibit a modulated behaviour. The quasi-periodic amplitude
modulation observed at low Reynolds numbers is related [54] to a cellular structure of the vortex
shedding. Spanwise inhomogeneities such as boundary layers upon the end plates', nonuniform inflow
conditions or a spanwise-varying diameter induce the formation of cells, i.e. regions of constant shedding
frequency along the rod span. At the interface between two cells an abrupt frequency jump occurs.
The interaction between two neighbouring cells of frequency fa and Ib, respectively, induces a beat
behaviour at the frequency fa - fbi. When the vortices in two adjacent cells are nearly in phase, their
mutual interference generates an oblique vortex shedding. Conversely, when two cells are out of phase,
a contorted vortical structure, say vortex dislocation, is produced. Hence, oblique shedding, vortex
dislocation and cellular shedding are different aspects of the same phenomenology. At higher Reynolds
number random amplitude modulations have been observed [36], accompanied by spanwise phase shift
and jumps along the rod span.

Both an oblique vortex shedding and a random amplitude modulation can be related to a random
variation of the vortex shedding phase. Therefore, an ad hoc spanwise statistical model is first developed
on the base of Phillips' [53] model and successively applied to the rod noise prediction.

7.3.1 Phillips' Model

Consider a motionless rod of diameter d and span 1 in a fluid stream with velocity V. Set 1ref = d
and Uref = V in equations (6.41) and (6.42). Consider a fixed observation point rod(cos O, sin 0, 0), r0
being the dimensionless observation distance from the rod mid point and O the angle away from the
streamwise direction.

In the geometrical (ro » 1) and acoustical (M ro 2ir St » 1) far field limits, provided that an
integration upon the rod surface is made, equations (6.41) and (6.42) reduce to

p'(ro O r) pdMrOsinO 11/2d dd .. [[a] fidl (7.2)
Jl/2d R (1 + Mr0 cos OIR) Jj

where Pd = pV/2 and R = /ro2 + is the dimensionless distance between the observer and a point
source on the rod, with denoting the dimensionless spanwise coordinate. The time derivative of the
pressure coefficient is evaluated at the dimensionless retarded time

Tret T - R ]1/I (7.3)

Supposing an observer sufficiently far from the rod, such that r » l/2d, yields

PdMco 1/2d
p'(ro, O, r) = f dî f [a] ñ dl (7.4)

4irr0 (1 + McosO)2 J-1/2d JI

Finally, neglecting the unsteady drag component by substituting

f [ar] ñdl - [a1] 3 (7.5)

'The end conditions affect the vortex shedding over the entire rod span, even for aspect ratio of the order of 100.



into equation (7.4) leads to the compact dipole Aeolian tones radiation

, Pd M00 sinO 11/2d
p (ro, O, r) =

2 I Ldl] di7d (7.6)
4irro(l +M00cosO) J-1/2d

Although the vortex-induced fluctuating lift may be of the same amplitude along the rod span, the
phase of the lift may vary stochastically as (i4. Thus, following Phillips [53], the fluctuating lift
coefficient can be written as

C1(ild,r) = Ctmaxexp{i (2irSt 'r+ç(i7d))} (7.7)

Substituting equation (7.7) into equation (7.6) yields

¡11dM00 St CimaxlSjnO i[2irSt(rMro)] e('1d, (7.8)p'(ro, O, r) =
2rod(1+M00cosO)2

e
J-

where i is the spanwise coordinate made dimensionless by the rod span. Hence, the acoustic intensity
is given by

+ +
I = Idet f f exp {i (ç3(ii) - ç(772))} di11 di72 (7.9)

where

'det = 32cr& (1+M00cosO)4
P00 oCi2mc St212 sin2O

denotes the far field sound intensity of a deterministic flow (fully correlated along the rod span). If
the correlation length is small compared to the rod span, the double integral in equation (7.9) can be
approximated as

f+
+ +00f exp{i((i7l)(i72))}di7Idi72 f p()d

- - J_o0

(7.10)

(7.11)

C12(e) S [p (t) p2(t + e)] =
F2 p2

= --E [cos cos (P2] cos(2 ir fo ®) - --E [cos sin (P2] sin(2 ir fo O)

p2 p2
+ ---S [sin col cos 2] sin(2 ir f O) + -.-S [sin i sin (P2] cos(2 irlo O) (7.14)
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where the correlation coefficient p(i) = exp {- ((i7i) - ç(11l + ij))} dij1 can be reasonably sup-
posed to be Gaussian or Laplacian. In the first case it results that

= exp (-h) and I = 'det VL9 (7.12)

whereas, in the second case

= exp (_i!Lt) and I = 'det2 L1 (7.13)

7.3.2 The Method of the Phase Variance Distribution

The fluctuating pressure on the rod surface at 90° away from the streainwise direction is representative
of the fluctuating lift. Thus, for two spanwise locations one can write Pi (t) = Fcos (2ir fo t + ) and
p2(t) = Fcos (2ir lot + p2). The related cross-correlation function is given by
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where & [j denotes the expected value.
Taking the first point in ij = O and setting 2 = , equation (7.14) reduces to

C12(0) = ÇE[cos} cos(2irfoO) - ÇE[sinI sin(27r fo O) (7.15)

This is equivalent to suppose that the flow is statistically homogenous along the rod span and that
the random phase denotes indeed a random phase shift. The corresponding spanwise correlation
coefficient is given by

p(i) C12(0) = E[cosj (7.16)

whereas, the coherence function is given by

F(i,f) I = S[cosIaUfo E[sin]ö(f - fo) (7.17)

where the cross-spectrum S12 is the Fourier transform of the cross-correlation function given in equation
(7.15).

Random phase shifts may occur for different and independent causes: inflow nonuniformity, surface
roughness, etc. According to the central limit theorem, this is sufficient to suppose that the random
variable has a Gaussian probability density. Physically this corresponds to a condition of maximum
entropy, namely, the less struct'ured or deterministic condition. In the present case, it is assumed that
random perturbations from the incoming and surrounding turbulent flow (the rod is located in the
potential core of a jet) are mainly responsible for the spanwise coherence loss of the deterministic
shedding. Hence, not the shedding itself, but its deviation from periodicity is directly related to the
surrounding turbulence and can thus be modeled by a Gaussian probability.

Therefore, assume a spanwise phase distribution with a Gaussian probability density P, whose
variance w is zero on the rod mid-span plane (j = 0) and increases symmetrically towards the rod
extremities (,j = ±1/2), i.e.

exp ( Ç'ç')
= (7.18)/2irw(i)

Clearly, a spanwisely increasing variance accounts for the intrinsic phase shift nature of . Two methods
are described below to determine the value of p and F.

If denotes a random variable with probability density 7'(), the expected value of a generic
function f() is given by ¿ [f()} = f T f() ?() d. Thus, applying this fundamental property to
equation (7.17) leads to

p+oo exp
E[sinJ = / sin d O and (7.19)

J2irw
P+oo exp

S [cos] = / cos ( d = exp (-i) (7.20)
J-00

where use of the known integral f cos(bx) exp (ax2) dx = \/exp (_) has been made. There-
fore, when is a random variable with a symmetric probability density, the coherence function can be
also interpreted as the correlation coefficient, i.e.

F(i, f) = p('i) 6(f - fo) (7.21)

Another method for evaluating S [cos } is to consider the Taylor series of cos , writing

S [cos } = S ( 2fl]

=
[2n] (7.22)
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Since has a Gaussian density probability, it results that

S[o}=1 and,forn>1
e [2n_1] =
S [2n] = (2n 1) (2m-3)..... 31

Thus, substituting into equation (7.22) and performing sorne algebra, i.e.

S [cos j

=
(2m 1) (2n 3) .... 31 w

(-w)
- Z_2n(2n2)(2n4)..4.2

00 ( \fl- - 2)- n=
00 1(w\n 1W

= =exp--

the same result as in equation (7.20) is obtained.
Concluding, the spanwise correlation coefficient at q = 900 on the rod surface takes the form

(7.23)

Two variance distributions are considered as demonstrative examples, leading to a Gaussian and a
Laplacian correlation coefficient, respectively. These are:

a quadratic variance distribution

w('q) 4 W,772 yielding (7.25)

= exp (_) with (7.26)

Wmax = (2L9)2 (7.27)

a linear variance distribution

w('q) = 2 Wmax 7 yielding (7.28)

( IIp07) = exp ---) with (7.29)

IWmax = L1 (7.30)

where L9 and L1 denote the Gaussian and Laplacian correlation lengths, respectively, made dimension-
less by the rod span.

The correlation coefficients obtained from a quadratic and a linear spanwise variance of the phase,
respectively, are plotted in Fig.7.4. Numerical values, obtained from a randomly generated Gaussian
distribution of , are comnpared with the Gaussian and Laplacian functions of the span spacing m.

By assuming a lift coefficient with the same phase distributions used to plot the correlation co-
efficients on Fig.7.4, equation (7.2) provides the acoustic radiation plotted on Fig.7.5. Interestingly,
an amplitude modulation can be observed in the acoustic signals, resulting in a spectral broadening
around the Strouhal peak.

P07) = exp (-i) (7.24)
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FIGURE 7.4: Correlation coefficients resulting from random phase distributions with a quadratic (7.25)
and a linear (7.28) spanwise variance of the vortex shedding phase. Lengths are made dimensionless
by the rod span.
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FIGURE 7.5: Sound from a compact rod at a distance ro = 138 and an observation angle O = 90°,
obtained by forcing a Gaussian correlation coefficient into equation (7.2): L9 = 0.222, - - - L9 =
0.444, - - - -L9 = 0.666. The values d = 0.016m, L = 0.3m, V = 20m/s, Cimax 0.75, r0 = 138 and
o = 90° have been used in the computation.
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FIGURE 7.6: Sound intensity from a rod for different values of the correlation length. Comparison
between Phillips' analytical results and the compact dipole formulation (7.2), with a randomly generated
spanwise phase distribution of the unsteady lift coefficient. Compact dipole formulation, - - - -
Phillips' model.

In Fig.7.6(a) the acoustic intensity obtained from equation (7.9) by assuming a Gaussian and a
Laplacian correlation coefficient, as in equations (7.12) and (7.13) respectively, are compared to the
acoustic intensity obtained from equation (7.2) with a Gaussian distribution of the lift phase along
the rod span. Deviations from Phillips' prediction are only due to the fact that the rod has been
supposed to be finite for the numerical integration of equation (7.2). Thus, erroneous predictions can
be made if the Phillips' model is applied to short rods. In this case, in fact, the approximation (7.11)
is inconsistent.

7.3.3 Random Amplitude Modulation versus Spanwise Phase Dispersion
The random amplitude modulation observed at high Reynolds numbers can be described as

p(t) = [cos(27rfot)+cos(27r/mt)] (7.31)

where 1m denotes a random frequency which differs from f only slightly. Setting J& = fo - 1m, Ib
being the random beat frequency (Ib «fo), equation (7.31) yields

p(t) = Pcos {27r (fo
- )

} cos(27rt) Pcos(2irf0t) cos(lrfbt) (7.32)

At two different spanwise positions the pressure signals are

pi(t) = Pcos(2irfot) cos (ir/bit)

p2(t) = Pcos(2irfot) cos(lrfb2t)

The resulting correlation coefficient is given by

= [cos {ir (fbi - 1b2) t}]

(7.33)

(7.34)
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This expression coincides with that given in (7.16) if the random quantity r (fbi - .42) t is interpreted
as a random phase . This holds if the random process is ergodic, which is the case of the flow
considered in the present study.

A major consequence of this statistical equivalence is that the spectral broadening observed in
experiments around the Strouhal peak can be partially explained and modeled through a spanwise
randomness of the vortex shedding phase.

7.3.4 Aeroacoustic Implementation of the Statistical Model

Statistical pressure measurements on the rod surface provide the correlation coefficient p(). This can
be related to a spanwise variation of the variance w(ri) = 2 In {p()}. Then, w(i) is used to generate
a random phase sequence (1jj, rj) along the rod span.

Consistently with the observed vortex shedding behaviour, phase jumps are only permitted sporad-
ically every two or three shedding cycles. Furthermore, jump synchronization at two different spanwise
sections is avoided by slightly randomizing the time at which the phase jump occurs.

The random phase is then converted into a random perturbation of the retarded time by writing

ret(17,T) = rret(?7,r) +
2R st

ç(i, Tret(?7, r))

where Tret (ii, r) denotes the deterministic retarded time obtained from the dimensionless retarded time
equation (6.45).

The aeroacoustic prediction can be thus performed by forcing into equations (6.41) and (6.42) a
spanwise random dispersion of the retarded time 'îret(?7, r). This is equivalent to introduce a loss of
coherence into the spanwise repetition of the two-dimensional aerodynamic field.

Interestingly, the same two-dimensional aerodynamic field can be used to predict the acoustic pres-
sure by using different seeds of the random phase distribution. Then, averaged acoustic spectra can be
computed in a similar way as in the experiments.

(7.35)

7.4 Aeroacoustic Prediction of a Circular Cylinder Flow
In this section, the sound generated by a circular cylinder flow at a Reynolds number Re = 2.2 x iø is
the object of a numerical investigation. The acoustic field is computed in the time domain by applying
the FW-H acoustic allalogy to aerodynamic data calculated on different surfaces around the cylinder.
The aerodynamic data are obtained from a two-dimensional RANS computation. The flow three-
dirnensionality is partially recovered by letting the aerodynamic field undergo a Gaussian correlation in
the spanwise direction. Both aerodynamic and acoustic results are checked against experimental data.

7.4.1 Aerodynamic Computation

The compressible finite volume RANS code Proust [62] described in section 8.3.1 is used in the current
investigation. Both the convective fluxes and the viscous terms are evaluated using a second order
centered scheme. The solution is advanced in time by using an explicit second order scheme based on
a five-step Runge-Kutta factorization.

Non reflecting boundary conditions and grid stretching in the outer domains are used in order to
reduce spurious reflections of acoustic waves.

The turbulence model used is the two-equations Wilcox' [63] k - w model, where k is the turbu-
lent kinetic energy and w is related to the turbulent dissipation. The inflow conditions and the flow
parameters are p 1.225 kg/rn3, V = 20m/s, p = 101253.6 Pa and = 1.78 x iü kg/ins. The
turbulent kinetic energy has a uniform initial value of 0.01 as measured in experiments. The inflow
boundary conditions remain the same throughout the computation.
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An approximated steady potential flow is used as initial solution. Furthermore, a strong line-vortex
in proximity of one separation point on the cylinder is added to the initial field in order to induce a
vortex shedding as soon as the computation is started, and thus to accelerate the convergence to a
periodic flow.

The computational mesh is based on 197 x 193 points. It is circumferentially clustered in the wake
region. The minimum circumferential spacing, at the rod base point (q = 0), is 2.5 x i0 d, and the
thickness of the mesh wall layer is 5 x i0 d.

The computational time-step is 6.25 x 10-8 s, corresponding to about 5 x i0 iterations per aerody-
namic cycle. 2048 aerodynamic fields are stored for the acoustic computation, covering 8.04 X 10_2

7.4.2 Acoustic Computation

The rotor noise code Advantia described in chapter 6 is used for the acoustic prediction. For the
purposes of the present investigation, only surface integrals are computed, provided that, at low Mach
numbers, the volume sources give a vanishing contribution to the acoustic radiation. The consistency of
this approximation is checked by comparing acoustic results obtained from different integration surfaces.

2048 aerodynamic fields are used for the acoustic computation (about 24 vortex shedding cycles,
tfi = 8.04 x 10_2 s and Lf = 12.19 Hz). The observation distance from the airfoil mid point is
r = 1.38 m (kr = 6.37 for a typical Strouhal number St = 0.2). Integrations are performed upon
the cylinder surface and upon penetrable surfaces around the cylinder. The aerodynamic field on both
physical and penetrable surfaces is extracted directly from the CFD solution and a Gaussian quadrature
is used to compute the surface integrals.

In order to deal with truncated time series, data are multiplied by the Tukey weighting function
w(t) = 0.815 [1 - cos (2ii- t/tfi)] before performing Fourier analyses. The energy of the original signals
is preserved by scaling the windowed data.

7.4.3 Aerodynamic Results

On Fig.7.7, contours of the turbulent kinetic energy shows the vortical structures in the wake of the
rod. These induce the aerodynamic force plotted in Fig.7.8. The Strouhal frequency fo is about 293 Hz
and the corresponding Strouhal number is 0.23, which slightly differs from the experimental value of
0.2. The unsteady lift exhibits odd harmonics (fo, 3fo,. . .), whereas the unsteady drag exhibits even
harmonics (2fo, 4fo,. . .). This is because the vortices shed from either sides of the cylinder give the
same contribution to the drag and opposite contributions to the lift. The amplitude of the fluctuating
lift is Cimax = 0.65 which is greater than the experimental value of 0.5 [64] [36]. This discrepancy can
be explained by considering that the experimental vortex shedding is not fully correlated along the rod
span and thus results in smaller lift fluctuations. It is interesting to notice that the two-dimensional
RANS prediction only features a deterministic flow unsteadiness, providing a periodic flow prediction.
The spectral broadening around the Strouhal frequency in Fig.7.8(a) is indeed a by-product of the
signals truncation, whose effects can be reduced by a data windowing, but not completely removed.

Fig.7.9 shows the wall pressure coefficients at q5 = 00 and = 90°. A comparison between Figs.7.8
and 7.9 shows that the wall pressure at the base point (q = 0°) and the drag have similar spectral
behaviours. Analogously, the wall pressure at = 90° and the lift also do. This confirms Phillips'
assumption of considering the wall pressure signal at q = 900 as representative of the fluctuating lift.
The base suction coefficient is - CB = 1.01 which is smaller than the experimental value of about 1.2
[58].

Counter-rotating vortices are shed from the cylinder at a Strouhal number St = 0.23. The over-
prediction of the vortex shedding frequency from a two-dimensional rod is a common CFD result [65]
which can be explained to some extent. As argued by Roshko [66], the length of the mean recirculating
region behind the rod results from an equilibrium between the base suction coefficient and the in-plane
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FIGURE 7.7: Kinetic turbulent energy during a vortex shedding period. Snapshots clockwisely arranged.
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Reynolds stresses in the separated flow region. Hence, higher Reynolds stresses correspond to shorter
mean recirculating regions. In a 3D flow a part of the energy extracted from the mean flow is used
to maintain spanwise velocity fluctuations. As a consequence, the mean recirculating region extends
farther from the cylinder and the Strouhal frequency is smaller than in a simulated 2D flow.

Letting () denote the local average of a quantity over a vortex shedding period, tile following
quantities are plotted in Figs.7.10 and 7.11:
- mean pressure coefficient, i.e.
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- dimensionless mean velocity. i.e.

(V>
(u>2+(v)2

Vo0

- dimensionless root-mean-square velocity, i.e.

(7.38)

Vrms = (un/ Vo0 + vny/ Voo - (V))2) + (k> (7.39)

where n = (u) / (V> and n, Kv> / (V> are the components of the mean flow direction and (k> denotes
the mean kinetic turbulent energy5.

The mean velocity field in Figs.7.10(a) and 7.11(c) highlights the recirculating region behind the
rod. It can be observed that the downstream point of minimum (V> at (x/d = 1.2, y = 0) coincides with
the point of maximum Vrms (see Fig. 7.11(c)). Conventionally, such a point defines the vortex formation
length lF Measurements made by Szepessy & Bearman [36] over a wide range of Reynolds numbers
and rod aspect ratios show a vortex formation length of about 1.5d. Thus, consistently with Roshko's
[66] model, a two-dimensional computation provides a smaller mean recirculating region behind the
rod.

Fig.7.11(a) shows the pressure field on the rod surface. The Cprms peaks at q5 = 91°, which marks
the mean location of the separation point.

In Fig.7.12(a) the predicted Strouhal peak of the cross-spectrum between a wall pressure signal
at qS = 900 and that at different q5 around the cylinder is checked against the experimental data.
Discrepancies in the separated flow region can be observed up to q5 500. Furthermore, as previously
discussed, the measured cross-spectrum peaks at q5 = 1000.

The cross-spectra peak values at the first and second harmonics are plotted in Fig.7.12(b) and
7.12(c), respectively. A fairly good agreement arises between experimental data and numerical pre-
dictions. Because of the major contribution given by the rod base point to the first harmonic (2fo)
fluctuations, the first harmonic peak of the cross-spectrum is maximum when the movable probe is
at q5 0°. In addition, a local maximum occurs at the angular position qS = 85°. At the second
harmonic (310) the computed cross-spectrum peaks when the movable probe is at q5 = 12°, whereas
the experimental data exhibit a maximum at about qS = 25°. Furthermore, both the numerical and the
experimental cross-spectra exhibit a local maximum when the movable probe is at q5 950

Comparisons between numerical and experimental values of sorne representative quantities are sum-
marized in Table 7.1.

7.4.4 Acoustic Results

In this subsection acoustic results are presented and discussed. The three-dimensional flow necessary for
the acoustic computation is recovered by a spanwise repetition of the computed two-dimensional flow.
A deterministic repetition is referred to as 2D, whereas, a randomly perturbed repetition is referred
to as 3D (spanwise statistical mnodel). The wave propagation is of course three-dimnensional, since the
three-dimensional free space Green's function is used in the FW-H integral formulation.

First, the consistency of the no-quadrupole approximation is checked by comparing 2D results ob-
tained fromn different integration surfaces. Second, 2D and 3D results are checked against experimental
data.

5Equation (7.39) is based on the hypothesis of local isotropy of the turbulent velocity field, i.e. k = where u'
is the Reynolds fluctuating component of the velocity field in the xdirection. Clearly, in the framework of unsteady
RANS modeling, a fluctuating k only reaches sense if the averaging time is longer than that associated with the slowest
turbulent motions, but is much smaller than the time scale of the flow unsteadiness (the vortex shedding period in the
present study).
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FIGURE 7.10: Mean and fluctuating flow past the cylinder.
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TABLE 7.1: Comparison between experimental data and RANS results. Experimental data from: a)
Schewe [64], b) Williamson [58], c) Szepessy & Bearman [36]. d) The predicted drag coefficient does
not account for the viscous stresses.

Experimental Numerical

X

In Fig.7.13(b) the sound directivities computed through equations 6.41 and 6.42 applied to the
surfaces on Fig.7. 13(a) are plotted. The agreement within i dB, which is fairly good, shows both the
consistency of the penetrable surface FW-H formulation and the physical adequacy of neglecting the
quadrupole contribution in the acoustic prediction.
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FIGURE 7.13: Directivity pattern (right) obtained by integrating upon different surfaces (left) around the
cylinder: Si (cylinder surface r = 8 x 103In).....S2 (r = 9.11 x 103m), - - S3 (r = 1.67x 102m),

- S4 (r = 3.58 x 102m). 2D computations.

The corresponding pressure signals computed at O = 90° from the 4 integration surfaces are plotted
in Fig.7.14. The relative differences p'/max(p'J) between the Si results and those from S2 to S4 are
plotted in Fig.7.15. Significant discrepancies occur only for the outer surface S4 and are likely to be
due to a degraded CFD accuracy far from the cylinder. The spectra of Lp'/max(Ip'I) in Fig.7.15(b)
exhibit peaks at both even and odd harmonics. Although the reciprocal influence between physical and
numerical effects on the observed discrepancies cannot be established without computing the volume
contribution, these results confirm that the quadrupole contribution can be neglected in the present
low Mach number aeroacoustic prediction.

In Figs.7.16 through 7.18, 3D computations are checked against 2D computations and experimental

st 0.2e 0.234
Cimax 5a,c 0.65
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FIGURE 7.15: Relative difference between Si results and results fronr ....S2, - - S3, - - S4. 2D
computations at an observation angle O = 900.

measurements. A Gaussian correlation length of 5 d is used in the spanwise statistical model. The
computed acoustic spectra at each observation point are obtained by averaging over 100 spectra, each
obtained with a different value of the random generation seed.

In Fig.7.16 a comparison is shown between 2D and 3D acoustic signals. The random phase distri-
bution along the rod span clearly results in a randomly amplitude modulation.

In Fig.7.i7 2D and 3D computations are checked against experimental data. The measured power
spectral density have been integrated upon frequency intervals of Lf = 12Hz. Furthermore, in order
to take into account the aerodynamic Strouhal frequency overprediction, the experimental data (f,dB)
have been scaled to (f',dB'), i.e.

Stnum
= Stexp1' dB'=dB+2Ologt

't Stexp)

t t

10000

(7.40)

where the level correction accounts for the fact that the sound level is proportional to the vortex
shedding frequency, as shown in equation (7.8).

As expected from a deterministic flow prediction, 2D results only exhibit harmonic peaks without
spectral broadening. On the contrary, forcing an ad hoc random behaviour permits to better fit the
broad band noise levels. Moreover, the liarnionic peaks are better predicted by 3D computations.
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FIGURE 7.14: Acoustic pressure signals computed from: Si.....S2, - - S3, - - S4. 2D
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FIGURE 7J6: Acoustic signals: 2D computation, - - - -3D computation.

At frequencies higher than about 3000 Hz the sound pressure level is underestimated. However, as
previously pointed out, the experimental data are likely to be contaminated by the background noise
(mainly, flow noise from the end plates), which persists over a wider frequency range.

In Fig.T.18 the 3D prediction of the noise directivity is compared to the measured one. Numerical
results have been obtained by adding the Fourier contributions in the overall frequency range, i.e.
[12 Hz, 12.4kHz], whereas the experimental values have been obtained by integrating the power spectral
density upon the frequency range [100 Hz, 1000Hz]. The agreement is good. Furthermore, a dipole-type
sinO interpolation of the experimental data shows that the maximum radiation occurs at an observation
angle slightly greater than 900. This is confirmed by the numerical prediction.

7.5 Conclusions

A hybrid Aeolian tones RANS/FW-H aeroacoustic prediction was performed at a Reynolds number of
2.2 x iO4.

A deterministic periodic flow was predicted through a two-dimensional RANS approach. The
Strouhal frequency was overestimated and the vortex formation length was underestimated. These
results were justified by invoking the fact that, in a two-dimensional computation, all the energy ex-
tracted from the mean flow is used to maintain in-plane fluctuations.

The application of the FW-H acoustic analogy to penetrable integration surfaces around the cylinder
showed that the direct contribution of the detached eddies to the overall sound remains negligible, even
though the lower end of the spectrum might be affected by surrounding broad band jet noise.

Acoustic results based on the spanwise repetition of the computed two-dimensional flow only fea-
tured the spectral harmonic peaks. Therefore, in order to partially recover the three-dimensional
character of the flow, a statistical behaviour of the vortex shedding phase was forced into the spanwise
repetition of the aerodynamic field. Phase lags were modeled on the basis of two-point statistical mea-
surements and allowed the acoustic signals to undergo ad hoc amplitude modulations. As a consequence,
the spectral broadening around the shedding frequency and its harmonics was quite well featured by
merely performing a two-dimensional aerodynamic computation.

This type of approach is a promising tool wherever full three-dimensional flow computations are
not affordable (as in turbomachines, for instance): two-dimensional unsteady RANS provides a deter-
ministic unsteady flow to which the statistical model may be applied.
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8

RANS/FW-H Rod-Airfoil Aeroacoustic
Prediction

In this chapter we present results concerning a numerical aeroacoustic investigation of the rod-airfoil
configuration. The capability to predict the noise generated by the unsteady flow past an obstacle
hinges primarily on the accuracy of the aerodynamic simulation in modeling the physics of the flow.
Therefore, more emphasis is hereafter given to the aerodynamic aspects of the rod-airfoil aeroacoustic
problem.

A RANS aerodynamic coniputation is performed by means of the CFD solver Proust [62] described
in section 8.3.1. The acoustic prediction is performed by means of the FW-H solver Advantia [41]
described in section 6.2. The spanwise statistical model described in chapter 7 is exploited in order to
account for the intrinsic three-dimensional character of the flow in the aeroacoustic prediction.

Two flow configurations are considered, corresponding to the values a = 00 and a = 4° of the airfoil
angle of attack. The geometrical parameters and the free-stream velocity used in the computations are
the same as those adopted in the experiments presented in chapter 5.

In the first part of the chapter we discuss the conceptual adequacy of a hybrid RANS/FW-H
aeroacoustic prediction. In the second part we describe the rod-airfoil aerodynamic computation.
In the third part we discuss both aerodynamic and acoustic results. These are checked against the
experimental data discussed in chapter 5.

8.1 Introduction

Distortion and non-linear rearrangement of the vorticity field occur during a direct or nearly direct
impingement of a vortex onto an airfoil leading edge. Furthermore, if the leading edge is sharp or the
impinging vortex is intense enough, boundary-layer separation and shedding of a secondary vortex may
occur.

Numerical simulations are usually performed in order to investigate vortex-body interactions in
many circumstances of practical interest. Two distinct numerical approaches can be adopted to simulate
a vortex-airfoil interaction. The first is the primitive (or conservative) variable approach, which consists
in solving a system of governing partial differential equations, such as the Euler or the Navier-Stokes
equations, with a suitable set of boundary conditions. The second is the linearized approach which
is based on the following approximation: for mean potential flows with small amplitude vortical and
entropic disturbances imposed upstream, the unsteady velocity field can be split into a known rotational
component and an unknown potential component that satisfies a linear inhomogeneous non constant-
coefficient convective wave equation.

The primitive variable approach requires long computational time and large computer memory.
In addition, because of the nonlinear character of the flow, the accuracy of the unsteady solution is
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strongly affected by the physical consistency of the far field boundary conditions. However, classic
CFD methods have proven to be quite effective in describing a vortex-body interaction problem: both
distortion of the vorticity field and viscous effects can be adequately simulated. Navier-Stokes solvers
require an adequate grid resolution in order to minimize the numerical dissipation of the vorticity field.
Wake & Choi [67] used a 5th order solver to simulate the convection of a two-dimensional vortex and
showed that a minimum of 14 points across the vortex was necessary in order to preserve the vortex
strength.

A simplified primitive variable approach is usually performed, provided that the flow is supposed
to be incompressible. It consists in describing the incident vorticity field by means of discrete vortices
convected by a flow that satisfies a Laplace's equation. Boundary value methods or conformal map-
ping techniques are then adopted to account for the presence of a body in the flow. Discrete-vortex
simulations are particularly suitable to investigate the effects of the vortex distortion in vortex-airfoil
interactions. Furthermore, phenomena related to the viscosity of the fluid, such as vortex-shedding and
boundary-layer separations, can be simulated by means of additional conditions. An example of a sim-
plified primitive variable approach has been proposed in chapter 2, where a Kármnán-Trefftz conformal
mapping has been used to describe the unsteady vortical flow past a thick cambered airfoil.

The linearized approach is valid oniy for small amplitude disturbances, a requirement that is usually
satisfied in many flows of practical interest. Methods based on the solution of a single linear wave
equation have significant advantages over methods based on the solution of a system of nonlinear
partial differential equations:

- the computational time is far shorter;

- stable and accurate differencing schemes are simpler to be derived;

- physically consistent far field boundary conditions can be imposed, which allow more accurate
unsteady aerodynamic predictions.

Linearized approaches are particularly suitable for three-dimensional oblique blade-vortex interactions
in highly compressible flows. Moreover, for periodic gust-airfoil interactions, the linearized approach
provides an effective way to investigate the effects onto the near and far pressure field of both the
wavelength of the incident vorticity field and its orientation with respect to the blade leading edge.

Numerical predictions based on potential flow modeling of isolated line-vortices convected past
lifting airfoils [68] [32] show that:

- the noise level is strongly affected by the vortex trajectory;

- the vortex trajectory is a strong nonlinear function of the airfoil lift, the vortex initial position
and the vortex circulation;

- the noise levels are overpredicted, especially during direct vortex-airfoil interactions. This is
mainly due to the fact that a line-vortex model does not account for the vortex distortion during
a close encounter.

The distortion of tile vorticity field is a nonlinear rearrangement mechanism which occurs especially
when the vortex and the curvature radius of the airfoil leading edge have a comparable size. Its effect
onto the interaction process is twofold: on one hand, the vortex distortion smoothes the dependence
of the interaction process upon some parameters of the problem. On the other hand, it reduces the
loading peaks induced under critical interaction conditions (e.g. direct vortex impingement onto the
leading edge). These effects have been discussed in section 4.2 where a cloud of line-vortices has been
used to model a vortex of non compact size impinging onto the airfoil leading edge.

Although nonlinearity plays a dominant role in a direct vortex-airfoil interaction, it is not the only
affecting factor. Vortex diffusion within the airfoil boundary-layer, vortex-shedding from the trailing



edge and boundary-layer separation at the leading edge are mechanisms related to the viscosity of the
fluid. These must be accounted for when a prediction is made of the vortex-airfoil interaction noise and
unsteady loading.

Hardin & Lamkin [69] performed a direct numerical simulation of the unsteady aerodynamic field
around a lifting Joukowski airfoil interacting with a distributed vortex. Furthermore, they exploited
the theory developed by Howe [20] in order to predicted the aerodynamic sound generated by the
vortex-airfoil interaction. A two-dimensional and incompressible flow was considered and the chord
based Reynolds number was 200. The impinging vortex was artificially created upstream of the airfoil.
Hence, Hardiii & Lainkin pointed out that aerodynamic noise is generated even in the absence of the
impinging vortex, as a consequence of the interaction between the boundary-layer vorticity and the
airfoil trailing edge. Furthermore, they argued that the noise resulting from a direct vortex-airfoil
interaction is quite less impulsive when both viscous effects and the distributed nature of the impinging
vortex arc taken into account. Finally, they observed that a vortex loses its organized structure and is
strongly diffused after impinging onto the airfoil leading edge.

Rai [70] used a fifth-order accurate, Osher-type upwind scheme in order to solve time thin-layer,
Navier-Stokes equations at each time-step in a fully implicit framework which was second-order-accurate
in time. The differencing scheme was showim to preserve the vortex structure for much longer time
timan both central and upwind second-order accurate schemes. The vortex preserving test consisted in
checking the core pressure of a Lamb-type vortex convected by a uniform flow. The fifth-order accurate
method was timen applied to predict the unsteady aerodynamic field generated by time interaction between
a Lamb-type vortex and an NACA-0012 airfoil at a zero angle of attack. The vortex rotated clockwise,
such that the image vortex convected it faster along the lower airfoil side. The Baidwin-Lomax closure
model [71] was used to calculate the eddy viscosity. Three simulations were performed at different free-
stream Mach numbers and different vortex parameters (circulation, initial position and core radius).
The first numerical prediction was concerned with a non direct vortex-airfoil interaction at a Mach
number of 0.536 and a chord based Reynolds number of 1.3 x 106. The vortex parameters were chosen
in order to fit the experimental conditions of Caradonna et al. [72]. A good agreement was obtained
between numerical and experimental results. The second numerical simulation was concerned with a
direct vortex-airfoil interaction. The flow conditions were the same as in the first case, but the vortex
circulation was higher. Distortion and splitting of the impinging vortex were predicted. The upper and
lower vortex fragments were convected with different velocities along the respective airfoil sides, and
interacted with the airfoil wake. The third computation was concerned with a non direct vortex-airfoil
interaction in transonic flow conditions. The free-stream Mach number was 0.8, while all the other flow
parameters were the same as in the second case. The two shocks on the upper and lower airfoil sides
were perturbed from their symmetric steady positions by the presence of the vortex. Furthermore, on
the lower side, the vortex-shock interaction induced a large bubble of separation from the shock foot
up to the airfoil trailing edge. The structure of the lower shock was strongly affected by the vortex
passage: a shock bifurcation on the wall was observed.

In the quoted investigations time impinging vortex was artificially introduced into time flow field.
The same philosophy was adopted by time author in chapter 2 where vortices were located upstream of
the airfoil. Contrarily, the present investigation is concerned with an unsteady RANS simulation of a
rod-airfoil configuration where the impinging vortices are shed from time rod. Though more expensive,
this approach reduces the arbitrariness of the vortex parameters, e.g. initial position, size and strengtlm,
and does not require a core modeling. Two flow configurations are investigated, corresponding to two
values of the airfoil angle of attack.

A hybrid RANS/FW-H aeroacoustic prediction of the rod-airfoil configuration is herein performed.
The same approach was exploited in chapter 7 in order to predict the noise from an isolated rod and
to show the feasibility of a hybrid aeroacoustic prediction. We used unsteady RANS results regardless
to their physical adequacy to represent the unsteady aerodynamic field. Contrarily, in this chapter we
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discuss the conceptual adequacy of an unsteady RANS computation aimed to aeroacoustic predictions.

8.2 On the Adequacy of a Hybrid RANS/FW-H Aeroacoustic Pre-
diction

In chapter 6 we showed that the FW-H formulation can be successfully applied to noise computations
by using penetrable integration surfaces which are in complex motion with respect to a moving observer.
Several test cases were performed by inputing a linear field upon the integration surface.

In chapter 7 we were concerned with the feasibility of an aeroacoustic prediction through a hybrid
CFD/FW-H computation. Since the FW-H equation is an exact rearrangement of the flow governing
equations, an aerodynamic field was inputed on the integration surface. Aeolian tones were predicted
and checked against experimental data showing the consistency of the hybrid approach. We assumed
that unsteady RANS results are adequate to represent an unsteady flow and that they can be ex-
ploited for an aeroacoustic prediction. In this section we discuss the conceptual adequacy of a hybrid
RANS/FW-H aeroacoustic prediction.

Unsteady RANS simulation consists in allowing some slow time variations of the mean flow field.
Only some low-frequency modes (of the order of few hundred Hertz) and the mean flow are directly
computed. In this approach the velocity field undergoes the following decomposition

u(x, t) = 11(x) + (u(x, t)) + u'(x, t) (8.1)

The first term denotes the tizne average of the exact solution, the second term denotes a conditioned
statistical average and the last term is a turbulent fluctuation. Thus, (u) is related to the coherent
modes of the unsteady flow and 'u' constitutes the random part of the flow. The unsteady RANS
mathematical model describes the quantity iI + (u) , whereas the random contribution u' is described
by a turbulence model.

The physical adequacy of an unsteady RANS simulation can be justified to some extent: typically,
if the fluctuating field is the superposition of two weakly coupled unsteady mechanisms, the first well
described by a turbulent closure model, the second not accounted for by it, then the unsteady RANS
strategy may be appropriate to feature the latter unsteadiness. An important question arises about a
conflict between the time scales: in order to assume that the turbulence described by the model reaches
a steady state during a typical cycle of the non modeled unsteadiness, the former must cover a range of
frequencies which is higher than that of the latter. In other words, lower frequency components of the
modeled turbulence may conflict with the non modeled unsteadiness. What happens in such a case?

Both low-frequency components are taken into account in some way by the non modeled unsteady
description. Then they may be taken into account twice since the closure model handles the
turbulent components regardless to their frequency.

Low-frequency components are not taken into account by the non modeled unsteady description.
Then they may not be taken into account at all or in a wrong way since the RANS model
considers turbulence to be statistically steady during a time which is of the same order as the
typical turnover time of these largest eddies.

Another conceptual inadequacy of the unsteady RANS simulation arises from the fact that the
modeled turbulent components are more likely to interact with non modeled unsteadiness in the real
flow. This interaction is likely to be ill-modeled by a RANS model since two quite similar physical
phenomena (both unsteady, with comparable time scales) are described in a completely different way.

In the present chapter we apply the unsteady RANS approach to describe the vortex shedding
behind a cylinder at a Strouhal frequency of 250 Hz (d = 0.0 16 in, V = 20m/s). Hence, the frequency



of the coherent flow unsteadiness is sufficiently low to hope that the contamination due to a time scale
conflict has a negligible effect.

Concluding, the term Reynolds Averaged is used throughout the present work not in its conventional
definition, which implies averaging over an infinite time interval, but to denote averaging over a time
which is longer than that associated with the slowest turbulent motions but is much smaller than the
vortex shedding period.

8.3 The Rod-Airfoil Aerodynamic Simulation

8.3.1 The Aerodynamic Solver

The flow solver Proust [62] is used to compute the unsteady aerodynamic field in the rod-airfoil config-
uration. The main features of this CFD code are described below.

The equations solved by Proust are the unsteady compressible Reynolds-averaged Navier-Stokes
equations. The space discretization is based on a MUSCL finite volume formulation with moving
structured meshes, which uses vertex variable storage.

The convective fluxes are evaluated by using an upwind scheme. Three different schemes were
implemented: Van Leer's flux vector splitting with the Haue! correction, Roe's approximate Riemann
solver and Liou's advection upwind splitting method. A hybrid method combining the advantages of
the central scheme in subsonic regions with the properties of the upwind scheme through discontinuities
has been introduced to reduce the numerical losses in low Mach number regions. The viscous terms are
computed by a second order centered scheme.

The resulting semi-discrete scheme is integrated in time using an explicit five steps Runge-Kutta
time marching algorithm. Convergence toward steady states is accelerated by using local time-stepping
and residual smoothing. A dual time-stepping technique is also applied for unsteady simulations.

Turbulence effects are described by two-equations models, k - e and k - w, the k - w niodel being
either linear or non linear.

Inlet and outlet conditions ori free boundaries are imposed by retaining the outgoing characteristics,
since these provide information from inside the domain. The incoming characteristics are replaced by
physical boundary conditions, i.e. total pressure, total temperature and flow angles for a subsoni?
inlet, static pressure for a subsonic outlet. Alternatively, non reflective boundary conditions in the
form proposed by Thompson are imposed on the outer boundaries. Adiabatic walls are introduced
by imposing a zero-velocity condition and a zero-heat flux. Ghost cells in which the equations are not
solved are built around the domain in order to impose geometrical boundary conditions, like periodicity
and symmetry.

Proust code performs parallel computations in multi domains with Parallel Virtual Machines library
(PVM).

8.3.2 Computational Parameters

The following code options are used in the present computation:

two-dimensional flow;

centered spatial scheune;

5 steps Runge-Kutta explicit temporal scheme without dual time-stepping technique;

no-slip and adiabatic wall conditions on the physical surfaces;

non-reflecting boundary conditions on the outer boundaries;
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k - w closure model by Wilcox [63];

molecular viscosity i determined via the Sutherland's law.

The computational time-step is 6 x 10 s corresponding to about 6.5 x i0 iterations per shedding
cycle.

8.3.3 Flow Parameters and Initial Conditions

Counter-rotating vortices are shed from the cylinder without artificial forcing. Nevertheless, the poten-
tial flow field of a strong line-vortex in proximity of one rod separation point is used as initial solution
in order to induce a vortex shedding as soon as the computation is started. This strongly reduces the
computational time required for convergence towards a permanent unsteady flow.

A uniform density field is initially set, i.e. p = l.225kg/m3. The flow velocity is calculated
solving analytically an approximated potential problem. V = 20 in/s is the inflow velocity and p
101253.6 Pa is the free-strealn pressure. Then, the pressure field is calculated via the Bernoulli equation.
The reference molecular viscosity is set to = 1.78 x i0 kg/ms.

The turbulent kinetic energy lias a uniform initial value of 0.01 as measured in experiments, namely
pk = O.5p (0.01 V)2. The value of the second turbulent variable is initially set to w = pk/A,0, with
A = 5. The same value of w is imposed on the physical surfaces.

An exponential boundary-layer is used to replace the potential solution near the physical surfaces
where a no-slip initial condition is imposed. The kinetic turbulent energy is also set to zero on the
walls.

The inflow boundary conditions remain the same throughout the computation.

8.3.4 Geometrical Parameters

Upper side*
Lower side

C

FIGURE 8.1: Geometrical parameters of the rod-airfoil configuration. d = 0.016m, c = 0.lm and b = 0.162m.

The geometrical parameters the rod-airfoil configuration are the same as those of the experimental
configuration sketched in Fig.8.1. The Reynolds number based on the airfoil chord is about Re =
1.38 x iO5. The Reynolds number based on the rod diameter is about Red = 2.2 X iO4.
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FIGURE 8.2: Overview of the computational mesh.

8.3.5 Computational Mesh

The computational mesh is based on 54640 grid points and is split into 5 structured domaiiis. An
overview of the mesh is shown in Fig.8.2. Different computational domains are plotted in diflèrent
colors. These are:

a (201 x 80) 0-grid around the cylinder;

a (201 x 80) 0-grid around the airfoil;

a (101 x 80) rectangular grid connecting the domains i and 2;

a (180 x 40) rectangular grid extending the outer boundary of the computational domain;

a (180 x 40) rectangular grid extending the outer boundary of the computational domain.

The cylinder grid is circumferentially clustered in the wake region. The minimum circumferential
spacing at the base point is 9.07 x iO d, and the thickness of the mesh wall layer is 7.50 X i0 d, d
denoting the rod diameter.

The airfoil grid is build around a Kármán-Trefftz airfoil fitting a NACA-0012 airfoil. The thickness
of the mesh wall layer varies from 6.40 x i0 e, at the leading edge, to 1.42 x i0 1, at the airfoil
thickest section, e denoting the airfoil chord. At the airfoil trailing edge the thickness of the mesh wall
layer is 2.61 x iO i.

The mesh topology is the same for the two angles of attack'.
The parallel computation does not require averages at the block interfaces. Thus, by equal grid

point distributions, the splitting of the computational domain does not affect the numerical accuracy
of the solution. However, in order to reduce the numerical dissipation due to the grid stretching, the
grid is smoothed at the interfaces. In Fig.8.3 the innermost region of the computational mesh is shown.

8.4 The Rod-Airfoil Acoustic Computation

The acoustic field is computed in the time domain by applying the FW-H acoustic analogy to aerody-
namic data computed on various contours around the rod-airfoil equipment. The flow three-dimensionality

'The five block mesh used in the present computation has been obtained by using an ad-hoc code implemented by the
author. The code allows to obtain a family of rod-airfoil meshes by simply inputing the geometrical parameters of the
configuration.
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is partially recovered by assuming the aerodynamic field to undergo a Gaussian correlation in the span-
wise direction. Acoustic results are compared to measurements described in chapter 5.

The retarded time penetrable FW-H formulation proposed by Brentner & Farassat [43], extended
to a moving observer in section 6.2 and implemented in the rotor noise code Advantia [41] is exploited
in the present study. For the purposes of the present investigation, only surface integrals are computed,
provided that, at low Mach numbers, the volume sources give a vanishing contribution to the acoustic
radiation. The consistency of this approximation is checked by comparing acoustic results obtained
from different integration surfaces.

The spanwise statistical model described in chapter 7 is used to force a three-dimensional random
behaviour into the aeroacoustic prediction. A Gaussian correlation length of 5 d is used for both the
rod and the airfoil. This is roughly equivalent to suppose that the spanwise correlation length on the
airfoil surface is the same as that on the rod surface. The acoustic spectra are obtained by averaging

over 100 spectra.
1024 aerodynamic fields are used for the acoustic computation (about 9 vortex shedding cycles,

tfi = 3.15 x 10_2 s and = 32.5 Hz). The observation distance from the airfoil mid point is
r = 1.38m (kr = 6.37 for a typical Strouhal number St = 0.2).

Both the observer X and the integration surface f = O move at the constant velocity cM0 = Vi
and the flow at infinity is at rest.

Integrations are performed upon the rod and the airfoil surface, and upon penetrable surfaces around
the airfoil and the rod-airfoil system. The aerodynamic field on both physical and penetrable surfaces.
is extracted directly from the CFD solution. In addition, the aerodynamic data are interpolated upon
penetrable surfaces which do not coincide with mesh surfaces.

In order to deal with truncated time series, data are multiplied by the Tukey weighting function
w(t) = 0.815 [1 - cos (2ir t/tfl)] before performing Fourier analyses. The energy of the original signals
is preserved by scaling the windowed data.
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8.5 Results and Discussion

In the present section, results concerning a conprehensive aeroacoustic characterization of the rod-
airfoil configuration are presented and discussed. The RANS computation is performed by means of
the CFD code Proust described in section 8.3.1 and the acoustic field is computed by means of the
rotor noise code Advantia described in section 6.2.

8.5.1 Aerodynamic Results

A c = 0.1 m airfoil is embedded in the wake of a d = 0.0 16 in rod. The inflow velocity is 20 rn/s. The
unsteady RANS equations are solved on the mesh plotted in Fig.8.3. Results concerning the last 9
computed shedding cycles are discussed below.

8.5.1.1 Unsteady force on the airfoil and wall pressure field

In Fig.8.4 the computed unsteady drag and lift coefficient are plotted. The first three periods are still
contaminated by transitory effects. Conversely, in the remaining part, a periodic behaviour is well
established. Interestingly, at zero angle of attack the mean value of the drag is negative, resulting in
a traction force exerted on the airfoil. This is due to the suction effect induced by the vortex at the
leading-edge regardless to the sign of the vortex circulation. At a = 4° the lift exhibits an expected
negative mean value. Comparing Figs.8.4(a) and 8.4(b) shows that the unsteady drag behaviour is
affected by the airfoil angle of attack.
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FIGURE 8.4: Unsteady force on the airfoil: - drag coefficient, - - - - lift coefficient.

The spectrum of the unsteady aerodynamic force exerted on the airfoil is plotted in Fig.8.5. For
the case a = 0° the shedding frequency fo has a value of 285.1 Hz, corresponding to a Strouhal number
of 0.23. Conversely, for the cases a = 4° the shedding frequency is fo = 316.8 Hz, corresponding to
a Strouhal number of 0.25. These values differ by 14% and 26%, respectively, from the experimental
value of 0.2.

Accordingly to literature, the overprediction of the vortex shedding frequency from a two-dimensional
rod is a common CFD result. As mentioned in chapter 7, Kato & Ikegawa [65] investigated the flow past
a rod and compared results of a two-dimensional large eddy simulation to results of a three-dimensional
one. They obtained a reduction of the Strouhal number from 0.24 in the two-dimensional case to 0.2 in
the three-dimensional case and a better prediction of the wall pressures in the latter case. The Strouhal
frequency overprediction can be explained to some extent. As argued by Roshko [66], the length of the

0,6

0,4

o

L)
-0,2

L)
-0,4

-0.6

a) 00. b) _40,



mean recirculating region behind the rod results from an equilibrium between the base suction coeffi-
cient and the in-plane Reynolds stresses in the separated flow region. Hence, higher Reynolds stresses
correspond to shorter mean recirculating regions. In a three-dimensional flow a part of the energy
'extracted from the mean flow is used to maintain spanwise velocity fluctuations. As a consequence, the
mean recirculating region extends farther from the cylinder and the Strouhal frequency is smaller than
in a simulated two-dimensional flow.

Concerning the effect of the airfoil angle of attack on the Strouhal frequency, it should be argued
that a possible physical mechanism responsible for such a dependence has a negligible influence on a
real flow. This is because the measured Strouhal frequency is not affected by the airfoil angle of attack
in the range [-4°, 4°] (see Fig.5.5). However, experiments show that the Strouhal frequency is weakly
affected by the presence of the airfoil, regardless to its angle of attack. Therefore, despite the fact that
no angle of attack effects have been observed, a factor related to the presence of the airfoil is suspected
to be the cause of the predicted effect of the angle of attack. Therefore, in the real flow, the effect of
the airfoil angle of attack on the Strouhal frequency are likely to be smeared by the three-dimensional
character of the flow.

Fig.8.5 shows that at zero angle of attack the drag spectrum exhibits predominant even harmonics
peaks (2f0, 4fo, . . .), whereas the lift spectrum exhibits predominant odd harmonics peaks (fo, 3fo,

.). On the contrary, at non zero angle of attack, the even and odd harmonic peaks in both the drag
and the lift spectrum hìave comparable amplitudes.
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FIGURE 8.6: Numerical pressure probes (A..F) on the airfoil surface.

In Fig.8.7 the spectra of the wall pressure coefficient at two symmetrical point near the airfoil
trailing edge are plotted (probes A and F in Fig.8.6). Peaks appear at both even and odd harmonics.
This is a consequence of the fact that both the upper and lower vortices are split when impinging onto
the airfoil leading-edge. Hence, fragments of each vortex are convected along the two airfoil sides. At
zero angle of attack these peaks have the same values on the two airfoil sides. Conversely, at a non
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zero angle of attack the pressure fluctuations at the Strouhal frequency are nearly one order higher on
the lower airfoil side. This is presumably due to the fact that at a negative angle of attack the upper
row vortices undergo a stronger distortion near the airfoil leading edge. Consequently, they partially
spread and their effect onto the wall pressure becomes weaker.

a) a = 0°.

FIGURE 8.7: Spectrum of the wall pressure coefficient. Numerical probes: A, - - - -F.

In Figs.8.8 and 8.9 the spectra of the wall pressure coefficient are traced for points in the neigh-
borhood of the leading edge (probes B, C, D and E in Fig.8.6). A comparison between these results
and those at the trailing edge shows that the unsteady pressure fluctuations on the airfoil surface are
several orders of magnitude higher near the leading edge. The main aeroacoustic sources are therefore
expected at the leading edge.
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FIGURE 8.8: Spectrum of the wall pressure coefficient. Numerical probes: B, - - - - E.

In Fig.8.lO the spectrum of the wall pressure exactly at the airfoil leading edge (probe LE in Fig.8.6)
is compared to that at a grid point before the leading edge on the airfoil upper side (labeled LEU). It
is interesting to notice that when the airfoil is at zero angle of attack the spectral behaviour at these
points is different.

Finally, in Fig.8.11 the pressure field on the airfoil surface is plotted. Non symmetrical behaviours
are predicted for the case a = 4°, with higher fluctuating levels on the lower side of the leading edge.
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FIGURE 8.10: Spectrum of the wall pressure coefficient. Numerical probes: LE, - - - LEu. The
separation distance between the probes is about i x iO m.

In both cases, Cprms is maximum near the leading edge and decreases fast downstream, exhibiting a
Sears-type behaviour.

Comparing the numerical results to the experimental ones discussed in section 5.2.2 shows that
the numerical prediction overestimates the ratio between the amplitude of the pressure fluctuations at
the leading edge and that at the trailing edge. Unfortunately we cannot find in the present context a
reasonable explanation for this discrepancy. We can only mention that a linear k - w model typically
overestimates the turbulent kinetic energy in the neighborhood of a stagnation point when a steady
RANS simulation is performed. This is due to a physical inadequacy of a turbulence model based on
a local isotropy hypothesis. Accordingly, unsteady RANS predictions are expected to provide even less
consistent results in a region of strong anisotropy and rapid distortion of the vorticity field.

In section 5.2.2 we showed that the amplitude of the wall pressure fluctuations increases on the
upper or the lower airfoil side close to the leading edge, depending on whether the angle of attack is
negative or positive, respectively. Contrarily, the numerical results herein presented exhibit an opposite
trend. A stronger suction is predicted on the side of the leading edge which is opposite to that where
the vortices impinge. This result is eveii more questionable since it strongly depends on both the vortex
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FIGURE 8.11: Mean and fluctuating pressure coefficient on the airfoil surface: , - - - - Cprms.
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FIGURE 8.12: Force on the rod (left) and the airfoil (right): Cd, - - - - C1. Reference length: d

distortion at the leading edge and the relative position between the impinging vortex and the leading
edge.

From these considerations it follows that, even in a two-dimensional and apparently fairly well
resolved aerodynamic computation, the problem related to the prediction of a wake, that of the rod in
the present study, is the pitfall of a vortex-body numerical prediction2.

8.5.1.2 Airfoil results versus rod results

In Fig.8.12 the aerodynamic force exerted on the airfoil at zero angle of attack is compared to that
exerted on the rod. An interesting result is that the airfoil lift is about 6 times higher than the rod lift.

Fig.8.13(a) shows the pressure field on the rod surface. The CPrins peaks at q = 9550, which
marks the mean location of the separation point. The pressure field on the airfoil surface is plotted in
Fig.8.13(b). As already pointed out, CPrms peaks near the leading edge, decreasing fast downstream.
The fluctuating pressure level at the leading edge is about 159 times higher than that at the trailing
edge. Furthermore, the maximum Cprms on the airfoil is 4.5 times higher than the maximum on the

2The reader should refer to chapter 10 of part II for a discussion on the wake-prediction problem in the context of
helicopter rotor blade-vortex interaction.
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rod. This further confirms that the stronger aeroacoustic sources in the rod-airfoil configuration are
expected near the airfoil leading edge.
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8.5.1.3 Mean and fluctuating flow near the airfoil

FIGURE 8.14: Mean velocity: (V).

In this subsection, results concerning the mean and the fluctuating velocity and pressure fields near
the airfoil leading edge are presented.

Letting () denote the local average of a quantity over a vortex shedding period, the following
quantities have been defined

. mean pressure coefficient

(Cp)=
pV

root-mean-square pressure coefficient

CPrms

s dimensionless mean velocity

(8.2)

((Gp - (Cp))2) (8.3)

3Equation (8.5) is based on the hypothesis of local isotropy of the turbulent velocity field, namely, k = where
u' is the Reynolds fluctuating component of the velocity field in the xdirection. Clearly, in the framework of unsteady
RANS modeling, a fluctuating k only reaches sense if the averaging time is longer than that associated with the slowest
turbulent motions but is much smaller than the time scale of the flow unsteadiness (the vortex shedding period in the
present study).

(V)= (8.4)

local dimensionless root-mean-square velocity in the local mean flow direction

Vrms = /((unx/Vm + vny/Vm - (V))2) + (k) (8.5)

where n = (n) / (V) and n = (y) / (V) are the component of the mean flow direction and (k) denotes
the mean kinetic turbulent energy3. Averages over the last predicted shedding period are considered
in the present study.

a) a = 00. b) c 4°



In Fig.8.14 the mean velocity field is plotted. A syiiimetrical mean flow is found at zero angle of
attack, with a mean location of the stagnation point exactly at the airfoil leading edge. Conversely, the
mean flow is not symmetric at c = 4° and exhibits a mean location of the stagnation point on the
upper side of the leading edge.

In Fig.8.15 the corresponding rms velocity field is plotted. The strongest fluctuations are located
near the leading edge. Furthermore, a slight attenuation of the fluctuating level can be observed
downstream of the leading edge. Interestingly, the root-mean square velocity has higher values when
the airfoil is at a non zero angle of attack. This can be partially explained by considering the fact
that a stronger distortion of the vorticity field produces higher turbulent levels. However, as previously
remarked, the adequacy of the adopted closure model in a region of strong anisotropy is questionable.

a) c = 0°.

FIGURE 8.15: Fluctuating velocity: Vrms.

Finally, in Fig.8.16 the root-mean-square pressure coefficient is plotted. Strong pressure fluctua-
tions occur in a region close to the leading edge. Therefore, the acoustic sources are expected to be
concentrated in a relatively narrow region close to the leading edge. Consistently with the previous
results, stronger pressure fluctuations take place when the airfoil is at non zero angle of attack.

8.5.1.4 Mean and fluctuating flow past the cylinder

Results are herein presented concerning the mean and the fluctuating flow past the cylinder. The mesh
in the cylinder domain is the same for the two values of the airfoil angle of attack. Thus, possible grid
effects onto the numerical solution are related to the airfoil domain and to the intermediate domain.

Previously discussed results show that the predicted Strouhal frequency is affected by the airfoil
angle of attack. No reasonable explanations for this behaviour were found and we argued that, if the
instability of the wake of the rod is affected by a physical mechanism related to the airfoil angle of
attack, this mechanism has a negligible effect in the real flow.

In Fig.8.17 the mean pressure coefficient on the surface of the rod is plotted. Positions O and 200
denote the forward stagnation point of the cylinder, whereas loo denotes the rod base point. The size
of the mean separation region behind the rod is not significantly affected by the airfoil angle of attack.
However, different pressure levels can be observed upstream of the separation point.

b) c = 4°.
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a) a = 00. b) a = 4°.

FIGURE 8.16: Fluctuating pressure coefficient: Cprms.

TABLE 8.1: Mean and fluctuating pressure in the wake of the cylinder. CpB denotes the base suction
coefficient; - (Cr) (MAX) is the maximum value of the mean suction coefficient occurring at x/d = 1.05
for a = 00 and x/d = 1.09 for a = 40; Cpriris (BI') is the root-mean-square pressure coefficient at
the base point; Cprms (MAX) denotes the maximum value of the root-mean-square pressure coefficient
occurring at x/d = 1.14 for a = 00 and x/d = 1.17 for a = 4°.

-CPB - (MAX) Cprms (BP) Cprms (MAX)

Fig.8.18 shows the root-mean-square pressure coefficient distribution on the rod surface. Higher
fluctuating levels take place when the airfoil is at non zero incidence to the mean flow.

In Fig.8.19 the mean and fluctuating pressure distribution on the wake symmetry plane is plotted.
It is interesting to notice that, as previously pointed out, the airfoil angle of attack has a non negligible
influence on both the mean and the fluctuating part of the pressure field around the rod.

The mean and fluctuating velocity distributions downstream of the rod base point are plotted in
Fig.8.20. It is interesting to observe that the location of the maximum rms level corresponds to that of
a local minimum of the mean velocity, that is at a distance x/d = 1.27 from the center of the cylinder.
This value is the same in the cases a = 0° and a = +4°, and provides an estimate of the vortex formation
length. As argued by Roshko [66], for sufficiently high Reynolds numbers, the base suction coefficient is
mainly determined by the velocity fluctuations through the action of in-plane (x, y) Reynolds stresses
in the wake. From simple equilibrium considerations applied to the mean recirculating region, he
obtained a relation between the base suction coefficient, the mean shear stress in the separated region
and the length and width of the wake behind the rod. The length of the mean recirculating region is
determined by the location of the minimum value of the mean velocity. Thus it also coincides with

==Q° 0.76 1.12 0.06 0.17
a = 4° 0.82 1.23 0.07 0.20
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FIGURE 8.17: Mean pressure coefficient on the cylinder surface: (Gp). Positions O and 200 denote the
forward stagnation point of the cylinder, whereas loo denotes the rod base point.

the vortex formation length. As discussed in section 7.4.3, the base suction coefficient CPB, between
Re=103 and Re=2 x is a monotonic increasing function of the Reynolds number. On the base
of Roshko's model, this behaviour can be related to the increasing Reynolds stresses pu'v' and to the
decreasing vortex formation length4. In the present study we investigate the effect of the airfoil angle
of attack. Since the vortex formation length is the same for the two angles of attack, the Reynolds
shear stresses are not implicated in the predicted effect of the airfoil angle of attack. Thus, the only
reasonable explanation of the predicted behaviour is a different coupling mechanism between the vortex
dynamics in the wake of the rod and the hydrodynamic field generated by the vortex-airfoil interaction.

In Tables 8.1 and 8.2 the most meaningful values of Figs.8.19 and 8.20 are summarized.
In Fig.8.21 the mean velocity field around the cylinder is plotted. A mean separation bubble can

be observed behind the cylinder, having a nearly semi-elliptical shape. At about 80° from the forward
stagnation point the dimensionless mean velocity reaches the maximum value of 1.5. The only notable
effect of the airfoil angle of attack is a slight extension of the upper and lower regions of higher velocity.

In Fig.8.22 the rms velocity field around the cylinder is plotted. A region of stronger fluctuations
can be noticed in the wake of the cylinder, having the shape of a butterfly. As previously pointed out,
the airfoil angle of attack affects the rms velocity at the formation length (see Fig.8.20). Scrutinizing
Fig.8.22 shows that this difference is related to a cut of the higher fluctuation region along the wake
symmetry plane. Since a significant difference occurs only at the cutting point, this behaviour can be
considered as an artifact of a perfect symmetrical simulation for c = 00.

The mean pressure distribution plotted in Fig.8.23 is the counterpart of the mean velocity field

4This also explains the discrepancies between two-dimensional and three-dimensional numerical simulations of a circular
cylinder flow. The Reynolds shear stresses predicted by a two-dimensional simulation are higher than those predicted by
a three-dimensional simulation at the same Reynolds number. In a two-dimensional aerodynamic field, in fact, all the
energy extracted from the meaii flow is expended in sustaining the in plane velocity fluctuations. Conversely, in a three-
dimensional aerodynamic field, a part of the energy extracted from the mean flow is used to maintain spanwise velocity
fluctuations. This results in a reduction of the in-plane Reynolds shear stresses. As an important consequence, a two-
dimensional simulation underestimates the vortex formation length and overestimates both the base suction coefficient
and the mean drag.

a) a = 00. b) a 40
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FIGURE 8.18: Fluctuating pressure coefficient on the cylinder surface: Cprms. Positions O and 200
denote the forward stagnation point of the cylinder, whereas 100 denotes the rod base point.

TABLE 8.2: Mean and fluctuating velocity in the wake of the cylinder. (V) (MAX) denotes the maximum
value of the mean dimensionless velocity occurring at x/d = 0.94 for both a = 00 and a = 4°; Vrms
(MAX) is the maximum value of the root-mean-square dimensionless velocity occurring at x/d = 1.27 for
both a = 0° and _40

(V) (MAX) Vrms (MAX)

a = 00 0.25 0.23
a = 4° 0.26 0.60

plotted in Fig.8.21. A mean recirculating region can be noticed behind the cylinder. Furthermore, two
symmetrical suction regions appear where the velocity is maximum.

More interestingly, the fluctuation pressure field plotted in Fig.8.24 provides an estimate of the size
of the vortex core. Two symmetrical overpressure blobs, in fact, can be observed in the wake of the
cylinder, having a size of about one half cylinder diameter. Furthermore, two flattened overpressure
regions can be observed at about 90° from the forward stagnation point on the rod surface, providing
an estimate of the region swept by the separation point.

Finally, in Fig.8.25 the mean value of the turbulent kinetic energy is plotted.
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a) a = 00.

FIGURE 8.21: Mean dimensionless velocity: (V).

b) a 4°

FIGURE 8.22: Fluctuating dimensionless velocity: Vrms.

a) n = 00. b) a 40
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a) c 00.

FIGURE 8.23: Mean pressure coefficient: (Cp).

b) c _40

FIGURE 8.24: Fluctuating pressure coefficient: Cprms.

a) c = 00. b) a = 40
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a) c = 00.

FIGURE 8.25: Mean turbulent kinetic energy: k.

b) a = 40
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8.5.1.5 Snapshots of the Rod-Airfoil Aerodynamic Field

In this subsection some snapshots are shown to illustrate the vortex dynamics in the rod-airfoil config-
uration. The pressure coefficient, the vorticity and the turbulent kinetic energy are plotted. Only the
latter is directly computed by the CFD solver. The pressure is obtained from the total energy equation
and the vorticity is computed by the post-processing visualization code. Furthermore, a visualization
of the velocity field is attempted by interpolating the 5-block grid on a coarser C-grid. The relative
velocity is obtained by subtracting the free-stream velocity. No attempt has been made to improve the
quality of the vortex capturing5. Snapshots are counterclockwisely arranged in all the figures.

In Fig.8.26 snapshots of the vorticity field are plotted for the case c = 00. Insight into the vortex
dynamics provides the following cyclical behaviour.

An upper-row vortex impinges onto the airfoil leading edge, undergoing distortion and a partial
splitting.

The greatest vortex portion is convected along the upper side of the airfoil. This fragment contains
the core of the original vortex (see Fig.8.28).

Later on, a lower-row vortex impinges onto the airfoil leading edge. The dynamics of the vortex
splitting is symmetrical to that described in items i and 2.

A constructive interaction between the upper fragment of the lower-row vortex (the faster one)
and the downstream upper fragment of the upper-row vortex (the slower one) generates a sort of
boundary-layer eruption on the upper side of the airfoil.

In Fig.8.27 snapshots of the turbulent kinetic energy are plotted for the case a = 0°. The mentioned
constructive interaction between the vortex fragments leads to a progressive vortex amalgamation. It
is interesting to notice that high levels of turbulent kinetic energy are generated near the airfoil leading
edge. This is partially due to the inadequacy of the RANS closure model in regions of high flow
anisotropy.

In Fig.8.28 snapshots of the relative velocity are plotted for the case a = 00. Colors denote the
instantaneous pressure coefficient. Upstream of the leading edge, the vortex cores are convected along
the oncoming side of the airfoil.

Finally, in Fig.8.29 snapshots of the pressure coefficient are plotted for the case a = 00. Impingement
of upper-row vortices induces a pressure suction on the lower side of the airfoil leading edge. Vice versa,
impingement of lower-row vortices induces a pressure suction on the upper side of the airfoil leading
edge. As a result, the unsteady force on the airfoil is predominantly generated at the leading edge.
Vortices close to the leading edge seem to be convected along the wrong side of the airfoil. Thus,
the pressure field is not adequate to show the vortex trajectories near the leading edge. As a final
remark, sufficiently far from the rod base point and from the airfoil leading edge, the core pressure level
is nearly constant during the vortex convection. Thus, vorticity is convected across the intermediate
computational domain without significant numerical dissipation. Furthermore, in the intermediate
domain vortices are staggered as in a Kármán vortex street having an aspect ratio b/a of about 0.125
which differs from the theoretical value of 0.281 (see Fig.2.11). The latter value was predicted by
von Kármán and is strictly valid for an infinite double row of line-vortices in an ideal fluid. This
discrepancy can be partially explained by considering the opposite induction effect of the airfoil on the
upper and lower row of vortices. The upper clockwise vortices tend to be towed down, vice versa the
lower counterclockwise vortices tend to be towed up. This results in a slight reduction of the vertical
spacing b of the double row.

5A better vortex description would be obtained by subtracting the local eddy convection velocity.
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6See, for example, the photographs reported in Ref.[58].

FIGURE 8.26: Instantaneous distribution of the vorticity: a = 00.

In Figs.8.33 through 8.32 the same snapshots are plotted for the case a = 4°. Despite the non
symmetrical unsteady behaviour, the vortex dynamics is nearly the same as that previously discussed
for the case a 00.

As already pointed out, in all the snapshots the aspect ratio b/a of the double row of vortices is
quite smaller than that predicted by von Kármán for an infinite vortex street in ideal flow, namely
b/a 0.281.

Experimental visualizations6 show that the value predicted by von Kármán is well fitted by the
vortices in the wake of a rod. In addition, the RANS simulation of the flow around an isolated cylinder
(see chapter 7) shows that the counter-rotating vortices exhibit the tendance to dispose as in a well
staggered vortex street. From this considerations it follows that the presence of the airfoil is likely to
be responsible for the underestimated value of b/a in the present coriiputation.

Evaluating the relative importance between the numerical and the physical influence of the airfoil on
the aspect ratio should have required different computations with different computational meshes. This
was out of interest in the present work. However, some suggestions can be found in the flow behaviour
described in section 5.3. The hydrogen bubble visualization experiment showed the existence of vortex



80000

5.000

FIGURE 8.27: Instantaneous distribution of the turbulent kinetic energy: a = 00.

shedding cycles characterized by a higher Strouhal frequency and by a smaller transverse spacing of
the vortices in the wake of the rod. It was argued that this behaviour could be explained by supposing
that the airfoil increases the domain of attraction of an otherwise improbable condition characterized
by vortices aligned on the wake axis. In conclusion a question arises: could a Navier-Stokes simulation
of the rod-airfoil configuration privilege this weaker attractive vortex aligned condition?
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FIGURE 8.29: Instantaneous distribution of the pressure coefficient: a 00.
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FIGURE 8.30: Instantaneous distribution of the vorticity: a = 4°.
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FIGURE 8.31: Instantaneous distribution of the turbulent kinetic energy: a = _40
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FIGURE 8.33: Instantaneous distribution of the pressure coefficient: a = _40
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8.5.2 Acoustic Results

In the present section results concerning the rod-airfoil aeroacoustic prediction are presented and dis-
cussed.

0.1

>. 0

-0.1
-0.035 0.035 0.105

X

0.175

FIGURE 8.34: Integration surfaces: R, "Al.. .A4, - - - -RAil.. .RAi4, - RAe.

First, the influence of the integration surface is investigated by integrating the FW-H equation upon
the various contours plotted in Fig.8.34. These are:

- R: rod physical surface (200 points);

- Al. . .A4: surfaces around the airfoil extracted from the CFD mesh (200 points), Al coinciding
with the airfoil surface;

- RAil. . .RAi4: surfaces around the rod-airfoil upon which the aerodynamic data are obtained
by interpolating the CFD solution (520 points);

- RAe: surface around the rod-airfoil extracted from the CFD mesh (595 points).

Only results for the case a 00 are presented.
Second, the numerical prediction of the airfoil noise is checked against experimental data for the

case a = 00.
Third, the effect of the airfoil angle of attack is discussed by showing the directivity of the airfoil

noise.

8.5.2.1 Influence of the integration surface

In this subsection acoustic computations are performed on the base of a two-dimensional flow (no
spanwise effects).

In Fig.8.35 the acoustic spectrum at O = 90° obtained from different integration surfaces is shown.
First, the rod R and the airfoil Al contributions are compared in Fig.8.35(a) to the noise obtained
by integrating upon RAil, which surrounds the rod-airfoil system. The aerodynamic data on RAil
are obtained from a space interpolation of the CFD solution. This causes an unphysical behaviour
at 1000 Hz f. Interestingly, as shown in Fig.8.35(b), integrations upon RAil. . .RA14 provide
unphysical but consistent results. Then, results obtained by integrating upon Al. . .A4 are compared



in Fig.8.35(c). Only small differences appear at even harmonics, showing again the consistency of the
penetrable FW-H formulation. Finally, in Fig.8.35(d) the rod R and the airfoil Al contributions are
compared to that obtained from the surface RAe, which is extracted from the CFD mesh and surrounds
the rod-airfoil system. Now the rod-airfoil spectrum exhibits a physically reliable behaviour.

Fig.8.35(d) shows that at O = 900 the airfoil is 86.9 - 71.1 15.8 dB louder than the rod. This
corresponds to a lift amplitude ratio of 6.16, provided that at low Mach numbers the acoustic radiation
is essentially dipolar. Interestingly, such a value is in good agreement with that found in Fig.8.12.

In Fig.8.36(a) the rod R and the airfoil Al acoustic signals are checked ¿gainst that obtained from
RAe. Surprisingly, the rod-airfoil system is quieter than the airfoil alone. This is because the rod and
the airfoil signals are in a partial phase opposition and because the computed shedding and the rod
wake are deterministic. The directivity in Fig.8.36(b) shows that, at O = 90°, the rod-airfoil sound
pressure level is about 2 dB lower than that generated by the airfoil alone.

In order to further check the consistency of the penetrable FW-H prediction, Fig.8.37 shows the
relative difference between the RAe noise and the sum of the rod R and the airfoil Al contributions.
The spectrum of Lp'/max(p') exhibits an enveloped broadband behaviour with harmonics peaks, the
even ones being slightly higher. Such a difference may be due to numerical as well as physical effects,
namely, nonlinear contributions from the flow field inside RAe. The even harmonics effect has been
observed also in Fig.8.35(c) by integrating upon surfaces surrounding the airfoil alone. This fact plays
in favor of the possible physical reliability of Fig.8.37.

8.5.2.2 Comparison with acoustic measurements

In this subsection acoustic computations are performed by forcing statistical three-dimensional effects
into the aerodynamic field.

In Figs.8.38 through 8.41, acoustic results are checked against experimental data. Both the rod alone
and the rod-airfoil noise are plotted. The numerical rod-airfoil noise is indeed the airfoil contribution
obtained from Al. This is justified by the small difference previously observed between the computed
airfoil noise and the rod-airfoil noise. Moreover, such a difference is even smaller if a deterministic
phase opposition is smeared by sonic statistical effects.

The numerical prediction is performed by assuming a two-dimensional aerodynamic field (2D), and
an aerodynamic field undergoing a Gaussian correlation along the rod and the airfoil spans (3D). The
measured power spectral densities have been integrated upon intervals of Af = 32.5 Hz in order to
provide sound levels against which the numerical ones can be checked. Furthermore, the aerodynamic
Strouhal frequency overprediction is taken into account by scaling the numerical results (f,dB) to
(f', dB'), i.e.

Stexp
, dB' = dB + 20 log

(Stex)
(8.6)

Stnum Stiium

where the level correction accounts for the fact that the sound level is proportional to the vortex
shedding frequency.

In Fig.8.38 the rod noise spectrum at O = 90° is plotted. The Strouhal peak is well predicted by both
the 2D and 3D computations. Conversely, the second and third harmonic peaks are not well predicted.
Comparing 2D and 3D results shows that the statistical model allows a quite accurate prediction of
the broadband spectral behaviour. This is because the spanwise randoni distribution of the vortex
shedding phase results in a random amplitude modulation of the acoustic signal. The second and third
harmonic levels in the measurements are likely to be contaminated by installation effects. In fact, as
pictured in Fig.5.1(a), the roc! is located slightly downstream of the duct end. Therefore, diffraction
effects may be responsible for a different acoustic behaviour with respect to that of an isolated rod.

In Fig.8.39 the rod-airfoil noise spectrum at O = 90° is plotted. Computations provide an overpre-
diction of about 3 dB of the Strouhal peak. This is not surprising for the airfoil alone prediction. In
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fact, as previously discussed, the rod-airfoil system is about 2 dB quieter than the airfoil alone. The
3D results show improvements in the prediction of the third harmonic peak. Moreover, the broadband
spectral behaviour is quite well featured by the 3D colnputation.

In Fig.8.40 the predicted rod noise spectra at different observation angles are plotted. Comparing
2D and 3D results shows that the spanwise statistical model contributes to the broadening of the main
peak, reduces the higher harmonic peaks and generates a broadband spectral behaviour.

Finally, in Fig.8.41 the airfoil noise prediction is compared to rod-airfoil noise measurements at
different observation angles. As for the rod noise colnputation, tile randoni phase dispersion results iiì
a better prediction of both the higher harmonic peaks and the broadband spectral behaviour.

8.5.2.3 Effects of the airfoil angle of attack

In this subsection the influence of the airfoil angle of attack onto the acoustic field is briefly discussed.
In Fig.8.42 the noise directivity obtained by applying the FW-H acoustic analogy to the pressure

field upon the airfoil surface is plotted for two angles of attack, namely a = 00 and a 4°. Moreover,
in Fig.8.43 the directivity is compared to the sin2(0) dipole pattern. The results show that the airfoil
angle of attack affects the noise levels only negligibly. This behaviour is confirmed by the experimental
results discussed in chapter 5.
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FIGURE 8.39: Rod-airfoil noise spectrum at O = 900. Comparison between: o Experimental data,
- - - - 2D prediction, 3D prediction.
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FIGURE 8.40: Rod noise spectrum. Comparison between: - - - - 2D prediction, 3D prediction.

a) G = 10° b) û = 300

c) O = 500 d) O = 700
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a) Acoustic intensity (W/m2).
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FIGURE 8.42: Airfoil noise directivity pattern: a = 0, - - - -a = _40
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FIGURE 8.43: Acoustic intensity (W). - Computed airfoil noise, - - - - dipolar radiation.



8.6 Conclusions

In this chapter we discùssed results of a hybrid RANS/FW-H aeroacoustic prediction of the rod-airfoil
configuration. The main features of the flow were featured by the unsteady RANS computation:

the periodic formation of vortices in the wake of the rod was simulated without artificial forcing;

staggered vortices were convected towards the airfoil without significative numerical dissipation;

vortex impingements onto the airfoil leading edge were accompanied by deformat ion of the vor-
ticity field and consequent vortex splitting.

However, some discrepancies with the experimental results discussed in chapter 5 were found:

the Strouhal frequency was overpredicted;

the computed Strouhal frequency was slightly affected by the airfoil angle of attack;

the aspect ratio b/a of the double row of vortices shed from the rod seemed to be underestimated;

the intensity of the pressure fluctuations near the airfoil leading edge was overestimatd.

Discrepancies in items 1, 2 and 4 can be related to the unreliability ofa two-dimensional computation:
the rod wake is indeed characterized by a complex three-dimensional vortical flow, and a strong/rapid
distortion of the vorticity field near a leading edge is an intimately three-dimensional process.

Concerning the Strouhal frequency, a two-dimensional simulation overestimnates the in-plane Reynolds
stresses. This results in a smaller mean recirculating region behind the rod awl in a higher shedding
frequency.

Concerning the (lependence of the Strouhal frequency on the airfoil angle of attack, this is pre-
sumably due to a coupling mechanism between the airfoil hydrodynamic field and the flow instability
generating the Kármán vortex street. The possibility of a feed-back onto the rod vortex shedding pro-
cess seems to be confirmed by the experiments: introducing the airfoil in the wake of the rod affects the
vortex shedding frequency. However, any coupling mechanism in experiments is likely to be smeared
by the three-dimensional character of the flow.

The higher level of the pressure fluctuations predicted near the leading edge can be probably ex-
plained by considering that:

in a three-dimensional flow, a part of the mean flow energy is used to maintain spanwise fluctua-
tions;

the RANS closure model used in the present investigation is inadequate for regions of high flow
anisotropy.

The origin of the aspect ratio underestimation is still obscure. However, as discussed in section 5.3,
an experiment performed in a water channel showed the existence of a rod shedding mode characterized
by a lower transversal spacing of the vortex street and a higher shedding frequency.

Comparing the computed acoustic spectra to the experimental ones confirmed that the accuracy of
the acoustic analogy prediction hinges primarily on the capability of the CFD computation in featuring
the physics of the flow. An excellent agreement was obtained in terms of peak values at time Strouhal
frequency and higher harmonics. On the contrary, discrepancies were found in the broadband part of the
acoustic spectra. These are clearly due to the intrinsic limits of a two-dimensional RANS computation.

Hence we showed how a spanwise statistical model cari be used in an acoustic analogy to account for
three-dimensional effects which are not featured by a two-dimensional flow computation. Sound predic-
tions were significantly improved and the broadband part of the sound field was quite well predicted.
The model requires only an a priori knowledge of the spanwise correlation length and shape.
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In the rod-airfoil configuration, the airfoil contribution was shown to be dominant. However, a fully
correlated (2D) sound computation predicted partial cancelations between rod and airfoil contributions.
These are not likely to be found in the non deterministic three-dimensional flow. Therefore, the airfoil
contribution gives a good estimate of the overall noise.

Moreover, interesting results were found or confirmed about the choice of a suitable integration
surface:

e it should coincide with grid points of the CFD domain;

in low Mach number applications, volume sources are negligible with respect to surface sources
and the physical surfaces are thus good integration surfaces.

The statistical analogy is an interesting tool for complex flow configurations where only unsteady
but deterministic RANS computations can be carried out. However, our activity points towards an
improvement of the rod-airfoil broadband noise prediction, without forcing any ad hoc flow statistical
behaviour. This challenging goal requires the turbulent fluctuations to not be smeared by an average
statistical treatment, as in a RANS approach. Since the Large Eddy Simulation (LES) approach is
expected to provide a more realistic flow description, an LES of the rod-airfoil configuration is currently
in progress.



9

Epilogue of part I

The first part of the present work was devoted to the aeroacoustic characterization of a low Mach
number rod-airfoil configuration. We were concerned with:

the vortex dynamics in the wake of the rod and the dynamics of a vortex-airfoil interaction;

the sound generation mechanisms in a vortex-body interaction;

the feasibility of accurate acroacoustic predictions based on the acoustic analogy model.

The experimental activity had a supporting role in the context of our research. However, the
aeroacoustic experiments described in chapter 5 and the visualization experiment described in section
5.3 shed light on many features of the rod-airfoil aeroacoustic behaviour:

the spectral character of the acoustic far field;

the weak dependence of the noise levels on the airfoil angle of attack;

the influence of the airfoil angle of attack on the trajectory of the oncoming vortices;

the influence of the vortex trajectories on the spectral behaviour of both the wall pressure field
and the acoustic far field;

the importance of three-dimensional effects in the rod wake;

the existence of a vortex shedding mode from the rod, characterized by a higher Strouhal frequency
and a smaller distance between the rows of the vortex street.

The analytical activity described in chapters 2 and 3 was the kernel of the present work. It exploited
the circulation theory and a Kármán-Trefftz conformal mapping in order to describe an incompressible,
high Reynolds number vortical flow past a thick and cambered airfoil. The resulting vortex method
was used to investigate many aspects of a vortex-airfoil interaction problem. In addition, the limits of
validity of both a line-vortex description and a fixed-wake assumption were numerically explored. An
interesting aspect of the proposed methodology was the analytical decomposition of the time derivative
of the wall pressure field in different contributions, each related to a nonlinear interaction mechanism.
Thus, we showed the existence of wavelike contributions transported by the vortex, and contributions
related to the vortex passage by the airfoil leading edge and by the trailing edge. Among these, only
the contributions arising near the airfoil leading edge act as effective acoustic sources.

The analytical description of the pressure field past the airfoil was also used to find an outer
expansion of the inner Iiydrodynamic field. Then, the inner expansion was matched to an outer acoustic
solution. This MAE approach showed that the aerodynamic force and the aerodynamic moment induced
by a vortex on the airfoil generate dipole and quadrupole noise, respectively.
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The external aerodynamic noise can be successfully predicted through an acoustic analogy approach.
We started from this assumption and moved towards an improvement of the existing methodologies.
In chapter 6 we proposed a new interpretation of the retarded time approach used in the prediction
of acoustic fields from moving sources. A simple hierarchical inversion between the emission time and
the reception time was the fundament of an advanced time approach. This consists in projecting the
current status of a source in the observer time domain where the received signal is progressively built.
The practical relevance of this methodology lies on two statements:

. no retarded time equations must be solved;

. an aerodynamic noise prediction can be processed parallelly to the aerodynamic simulation.

Theoretically, the advanced time approach differs from the retarded time approach only in one aspect:
a signal emitted at a given instant by a point source, moving at subsonic as well as supersonic velocity,
is received only one time by an observer moving at a subsonic velocity. Consequently, only one value
of the advanced time corresponds to a value of the emission time. The advanced time approach was
applied to a retarded time solution of the Ffowcs Williams & Hawkings equation and was implemented
in the rotor noise code Advanlia.

A problem commonly encountered in the prediction of aerodynamic noise from bluff bodies in cross-
flow is due to the intrinsic three-dimensional character of the flow. This is typically the case of a circular
cylinder. In chapter 7 we proposed a spanwise statistical model for the vortex shedding phase. Then,
we showed how an acoustic prediction can be performed on the base of a two-dimensional flow but
accounting, to some extent, for the three-diiiiensioiial character of the real flow.

The numerical methodologies developed in chapter 6 and chapter 7 were applied in chapter 8 to
the rod-airfoil aeroacoustic prediction. An unsteady RANS aerodynamic computation was performed
for two airfoil angles of attack. The FW.-H acoustic analogy formulation was used to compute the
far pressure field. Comparing the predicted acoustic spectra with experimental results showed that
the accuracy of an acoustic analogy prediction hinges primarily on the accuracy of the aerodynamic
simulation in featuring the physics of the flow. Hence, an excellent agreemnent was found in terms of
peak values, but discrepancies were found in the broad band part of the spectrum. These discrepancies
were due to the liniits of a two-dimensional unsteady RANS computation and were significantly reduced
by forcing a spanwise random behaviour into the flow used for the acoustic analogy prediction.

A genuine prediction of the broadband acoustic radiation from a rod-airfoil configuration requires
the random flow fluctuations to not be smeared by an average statistical treatment as in a RANS
approach. Therefore a three-dimensional Large Eddy Simulation of the rod-airfoil configuration is
currently in progress.
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Preface to part II

This second part deals with the aeroacoustic problem of sound generated by unsteady flows past rigid
surfaces.

Aeroacoustics has a history of fifty years. In the early fifties Sir James Lighthill formulated is theory
of jet-noise. At the end of sixties, Lighthill's formulation was extended to account for moving surfaces,
as required by rotor-noise predictions. In the seventies the noise generated by turbulent flows past
extended surfaces, say flow-noise, became a matter of serious military concern in the detection of ships
and submarines by means of wall-mounted sonars.

Nowadays jet- rotor- and flow-noise are still fervent area of research. The high-intensity noise from
the jet of a space launcher remains a subject of major importance for it causes damage on aboard
satellites. The low-noise levels required to meet the international standards around airports force
aircraft manufactures to produce quieter engines. The comfort requirements of commercial airplanes
need the flow-noise mechanisms to be understood and controlled.

Unsteadiness in a compressible flow generates acoustic waves. When these pressure fluctuations
are detected as noise by an observer in the far field, their energy is only a very small fraction of
that involved in the generation process. In these terms, aerodynamic sound is a by-product of flow
unsteadiness. Aeroacoustics, on the contrary, are not a by-product of aerodynamics. Predicting a by-
product requires a deep insight into the productive process. Moreover, predicting a by-product using
incomplete and inaccurate information about the productive process is a challenging goal.

As a theory of the aerodynamic by-product, aeroacoustics is intimately joined with aerodynamics.
This is a necessary conditioii to understand the physical mechanisms by which aerodynamic sound is
generated. In addition, aeroacoustics largely uses physical niodeling in order to relate the behaviour
of the induced wave motion to easily estimated flow quantities. Modeling is necessary, because many
unsteady flow mechanisms are still unclear and unpredictable.

In developing predictive models, aeroacoustics is also concerned with the propagation of acoustic
waves around diffracting obstacles. This forces aeroacoustics to leave aside aerodynamics and to become
more confident with acoustics.

The dual nature of the aeroacoustic problem reflects the structure of the present work. The first
four chapters are concerned with aerodynamic subjects, whereas the other six deal with aeroacoustic
subjects. The aerodynamics chapters provide a minimum background for understanding the physics
of sound generated aerodynamically. Oniy chapters 2 and 5 have grown-up of a relaxation of such a
minimum condition. The aeroacoustic chapters are focused on sonic fundamental aspects concerning
fluid-body interactions. A brief overview of the present part follows.

Chapter 1 introduces the reader to the physics of flow by presenting its governing equations. Dif-
ferent flow models are illustrated and the theory of potential flows is introduced.

Chapter 2 describes a perturbative analysis of the flow governing equations, which shows the role of
nonlinearity in coupling the acoustic, vortical and entropic modes of fluctuation in a fluid. This analysis
describes the physical mechanisms by which sound is generated by vortical and entropic fluctuations.

Chapter 3 is concerned with the statistical behaviour of the pressure field upon a rigid plate be-
neath a turbulent boundary layer. Theories and niodels are described, which provide the aerodynamic
background for two aeroacoustic problems: flow-noise and broad-band interaction noise.
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Chapter 4 illustrates the aerodynamic theories predicting the unsteady force upon an airfoil embed-
ded in a harmonic gust. These are typically linearized theories dealing with thin airfoils at small angles
of attack. Their relevance lies on the fact that the airfoil response to a generic unsteady perturbation
can be determined as a superposition of elementary solutions, each related to a spectral component of
the flow unsteadiness. A second order theory is also presented. This permits to relax the conditions of
small airfoil thickness and small angle of attack required by a linearized theory. Both incompressible
and compressible theories are discussed. These form the theoretical basis on which many aeroacoustic
models of vortex-airfoil interaction noise are developed.

Chapter 5 is concerned with the physics of noise generated aerodynamically. In this chapter the
flow governing equations are scrutinized under the light of a modal approach. Moreover, the existing
jet-noise theories are reviewed and the conceptual adequacy of Lighthill's acoustic analogy is discussed.

Chapter 6 illustrates the theory of vortex sound. This represents a different interpretation of
Lighthill's acoustic analogy and shows the role of vorticity in the generation of aerodynamic sound.
Moreover, Howe's acoustic analogy formulation is presented. From a physical point of view, the Howe's
theory provides a comprehensive and generalized approach to the aerodynamic sound problem.

Chapter 7 illustrates the Ffowcs Williams & Hawkings' acoustic analogy formulation. This extends
Lighthill's theory to account for the presence of bodies moving arbitrarily into the field. Farassat'
mathematical formalism is described in great detail. This allows the Ffowcs Williams & Hawkings
acoustic analogy to be used for propeller- and rotor-noise predictions.

Chapter 8 is concerned with the problem of sound generation by vortical disturbances near the edge
of a semi-infinite flat-plate. This flow configuration is a model problem for investigating the effects of
a geometrical singularity on the acoustic radiation.

Chapter 9 deals with the problem of trailing edge noise. The flow configuration is the same as in
chapter 8, but more emphasis is given to the aerodynamic mechanisms taking place near the edge of a
thin airfoil in the presence of a turbulent flow.

Chapter 10 is concerned with the problem of vortex-airfoil interaction noise. Different analytical
formulations are illustrated and computational methodologies are reviewed. Particular emphasis is
given to the blade-vortex interaction noise which is a major source of helicopter impulsive noise.
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i
Basic Equations of Fluid Mechanics

1.1 Introduction
Fluids possess the distinctive property of not having a definite shape. Under the action of a force
different elements of a fluid portion may change their reciprocal position, but the properties of the fluid
do not change.

Liquids and gases behave like fluids, whereas solids do not. This depends on both the molecular
structure and the nature of the intermolecular forces. In gases under ordinary conditions, the molecules
are so far from each other that they only experience a negligible attractive force which is due to their
mutual electrical polarization. Conversely, in liquid and solid phases, a quite smaller intermolecular
distance permits a molecular interaction of quantum nature. Therefore, the different behaviour observed
in liquid and solid phases is only due to a small change of the molecular spacing.

When a fluid is observed on the molecular scale, its properties appears as strong nonuniform dis-
tributions. However, the scale adopted to observe the macroscopic behaviour of a fluid is so large
compared to the typical intermolecular distance that a continuum hypothesis is generally supported.

The consistency of the continuum approximation depends on the value of the Knudsen number.
This is defined as the ratio between the molecular mean free path I and a macroscopic reference length
L. Ifa, Vt and .N denote the molecular collision section, the molecular chaotic velocity and the number
of molecules per unity of volume, respectively, the mean time between two collisions is (iV a Vt) 1, and
the mean free path is (.Na)1. Therefore, the Knudsen number is given by

ml
(1.1)

where in is the molecular mass and p is the density of the fluid. Typical values of i, in standard
atmosphere, are 6.6 x 10-8 m at sea level and 1.0 x 102 in at an altitude of 8 X iü in. Thus, for
standard applications, it results that Kn « i and the continuum hypothesis is largely satisfied.

The continuum hypothesis leads to the concept of fluid particle, namely, a portion of fluid that
is large compared to the molecular scale, but is small compared to the macroscopic scale. The fluid
particle is indeed a statistical concept and its properties must be regarded as averaged quantities over
a great number of molecules.

1.2 Reynolds' 1ansport Theorem
The behaviour of a fluid is governed by three fundamental laws: the conservation of mass, the conser-
vation of linear momentum and the conservation of energy.

A conservation law can be expressed as an integral equation over a portion of fluid, where the
rate of change of a conservative quantity T in a volume of the fluid is balanced by the net flux of T



across the bounding surface and, possibly, by a production term within the considered portion of fluid.
If the properties of the fluid are continuous and their derivatives exist, the integral equation may be
translated into an equivalent differential form. The Reynolds' transport theorem is the kinematical tool
that allows such a mathematical transformation.

Let .(x, t) be an arbitrary continuous and single valued function denoting any property of the fluid.
Let V(t) be a material volume, namely, a closed volume that is always constituted by the same fluid
particles and moves together with them. Thus, the evolution of the following integral quantity

F(t) = fff.T(x,t)dV (1.2)

can be related to the fluid motion. If ¿ denotes the position of a fluid particle at the initial time t = O,
the same particle, at the generic time t, occupies the position defined by the point transformation

x= x(,t) (1.3)

By supposing that the particle path is continuous and single valued, equation (1.3) can be inverted in
order to express the particle initial position as a continuous and single valued function, i.e.

(1.4)

The continuity condition says that two close particles still remain close during their motion, whereas
tue single valued property is a condition on the unequivocal correspondence between a particle and its
instantaneous location.

A necessary and sufficient condition for the existence of the inverse function (1.4) is that the Jacobian
of the transformation

_ D(x1,x,x) dV
- (1.5)

does not vanish. The quantity J represents the ratio of an elementary material volume dV to its initial
value dV0. It is thus called dilatation or expansion. The evolution of J following a material volume is
established by the relation

1DJ
(1.6)

where y is the velocity of the fluid and D/Dt is the material (or Lagrangian) derivative, defined as

D D
= (1.7)

Equation (1.6) establishes a physical relation between the divergence of the velocity field and the
dilatation of a fluid particle during its motion.

Time concept of material derivative together with the definition of volume dilatation can be used to
describe time time evolution of the integral quantity F(t) in equation (1.2). A simple variable transfor-
mnation yields

JJf J(x, t)dV = Jjf .T(x(, t), t) JdV0 (1.8)

where the time derivative at time first memnber is intrinsically a material derivative. Since the volume
Vo at the second member is fixed, the derivative operator and the integral operator can be permuted
yielding

fffF(xt)dv=fffJ_+v.(rv)}dvo
i, vo

IDT
(1.9)
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where use of equations (1.6) and (1.7) has been made. Finally, changing back to the material volume
V(t) provides

rayfff (x,t)dv
=

fff1-- + V. (Fv)} dV

V V

Equation (1.9) is an important kinematical result, known as Reynolds' transport theorem. Different
form and corollaries of the theorem can be formulated. Applying Gauss' theorem to the right-hand-side
of equation (1.9) yields

[ff(x,t)dV=fffdV+ffv.ndS

where n is the outward unit normal to the surface S. Furthermore, for a generic volume of integration
V*(t), equation (1.11) becomes

f/f F(x, t) dV
= 1ff dV +ffb n dS (1.12)

where b is the velocity of the surface S*(t), which bounds the volume V(t). A generalized form of
the Reynolds' transport theorem for a discontinuous function F(x, t) is due to Truesdell and Toupin
[73]. Let the material volume V(t) be constituted by the volulnes V1 and V2, which are separated by a
surface of discontinuity E(t) moving at the velocity b. If i.' is the unit normal to (t) in the direction
from V1 to V2, the Reynolds' transport theorem can be written as

.LfffF(x,t)dV = fff dV+ffFv.ndS+ff(i 2)b. vdS (1.13)

1.3 Governing Equations of Fluid Motion

The basic equations of fluid mechanics can be obtained by applying the conservation laws of mass,
linear momentum and energy to an arbitrary volume of the fluid, and making use of the Reynolds'
transport theorem.

1.3.1 The Continuity Equation

The conservation of mass leads to the continuity equation

jfffpdV=0 (1.14)

where the material volume V(t) is supposed to enclose neither sources nor sinks. Thus, using equation
(1.11) gives

fffdV+ffpv.ndS=o (1.15)

For a generic volume V*(t), equation (1.12) provides

-fffPdv=fffdV+ffpb.n(l5 (1.16)

V. s.

(1.10)
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At a given instant, V*(t) coincides with a given material volume. Thus, considering the continuity
equation (1.15) yields

fffdV= _ffPv.nds

Then, substituting into equation (1.16) gives

fffPdV_ffP(b_V).fldS

If the volume V*(t) is supposed to be fixed, equation (1.18) becomes

Jjj{+v.(v)} dV=0

The arbitrariness of the integration volume V* (t) implies that the integrand must vanish everywhere,
provided that it is continuous. Therefore, the continuity equation takes the differential conservative
form

V. (pv) =0 (1.20)

It is interesting to observe that equation (1.20) is a particular case of a generic balance equation

(1.21)

where G is a specific volume quantity, q5 denotes the flux of the same quantity and P is a production
term.

1.3.2 The Momentum Equation

The linear momnentuni conservation law says that the sum of the total internal force exerted on the
material volulne V(t) through its bounding surface S(t), and the total external force exerted on the
mass enclosed by S(t) is balanced by the rate of change of the linear momentum of the fluid in the
volume V(t), i.e.

(1.22)

where Pj is the internal stress tensor and is an external force per unit of mass. The negative Sign
behind the surface integral results from having considered positive the force exerted by the exterior
fluid on the surface S(t). Furthermore, making use of Reynolds' transport theorem, equation (1.22)
becomes

(1.23)

and, for a generic volume of integration V*(t)

fffpv, dV = fJf p fi dV /1 P n (IS ff p v,(v - b) . n dS (1.24)

By supposing that the volmne V*(t) is fixed and that the integrand functions is continuous, equation
(1.24) leads to the Cauchy equations of motion

a o_(pvj) + __(pVj v + P,) = pf (1.25)(ft (IX3

(1.17)

(1.18)

(1.19)

254 CHAPTER 1. BASIC EQUATIONS OF FLUID MECHANICS



The physical nature of the stress tensor can be enlightened by means of a statistical interpretation
of the Cauchy equations. By using the method of statistical mechanics, in fact, the macroscopic
properties of a system can be related to the properties of its constitutive elements.

Consider the generic balance equation (1.21). The quantity G can be regarded as a statistical
average of a conservative property g, weighted by a molecular distribution function f(x, y, t), namely

G(x,t) = fffgfdudvdw (1.26)

where u, y and w are the Cartesian components of the molecular velocity.
The distribution function f(x, y, t) is defined so that f dx dv is the probable number of molecules

which at the instant t have positions x between x and x + dx and velocity y between y and y + dv.
This distribution function is a solution of the Boltzmann equation. This an integro-differential equation
which is valid at densities sufficiently low, such that the effect of collisions involving more than two
molecules can be neglected.

Consistently with the conservative quantity G, a flux term can be defined as

,(x,t) = fffgvifdudvdw (1.27)

If the conservative quantity coincides with the i-th component of the linear momentum, it results that

00

G= fffvifdudvdw=p5i (1.28)

and
00

(1.29)

where use of the linear average properties lias been macle. Therefore, the balance equation (1.21) takes
the form

a a a(pîij) + (pUiJ) + .-(pvv) = pf (1.30)

By definition, the averaged velocity iJ is the velocity of the fluid particle. Thus, comparing equation
(1.30) to equation (1.25) yields

P = pvv (1.31)

Therefore, the force exerted internally on a fluid is a consequence of a transport phenomenon acting on
the molecular scale. The stress tensor component Pj, in fact, is the average flux of chaotic momentum
in the i-direction, transported by the thermal Inolecular motion along the j-direction.

The explicit form of the internal stress tensor depends on time molecular distribution function.
If a state of absolute thermodynamic equilibrium (mechanical, thermal and chemical equilibrium) is
supposed, the distribution function lias a Maxwellian form, namely

f(x; u, y, w; t) f(u, y, w) = A( F(u') F(v') F(w') (1.32)

with

F(x) = (2T)xP ( 2kbTx) (1.33)
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where m is the molecular mass, kb is the Boltzmann constant and T is the absolute temperature. The
distribution function (1.32) has the important property of depending only on the fluctuating part of
the molecular velocity.

The average molecular translation energy can be defined as

vvej = m --

Equation (1.32) provides = (kb Tim) öjj. Therefore, in a state of absolute equilibrium, the molec-
ular translation energy is given by

et = k, T

and for a mole of molecules
¿'t =J'fAet = RT (1.36)

where R. = 8.317 x joule/K/Mole is the universal constant of gas and JVA = 6.023 x 1026 is the
Avogadro number.

A stress system is referred to as hydrostatic when all the not diagonal terms in the corresponding
tensor are zero. For a fluid in a state of absolute thermodynamic equilibrium, the diagonal terms
represent the thermostatic pressure p, that is, the normal stress due to the flux of chaotic momentum
transported parallel to itself. It thus results that

Pii=poii (1.37)

with
ppP-=pT=pRT (1.38)

where M = mAlA is the molar mass and R = 'R./M is the constant of the gas.
Equation (1.38) is the equation of state for a perfect gas, namely, a fluid at rest in a state of absolute

equilibrium. For a fluid in motion with vanishing gradients of the thermodynamic quantities, the
hydrostatic stress system can be retained by assuming a local thermodynamic equilibrium1. Therefore,
the normal stress can be identified with the pressure of classical thermodynamics, and the Cauchy
equations (1.25) take the well-known form of the Enlerian equations of motion

ô ô __ap(pvj) + __(pvjvj) -

(1.34)

(1.35)

(1.39)

where the external force f has been dropped.
In a state of non-thermodynamic equilibrium the molecular distribution function loses its universal

Maxwellian form (1.32) and must be calculated solving the Boltzmann equation

5f 5f 8f- + v + a B
St 5x

where v are the components of the molecular velocity, a are the components of the molecular acceler-
ation due to an external force and B is an integral term describing the effect of the molecular collisions
Ofl tile distribution function.

Various attelnpts have been made in the past in order to obtain approximate solutions of the
Boitzniann equation. Enskog [74] proposed a perturbation technique based on a series expansion of

(1.40)

gas in any initial state which is permitted to remain undisturbed for a sufficient length of time approaches a
stationary state. If the gas is isolated adiabatically and not subject to external forces, the stationary state is a uniform
condition in which all of the distributions functions are Maxwellian.



the distribution function in a perturbation parameter T, in such a way that the frequency of collisions
can be varied in an arbitrary manner without affecting the relative number of collisions of a particular
kind. The parameter T measures the period of molecular collision and is thus related to the Knudsen
number. 1f -r is small the collisions are very frequent and the gas behave like a continuum in which local
equilibrium is everywhere Inaintained. By introducing time series expansion f = f0+T f(1)+T2 f(2)+...
into the Boltzmann equation (1.40), and equating terms of equal power of 7, a set of equations for the
functions f((», f(l), f(2),... can be obtained. In principle, this method of successive approximations
can be extended to systems in which the gradients of the thermodynamic quantities are quite large.
In the zeroth approximation, the distribution function is locally Maxwellian and leads to the Eulerian
equations of motion. Conversely, the first order perturbation leads to the Navier-Stokes equations.
These apply to systems in which the gradients of the physical properties are small or, equivalently, in
which the physical properties do not change appreciably within a distance of the order of the mean free
path.

Enskog's perturbation solution of the Boltzmann equation shows that, for a fluid in motion with
velocity gradients, the zeroth order term is related to the state of equilibrium, while the first order term
introduces a perturbative correction that linearly relates the stress tensor to the deformation tensor,
accordingly to a Newton-type constitutive relation. This result agrees with the following Stokesian
hypotheses:

the stress tensor Pj is a continuous function of the deformation tensor

1 (Dvi Dvi
(1.41)

and the local thermodynamic state, but it does not depend on the other kinematical quantities;

when no deformation occurs the stress tensor becomes hydrostatic;

the fluid is isotropic ami the principal directions of the stress tensor coincide with those of the
deformation tensor;

the stress tensor does not depend explicitly on the position x.

The Newtonian constitutive relation for a stress tensor element is a particular case of a general
gradient law stating that, for a sufficiently gradual variation of a scalar quantity q with respect to the
position in a material, the flux vector varies linearly with its gradient V q. The internal friction of a
fluid is generated by the molecular transport of linear momentum. As a consequence, the stress tensor
elements are related to the gradient of the local velocity of the flow, that is, to the deformation tensor
elements. -

The stress tensor is usually written as

Pii p Sjj - (1.42)

where S,j is the Kronecker symbol amici Tjj are the elements of the viscous stress tensor. Referring to
principal axes, the viscous diagonal terms take forin

= a d (1.43)

where d are the principal rates of strain.
The hypothesis of fluid isotropy allows to write

(1.44)
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Hence

r=ÀO+2pd (1.45)

where O = d1 + d2 + d3 is the divergence of the velocity field. By changing to a generic co-ordinate
system, the complete internal stress tensor takes the form

(1.46)

where the coefficient t is the dynamic viscosity and À is the second coefficient of viscosity. Thus, the
mean normal stress is given by

p=.Pii=p_ (+)o (1.47)

From the continuity equation (1.20) it results that, if the fluid density p is constant, the velocity field is
divergence free. Therefore, equation (1.47) states that, for an incompressible fluid, the thermodynamic
pressure always coincides with the mean normal stress. On the contrary, for a compressible fluid,
the difference between the thermodynamic pressure and the mean normal stress is proportional to the
divergence of the velocity field via the bulk viscosity coefficient

=À+u (1.48)

Stokes supposed that p and consequently À = 2/3 ¡. A monoatomic gas satisfies this no
bulk viscosity assumption, but it is not fulfilled by polyatomic gases and liquids. However, for a nearly
isochoric motion and a nearly incompressible fluid, the effect of the bulk viscosity can be generally
neglected.

Concluding, for a Newtonian fluid of negligible bulk viscosity the Cauchy equations of motion (1.25)
take the form of the Navier-Stokes equations

a 8 Op OT(pvj) + _(pViVj) = -h-- + -b--- +pf (1.49)

where the viscous terms have the constitutive form

(Ov 5v'\ 2 OVkTii=P-+---) z-----6,3
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(1.50)

1.3.3 The Energy Equation

The continuity equation and the Cauchy equations have been obtained from the conservation of mass
and linear momentum within a fluid portion. Analogously, the conservation of energy in the balance
form of the first law of thermodynamics applied to the material volume V(t), yields

fff pEdV = fff pf vdV - ff Pvj . ndS - ffq. ndS (1.51)

where E = e + v2/2 is the specific total internal energy, e = cT is the specific internal energy (c is
the specific heat at constant volume) and v2/2 is the specific kinetic energy. The first and the second
integrals at the second member of equation (1.51) represent the work done by the external force and
by the internal stresses, respectively, whereas the third integral accounts for the heat flux across the
surface S(t).

For a generic volume V*(t) the balance equation (1.51) takes the form

fffpEdv + ¡f PE(V - b) ndS = fff pf vdV _ff1 . ndS ffq. ndS (1.52)



a ap+ (pvi) = rh
D a

(pv,) + __(pVjvj) =

(pE) + (pvE) =

D 57ij- + + pli
Dxi Dxi
a a--(pvi)-F ----(T,3v3) + pf,v+ Qxi

If the volume is fixed and the integrand functions are continuous, the energy equation takes the differ-
ential form

-(pE) + -(pvE) = --(Pjivj) - + pfv (1.53)
X: X3

This equation can be simplified by subtracting the kinetic energy balance resulting from the momentum
equation (1.25). Furthermore, considering a Newtonian fluid and assuming a heat conduction law of
Fourier type q = KVT, where K is the heat conductivity of the fluid, equation (1.53) becomes

= V. (KVT) pV . y + F (1.54)

where
(1.55)

The function F is referred to as viscous dissipation function. It depends on the deformation tensor via
two of its three invariants

e e11+e22+e33=Vv (1.56)

ee33 - e23e32 + e33e11 - e31e13 + e11e22 - e12e21 = - (eu ekk6ii) (1.57)

'I' = det(eij) (1.58)

which result from the characteristic equation

det(ed8)=WdI+d2ed3=0 (1.59)

Since it is always 02 > 21, the function F is always positive.
The energy equation can be written in terms of specific entropy S, whose infinitesimal increment

satisfies the thermodynamic relation

TdS=dE+pd () (1.60)

Therefore, equation (1.54) becomes

pT = V.(KVT)+F (1.61)

Equations (1.54) and (1.61) show that the work done by the internal stresses has a reversible
contribution dite to the therniodynamic pressure, and an irreversible contribution dime to the viscous
terms. In fact, since the function F is always positive, it always causes an increment of the specific
entropy of the fluid particle, acting as a dissipation function.

1.3.4 Convective Form of the Flow Governing Equations

The continuity, linear momentum and energy equations, together with the equation of state (1.38), are
in sufficient number to match the number of unknown flow variables. Including a rate of mass injection
for unit of volume 7h, and a rate of heat addition for unit of volume Q, the set of differential governing
equations for a Stokesian fluid (( = 0) becomes

(1.62)

(1.63)

(1.64)
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where

Dp
Dt

Dv
p.-j5-

pDS
RDt

where e = V y and

The latter is an alternative form of the gas equation of state, with the subscript r denoting a thermo-
dynamic reference state of the fluid and 'y = c/c being the ratio of the specific heats. Equation (1.72)
has been obtained from equations (1.60), (1.61) and (1.64).

1.4 Potential Flows

As discussed in the preceeding section, the behaviour of a non-viscous and adiabatic fluid is governed
by the following equations

S = Sr + c,, log
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E cT+-- (1.65)

'nj (-+- 2 ôVk

Dxi aj - (1.66)

qj = K-2-1 (1.67)
Dxi

p pRT (1.68)

In equations (1.63) and (1.64) the injected mass has been supposed to have the local flow velocity and
the local total internal energy.

Equations (1.62), (1.63) and (1.64) can be translated from their conservative form to the convective
form

= p®+th
ap 2 a a i lavi Ov \)

=

=
ax a 3

(PrV
Pr) P)

Dp +pVv=0
Dv Vp+=0
Dt p
DS
Dt

where equation (1.74) is the Eulerian equation of motion.
The equation of state relating the thermodynamic quantities (p,p, S) can be written as

dp= -dp+ () dS

where c is the local speed of sound, defined as

c= (Op
\Dp)

(1.72)

(1.76)

(1.77)

(1.73)

(1.74)

(1.75)



and D /Dt denotes the material derivative, as defined in equation (1.7).
The material derivative of the velocity vector can be expressed in the useful form

Dv 8v
(1.78)

where w = V x y is the vorticity vector.
In chapter 2 the fluid motion will be described as a combination of three modes of fluctuation:

(i) the vorticity mode, governing the vorticity dynamics in a viscous incompressible fluid, (ii) the
acoustic mode, governing the propagation of irrotational disturbances in a compressible fluid, (iii) the
entropy mode, governing the heat transfer in a viscous fluid. When the physical mechanism of diffusion
is supposed to be absent, both vorticity and entropy spots are only allowed to be convected along
the fluid particle paths. Consequently, the flow is isentropic and the vorticity is entirely confined to
layers of vanishing thickness. The hypothesis of irrotational flow is thus supported by the inviscid flow
assumption in the Eulerian model.

The condition w = O permits to express the velocity field in terms of velocity potential field q5 by
writing y = Vq. Hence, the linear momentum equation (1.74) takes the form

where use of equation (1.78) has been made. This equation is satisfied everywhere in the flow field.
Therefore, integrating along a particle path, from a point at infinity to the generic point x, yields

_() +_+fY-=o (1.80)
0t 2 2

Equation (1.75) says that the entropy of a fluid particle does not change during its motion. Thus, in
each point of the particle trajectory, pressure and density may vary, but following the thermodynamic
isentropic transformation

p7=p
P Poo (1.81)

Therefore, integrating the last term in equation (1.80) along an isentropic transformation, and assuming
uniform and steady conditions at infinity, leads to

_.L_ -I0q5 vv '7 P I

2
+1_[) _1]=0

and, equivalently
p f ylp 0q5 v2v1P-1p" -y p ôt+ 2 jf

Finally, by introducing time isentropic law into the sound speed definition (1.77), yields

'y-'
' =c_(,y_1)V_m0o

(2

(1.82)

(1.83)

(1.84)

where c = yp/p. Equations (1.83) and (1.84) relate the pressure field and the local speed of sound
to the irrotational velocity field.

Consider the continuity equation (1.73) written in the quasi-linear form

+vVp+pVv=0 (1.85)

V (Ç) (Ç) + = o (1.79)
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Introducing the velocity potential field yields

2 la/I VpV q5+--+v----=0
pôt p

From equations (1.79) and (1.77) it follows that

which permits to write the last term in equation (1.86) as

Vp IV. - --
p c

[(Ç)+v.(Ç)]

'u2 u2)
2

= - (-y - 1) U

(1.86)

(1.87)

(1.88)

Equation (1.80) relates the generic variation of p to the generic variation of ab/at + v2/2 along a
fluid particle path. Thus, by differentiating with respect to t and by considering the definition (1.77)
of the local speed of sound, it results that

lap i a v2

pat - c2Dt at
+

2

Finally, substituting equations (1.88) and (1.89) into equation (1.86) provides the following scalar
equation for the velocity potential

2 ira2 a2 +Vq5V-- =0 (1.90)

where c2 is a function of , as defined in equation (1.84).
With the only hypothesis of irrotational velocity field, the problem defined by the system of equations

(1.73), (1.74) and (1.75) has been reduced to the solution of the single scalar equation (1.90).
When the potential field describes the propagation of small acoustic disturbances in a steady mean

flow, equation (1.90) can be linearized by setting

(1.89)

where c' denotes the perturbation induced by the acoustic disturbances on the speed of sound (1.84)
with respect to the local mean value e0, namely

(1.96)

(1.97)

v(x, t) = U(x) + v'(t) = V + Vq5'

with y' < U. Then, neglecting the nonlinear terms in the acoustic velocity y' = Vq5' gives

(1.91)

C2 V2 cV2I+ e'2 V U+
a2 a2'

(1.92)

(1.93)
at2 at2

v2 2U. (1.94)

(1.95)
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Substituting equations (1.92) through (1.97) into equation (1.90) leads to the linearized potential equa-
tion

cV2 a2ií a' 2U. v'u.v(u.v') _v(Ç) V'+c'2VU=O
at2 at

where the mean flow has been supposed to satisfy the steady potential equation

U. V (q-) = 0 (1.99)

For a fluid at rest, equation (1.98) reduces to thé standard wave equation

j2 ,
2 ç2,jI ' 'P

C00v 'P at2

Conversely, in the case of a uniform mean flow, equation (1.98) leads to the convected wave equation

cV2' 2Uoo =0 (1.101)

The pressure field can be linearized, accordingly to equation (1.91), by writing p = P + p', with
p' « P. Thus, equation (1.83) yields

00

'Y P00 2 )
A further simplification of the aerodynamic problem consists in supposing that the acoustic distur-

bances have harmonic ' c/,et p'a behaviour, namely = and = e1t. Therefore, equations (1.98) and

(1.98)

(1.102)

(1.102) take the form

(1 A)
a a

(1.103)- MM (i 2kM+B +MC) +k(k+i C)= O
Ox,

and

j3=_p00c00(1_A)T [ic+M] (1.104)

with

U00M00 = - (1.105)
coo

M = (1.106)
coo

k = -- (1.107)
coo

A=7'(M2_M) (1.108)
2

2 (M aM\
(1.109)i--)

(OM
(1.110)
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Finally7 for a uniform flow equations (1.103) and (1.104) take the form

ozi así as

and

p=poocoo iq5+M-
Dxi

1.4.1 Green's Functions of Wave Equations

Consider the standard wave equation2 (1.100). The Green's function G(x, t; y, r) is the pulse response
satisfying

c2 V2G
82G

= 8(x - y) 8(t - T)00

With application of the Fourier transform pair

"00

= f(w) = f f(t)exp(iwt) dt
J -

' {f(w)} = f(t) = f(w)exp(iwt) dw

equation (1.113) becomes

c0 VO + k2Ô = ô(x - y)

whose solution is

Ô(x,k;y,r) = _eT 4Ix-yI
Then, transforming back to the time domain yields

G(x,t;y,r) 8(t - r - Ix - y Ic00)
(1.117)

47r jx -
Consider now the convected wave equation (1.101). The Green's fimction G(x,t;y,r;M) is the

pulse response of the wave equation

02G CCV2Gc_ D2GC 2TJ0VGCUOOZUOOJ = 8(xy)8(tr)
Dx, Dxi

With application of the Fourier transform pair (1.114), the above equation becomes

D2Ô D2Ó 2kMi+k2dcö(x_y)eT2 "i
Dx Dx,Dx Dx

whose solution, for M < 1, can be obtained from a Prandtl-Glauert transformation. It thus results
that

with k=
C00

exp{ (Mr+ /M+ß2)}
+ fi2

21n acoustics, a standard waw equation describes the propagation of linear acoustic disturbances in a medium at rest.

Gc(x,k;y,r;M) = _e1T (1.120)



where r = Ix - y, M,. = = (x - y) ¡r and fi = Ji - M2 is the Prandtl-Glauert factor. Then,
transforming back to the time domain provides

5(g)Gc(x,t;y,r;M)
41rr/M,,?+/32

r{M+ \/M,?+ß2}

DOC

Dxi

g=tr cß2

with

An integral method described in chapter 7 requires the first and second spatial derivatives of the
Green's function GC. These are given by [75]

{M+ M+fi2 ( rM+ß2) (MTM+fi2i)}âC (1.122)

D20c (MrMi + ß2í.) (MrMj + fi2j) I k2 3k 3

ôxDx M + fi2 i fi4 ß22 + fi2 +
r2 (M + fi2) }

M (MrMj + ß27) + M (MrMj + ß2) I k2 i k

}ifi4ß2r\/M2+ß2

+ MiMi{_+fi2r +fi2 r2(M+ß2)}GC

+ f321 ¡k i

ß22fi2 r2(M+ß2)} oiJÔC

where S-j is the Kronecker symbol.

1.5 The Helmholtz Decomposition

Given an arbitrary differentiable velocity field, there exists a scalar function q called the scalar potential,
and a vector function A called the vector potential, that are such that

Oc

(1.123)

and satisfy the relationship

and

provided that A satisfies the condition

= Vq+V X A

V2=Vv

V2A = -v x y w

VA=O

(1.124)

(1.125)

(1.126)

(1.127)

According to Lamb [14], this result is to be attributed to }lelmholtz and is usually referred to as the
Helmholtz decomposition theorem. It can be noticed that equation (1.127) can always be satisfied by
adding to A an inconsequential irrotational vector field V,7, namely

A'=A+Vi1 (1.128)

such that V2i = -v . A and A' satisfy equation (1.127).
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The Helmholtz decomposition says that a vector velocity field can be decomposed into an irrotational
part vj,.,. and a solenoidal part v1, such that

v5VXA and (1.129)

'tirr = V (1.130)

From equations (1.129) and (1.126) it follows that

v2vs01 = V X w

whereas, from equations (1.125) and from the continuity equation

ap + V. (pv) = O (1.132)

it follows that

pDt (1.133)

Therefore, the dynamics of the vorticity field is described by the solenoidal part of the velocity field, as
stated by equation 1.131, whereas the acoustic aspects of the flow are related to the irrotational part
of the velocity field, as stated by equation 1.133.
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2

Nonlinearity and Modes of Fluctuation

2.1 Introduction
The system of equations (1.69), (1.70) and (1.71) governs the behaviour of a viscous heat-conducting
compressible gas.

A typical approach in fluid dynamics consists in interpreting the behaviour of a fluid as a superpo-
sition of distinct modes, whose evolution involves special quantities referred to as invariants. Because
of the nonlinear character of the governing equations, only in a few special cases the system can be
diagonalized, allowing the modes to be separated. Therefore, nonlinearity provides the interaction
mechanism between the modes of fluctuation.

By expanding a disturbance field in powers of a given amplitude parameter, three modes of fluc-
tuation can be distinguished. These are referred to as the vorticity mode, the entropic mode and the
acoustic mode. The vorticity mode governs the behaviour of an incompressible turbulent flow, the
entropic mode governs the heat transfer dynamics in a low speed flow, the acoustic mode governs the
propagation of acoustic disturbances.

Chu & Kovásznay [76] proposed a perturbation method in order to reduce the system of governing
equations to a set of differential equations for equal order quantities, arranged in a recursive structure
where the lower order terms appear as combined source terms in the higher order equations.

2.2 A Perturbative Expansion of the Navier-Stokes Equations
The expansion of the fluctuating field in a perturbation series requires the definition of an amplitude
control parameter a. This can be chosen as the maximum relative perturbation of a scalar flow variable.
Thus, considering an arbitrary small space/time domain V and supposing that the flow properties are
continuous within V, provides the definition

a 1fo
(2.1)

where f is a generic scalar variable anti fo is its mean value within the volume V. The value of a
is controlled by the size of the domain D, inside which f can be expanded in a power series of a.
Therefore, the flow variables can be written as

where the reference system has been supposed to translate at the mean flow velocity.
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p = (2.3)

= (2.4)



8p(n) DS(n) (n)

--- PO

Consider the continuity equation (1.62). Expanding p and y as in equations (2.3) and (2.4) yields

Ov' Op2 ¿(2)
(1)+po +- +po +p =rh+o(a2) (2.5)

This equation can be split into the following equations for equal order terms

a +po rnt
ap2 av2+po =_(l)_ +o(a2)

It can be observed that these two equations have the same constitutive form and differ oniy for their
source terms at the right-hand sides. Therefore, they can be written as

+po- (2.8)

where F' = ri, whereas F2 accounts for the nonlinear terms of the starting equation and depends
only on the flow variables at their lower order.

By supposing that the dynamic viscosity i and the heat conductivity k are monotonic functions of
the temperature, the perturbation method can be applied to the entire system of governing equations,
leading to the following equations

n)
+ y . v() = (2.9)

Po

3y(n)
+ Vp ¡t0V2v poV (y . =

8S(n)
k V2T -Rat °

p(n) p(n) (n)
=

Po Po T0

8(n) ', T(') p(n) (n)
R y-1T0 Po

where F' = h, F' = pof, F1 = c, F' =0 and F' = 0.
Equations (2.12) and (2.13) can be used to eliminate p(fl) and Furthermore, the hypothesis of

constant Prandtl number Pr = a c,/k 3/4 can be invoked to eliminate one of the fluid parameters.
Introducing the dimensionless variables p(n) = p(fl)/yp0 and 8(n) = S(')/c, the recursive governing

equations take the form

(2.14)

Dir(n)
+ yp) - - y (y . v)) f(n) (2.15)

4 4
(n)

(2.16)- i0VS vo(y 1)V2P(72)
= pocTo

where ¡Lo = '-'o/po is the mean kinematic viscosity, c0 is the mean speed of sound and

= rh, f(') = f, = (2.17)
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The second order source terms, as shown by Chu & Kovásznay [76], are given by

v (i v(')) + y. (s(') v(i))

la-ii a+
2

((i) p(i)) + (s(1) S(1))

(s(1) p(i)) + o(a2)

?' + (1)

(v(1)
y) (1) 3 8 1í()

. vi V.v(1))

+
{' (a(')

+ } + o(a2)a Po axi )
(2)

7p(') as' ((') V (')
p0c,To

</(1) (s(1) + (y 1)P(1))}
' Po

+
zio ( e' e' 4

(2)

Po

f(2)Ji

2_.voVS=(7_1)voV2P+p,T
where

(2.18)

(2.19)

2 y 1
VOy2 (p' p(') 2'yP(') (1) s(1) s(i)) + o(a2) (2.20)3'y y i

From equations (2.14), (2.15) and (2.16), dropping the superscript (n), the following modal evolution
laws can be obtained

_v0v2=vxf (2.21)

i 1a 4 2"m f+8(i a2p _2_ (V?)
3 1 Po 8POCPTO)}(222)--zioV )--v.

(2.23)

aì=Vxv (2.24)

is the vorticity field.
The modal-order decomposition enlightens the mechanisms according to which the generalized

source terms th, f and Q affect the modal dynamics. Moreover, these source terms can be interpreted
as nonlinear terms generated by the interaction between the flow modes at their lower order.

Equation (2.21) shows that the vorticity mode is generated by rotational body forces. This mode
has a parabolic structure and governs the behaviour of a viscous incompressible fluid. Equation (2.23)
relates the entropic mode generation to heat additions. The entropic mode is of parabolic nature and
affects the heat transfer dynamics in a fluid. Equation (2.22) enlightens the hyperbolic structure of the
sound mode. This is generated by mass injections, non-solenoidal body forces and heat additions. The
sound mode is of main concern in acoustics and in compressible fluid theories.

In equation (2.23) S can be split in order to further separate the entropic niode from the sound
mode. Thus, setting S = S + S and P = P, yields

voVSp = (y 1)voV27' and (2.25)
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as5 4 2-;;--- - - VØ V 53 =at 3 pocTo

C'Vxv =

V X = 0,

V X = 0,

Vv =0
Vv,'= p(l)(l) rh+-

at at

= exp(ikçì.xvokt)
(1) kx1

=
k2

exp ( k1 x "o k t)
cl

Pexpk.xct)
k C0

P exp ( k x c t)c - u0 k

2(y-1) vokp(
et)(1)

= cuok
I

12 vokc=cok 7 i
(2uokp

]}\3 co J

2

(2.26)

Equation (2.25) describes the thermal effects generated by the sound mode, and equation (2.26) de-
scribes the production, convection and diffusion of heat spots in a heat-conducting fluid, namely, the
entropie mode of fluctuation.

Consider now the second order source terms (2.18), (2.19) and (2.20), and set = 1 and v(1) =
v) + + From equations (2.14) and (2.24) it follows that

(2.29)

Splitting the second order interaction terms in (2.18), (2.19) and (2.20) according to their modal
nature, it formally results that

where each nonlinear term can be obtained by considering the first order equations (2.21), (2.22), (2.25)
and (2.26).

In free space the basic modes of fluctuation are independent from each other. Hence, analytical
solutions of equations (2.21), (2.22), (2.25) and (2.26) can be obtained as superposition of Fourier
components. Suppose that the space/time domain D does not include any solid boundary. Then set
th, f and Q equal to zero. The Fourier components of the vorticity, acoustic and entropie niode are
respectively given by

where kç1 is the wavenumber vector satisfying the requirement kcl . = 0, and ì denotes the amplitude
of the vorticity mode. For the acoustic mode

where P is the complex amplitude of the pressure disturbance, k is the acoustic wavenumber vector,
is the entropy generated by the viscous damping of the acoustic wave, and

(2.38)

(2.27)

(2.28)

(2) = (2.30)
(2) = (2.31)
(2) = (2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)



is a complex number whose real part gives the rate of viscous damping of the acoustic fluctuation and
the imaginary part gives the frequency of the oscillating sound mode. Finally, for the entropic mode

where S is the complex amplitude of the entropy disturbance and k5 is the entropy wavenumber vector.
Suppose that the amplitude of k1, k and k5 are of the same order of magnitude. Then let k

indicate the largest one. The reciprocal of a wavenumber provides the length scale A of a fluctuating
field, therefore a dimensionless parameter can be defined as the ratio between A and the medium
reference length i. Letting I vo/co be the mean free molecular path, the parameter denotes the
characteristic Knudsen number of the fluctuating field and is given by

The length parameter f, together with the amplitude parameter a, can be used to estimate the
relative magnitude of the various interaction terms in equations (2.18), (2.19) and (2.20). Furthermore,
by applying a dimensional analysis to the first order homogeneous form of equations (2.21), (2.22),
(2.25) and (2.26), it results that

at
c k a

4 a82?(1)
- c V2P1 - VO (V21)) = ü

at2
cka cgka ecka

= O-- 3

c0k3a cc0 k5a

where the following orders of magnitude have been supposed

p(l) = O(a)
(9(a)

= O(a CO k)

=O(k)
Dx
5(i)

= O(co k)at
8(v)

= O(ccok)
at

which further yield

V0 k

CO
(2.41)

(2.48)

(2.49)

(2.50)

(2.51)

the inertial time reference is (cok) (2.52)

the viscous time reference is (e CO k)1 (2.53)

= O(cok) from equations (2.48) and (2.36) (2.54)
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Vo V1 = o (2.42)

e c k a (2.43)

= s exp (ik5 . x - vo k t) (2.39)

1) ivoksS exp (k5 X vokt) (2.40)

(2.44)

(2.45)

(2.46)

(2.47)



where equation (2.58) states the Taylor hypothesis of vorticity frozen convection, equation (2.60) de-
scribes a similar behaviour for heat spots, and equation (2.59) is a wave equation describing the prop-
agation of pressure disturbances in a homogeneous medium at rest.

The dimensional analysis can be applied to the second order source terms (2), f(2) and Q(2).

Consider the mass injection term, whose modal components are split into bilateral interaction terms,
as in equation (2.30). From equation (2.18) it follows that

= V. (i'w v,1)) + y. (si') v,1))
'Po )

c0ka2 c0ka2

-yi a
+

2 at
((i) p(i)) + : -- (8(1) sf,'))

2 Dt P

c0ka2 ec0kct2

la's) pCi)) + o(a2)

E co k a2

(
= _v. (pCi) )) + V. (Sii) 4)) +

Po J

c0ka2 c0ka2

(- = y. (p1)y1)) + V. (si') v1))
PO/ps

1c0a2

+v (S1) v,1)) + Sr))

coa2 c0ka2

(2.61)

(2.62)

= o ( CO a E) from equations (2.49) and (2.40) (2.56)

v O(co k) from equations (2.50) and (2.34) (2.57)

For a vanishing e, the above order analysis leads to the zero order approximation

(2.58)
at

=0

2 (2.59)
at2

coV273' =0

(2.60)

ia (pry) s)) + o(a2) (2.63)

o ( a e) from equations (2.48) and (2.37) (2.55)
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(! =0
\Po J

(
'PoJ 1s

(\
'\po)ss

c0 k a2

(S1) )) + o(a2)

C k a2

(2.64)

(2.65)

- _p1) . y (v,1) .(i)) + O(ca2)- St 2

= -v (v1Ç') . + v2Çl) X
-(1) + (9(c a2)

+ O(a2)f3=S5 ---
f12ç1 = ()

. y) v

= O(ea2)
= O(a2)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

= y. (sr) v1)) + (s(') S1)) + o(a2) (2.66)

ec0ka2 c0ka2

where the time derivative reference scale has been supposed to depend on the corresponding flow
quantity, that is

a a(i)- (.FÇ) = (J,g) (2.67)

a 5(i)
(TÇ) () (2.68)

a a(v)
(.FÇ) = - (F3 g3) (2.69)

By supposing that c < a, terms of order c a2 can be absorbed by the truncation error and the
bilateral interaction terms take the following expressions

- 1 5 (p(1) p(i)\ + O(f a2) (2.70)poV (p,1) vi,')) + Po
2 St . ' '

= po V. ((i) )) + (9(e a2) (2.71)

1)

rh3=p0V. (S')v')) +pS1) +O(a2) (2.72)

= 0 (2.73)

7hç15p0V. (s1)v) +O(fa2) (2.74)

= (9(a2) (2.75)

Analogous considerations for f(2) and (2) lead to [76}



274 CHAPTER 2. NONLINEARITY AND MODES OF FLUCTUATION

2.3 Physics of Modal Bilateral Interaction
The nonlinearity of fluid motion in a region sufficiently far from solid boundaries has been systematically
investigated following the analysis of Chu & Kovásznay [76]. All the bilateral interaction terms have
been identified and classified as generalized mass injections, body forces and heat additions. The
analysis described in this chapter culminates in the physical interpretation of the bilateral interaction
terms.

Consider the second order vorticity mode. It is generated by rotational body forces, as described
by the parabolic equation

at
- zíV214 = V X f(2) =

pp
p

pIs

(2)

- c y2'p2) -
at2

(a
40V2!2

at 3 )Po

(9(a2)

(1) acl' e(I) av1
V

a
(1)

x y') x
at

(1) acì(1)
+ c114')- 1i

a a + O(c a2)

O(ca2)
(.9(Ea2)

-Yl/o (i') =

a / (2)

V-f2+
pocTo)

The sound self-interaction, the vorticity-entropy bilateral interaction and the entropy self-interaction
do not excite the vorticity mode. The sound-vorticity bilateral interaction provides the mechanisms of
both the vorticity convection and the stretching of vortex tubes. The sound-entropy bilateral interaction
generates vorticity when a pressure force is exerted on a fluid particle whose mass distribution is not
uniform. In fact, the resulting torque induces an angular acceleration on the fluid particle. The vorticity
self-interaction accounts for the vorticity self-convection. This nonlinear mechanism is of fundamental
importance in the dynamics of turbulence.

Consider the second order acoustic mode. It is generated by mass injections, body forces and heat
additions, as described by the hyperbolic equation

and

= a2) (2.82)

= a2) (2.83)

= (.(i)
. y) + O(a2) (2.84)

= O(a2) (2.85)

= () . y) s' + O( a2) (2.86)

= O(ea2) (2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)



p4:p aa ((1)
(1)v vpj ) + c V2 (p(i) p(i))

- i 0 (p(1) p(i)) + O(ea2) (2.94)28t2P
02 /i (1) (1) 2p','IZ 2 vç v )+O(Ecx ) (2.95)

(./Xj(.JX3

1 82
p 4: S

Po c,,, T0 )0x
(1) v(')) (2.96)

ô (v1)vçìj1)) (2.97)axiaxi
fI s O( a2) (2.98)

s s s O(a2) (2.99)

The vorticity-entropy bilateral interaction and the entropy self-interaction do not excite the sound
mode. The sound self-interaction accounts for the scattering of an acoustic wave by the sound field. In-
tegration of this term over the entire flow field, with the assumption of vanishing disturbances at infinity,
gives a nonzero result. As a consequence, the acoustic self interaction has a secondary source nature.
The sound-vorticity bilateral interaction provides a sound scattering mechanism. The sound-entropy
bilateral interaction accounts for the sound scattering by heat spots. The vorticity self-interaction is a
source of acoustic disturbances. The latter result is at the basis of Lighthill's theory of aerodynamic
sound.

Finally, consider the second order entropic mode. It is generated by heat additions, as described by
the parabolic equation

1./LI3
.(2)

v0V2S2)
(2)

81 pocTo

pp O(a2) (2.100)

p fi O(a2) (2.101)

_pOcToVPi (2.102)

(9(Ea2) (2.103)

i as8(')
fi < s - vç / - (2.104)

po c T0 8x

s s O(ca2) (2.105)

The sound self-interaction, the soimd-vorticity bilateral interaction, the vorticity self-interaction and
the entropy self-interaction do not excite the entropic mode. The sound-entropy bilateral interaction
accounts for the convection of heat spots by acoustic waves. The sound-vorticity bilateral interaction
describes the convection of heat spots by vorticity fluctuations.
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3

The Pressure Field at the Wall of a Turbulent
Boundary-Layer

3.1 Introduction

The statistical properties of the wall-pressure fluctuations beneath a turbulent boundary-layer are of
great interest in fluid mechanics. Their description has a fundamental importance in several engineering
problems, such as:

the aerodynamic noise radiated by a turbulent boundary-layer adjacent to rigid or compliant
surfaces'.

The aircraft cabin noise caused by the vibrations induced by an external turbulent flow on the
fuselage panels2.

The conversion of a hydrodynamic pressure fluctuations into acoustic waves in the presence of
geometrical singularities, e.g. edges. The model problem of a half-plane wetted by a turbulent
flow is comnionly investigated3.

The trailing edge noise4.

The flow noise generated on the surface of a sonar transducer mounted on submarines and ships5.

Moreover, a great deal of interest has been devoted to a theoretical investigation of the wall-pressure
statistical behaviour. This represents an effective way to explore the structure of a turbulent boundary-
layer6

Earlier experimental measurements of wall-pressure fluctuations beneath various turbulent shear
flows7 showed that the pressure fluctuations are convected at approximately the velocity 0.81 U, and
naturally decay after traveling a distance of few boundary-layer thicknesses.

In 1952 Lin [98] argued that, since both the mean shear gradients and the intensity of the flow
fluctuations are high in a turbulent boundary-layer, there exists no a single velocity at which all the
elementary pressure disturbances are convected. The frozen convection hypothesis introduced by Taylor

'Powell [77], Ffowcs Williams [78], Guo et al. [79]
2Craham [80]
3Chase [81], Chandiramani [82], Chase [83]
4Howe [84], Brooks & Hodgson [85], Howe [86]
5Haddle & Shuidrzyk [87]
6Shubert & Corcos [88], Landahl [89]
7Laufer [90], \Villmnarth [91], Harrison [92], \Villmarth [93], Lilley & Hodgson [94], Bull & Willis [95], Kistler & Chen

[96], Corcos [97]
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was thus considered too restrictive and more exhaustive models8 were developed on the basis of two-
point wall pressure statistical measurements9.

The experimental results obtained by Willmarth & Woidridge [106] showed that the convection ve-
locity of turbulent eddies in a boundary-layer depends on the distance between the pressure transducers.
It was observed to vary between 0.56 U at zero separation, and 0.83 U at very large transducer sepa-
rations. Such a variation was recognized to be a consequence of the fact that larger eddies are convected
faster. In fact, at smaller transducer distances the correlation is dominated by small-scale-eddies which
are closer to the wall and move more slowly. Conversely, since the period of decay of a convected
disturbance increases with the eddy size, at larger transducer distances the correlation is dominated by
large-scale eddies which are farther from the wall and move faster.

Willmarth & Woidridge attempted to relate directly the convection velocity and the eddy size by
measuring the space-time wall pressure correlation into two filtered bands of low (300 Hz < f < 700 Hz,
0.41 <wcY*/U <0.95) and high frequency (3000 Hz < f < 5000 Hz, 4.1 <w5*/lJ < 6.8). Again,
they observed a convection velocity increasing with the transducer separation distance and attributed
this result to a not sufficiently narrow bandwidth of the frequency filtering. However, as pointed-out
by Wills [107], a frequency filtering cannot distinguish between eddies of large wavelength moving
faster, and eddies of smaller wavelength moving more slowly. A turbulent pressure field is indeed
characterized by an energy distribution over a range of wavenumber k, and a phase velocity distribution
c w/k. Therefore, a frequency filtering isolates those fluctuations for which the product between
the wavenumber and the phase-velocity is a constant.

Wills [107] measured the wall pressure wavenumber/phase-velocity spectrum for a two-dimensional
turbulent boundary-layer in zero pressure gradient and defined the convection velocity as the peak-
energy velocity at constant wavenumber. The convection velocity was thus observed to vary from a
maximum of about 0.9 U at a value of k 6995 = 1.2, to an asyxnptotical value of 0.55 U at higher
values of k 6995. These results confirmed that the largest eddies extend over the whole width of the
boundary-layer and are convected at the typical outer layer velocity, whereas eddies of smaller size
are closer to the wall and move at lower velocities. Furthermore, Wills observed that the convection
velocity decreases at very low wavenulnbers and attributed this behaviour to the inaccuracy of the
experimental results at frequencies less than 200 Hz.

3.2 Wall Pressure Wavenumber-Frequency Spectrum

In 1964 Coreos developed a model for the wall pressure wavenumber-frequency spectrum on the basis
of the experimental results obtained by Willmarth & Woldridge's [106]. He showed that the space-
time covariance of the fluctuating pressure and the corresponding spectrum at the wall of a turbulent
boundary-layer can be described in terms of similarity variables. These are based on an appropriate
choice of some dimensionless parameters which reduce the dispersion of the experimental data. For
example, if the root-mean-square pressure at the wall of a pipe is made dimensionless by the wall mean
shear stress, it exhibits a negligible dependence on the Reynolds number.

Coreos' paper is composed of two parts. The first deals with the convective properties of a turbulent
boundary-layer, based on the experimental data of Willmarth & Woidridge [106]. In the second part a
theoretical model of the wall-pressure field is developed. This is based on a non-homogeneous Poisson
equation obtained from the continuity and linear momentum equations for an incompressible flow.

Starting from Kraichnan's [108] milestone work, most of the earlier works on the wall pressure sta-
tistical behaviour were concerned with the incompressible flow regime. A review of all these works was
made by Wilhnarth [109]. Ffowcs Williams [78] was the first to consider the effect of fluid compressibil-

8Corcos [99], Bergeron [100], Chase [101], Ffowcs Williams [102], Efimtsov [103], Chase [104], Smol'Yakov & Tkachenko
[105]

9Bull & \Villis [951, \Villmarth & Woidridge [106], \ViIls [107]



ity. He showed that the supersonic spectral elements (w/k > e, i.e. low wavenumber spectral elements)
are strongly affected by the fluid compressibility and that the wall pressure wavenumber-frequency
spectrum exhibits a singularity at the sonic phase speed. As demonstrated later on by Bergeron [100],
such a non-integrable singularity is related to a two-dimensional form of Olbers' paradox: each element
of an unbounded turbulent region generates acoustic disturbances which do not decrease rapidly enough
with the distance for their integrated effect to be finite. Conversely, if the source region is supposed to
have a finite extention, the singularity becomes integrable. Howe [1 10] interpreted the surface pressure
wavenumber-frequency spectrum singularity as the response of a linear system excited at resonance:
sound waves propagate parallel to the wall and are continuously enforced by turbulent elements of
acoustic wavenumber. He showed that, accounting for the shear stress fluctuations, the wall pressure
wavenumber-frequency spectrum does not exhibit the singular behaviour observed by Bergeron. Howe
argued that the viscosity of the fluid controls the intensity of the peak at the critical wavenumber
k = IwI/c. Furthermore, the shear stress fluctuations have the effect of diminishing the overall radiated
acoustic intensity.

Ffowcs Williams [102] extended the Coreos similarity model in order to account for the compress-
ibility effects at low wavenumbers. Moreover, he scrutinized the origin of the singularity at the acoustic
coincidence frequency showing that, if the turbulent region is supposed to extent only over a large
boundary-layer disk of radius R, the surface pressure wavenumber-frequency spectrum diverges loga-
rithmically as the turbulent layer scale factor R/ö becomes infinitely large.

Dowling [1 1 1] applied Lighthill's acoustic analogy approach in order to determine the flow noise
radiated by a turbulent boundary-layer over a planar flexible surface. He noticed an analogy between
the sound generated by turbulence and equivalent sources placed between a surface with the same
characteristics of the physical surface and a vortex-sheet along the outer region of the boundary-
layer. The singularity at the acoustic coincidence frequency of the wall pressure wavenumber-frequency
spectrum was recovered but only for rigid surface and for downstream-propagating elements. Therefore,
Dowling concluded that the mean shear profile restraints the acoustic singularity for all the upstream-
propagating modes.

The interest in the subconvective domain of the wall pressure wavenuinber-frequency spectrum is
due to the dominant contribution that low-wavenumber spectral elements give to the flow noise in
both individual and array sensors for underwater acoustic applications. In fact, the higher intensity
disturbances in the convective domain can be easily damped by a spatial filtering, namely, an area-
averaging as suggested by Phillips' [112] theoretical results. However, a wavevector filtering generates
a series of aliased lobes among which the greatest one is centered in the acoustic window k <w/c and
cannot be suppressed by adopting array sensors.

Chase & Noiseux [113] described the turbulent wall pressure wavenumber-frequency spectrum at
low wavenumbers, both in planar and cylindrical flows. They expanded the nonlinear source terms in
powers of the parameter Uk/w and M. The planar case was a generalization of Bergeron's [100]
result to a domain where the wavenumber does not require to be small with respect to the reciprocal
of the boundary-layer thickness. The wall pressure wavenumber-frequency spectrum was shown to be
singular at the acoustic wavenumber. However, if a slight compressibility is introduced in the analysis,
the singularity takes a logarithmic integrable character.

In 1987 Chase [104] reexamined the structure of the wavenumber-frequency spectrum of the wall
pressure fluctuations beneath a turbulent boundary-layer adjacent to a smooth rigid plane in the whole
wavenumber domain. He demonstrated that the k2 law stated by the Phillips-Kraichnan theorem ([112],
[108], [114]) is well fitted only in the interval w/c < k < 8'.

In the following sections the models proposed by Corcos, Landahi, Shubert & Corcos, Ffowcs
Williams and Chase are discussed in order to provide a comprehensive description of the wavenumber-
frequency spectrum of the wall pressure fluctuations beneath a turbulent boundary-layer.

32. WALL PRESSURE WAVENUMBER-FREQUENCY SPECTRUM 279
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3.3 Corcos' Similarity Model

Coreos' analysis is substantially based on the individuation of an appropriate set of reference quantities
for a turbulent boundary-layer. The reference velocity in the outer region of the boundary-layer is the
free-stream velocity U, while the friction velocity u,- = can be used both in the outer and
the inner region. The reference lengths are the boundary-layer thickness 6 in the outer region, and the
displacement thickness 5* in the inner region. The wall pressure frequency spectrum is finally made
dimensionless by the quantity q26*/U, where q denotes the mean flow dynamic pressure.

Let us define the wall-pressure power spectral density as the Fourier transform of the time correlation
R.(0,0,r), namely

(w) =f R.(0,0,r)cos(wT) dT (3.1)

The space-time correlation R. is given by

R. (e,'i, T) p (x, z, t) p (z + , z + , t + r) (3.2)

where and i denote the streamwise and the transversal transducer separation, respectively, T 5 the
time delay and overbar denotes ensemble average.

Willmarth & Woldridge [106] measured the fluctuating pressure upon a planar surface (x, z) beneath
a boundary-layer with natural transition. They used pressure transducers with a resolution r/5
0.0193. The dimensionless spectrum (w) U00/q2 6*, measured at two values of the free-stream velocity,
say U00 = 47.6 rn/s and U00 = 62.8 rn/s, were observed to be coincident at Strouhal number w 6*/U00
greater than 0.14. Conversely, at lower values of the Strouhal number, the dimensionless spectra were
observed to not be repeatable. This was attributed to the presence of extraneous pressure contributions,
probably due to secondary flows and incoming acoustic waves.

The second step towards the Coreos' wall pressure model consists in a description of the convective
properties of the pressure field.

As observed by Favre et al. [115], the statistical properties of a turbulent boundary-layer have a
minimum of variation when measured in a reference frame moving downstream at a speed depending
on the distance from the wall. Furthermore, at small values of the transversal transducer separation
mj, the space-time correlation function of the fluctuating streamwise velocity u peaks at values (,T) for
which the quantity /r = U is approximately constant. Therefore, U can be interpreted as an eddy
convection velocity.

In Fig.3.1 the longitudinal space-time correlation function (, T) S plotted as a function of the
dimensionless time delay U0r/6 at two values of y/ö, say y/ö = 0.06 and y/6 = 0.24. The envelopes
of the peaks of maximum velocity correlation show that, closer to the wall (y/ö = 0.06), decays
more rapidly than at a greater distance (y/S = 0.24). A similar qualitative behaviour was observed by
Willmarth & Woldridge [106] for the pressure space-time correlation in low and high frequency bands.
As shown in Fig.3.2, the correlation decays more rapidly in the higher frequency band.

Let us indicate as F(C, i, w) the wall pressure cross-spectral density, namely, the Fourier transform
of the wall pressure space-time correlation function R., that is

= f+00
expo wT)R.(C,77,r) (IT (3.3)

and
i f.+00

1
f00

r) = / exp(i wT) F(C, m/, w) dw = - / FI cos(wT - a) dw (3.4)irj0
where F = I exp(i a).
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FIGURE 3.1: Space-time correlation of longitudinal velocity fluctuations y1 at two distances y2/6 from
the wall. denotes the streamwise separation distance (after Corcos [99], figure 5).

The cross-spectral density at zero separation provides the power spectral density (w) which can
be used to make FI dimensionless. Thus, for the streamwise correlation, it results that

IF(,0,w)I
(w)

where the damping function A, as experimentally observed by Wilhnarth & Woidridge [106], Corcos
[97] and Bakewell et al. [116], is approximately a function of tile dimensionless variable w /U only.

Consider now two transducers separated by the streamwise distance c and measuring a harmonic
disturbance convected at the velocity U, namely

Pi (1) = P1 P2 (t) = p2 e1w(t_t) (3.6)

The correlation function between these pressure signals is

(r)=PiP2cos(wr_) (3.7)

By analogy with equation (3.4) the argument of the cross-spectral density is given by a = w
Hence, a can be used to define an average convection velocity U(w,).

Both the magnitude and the phase of the wall pressure cross-spectral density are function of the
quantity w /U which can be assuliled as a similarity variable. It thus follows that

F(,0.w) = w)A(j) exP(i J) (3.8)

The damping function A can be interpreted as the convective memory of a vortical disturbance,
whereas the similarity variable w e/Uf is related to the ratio between the transducer distance and the
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FIGURE 3.2: Peaks of the longitudinal space-time correlation of wall pressure fluctuations in a low
and high frequency band. 300 Hz < f < 700 Hz,0.41 < wö*/U < 0.95, ----3000 Hz < f <
5000 Hz, 4.1 <wS*/U <6.8 (after Willmarth & Woidridge [106], figure 9).

eddy size A. In fact, letting A = Ut/f denote the wavelength'0 of the convected pressure disturbance
yields

Thus, the similarity rule (3.8) is physically consistent with the assumption of an eddy decay which is
proportional to the eddy size, but that is not affected by the characteristic frequency of the flow Uc/5*.
As shown in Fig.3.3, the structure of an eddy convected in a turbulent boundary-layer is corrupted
after traveling a distance of approximately 6 vortical wavelengths.
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'°The wavelength of a vortical disturbance is a measure of the eddy size.

(3.9)

4 8 12 16 20 24 28 32 36

FIGURE 3.3: Amplitude of the longitudinal cross-spectral density in a boundary-layer. A wY*/U =
5.00, o wä*/U = 0.68 (after Corcos [99], figure 6).
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The same analysis for the transversal correlation yields

F(0,ij,w) = (w)B () (3.10)

where the quantity w rì/U plays the role of transversal similarity variable, as shown by the measurements
made by Willmarth & Woldridge [106] and Bakewell et al. [116]. Concluding, the wall pressure cross-
spectral density takes the Corcos' similarity form

(w\ (w\ I w\= (w)A B -ù-) expy -ù-) (3.11)

The convection velocity U, as measured by Willmarth & Woldridge [106], is a decreasing function
of w ö/U and an increasing function of /ö (see Fig.3.4). It should be defined as the velocity of
the reference frame in which the rate of decay of the pressure correlation is minimum. Equivalently,
its value is given by the slope, in a (, r)-plane, of the locus of points of the longitudinal correlation
contours fl. (, 0, r) which have the greatest value of -r (see Fig.3.5).

10

and

08

0-2

00

p(x,z,t) =p(xUt,z,0)

RT (0,0, r) = p(x, z, t) p(x, z, t + r) = l?T (Ut-r, 0,0)

From equation (3.12) it follows that

(3.13)

(3.14)

i roo
fl.(0,0,r) = - I E(w)cos(wr) clw (3.15)

Jo

'I(w)A (J) cos(}i) dw (3.16)

4 8 12 16 20 24 28 32 36 40

FIGURE 3.4: Local eddy convection velocity for various frequency bands. o, 300 lIz < f < 700 Hz,
0.41 <w8*/U < 0.95; ., 3000 Hz < f < 5000 Hz, 4.1 < w5t/U < 6.8; A, 105 Hz < f < 10000 Hz,
0.14 <wö*/U < 13.6 (after Willmarth & Woidridge [106], figure 8).

The similarity hypothesis leading to the space-time correlation

R(e,0,r) = 2:.f(w)A (J) cos(wr_ dw (3.12)

can be compared with the Taylor's frozen convection hypothesis, which says
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and

R. (ucr, 0,0) =
-- f (w) A(w r) cos(w r) dw (3.17)ir0

Therefore, the frozen convection hypothesis (3.14) is equivalent to suppose that no damping effect
occurs, that is A(w r) = 1 in equation (3.17). Numerically, the difference between R. (0, 0, r) and
R. (Ur, 0,0) is very small because the damping function A is close to unity at combined values of
and w for which both R. (, 0,0) and (w) are not negligible.

The departure from Taylor's hypothesis was attributed by Corcos to the dispersive effect of the mean
velocity gradient on the pressure disturbances convected in the boundary-layer. Such a mechanism can
be described by means of a simple model based on a Poisson equation for the fluctuating pressure.

Consider an incompressible, statistically stationary turbulent flow, which satisfies the continuity
equation

V.v=0 (3.18)

and the linear momentum equation

8v 1
- + v Vv + Vp = v0V2v

PO

Taking the divergence of equation (3.19) yields

82p 82 (vjvj)- PO

Then, by subtraction of the averaged part, the following Poisson equation
can be obtained

au Ov 822Po---- po- (vv -
where the averaged quantities are defined as

i rto+T
U (x) hin - / y (x, t) dt (3.22)Too T it0

A formal solution of equation (3.21) can be found by letting its right-hand side be a given scalar
function X (x, t) and by setting the appropriate boundary conditions for p'. At the outer limit of the
boundary-layer the fluctuating pressure can be assumed to vanish, whereas on the rigid planar surface
the pressure caxi be supposed to have a zero normal derivative. The zero normal derivative condition is
rigorous only for a steady boundary-layer. However, as shown by Lilley & Hodgson [94] by comparing
the inertial terni Po v8v/Oxj to the root-mean-square of the normal derivative of p', in the absence
of a mean pressure gradient the zero normal derivative approximation affects the solution of equation
(3.19) only negligibly. Hence, the formal solution of equation (3.21) with the auxiliary conditions

(p') = 0 (3.23)
X2 -OO

(ap'/ax2)0 = 0 (3.24)

is
i f X (y, t)

da(y) (3.25)p'(x,t)20
= jyzo X-

The two-point wall pressure correlation at a longitudinal distance is

(3.19)

(3.20)

for the fluctuating pressure

(3.21)

1

L>OJ
X(y,L)X(y',t+r)R(,0,r) = da(y) do'(y') (3.26)

- ;o IyIIy'iI



where Î is the unit vector in the downstream direction. The time average in equation (3.26) can be
written as

X(y,t)X(y',t+r) = um / X(y,t)X(y',t+-r) dt
T-+oo T Jt0

/
um - / X(y, t) X (y + q i U(y2) r,t) dt (3.27)Tco T Jt0

where q = y' y and where use of the frozen convection approximation

X(y',t+T) X(y' ÎU(y2) r, t) (3.28)

has been made.
If the source distribution X (y, t) is supposed to be perfectly correlated in the reference frame

translating at the speed U (y2), then the averaged term (3.27) has the following form

X (y,t) X (y',t + r) = pg M'2 (Y2) ö(qi - (Jar) S(q) ö(q3) A1)2À3 (3.29)

where ) are three length scales of the source term and M' (Y2) is the source intensity. By substituting
expression (3.29) into equation (3.26) and by integrating with respect to q, the longitudinal correlation
function becomes

2 r AÁ/2\Po"1"3 f "2
2

'1y2° IYIIY+Ucr-1I
This simple model for the wall pressure correlation shows the effect of a variation of the mean flow
velocity on the convective coherence loss of the wall pressure field. The effective value of jy+i U ri.,
with U being an increasing function of y2, is always greater than the value corresponding to an average
value of the convective velocity. Therefore, the correlation decreases with increasing more rapidly
than what it should do according to a frozen convection model.

da (y) (3.30)

3.3. Corcos' SIMILARITY MODEL 285
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FIGURE 3.5: Contour map of the longitudinal space-time wall pressure correlation. The envelop heavy
line represents the trajectory of a reference frame in which the rate of decay of the pressure correlation
is minimum (after Willmarth & Woidridge [106], figure 7).
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3.3.1 Wavenumber/Phase-Velocity Spectrum

The double Fourier transform of the wall pressure correlation with respect to space and time leads to
the definition of the wavenumber-frequency spectrum, namely

E(k,,0,w)
= if (,O,r) exp(i ki)exp(i wr) dC dr (3.31)

-00

Following Wills [107], a phase-velocity can be defined as c = w/ki and a change of variable allows to
translate the function E (k1, w) into the wavenumber/phase-velocity spectrum M (k,, c). This function
is particularly appropriate for describing a convected turbulent flow, because it gives the distribution
of energy over a range of phase-velocity for each wavenumber. The convection velocity U (k1) is thus
defined as the velocity at which, for each value of k,, the energy peaks satisfy the condition

(M(ki,c)) = 0 (3.32)
C c=U(ki)

Wills [107] observed that the convection velocity decreases as the wavenumber increases, varying
from a maximum value of about 0.9 U00 at k, 5995 = 1.2, to the asymptotic value of 0.55 U00 at k, ögg
higher than 20. This behaviour is a clear consequence of the boundary-layer mean velocity distribution.
However, at values of k, 5995 lower than 1.2, Wills observed an opposite behaviour which he attributed
to a lack of the experimental accuracy at frequencies lower than 200 Hz1'.

From equation (3.31) it follows that

exp(ikiC) exp(iwr) dk,dw (3.33)

and by comparing to equation (3.4) the cross-spectral density takes the form

i f+00
F(C,w)

=
E(k,,w) exp(ikiC) dk, (3.34)

-00

Then, from equation (3.34) and froln Corcos' similarity expression (3.8), the wavenumber-frequency
spectrum takes the form

E(k,,w) = 2 f (w)A(}1) cos(}1 _kiC) dC

and equivalently
- Uc(w)E(l)E(k,,w) -

wi
where 1a = k,U0/w, /3 = wC/U0 and

(3.35)

(3.36)

E0 ( + 1) = 2 f A (/3) cos [(ii + 1) /3] dß (3.37)

Wills [107] proposed the following approximated form

E(k1,w) = (w)F (k1) (3.38)

where U,, is a convection velocity depending on the frequency. Wills' experimental data showed that
the function F (w/k, U) fits the normal distribution

exp {- (w/kiU - 1)2 /o.o4} (3.39)

with a standard deviation of 0.14 U00.

11Bccause of the wall induction effect, the convection velocity of a very large turbulent eddy is indeed a decreasing
function of the eddy size. This could be an interpretation of Wills' experimental results at low wavenumbers.
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3.3.2 Discussion on the Linearizing Assumption

Kraichnan [108] was the first to investigate the nature of the source terms at the right-hand side of the
Poisson equation (3.21). He separated the main contribution resulting from the interaction between the
turbulent fluctuation normal to the wall and the mean shear ÔU1/8y2 from terms that are quadratic in
the turbulent velocity fluctuation and that result from the turbulence self-interaction.

The mean velocity gradient reaches high values in the inner part of the boundary-layer. Thus the
dominant term in equation (3.21) is 2 (8U1/Uy2) (0v/t9y1). On the base of such linearizing assumption
the wall pressure spatial-temporal correlation between two points x and x', with ¿ = - x, is given
by

7?. (, r)
p f f DU1 DU1 5v i9v da (y) da ('

(3.40)
Y2O y>O 0Y2 8Y2 DY1OYi Iyx!Iy x1

By measuring the mean velocity profile and the statistical properties of the fluctuating velocity normal
to the wall, Kraichnan obtained from equation (3.40) a ratio between the wall pressure root-mean-square
(p2)11'2 and the mean wall shear stress r of about 6.

In a similar way Lilley & Hodgson [94] obtained a ratio of about 3, Hodgson [117] measured a ratio
of 2.56 and Lilley [118] observed a variation between 1.7 and 312

Starting from equation (3.21), Corcos [99] wrote the two-point wall pressure correlation in the form

DU1 C(.r) da(y') (3.41)
7r o5YIY xl

where

C(,r) o f DU1DV2DV da(y) =p'(x,t)(y',t')
ir Jo 8Y2 0t/i DYÇ I - xl

The correlation between the fluctuating velocity and the fluctuating wall pressure was measured by
Willmarth & Woldridge [106]. By using their data, Corcos obtained a ratio 112/r,, 1.23.

The discrepancy with the experimental values was related by Corcos to the fact that the linear
source terms, although predominant, contributes only partially to the wall pressure fluctuations which
depend on the neglected nonlinear source terms at a comparable order. Indeed, Willmarth [109] pointed
out that the experimental data of pressure-velocity covariance used by Corcos did not satisfy Phillips'
[53] criterion according to which, if the boundary-layer is homogeneous in planes parallel to the wall,
the surface integral of the covariance over such planes must vanish.

3.4 Landahi's Wave-Guide Model

Landahi [89] investigated the possibility of relating the wall pressure statistical properties to the overall
properties of a mean shear flow. His purpose was twofold:

- to individuate the conditions under which a turbulent field extracts energy from the mean flow;

- to describe the boundary-layer velocity field by means of wall pressure statistical measurements.

Landahi's wave-guide model is based on the solution of an Orr-Sommerfeld problem as a way to
investigate the structure of a turbulent boundary-layer. Interestingly, the Orr-Sommerfeld equation
is not applied to the solution of a stability problem for a laminar boundary-layer, but to describe
the response of a boundary-layer to a turbulent excitation. Later on, the same strategy was used
by Shubert & Corcos [88] who solved a boundary-layer approximation of a non-homogeneous Orr-
Sommerfeld system by means of a convergent power series.

'2These experimental values and others from several authors are collected in Tables (2) and (3) of Ref.[106].

(3.42)



All the theoretical works published before Landahi's analysis were based on the solution of a Poisson
equation for the fluctuating pressure, with terms involving fluctuating stress and mean shear assumed
as known source terms. Kraichnan [108] , Lilley & Hodgson [94] and Corcos [99] underlined the intrinsic
difficulty of this approach in describing the source terms. Corcos, in particular, writing

D2p' DU1 Dv
2 = 2,00 (3.43)

Dz2 D1

neglected all the nonlinear source terms in equation (3.21), but concluded that the mean shear in-
teraction term, though significant, is not the primary contribution to the fluctuating pressure at low
frequencies.

Landahl [89] argued that the stationary random character of a turbulent boundary-layer is a conse-
quence of the superposition of damped waves, namely, modes of a linear eigenvaluc problem where all
the non-linear fluctuating terms behave like forcing terms.

In a turbulent incompressible and statistically shear flow, the fluctuating pressure satisfies the
Poisson equation (3.21). In the shear layer assumption U1 = U (y) and U2 = U3 = O this takes the form

V2p' = _-2p- + poV T (3.44)

where x = (x,y,z), y' (u',v',w') and

where U" = d2U/ dy2 and

q = V2T - (V . T) (3.49)

If q is supposed to be known, equation (3.48) can be solved with the auxiliary conditions that
y' and Dv'/Dy vanish both on the wall and on the outer limit of the boundary-layer. Once y' has
been determined, the fluctuating pressure p' can be calculated by solving equation (3.47). Finally, the
remaining components u' and w' of the fluctuating velocity can be calculated by solving the momentum
equation in the streainwise and spanwise direction, respectively.

TIme disturbance equation (3.48) is linear and its coefficients are function only of the distance y from
the wall. A solution of equation (3.48) can be obtained in terms of separation of variables by using
normal modes to reduce the disturbance equation to an ordinary differential equation. Thus, applying
the generalized Fourier transform

+00

(Ykxkzw)=/ffexP(_kxx_kzz+wt) y'(x,y,z,t) dx dz dt (3.50)

Let us consider the momentum equation for the normal component of the fluctuating velocity

0V 0V 1C1 2'+U=-----+vVv +T
Dt Dx PODY

From equation (3.21) and the y-derivative of equation (3.46) it follows that

D27! 52p' I ( a a \ DV / DV' 2 9v' \ DT DT 1
2 ( +U J---U --iìV _ ++-- (3.47)

Dx Dz 1 \ Dt Dzj Dy Dx Dy j Dx Dz

where U' = dU/ dy. Furthermore, rearranging the Laplacian of equation (3.46) and the y-derivative of
equation (3.21) yields

(-q- + u--) V2v' - U" - vV4v' =\Dt Dzj Dx

(3.45)

(3.46)

3.4. LANDAHL'S WAVE-GUIDE MODEL 289

q (3.48)
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to equation (3.48) provides

(Ukw)Vi3U"ki)+i vVi)=iq
di)

y-+00 (3.51)

where V = d2/ dy2 - k2. Setting w = k c, = -i k (y), and making lengths dimensionless by the
boundary-layer thickness and velocities by the free-stream velocity Uoo, equation (3.51) takes the
form of a non-homogeneous Orr-Sommerfeld equation, i.e.

-(U - c) (qV' - k2) - U"ç5 + kRe 2 k25" + k4 - k k
where k2 = k + k and Re denotes the Reynolds number based on the boundary-layer thickness and
the free-stream velocity.

A formal solution of equation (3.52) can be obtained through an expansion in terms of eigenfunctions
çb(n) of the associated homogeneous problem. For a well-posed eigenvalue problem, there is an infinite set
of discrete eigenvalues and a corresponding infinite discrete set of eigenfunctions. For boundary-layers,
the eigenfunctions are called modes and form a basis for an arbitrary disturbance profile.

If denotes the nth eigenvalue of c for a given set of k, k and Re (real values), a generic solution
of equation (3.52) is given by

kRe (IV2k2n+k4) =0
i - -i i'- -

= A) (n) with
n

1

kxk(cc(')) J
dy

where are the corresponding eigenfunctions for the adjoint problem

y=0
y-300

(3.52)

(3.53)

(3.54)

Disturbances can be classified with respect to their spatial amplification, temporal amplification,
and both spatial and temporal amplification. Solving a spatial problem, w is assumed to be real,
while k and k are assumed to be complex. Their real parts represent the physical wavenumbers of
the disturbances, while their imaginary parts represent the growth or decay rates in the streamwise
and spanwise directions. Solving a temporal problem, k and k are assumed to be real, while w is
assumed to be complex. Finally, solving a both spatial and temporal problem, all the wave parameter
are assumed to be complex.

Let k = be the value of k for which k = w. For a spatial stability problem, a dispersion
relation k = f(k, w, Re) provides the streamwise eigenvalues cm(n) = a + when k, w and Re
are given. The denominator in equation (3.53) can be written as

( (n)\ 1f (n) (n)\ (n) f (n) (n)\ (n))k k c - c ) = k ç1 ik - aR - ¡a1 ) CR + Ia1 - a )
c1 (3.55)

By assuming that the variation of c with k, for a fixed value of w, is small, the variation of equation
(3.55) is proportional to the term k a - i a(') Hence, equation (3.53) has poles near the real axis
of the form (k -



The longitudinal cross-spectral density F is related to the wavenumber-frequency spectrum E by
the Fourier transform

1 +00
F(,w)

=
exp(i k)E(k,w) dk (3.56)

where

E'k \p(kX,u))p(kX,w)
357'. xw1_ö(kx_k:,w_w,)

Equation (3.47) shows a linear dependence between the fluctuating pressure and the fluctuating velocity.
Thus, j3 has poles of the form (k - a(n)) -1, and the cross-spectral density is given by

a(n) - a*(m) exp ( a() (3.58)
n 771

where (n,m) are function of both k and w, which are related to the spectral functions Â() and Â(m)
defined in (3.53). The main contribution to F results from the condition m n, that is

n 2a1

(n,n) (w) (n) (n)
(n) exp(iaR aj i) (3.59)

Finally, accounting for the spanwise fluctuations and considering only the least attenuated mode, the
cross-spectral density takes the form

i f+00 )(°°) (w)

(o)00 2a1

I (o) (o)
CX I a - a1 ei + k277) (1k7 (3.60)

A numerical solution of the homogeneous form of equation (3.52), for given values of w = k c, k7
and Re, provides the eigenvalue a°). However, respect to a classic stability problem for a laminar
boundary-layer, difficulties arise because of:

- the higher value of U" near the wall of a turbulent boundary-layer;

- the larger variation range of the involved parameters. Typical values are kI = 10 100, k =
O - 1000 and Re 5 x iO4 5 x l0.

Landahi assumed a mean velocity profile based on Reichardt's [119] measurements in the wall region
and in the logarithmic region, together with Coles' [120] universal law of the wake, i.e.

= k'ln(l +ky) +-{i - exp(_Çi) - texP(_O.33i»i}

+ l.38{1+sin[(2y±_l)J} (3.61)

where u,- is the friction velocity and y+ = YuT/1'. Adopting the constant values k 0.4, y 7.4 and
= 11.0, Landahl obtained the important result that the modes in a turbulent boundary-layer are

always stable.
In equation (3.60) the main variation of the integrand with k7 is due to j°) Thus, the cross-

spectral density can be approximated as

F (, i,w) q (w) B(77, w) exp(i a - a0j) with
f +00

B(i1,w) = - J
(k7)exp(ik7i) dk7 and

7t -00
(I0,)

B(k7) = (3.62)
2a (w)
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If the Fourier transform Ê is supposed to depend only on the wave angle, namely on k/a, then
(o)the spanwise decay function B is a function of OER and w. Then, defining a convection velocity as

= w/a, the cross-spectral density takes the form

(we)A(_i)
B(JL) with'Uc

(o) \a wI4I\A(YJ) =ex(_ -y---) (3.63)
OER CI

This result is in agreement with Corcos' similarity hypothesis. This is therefore a consequence of the
fact that the wave-propagation constants a and c4° are not affected by the wave orientation angle.

Landahi's [89] numerical results show that the convection velocity LIC slightly decreases when the
dimensionless frequency w 8/U increases. The predicted values at Re= 5 x iO are in good agree-
ment with Willmarth & Woidridge's [106] measurements at Re 4 x iO. Furthermore, the numerical
prediction provides a decreasing behaviour of the convection velocity with the Reynolds number. Thus,
by extrapolating the numerical results up to Re= 4 x iO, Landahi obtained a convection velocity of
about 0.5 U, in spite of the experimental value of about 0.7 U.

Wills [107] measured a convection velocity that, at high wavenumbers, falls below that measured by
Willmarth & Woldridge {106]. As previously discussed, this difference is a consequence of the fact that
the frequency filtering used by Willmarth & Woldridge provides a convection velocity weighted towards
that of the largest eddies. These structures extend over the whole width of the boundary-layer and are
convected at higher velocities. Furthermore, comparing Wills' measurements to Landahi's numerical
results shows a good agreement at high wavenumbers. Conversely, at low wavenumbers, the measured
convection velocity is higher than the predicted one. This result is consistent with the fact that the
large-scale fluctuating motion cannot be considered as a perturbation of the mean motion. Indeed, a
fluctuating velocity field behaves like an eddy viscosity that reduces the effective Reynolds number.
Thus, as confirmed by the comparison between Willmarth & Woldridge's measurements and Landahi's
numerical results, a linear model should incorporate an additional viscosity in order to recover the
experimental behaviour.

A second result of Landahi's wave guide model is about the exponential decay factor °/a
and the decay function A(w/U) in equation (3.63). The decay factor increases as the dimensionless
frequency w ö*/U increases. On the contrary, the decay factor is not hardly affected by the Reynolds
mìumber. rn decay function is in excellent agreement with the experimental data. It shows that each
vortical component loses its identity after traveling a distance of about 6 times its size. This result is
in agreement with Millikan's [121] interpretation of the logarithmic portion of the mean velocity profile
as the region of the boundary-layer where the evolution of an eddy scales only with its size.

Finally, Landahi's eigenvalue calculations show that all the waves are stable when propagating in a
shear flow that is statistically homogeneous in the streamwise direction. Equivalently, the stationary
random character of a turbulent boundary-layer is a consequence of the superposition of all damped
waves.

3.5 Shubert & Corcos' Linear Model

The Navier-Stokes equations for an incompressible boundary-layer with separated fluctuating and mean
components have time forimi

i ap 82v+v+T- + U3 + v - Dxi
(3.64)



where

_ ( - vt4) (3.65)

A boundary-layer linearized form of equations (3.64) can be obtained by introducing the shear-
layer assumption U = (U(y),0,0), neglecting the terms T, supposing the invariance of p with y and
neglecting the viscous diffusion along the boundary. It thus results that

Ou Ou lOp 02u+U--+vU =---+v-- (3.66)
Ot Ox poôx Oi,,2

8w 0w lOp 02w+U=---+v (3.67)at Ox PO Oz 0y2
Ou 0v 8w++-0 (3.68)
Ox Oy Dz

where U' = dU/dy v = (u,v,w) and x (x,y,z).
If the generalized Fourier transform (3.50) is applied to equations (3.66), (3.67) and (3.68), the

following system of complex ordinary partial differential equations can be obtained

d2u i 1,_ 1---(wUk)u--LT v=--kp (3.69)
dy2 z-' i-' u

d2iî i - 1---(wUk)w_kp (3.70)dy u V

(3.71)dy

These equations are boundary-layer approximations of a non-homogeneous Orr-Sommerfeld equations,
with pressure fluctuations acting as driving terms.

By eliminating and setting U = cú/k, equations (3.69), (3.70) and (3.71) can be rearranged in
the following homogeneous system

(3.72)
dy u dy u

(3.73)
dy w dy u

(3.74)

with the following boundary conditions on the wall (y = 0)

di d3í3

dy°' dy3

î=0, =ij3 (3.76)

The two remaining additional conditions for îZ can be found by requiring that the effects of the fluid
viscosity are negligible on the outer boundary-layer (y - oo). Thus, the viscid solution must tend to
the inviscid solution as the distance from the wall increases.

Let the critical point denote the value Yc at which the mean velocity is equal to the convection
velocity fJ. The following expression can be adopted for the mean velocity profile

U = 1 - exp ( ) with /3 = 16 (3.77)
T13 /3 j

i3 = 0,
k2

= pil (3.75)
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In the inner region y 50, equation (3.77) is a good approximation of the law of the wall as results
from Coles' [120J measurements.

The stability theory shows that viscosity plays a predominant role in the wall region as well as in
the neighborhood of the critical point. On the other hand, experimental results show that a typical
turbulent component of given frequency travels downstream at a convection velocity such that y > 100.
Thus, the outer boundary conditions would have to be imposed at distances y+ > y, that is, in a
region where the linear approximation should be quite inappropriate.

All these solutions have been obtained with the condition -y 0. Solutions (d) for and (c) for
diverge as y * oc and they are therefore discarded. Conversely, all the other solutions can be combined
in order to satisfy the boundary condition on the wall. Solutions (c) for 'i3 and (b) for tZ' decay as y
increases and can be matched with the outer olutions by looking for the conditions under which the
solutions (a) and (b) for '13 and (a) for tu tend to their inviscid counterparts.

Setting Y = exp (y/ß), -y = i UC//3UT and a kr vß2/U, the following solutions of equations
(3.72), (3.73) and (3.74) can be obtained

for í3

(a) -y (i
+ -f--)

Y (3.78)

(b) Y lnY 'y (i + (i +lnY)+aY (3.79)

(e) b y(ii+n) (3.80)

(d) bn y(_?+n) (3.81)

where ì = ( a )hhI2 is chosen

I a7+3i

to have a positive real part, and

for i

I
a1 = e:ry+i

for

bo = 1
j

bn = bu_1 for n>2 (3.82)a2 = 2'y(+4i)
n-2 (7 (+n)((+n)2_i

]n3a an_i n y(crl+n2i)

(a) >:y (3.83)

(b) dn y(+n) (3.84)

(c) d y(iì+n)
n=O

(3.85)

where
(CO = 1 d = I

= ifor 2 d, 1n-1 for (3.86)Cfl n = n2
('j+n)2 i Q7



The inviscid forms of equations (3.69), (3.70) and (3.71) are

kui i
W= kpUU
- k(UU)u=

- dt3i ku + i kw + - = O
dy

from which the following inviscid equation for i5 can be obtained

d2î(U-Uc)--vU =0
dy2

with boundary conditions on the wall i = = 0. Solutions of equation (3.90) have the following form

'y - Y (3.91)

- y + (Y - /3) lnY - (Y - fi) log {±- (i_
) }

(3.92)

The viscous solutions (a) and (b) for i tend to the inviscid solutions (a') and (b') if the following two
conditions are satisfied

cry -4 00

Y<J'yJ (3.93)

For a disturbance the viscous length ii/U.,- is proportional to u. Therefore, the former condition is
consistent with the condition u - 0. The latter condition is necessary for the expansion

(Y
log 1 -

and is equivalent to the conditions

Tr
!../ ) ßU,.

ßUrl>2_ß
or equivalently

(,1 ç<i
fi U., U i

Uf>Uc fUj<T
l<ßU I Cl>ßU

(3.90)

(3.94)

(3.95)

(3.96)

where fi UT is the limit value for the inner representation. Since Uco/UT 30, it results that fi Ur
0.53 U.

Equations (3.72) and (3.73) do not depend on the value of k, which affects the solution only through
the boundary conditions. As a consequence, if subscripts (1) and (2) are used to denote two solutions
for two values of k, then equations (3.75), (3.76) and (3.74) lead respectively to

k+k1
(3.98)

WI k1
12 Li.2 z. .2 i2- - "z "z 2 - "x "e i - "z 2U2Ui21.2 'jx' zl zl s' zl

(3.97)

(3.99)
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1f the solution (1) is calculated with k 1 = k, then setting k2 = k yields

2) k/k » i

t1 k

1 k 21 i (k\2lU21I1+( -w)]L
\x,j

The following limit cases can be distinguished

1) k/k « i

2

It can be observed that w2/w1 vanishes in both these limits.
Shubert & Corcos [88] obtained solutions of equations (3.72), (3.73) and (3.74) with a circular

frequency w such that loo 5k <Yc < 1000 6, and with the following values of k

kx6*=kzö*=0.l; 1.0; 4.0; 10.0 (3.109)

where 6* denotes the boundary-layer displacement thickness. The dimensionless frequency is related to
the phase velocity and to the dimensionless wavenuinber by the following relationship

= .E. . k 6* (3.110)

where UT/UCÇ, depends on the Reynolds number, k 8 is an arbitrary value and Ut/U.,- can be supposed
to depend on the critical point y = yc/6*, as well as the mean velocity profile. In the examined range
of y the mean velocity profile can be supposed to have the following logarithmic variation

In y + CUTi.
with k 0.4 and c 5. Then, for a boundary-layer with Reynolds number R5 = 50000 (U/U 30),
it results that 16 < Un/U.,- <23 and 0.53 <U/U <0.77 13

'tmIt should be observed that the condition (3.96) provides U < O.53U.

(u1 iii)

(3.100)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.101)

(3.102)



Experimental results show that the root-mean-square of the velocity fluctuations arises at some
distance from the wall. According to Kiebanoff's [122} measurements, n peaks at y 25, w at y* 60
and y at 600.

Numerical results obtained from equations (3.72), (3.73) and (3.74) with 0.1 k & = k 4.0
and y > 50 exhibit the following features:

the amplitude of the solution exhibits no tendency to peak;

there is no trace of a viscous sublayer;

the Reynolds stress coefficient
<u,i,>

CR= . (3.112)
il lvi

is smaller than it should be required to support the assumed mean velocity profile. In fact, as it
results from equation (3.88), f and '13 are about ir/2 out of phase, and the fluctuating field cannot
extract energy from the mean flow.

Numerical results for k ö k 10 and y 1000 show the existence of a viscous sublayer,
but the predicted Reynolds stresses are still quite small.

As it follows from equations (3.103), (3.105) and (3.104), the behaviour predicted for the case
k (5* = k (5* is quite silnilar for all those turbulent structures for which k/k 1. Thus, a linearized
model cannot accurately describe the fluctuating field of a spanwise elongated turbulent structure.

Experimental results show that the spatial structure of u and y in the wall region is very elongated in
the streaniwise direction. According to equation (3.108), when k > k, the fluctuation ü is proportional
to the difference ü 3, where the subscript 1 denotes the solution calculated for k = k. The predicted
value of i peaks in the range 25 < y* < 50, confirming the experimental behaviour of . The
peak moves towards the wall as the values of k (5* and y increase. The Reynolds stress coefficient CR
decreases as k ö increases. Conversely, it decreases at fixed value of k 8 as y increases.

When k » k, equations (3.69), (3.70) and (3.71) reduce to the following equations

(3.113)dy ii i'

- -(w Uk) ku3dy u Ii

ikfò_!=0 (3.115)
(ly

that govern the following boundary-layer dynamics: a pressure fluctuation induces a spanwise velocity
fluctuation ti' (equation (3.114)), which is colnpensated by a normal velocity fluctuation 3 (equation
(3.115)). Interaction between 3 and the mean shear dU! dy acts as a forcing term for the streamwise
velocity fluctuation u (equation (3.113)).

The mean shear dU! dy rapidly decreases as y increases, while the normal velocity fluctuation 3
is zero at the wall and increases at increasing y. Thus, the source term 3 dU/ dy starts from zero at
the wall, reaches its maximum value at some distance from the wall and then, at higher values of y,
decreases. Such a behaviour is responsible for the observed peak of the streamwise velocity fluctuation
u.

3.6 Ffowcs Williams' Extension of Corcos' Model

In 1965 Ffowcs Williams [78] proposed the first model to investigate the effects of the fluid compress-
ibility on the wall pressure wavenumber-frequency spectrum. He argued that, at low wavenumbers,

(3.114)
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i.e. at supersonic phase velocities w/k » c, the wall spectrum is affected by the acoustic character
of the flow. In particular, at a zero wavenumber, the spectrum is entirely determined by the sound
radiated by the turbulent flow in the direction normal to the wall. As a consequence, the wavenumber
spectrum at k = O takes an asymptotic value estimated as M p2 U ö2. Furthermore, the correla-
tion area is proportional to the square of the mean flow Mach number M00. These results state that
both the k2 vanishing law of the wavenumber spectrum and the zero value of the integral scale of the
surface pressure field, as predicted by Phillips [112] and Kraichnan [108], are a consequence of the flow
incompressibility assumption.

The correlation area is related to the mean-square level of the force exerted by the turbulent fluctu-
ations to the surface. Consider a two-dimensional incompressible boundary-layer which is homogeneous
in planes parallel to the surface. In the absence of external pressure gradients and provided that the
normal component of the velocity fluctuation vanishes both on the wall and at infinity, Phillips [112]
demonstrated that

fp(x,t) p(x+,t)dA() = 0 (3.116)

Furthermore, Kraichnan [108] showed that equation (3.116) is equivalent to the condition

hm E(0,k1,k3)=0 (3.117)
k1 ,k3-+O

where E(0, k1, k3) is the wavenumber spectrum (w = 0) given by

E(0,k1,k3)
1

2 f f(m0) exp[i (k11 +k33)] d d
(2ir)

-00 -00

and 7?. is the space-time correlation function defined in (3.2).
Ffowcs Williams' [78] model is based on the idea that the wall pressure beneath a turbulent

boundary-layer can be described accordingly to an acoustic analogy model. The fluctuating flow field
behaves like an acoustic source whereas the surface acts as a diffracting entity. This is the approach that
Curie [52] adopted in order to extend Lighthill's acoustic analogy model to account for the presence of
a solid surface in the flow field. Curle's equation for the fluctuating pressure induced by the adjacent
turbulent field on a rigid planar surface is

a2 r' dzp(y,t)
= -_fff azazTuj(z,t_ -) -

V

Denote as P(k, w) the generalized space-time Fourier transform of the wall pressure, i.e.

p(y,t) = (2) if P(k,w) eieitdkdw (3.120)

and Wij(z,w) the Fourier transform of the turbulence stress tensor, namely

T(z,t_ ) = -fW(z,w) e(t)dw (3.121)

Substituting equations (3.120) and (3.121) into equation (3.119) yields the following expression of the
space-time Fourier transform of the wall pressure

f00 I If w\2 ) L /fW\2 )P(kw)=J Oij(z2,k,w) öi

i exP {_iz [(i2k2]}

(3.118)

(3.119)

dz2 (3.122)
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where

Ojj(z2,k,w)
= f Wjj(z,w) e_i kdS (3.123)

S(z2=COflSt)

Equation (3.122) shows the existence of a critical frequency w for any wavenumber k, above which
the wall pressure results from the superposition of sound waves, and below which the pressure decays
exponentially. These two cases can be expressed in their limit form as

1w/kl » C

00

P(k,w)
= f Oi(z2,k,w) {() 5i2 +k} {() 8j2 +} i exp {iz2 ()}

C dz2 (3.124)
c1

1w/kl «c

o

0O

P(k,w) = f o(z2,k,w) {kö2 + k} {köj2 + k} exp{i kz2}
dz2

k
o

from which it follows that

P00

P(O,w) = / 022(z2,O,w) iexpIiz2 dz2
io C ci

P(k,O) = f O(z2, k, O) {k82 + k}
exp{i kz2}

(1z2
j0 k

i 92p

'4TIie wavenuinber spectral density can be obtained by multiplying equation (3.126) by its complex conjugate.

(3.125)

Equation (3.126) shows that the effect ofcompressibility is to ensure a finite value ofthe wavenumber
spectral density'4 as k tends to zero. This result disagrees with Phillips' result according to which the
instantaneous surface force should vanish.

At first order the time variation of the wall pressure at a given point can be interpreted, consis-
tently with Taylor frozen convection hypothesis, as simply related to the spatial streamwise variation
within the size of the moving eddy. On this assumption, Lilley and Hodgson [94] and Hodgson [117]
translated the low wavenumber k2 prediction of Kraichnan's theory into an equivalent w2 vanishing law
for the frequency spectrum. However, equation (3.127) shows the physical inconsistency of the k2-w2
equivalence assumption.

Finally, a dimensional analysis applied to the wall pressure spectrum in the form of equations (3.126)
and (3.127), shows that the k2- and the w2-vanishing laws are well approximated for k M00/ö* and
w cM/5*, respectively (see Fig.3.6).

The approach based on the acoustic analogy model was later on improved by Ffowcs Williams
[102] in order to extend the applicability of Corcos' model to the spectral region dominated by the
compressible character of the flow.

Ffowcs Williams' model is build on the idea that, if the acoustic analogy is well posed, the acoustic
character of all those low wavenumber spectral elements with supersonic phase velocity is intrinsically
accounted for. Furthermore, if the acoustic source is described in terms of Corcos' similarity hydrody-
namic law, the wall pressure must he consistent with the similarity scheme.

Let us consider the approximated form of Lighthill's equation

= Q (3.128)

(3.126)

(3.127)
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Zero .Mach number
asymptote
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k

Asymptotic low-wave-number level M2p 2U2
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approximation in this
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FIGURE 3.6: Qualitative behaviour of the wall pressure wavenumber-frequency spectrum induced by a
turbulent boundary-layer (after Ffowcs Williams [78], figure 4).
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where the flow in the source region has been approximately supposed to be incompressible. Equation
(3.128) can be applied to describe the pressure field in proximity of a planar physical surface on which
the auxiliary condition Op/i9y = 0 is satisfied. Clearly, the acoustic pressure field satisfies a radiation
condition on the outer boundary y -+ 00.

If P(y, ka, w) denotes the spatial/time Fourier transform of p(y, Xa, t)15 in planes parallel to the
boundary y = 0, i.e.

p(y, Xa, t) f00 P(y, ka, w) e1 kaxaeiwt d2ka dw (3.129)

then equation (3.128) becomes

{+c'}P=_Q with

and

o

where Q is the spatial/time Fourier transform of Q. The Green's function of equation (3.130) is

sgn(z - y)

15j,. - (k,,k2) = = (XI,x2) (x,z).

G(y, z) = f-- cos [Wi(z y)] + --- e1 'Pi(z+y) +
sgn(z y) sin ['I'i(z - y)]

2W1 2W1 2W1

G(y,z) = --f-- cosh[W2(zy)] - sgn(zy)sinh[W2(zy)]
2W2 2W2 2W2

(3.130)

Thus, substituting into equation (3.132) provides the following expression for the supersonic phase
velocity spectral elements of G

(3.136)

A similar procedure applied to equation (3.131) yields the following expression for the subsonic phase
velocity spectral elements of C

(3.137)

1 TiG(y, A " + B (3.132)z) e' e' +
2

[W1(z - y)]

The radiation condition requires

{
(3.133)+1W1G} =2iWiAe+e_1(z_y)=0

y-300

which gives

A= (3.134)
4W1

Furthermore, the condition of vanishing normal derivative at y = O yields

B (3.135)= 2W1

and

{_}P=_Q with

and (3.131)
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The wall pressure can be obtained by convoluting equations (3.130) and (3.131) with their respective
Green's functions. It thus results that

P(0,k,w) = _f G(0,z)Q*(z,kc,w) dz (3.138)

Then, substituting the Green's functions (3.136) and (3.137) into equation (3.138) yields the following
asymptotic expressions

w2/k > c, i.e. supersonic phase velocity,

- 00

P(0,k,w) j-f e 1ZQ*(Z,ka,W) dz (3.139)

w2/k <c2, i.e. subsonic phase velocity,

1
P00

P(0,kc,,w) = - f e_W2zQ*(zkw) dz (3.140)
'I'2 JO

The wavenumber-frequency spectrum E(ka, w) can be obtained by Fourier transforming the corre-
lation function R(,r), i.e.

00

E(k,w) 1 fR(,r)e_icwT)d2dT (3.141)
(2ir) ./

o

where

R(ea, r) = p(Xa, t) p(x1 + , t + T)

Thus, substituting equations (3.139) and (3.140) into equation (3.141) provides

w2/k > c2

w2/k <c2

Finally, setting

0000

R(a,T)
= ff00

0000

R(0,r)
= ff

e' ''(z')
Q(z,x, t) Q(z',x + t + r) dz dz' (3.143)

e_'J12(z+z)
Q(z, Xa, t) Q(z', x0, + , t + r) dz dz'

00

00
i r

S(z, z', k,,w) = (2) J
Q(z,x(, t) Q(z',x + , t + r) d2 dr

o

the wavenumber frequency spectrum (3.141) takes the form

w2/k >
0000

'P1 (z-z')
E(ka,w)

= ff e'
S(z,z',ka,w) dzdz'

00

(3.142)

(3.144)

(3.145)

(3.146)



w2/k <C2
0000t r e(')

E(ka,w) = j] 2 S(z,z',ka,w) dz dz' (3.147)

00 2

Since the term S denotes a turbulent source, it can be described in terms of Corcos' similarity
hypothesis. Thus, let us consider the Fourier transform of Lighthill's stress tensor

00
1 r O2TZ Ô2TZ a Ô2T,

e (kQx.. +, r) d2xa dtQ(z,ka,w) = (2) J 0z2
+ 08 + oaf-00

which can be integrated by parts taking the form

Q(z,ka,w) = Qi(z,ka,w) + Q2(z,ka,w)+Q3(z,ka,w)

with

Qi(z,ka,w) =

Q2(z,ka,w) =

Q3(z,ka,w) =

1 78T
(2ir)J 8z2

e

i2ka f OTzcx

(2'ir)JOz e

(2) f Ta
-00

i(kaxa+wr) d2xa dt

i(kcxa+wr) d2xa dt

ae_i01Td2xa dt

These three integrals have characteristic magnitudes in the ratios

IQi:IQ2I:IQ3I=1:ki:(kz)2.

where ¿\ is a reference boundary-layer scale. A similar decomposition of S(z, z', ka, w) yields

02 82
Si(z, z', ka,w) = Oz12T1 (z,z', ka,w) with

Ti(z, z', ka,w) = (2) f Tzz(z,xa,t)Tzz(z',xa + , t + r)e (k+wT) d2a dr
-00

-00
i r

T2(z,z',k0,w)
(2-) J

Tza(z,xa,t)Tza(z',xa + a,t +
-00

S3(z,z',ka,w) = kT3(z,z',ka,w) with
-00

1T3(z,z',k,w) = (2) f Taa(z,xa, t) Taa(z', Xa + 0,t + r) e_iT) d2a dr

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

(3.156)

S2(z,z',ka,w) = 4k000,T2(z,z',ka,w) with (3.155)
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The wail pressure wavenumber-frequency contributions corresponding to these three contributions of S
are

{ (w2 k2"a)Fi(1ca,w)
Ei(ka,w)

= 1k2 w2\
%

aT)Fl(1a)
E2(ka,w) = kF2(ka,w)

k4
E3(ka,w)= a F3(ka,w)

1w2 _k21H al

where F1, F2 and F3 are characteristic spectral functions representing the integrated influence of the
boundary-layer turbulence. These terms are not influenced by the fluid compressibility if the acoustic
analogy is well posed.

According to the relation (3.153), at wavenumbers much less than A, the main contribution to
the spectrum is given by equation (3.157). Thus, separating the two limit cases, yields

e supersonic wave speed: A2 » w2/c2 » k

E(ka,w) Fja(ka,w) (3.160)

subsonic wave speed: A-2 » k » w2/c2

E(ka,w) kFb(ka,w) (3.161)

Since the source elements are quadratic in the turbulence fluctuating quantities, the function
F(ka,w) tends asymptotically to a finite value as both ka and w tend to zero. Therefore, both
equations (3.160) and (3.161) agree with Ffowcs Williams' 1965 result [78], as plotted in Fig.3.6.

If the condition A-2 » k is not verified, all the three contributions of Q must be considered.
Nevertheless, if k > w2/c2, then Elb, E2 and E3 have all tile same limit form

E(ka,w) kF(ka,w) (3.162)

Both equations (3.160) and (3.161) can be rewritten in terms of dimensionless quantities, i.e.

supersonic wave speed: (Aka)2 « (wA/c)2 « i

E(ka,w) =pUA3 () (j)F(Aka,j) (3.163)

subsonic wave speed: (wA/c)2 « (Akc) « 1

E(ka,w) =pUA3
(Aka)2F(Aka,j) (3.164)

The singularity at the acoustically coincident wavenumber in the spectral contribution (3.159) is a
consequence of the fact that the wave field radiated by an unbounded distribution of surface sources is
singular. Therefore, it is a consequence of the so-called scale effect. In order to describe this singular
behaviour, the boundary-layer turbulence can be supposed to be bounded at a large radius R. Solving
directly equation (3.128) tile wavenumber-frequency spectrum, at the acoustic coincident frequency,
takes the form

00

E(k, w) = irf S(z, z', ka, w) 5(k - w2/c2) in () dz dz' (3.165)

o

for > k

for <k
(3.157)

(3.158)

(3.159)



which shows that the field diverges logarithmically as the scale of the turbulence, say R/i, tends to
infinity.

The stress tensor elements which contribute to S in equation (3.165) are those whose axes lie in
the boundary-layer plane. In fact, elements involving surface normal components integrate to zero.
The source term S is thus proportional to k4 (w4/c4 at the acoustically coincident wavenumber) and
equation (3.165) can be expressed as

E(ka,w) = ln() ()48(k2 (W)2)
F(ka,w) (3.166)

and, in the non-dimensional form

R" (wE(k,w) = pULX3 ln() __)45((ka)2 (w2 F(j Lka7j-_) (3.167)

This expression shows explicitly the singular behaviour of the acoustically coincident spectral ele-
ments. Together with equations (3.163) and (3.164), it describes the structure of the wall pressure field
for all the wavenumber-frequency elements.

The function F(L\k, ) is the characteristic spectrum of the integrated boundary-layer turbu-
lence. It has a purely hydrodynamic nature and can be expressed in a similarity form. According to
Corcos [99}, the cross-spectral density F(, w) has the following similarity structure

(W1'\ (w42\ iiF(,w) = cb(w)A_Ù-_) B_U_) e uc (3.168)

The cross-spectral density is related to the wavenumber-frequency spectrum by the double Fourier
transform

E(k, w)
00

U2
exp 1_i! (i+''''\1 d((2)2w2f L u w

0000
i

E(ka,w) = (2)2 f f F(a,w)e_ik d2

-00-00

Thus, substituting equation (3.168) into equation (3.169) yields

(3.169)

00

fB(w2\
-00

-00

_Ü)exP{_Ù
F w2/çU] d(-"\

w U)

= çb(w) A(1 (3.170)kiuc) ß(s)

where

00

A(a) =
---

f A(ß) e dß
2ir

(3.171)

-00
00

B(a)=--- f B(ß)e1dß27r J
(3.172)

-00

(3.173)
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Finally, in agreement with equation (3.170), the function F in equation (3.167) can be written as

(U)2(L\)
Ao(1

kiUc) B('"')
where

{

00fwi\
(Lkc) and (3.175)

\U007 f (F ¿ka, d
-00

00 00

f A (z) dz
=

f ß (z) dz = 1
-00 -00

Equations (3.163), (3.164) and (3.167) can be linearly combined into a single equation where
F(I.ka, ) is given by equation (3.174). Setting M00 = U00/c and calling aD, a and a the co-
efficients of the combination, it follows that

E(k,w) A011 +
.U00J W J \ w J

/ U00 k
2

aol-1 +aiM+a2Mln()8[(U00k)
)

}

2

jw'
This is the form proposed by Ffowcs Williams [102] for the wavenumber-frequency spectrum.

The function which is commonly measured is the frequency spectrum of the pressure field (w) =

100 E(ka,w) d2k . According to equation (3.177), it is given by

wL"2 1w/."2«w)=PU-U-) 5o(_) {a+ßMco+yMoln()}

where

00

a=aofAo(l+k1U00)ßo(k2U) (kU00)2d2(kU00)
00

w w w w

00

aif AG(1 +
k1U00

)
B0(k2U)

d2
(kU00)

00
w w w

00

'y = a2 f AQ(1 +
klU00

)
50(k2U00)

-00

6((kiU002+(k2u002M2 d200)
w j w J j w

(3.174)

(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)

a2 ir Ao(i) B0(0) when M00 is sufficiently small (3.182)

According to this model the frequency spectrum vanishes as w2 when the frequency tends to zero.
Such a result is commonly accepted but experimental validations are difficult because of the background
noise at very low frequencies.



3.7 Chase's Wall Pressure Spectrum Model
By means of matched asymptotic expansions, Bergeron [100] obtained a low wavenumber solution for
a nearly incompressible turbulent boundary-layer. The same equation was solved by Chase & Noiseux
[113] by adopting a perturbation procedure. Their results constitute the starting point of Chase's [104]
successive investigation where the author re-examined all the aspects of the problem and suggested a
comprehensive model for the wall pressure wavenumber-frequency spectrum. In the present section the
model proposed by Chase is briefly presented.

Adopting dimensionless quantities x = x'/ä, t = t' U00/6, uj = t4/U00 and p = (p' - Po)/Po U, ö
denoting the boundary-layer thickness, the linear momentum and the continuity equation for an inviscid
fluid take the form

r a
(3.183)

Vu--M2 1+(u.V)+V.u] (3.184)- ooLat

The mean flow can be separated from the fluctuating part by substituting u = U(y) + u' into
equations (3.183) and (3.184). Then, rearranging and neglecting terms of order higher than M,
Bergeron [100] obtained the following equation

dU 52pL (V2p) - 2äj axay
M L3 (p) =

dU DT2 - L(V
2dy 3x

.T)+M{22i - L(V. S L(V. [u']))} (3.185)
dy Dx

where

a+U(y)-

a (uu) !i'tT=
ax =ax

S = u' [L(p)+ (u'. V)p] - V(p2)

Introducing the Fourier representation

O(x,y,z,t)
= f dw f f exp[i (kx+kzwt)]Ô(y,k,k,w) dkdk

-00 -00-00

into equation (3.185) yields

dy LdY

_12 12k2+(wkU) [+ (k1+k3)00
), dy

+1 (w - kU)2 1(P2) +i [ (p) +k (P3)]J
L dy

(3.189)
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(3.187)

(3.188)



308 CHAPTER 3. THE PRESSURE FIELD AT THE WALL OF A TURBULENT BOUNDARY-LAYER

where K2 = k + k. Finally, changing to physical variables and operating a co-ordinate rotation such
that x3 lies along the wavevector argument K, namely

(3.190)

Kl'32 (3.191)

equation (3.190) takes the form obtained by Chase & Noiseux [113], i.e.

{(w_ku)[4_K2+(W_ku)2] +2kX_}23=P'+PM (3.192)

where

p= 2pk- (t22 +i Kl'32 p (wkU) íd T22 dl'32

j dy2
+ i 2 K

dy
K2 T33) (3.193)

and

where

PSM = _(pc2) Í2k1 S2 +(wkU) ( +i
L

dy

+i (wkU)2 {d(2) +i (iiî)] (3.194)

Consider first the incompressible case (c * co) and eliminate j3 from equation (3.192) in favor of
the more convenient variable

1= (+pl).

= (i_kY))
Equation (3.192) becomes

I T3T2 i2l2
fil (K2+)f_PK [K wkU (3.197)

where primes denote derivation with respect to y. The boundary conditions fr3(oo) f <oc and j3'(0) = O
lead respectively to

f(oo)f <co (3.198)

- k U'(0)
1(0)

- X
w

If C1(y) and G2(y) denote two Green's functions of the homogeneous form of equation (3.197) with
boundary conditions

(3.199)

fGi(oo)f <co (3.200)
G(0) - k U'(0)

(3.201)
C2(0) X

the solution of equation (3.197), evaluated at y = 0, is
00

(0,K,w) pKwW' C2(0)f Ci(i) T33T22 2(
' I-'

T32 '\I
dy (3.202)[KkU kU) j

o

(3.195)

(3.196)



where W denotes the Wronskian of G1 and G2. Thus, integrating by parts yields

j3(0,K,w) pW G2(0)f q5 [K2 (p33 T22) Gi(y) +i2Ki32GÇ(y)] dy (3.203)

The Green's functions G1 and G2 can be calculated by a perturbation technique applied to the
equation

f" [s2 + EV" + 2 (VV" + 2v'2) + (2)] f = 0 (3.204)

obtained by substituting = y/S, s = KS and V(() = U(y) /U into the homogeneous form of equation
(3.197) and by dropping terms of order higher than 2, where

kU1= «1
w

Expanding f in a power series of c, namely

f=fo+fl+2f2+... (3.206)

and solving equation (3.204) for successive orders of f yields

G1() = e + [e S() 2S1 sinh(s] + (9(2) (3.207)

cosh(s) + [es S() +e S_(] + O(E2) (3.208)

where

S(() = LC25zv; dz (3.209)

and S1 = S+(1). The Wronskian takes the form

W = K [i + 2S1 + (2)] (3.210)

The nonlinear source terms in equation (3.197) vanishes at some distance S from the wall. Thus,
supposing that KS1 < 1, expanding the term to the first order in E and KS1, and introducing
equations (3.207), (3.208) and (3.210) into equation (3.203) provides the following integral form of the
wall pressure spectrum at low wavenumbers and in the incompressible case

K, w)
= -L dy [K (t33 T22) - i 2î (K k U' (y))]

(3.211)

This result agrees with Kraichnan-Phillips' theorem according to which

um j3(0, K, w) *0 (3.212)
K-O

Consider now the compressible case. The contribution of SM in equation (3.192) is of higher order
in c and can be neglected. Hence, equation (3.192) has the following solution

K, w) = pW' G2(0)

L dy [(î33 _í22)K2ç5G1(y) +T22 () q5 G1 +1 2í32KG] (3.213)

(3.205)

where G1 and G2 are Green's functions of the homogeneous equation

i»- (K2_2+Ç)f =0 (3.214)
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At first order in c, equation (3.2 14) has the same solution of the homogeneous form of equation (3.197),
with arguments K2 replaced by K2 w2/c2. Thus, introducing the condition KS « 1 yields

q5 1

G1 *

-

which leads to

(0, K, w) _ f°°
K2 T33

T22 K2 4 2K 1 k U'(y)
T32 dy (3.219)

° 1VK2_ C w/K2_

where, for K <w/c, the argument (K2 w2/c2)lI"2 must be replaced by i (w2/c2 K2)'2.
Equation (3.219) describes the wall pressure beneath a slightly compressible (Uoo/c « 1) turbulent

boundary-layer in the low wavenumber limit (k Uoo/w « 1).
At the same low order in k Uoo/w, but with no upper limit for KS, the wall pressure is given by

equation (3.219) with a factor exp [- (K2 w2/c2)1'2y] added to the integrand. It thus results that

too
[ 2t K0 - k U'

25(K, w) = p K I 32 -kT22 + i 2 -- T32 I dy
K0w jJo

2 1/2

J
(x.2_-) for k>

1/2Kc=1()
for k<

In the incompressible limit (K0 * K), equation (3.220) reduces to

where

75(K,w) = _f e_KY [(i33 i 2í _T22) K+ 2k_t32] dy (3.222)

Equation (3.219) leads to an approximated form of the wall pressure wavenumnber-frequency spectral
density where tile various cross-terms are neglected. It results that

P(K,w) Pr' + P (3.223)

where the pure turbulence contribution PT and the mean shear contribution Pu are respectively given
by

/ K \2 /K0I\2PT(K,W) = (j-k-i) P33 + 4P32 + (-k-) '22
pw ¡'w

Pi(K,w) = p2K2 I dy j dy' exp(Ky K0 y') Ejj(y,y',K,w) (3.225)
Jo Jo

with

and

/ K \2 2Pu(K,w) = 4p2k
(J-k--F)

w

fdf dy'exp (ky K0y') U'(y) U'(y') E3232(y,y',K,w) (3.226)

(3.220)

(3.221)

(3.224)

(3.215)

1 (3.216)
2 1/2

( (3.2 17)

(K2_ )"2+kJ{- (3.218)



The cross-spectral densities of the fluctuating velocity products are given by

Ejjkj (y, y', K, w) 'Z7( K, w) Tkj(y', K', w')

8(K' - K) 8(w - w')

For the incompressible case, equation (3.222) yields

where

PT(K,w) = p2K2 f dyf dy'exp[_K(y'+y)J S(y,y',K,w) (3.228)

poo roo
P(K, w) = 4p2 k w2 / dy ! dy' exp [K (y' + y)] U'(y) U'(y') E3232 (y, y', K, w3.229)

jo Jo

S(y,y', K,w)
t3*(y, K,w)'î(y',K',w')

- 8(K' - K) 8(w - w')

and
T3 =T33 T22 - 2t32 (3.231)

In 1980 Chase [101] proposed a four-dimensional orthotropic similarity model for the nonlinear
source terms S(y, y', K, w) and E3232 (y, y', K, w). Furthermore, in a successive work, Chase [104] revis-
ited such an earlier model and extended the analysis to the compressible case.

Suppose that the source layer is bounded in thickness with a scale b 8, b being a constant that
does not depend on the quantities K and w. Then, let us assume an exponential profile for the source
spectrum S(y, y', K, w) and let us write

y + y'lS(yv',K,w)=exP[
b6

jS°(y,y',K,w)

If the wave pattern is convected at a velocity u, which does not depend on y and y', both the velocity
and the pressure spectra have a sharp convective ridge 8(w - u k,), where w' = w - u k, denotes the
frequency measured in the convected frame of reference. In a boundary-layer the wave interaction
associated with the nonlinear terms in the Navier-Stokes equations induces a loss of time correlation
fl tile convected frame. Let h v' denote a characteristic turbulence velocity, where h is a scale factor
of unit order. It can be supposed that the correlation loss due to a time delay r is comparable to the
correlation loss due to a spatial separation h v'pr in a plane parallel to the wall. Furthermore, in terms
of statistical average, the correlation contributions due to space and time add quadratically. Hence,
a space-time separation (,r) is equivalent to (J(2 + h2v*2T2,0). As a consequence, S°(y, y', K, w)
depends on K and w only via the argument

K= (w_ukx)2+K2
(hv*)2

A further restriction on the form of 80 is given by the following transformation

(3.227)

(3.230)

(3.232)

(3.233)

S°(y,y',K,w)
=

dk2exp [ik2 (y' - y)] a°(,k,w) (3.234)

where k = (k1,k2,k3) and = (y y')"2 is the geometric mean distance from the wall.
As done for the planar source spectrum 8°, the term cr°(,k,w) can be supposed to depend on k

and w via the argument k = k + 72 K, where is a constant.
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where u is a convection speed associated with the boundary-layer waves. Thus, supposing a domain
where the spectra of the velocity products scale with the distance from the wall, and considering the
frequency dependence in a mean convected frame yields

80 (y, y', K, w) = F3 (k+ í,
.)

(3.238)

and

a°(, K, w) = v'3 qj (k+ ,
-, .)

(3.239)

The dependence of u0 on k2/k+ and K/k+ has not a significant effect on the integral expression
(3.234). Hence, it can be written

The terms îj can be obtained by convolution of the Fourier transform of v and vj, namely

îj (y, y', K, w)
= 1-loo d2K' f

dw' fïj (y, K', w') j (y, K K', w w') (3.235)

In the subconvective domain (k1 w/U) the second integral in equation (3.235) caii include a region

From equations (3.228), (3.230), (3.238) and (3.240), the following expression for tile pure turbulence
contribution of the wall pressure spectral density can be obtained

PT(K,w) = p2 K2 v3

Changing to variables (2 = y' y and = provided that

P00 rOO , '00i'
/ dy f dy'e'<' 'e j dk2 e1 k2(y'y) 4

Jo ico

y+y'= ((+42)1/12 (3.243)

the pure turbulence contribution of the wall pressure spectral density takes the form
'00

PT(K,w) = 2p2K2v*3 I
Jo
2 1/2 1d(2((+4) exP{_(K+

00

-0O

dk2 e1 k2 (2 4 (k ) =

=2p2K2v*3f dk2f d5(k+ )

P00
- 1/2I d(2((+42) exp [_ (K+)ico

)
((2+42)1/2]

(3.24 1)

where both í'j and íj have a convective
large. The necessary condition for the existence

w'

structure and the resulting spectral density of
of such a region is

is relatively

L.!
r.1

u (y, k') and (3.236)

w'w
k1 u(y,k'

k'
k) (3.237)

L
df dy' = 2fdf (( + 4)' d(2 and (3.242)

+ 42)1/2] e k2 (2 (3.244)

a°( K, w) = v3 44 q5(k ) (3.240)



The following identity is verified

dC2 (
+ 42)-h/2

exp [-fi ((
+ 42)h/2] exp [i (k2 + a) 2] =

= 2K0 (2 [(k2 + a)2 + fi2] 1/2)
(3.245)

where K0 denotes the modified Bessel function. Thus, since a = 0 and fi = K + 1/bS in equation
(3.244), it results that

r°°
j dk2 / d5(k) KO(2 [(k+ (k+

1)2)1/2])
(3.246)

J-o0 JO

By assuming a decreasing behaviour of the function q(k+) at large values of its argument, that is
q5(z) (1 + z)' (q(z) i for z 1, q(z) z' for z 1), the pure turbulence contribution to the
wall pressure spectrum in the incompressible limit takes the form

PT(K,W) = CTP2V*3K2 [K + (bö)_2]5/2 if A >5 (3.247)

PT(K,W) = CTP2V*3K2 [K2 + (b5)_2](52
-À/2

[K + (bo 5)_2] if A <5 (3.248)

where CT is a constant factor and b0 is a scale coefficient of the same order of b. If A = 3 it results that

K2
PT(K,OJ) = CT P2 V3 (3.249)

K2 + (bSy2 [J2 + ()2
+ (bo 5)_2] 3/2

In the range (bS)' K w/Uo0 + (b0 5)_1 the wall pressure spectrum takes the white wavevector
form

CT f2 V3
PT(K,W) =

[(w/hv*)2 + (bo

In the same range of K and for A <5 it results that

PT(K, w) = CT p2 v3 K3 [(w/h v*)2 + (bo 5)_2]

which shows that PT varies as K3.
Equation (3.240) shows that, if K 1, then

U'(y) U'(y') (
ÍAv\

) (---) = A2v*2_2

(3.250)

(3.251)

o°(, K, w) v3 (4-)) KIÀ (3.252)

If A 4, then the integral of a°(, K, w) over the three-dimensional wavevector and the frequency
domains diverges. Furthermnore, if A = 4 then the divergence is logarithmic.

Consider now the mean shear contribution P in equation (3.229). Assuming a logarithmic wall
layer profile yields

(3.253)

3.7. CHASE'S WALL PRESSURE SPECTRUM MODEL 313



314 CHAPTER 3. THE PRESSURE FIELD AT THE WALL OF A TURBULENT BOUNDARY-LAYER

where A 2.5. Thus, substituting into equation (3.229) provides

00 00

P(K, w) = 4p2 k w2 A2 v2 f dy f dy' e-2 E3232 (y, y', K, w) (3.254)

o o

Then, using for E3232 (y, y', K, w) the same modeling procedure used to describe the function S(y, y', K, w)
provides

00 002

(K, w) = 16 A2 p2 v3
(v* k

/ dk2 / d 32 (k ) Ko (2 k22 + (k +
1)2)

\w)
Supposing that the term q532(k ) have the same decreasing behaviour of q(k ) for ) 3 and
integrating equation (3.255) yields

'*2
P(K,w) = Cup2 v3 k K2

-)
[K + (bo 5)_2] -3/2

(3.256)

where b0 is a scale parameter which may differ only slightly from the equivalent parameter b0 in the
pure turbulence contribution PT.

The slightly compressibility condition requires that kj U00/w « 1 then, equation (3.233) yields

5-À

P(K,w)
p2v*3

{cTK2

ÍK + (b05)

[K + (b0 5)_2]
L

K2 + (b 5)_2]
2

+ C k}5/2

p2 v3P(K,w)= 512{CTK2+Cuk} for À>5
[K +(boS)_2]

Consider now the slightly compressible case. The four-dimensional orthotropic similarity model
applied to describe the source spectra S(y, y', K, w) and E3232(y, y', K, w) (see equation (3.232) for S),
can be adopted for each source component in equation (3.225). By supposing that the source
spectra E2222, E3333 and E3232 are in the ratio of the constants C2, C3 and (1 - C2 - C3) /4, with
O < C < 1, and by supposing that the flow compressibility affects the pressure spectral density only
via the term K/ IKI in equation (3.224), the slightly compressible extension of equations (3.258) and
(3.259) is

p2 v3P(K,w) =
[K + (bo

2 IK +(b0ö)-21IIKCI)2 (IKc!12+C3 +1_C2_C3]CTKLK2(bS)_2j

(3.255)

for 3 < À <(.258)

(3.259)

K w/hv*. Equivalently, if Kb08 1, then (v*w)2 + (bo 5)_2] i
Hence, for ) 3, the

mean shear contribution to the wall pressure spectrum takes the form

P(K, w) Cup2 v3 k K2 [K + (bo 5)_2] -5/2
(3.257)

Finally, by adding the pure turbulence and the mean shear contributions, the wall pressure spectrum
takes the form

5-À
2



2 *3 'K \2
+ 5/2 Cu for 3 ) < 5 (3.260)

[K +(boS)_2] K

5/2 [c2 (IKcI)2 + C3 (id)2+ i-c2 - c3]
{K +(boä) 2]

2 *3 1K \2fV ,-' ¡ C 72+ 5/2 " or A>
{K +(boö)_2]

It can be noticed that, if C2 0, the wall pressure spectrum does not vanish at a zero wavenumber.
Furthermore, if the spectra are supposed to be equal (C2 = C3 = 1/6) then for K O the term
C2 IKI2 in equation (3.261) is equal to C2 w2/c2. In this case the wall pressure spectrum takes the
same structural limit form given by the term proportional to a1 in equation (3.177) obtained by Ffowcs
Williams [102].

The wall pressure wavenumber-frequency spectrum can be used to define some statistical functions.
Then, comparing these functions with experimental data allows the constant quantities in equations
(3.259) and (3.261) to be determined.

From the simplified form of equation (3.259) = 3, b0 = b)

P(K,w) P2V3 [CTK2 K + (bSY2
+ CUk4 (3.262)

[K + (bö)_2]5/2 K2 + (bS)2 Xj

Chase [104] obtained the space/frequency cross-spectrum, the wall pressure spectrum and the space-
time pressure correlation at zero time delay. Then, comparing these statistical quantities with experi-
mental data, Chase obtained the following values of the constant quantities

h = 3 CTh = 0.014 Ch = 0.466 b = 0.75 (3.263)

where the constant h enters the definition (3.233).
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4

Gust-Response Aerodynamic Theories

4.1 Introduction

The interest in the aerodynamic response of an airfoil embedded in a vortical flow arose in the 1920s
when higher flight speeds required the aerodynamic unsteady loadings to be predicted and the aeroe-
lasticity problems to be accurately solved. The earlier models dealt with thin airfoils of infinite span,
embedded at zero angle of attack in a uniform parallel incompressible flow, with harmonic velocity
disturbances imposed upstream and convected without distortion.

By considering only small amplitude disturbances, it is possible to linearize the unsteady aerody-
narnic problem with respect to the steady mean flow. This permits to uncouple the time-dependent
component of the flow from the steady component. The problem becomes that of finding an irrotational
and solenoidal flow satisfying some boundary conditions on the airfoil surface, the Kelvin's conserva-
tion theorem of the total flow circulation, and the Kutta condition at the airfoil trailing edge. The
circulation around the airfoil changes in response to any flow unsteadiness, as required by the Kutta
condition to be instantaneously fulfilled. Consequently, vortices are shed from the trailing edge in order
to ensure the conservation of the total flow circulation. Thus, the airfoil wake represents a recorded
history of the unsteady flow around the airfoil and the velocity field depends on the entire history of
such flow.

An unsteady airfoil theory for incompressible flows based on the concepts of circulation theory [5]
was proposed by von Kármán & Sears [123]. This theory recovers the results predicted by Tlieodorsen
[124] for a linearized sinusoidally oscillatory motion of a flat-plate, and some primary results obtained
by Küssner [125].

On the base of von Kármán & Sears' [123] unsteady airfoil theory, Sears [126] derived an analytical
expression for the unsteady lift induced by a vortical sinusoidal gust convected past a thin airfoil. Later
on, Filotas [127] extended Sears' analysis to an oblique sinusoidal gust.

The mathematical treatment of a linearized gust-airfoil interaction problem consists in splitting
the velocity field into the sum of a solenoidal (rotational) part and a potential (irrotational) part, as
described in section 1.5. The solenoidal part is a known function of the imposed upstream disturbances
and represents a vortical wave decoupled by the steady-state aerodynamic field. The potential part is an
unknown finction of both the mean flow and the vortical disturbances. The solenoidal and the potential
parts are coupled by the boundary conditions on the airfoil surface. For a compressible flow the potential
part of the unsteady velocity field is governed by a constant coefficient, homogeneous, convective wave
equation that reduces to a Laplace's equation if the flow is supposed to be incompressible.

Theoretical analyses of the unsteady aerodynamic field past an airfoil in a compressible flow were
performed by Possio [128] and by Amiet [129, 130]. The former obtained an integral equation relating
the pressure field on the surface of a thin airfoil to a sinusoidally fluctuating velocity field around the
airfoil. The latter proposed analytical procedures for the gust-airfoil interaction problem in the high-
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K(,MJ) =

and low-frequency limit.
The mean steady flow about a real airfoil with nonzero thickness, camber and angle of attack is

no longer a parallel uniform flow. Goldstein & Atassi [131] developed a second order theory for the
gust-airfoil interaction problem that accounts for the dependence of the unsteady velocity field on the
mean potential flow around the airfoil. They showed that the vortical waves are distorted by the mean
flow around the airfoil and that the distortion affects significantly both the amplitude and the phase of
the unsteady velocity field. In the case of a thin airfoil with small angle of attack and camber, Goldstein
& Atassi's second order theory provides explicit analytical formulae for the unsteady lift induced by
longitudinal and transverse gusts.

4.2 Possio's Integral Equation

In 1938 Possio [128], making use of the acceleration potential, obtained an integral equation for the
pressure jump across a flat-plate oscillating in a compressible stream. In this subsection the same
equation will be obtained by means of the velocity potential.

A flat-plate of chord i and equation z = z(x) exp(i wt), oscillating at the frequency w, can be
described by a distribution of two-dimensional acoustic dipoles whose potential field has the form

(x,z)
iZ/300

f a(e)
H2)(A)eu/L(x_)

d(x_)2+ßz2
where a(e) is the complex amplitude of the dipole distribution and where

j32
o0Coo

wM
IL - P2Poo C00

with ß = 1 - M. The amplitude a of the dipole distribution can be related to the pressure jump
across the airfoil surface by applying the linearized pressure equation to the dipole distribution (4.1),
and by subtracting the limit as z * O to the limit as z * 0. It thus results that

Lp(x) = pO0a() (4.4)

The next step is to impose the linearized slip condition

w(x) = iwZs(x) + Voo (45)

on the flat-plate, w(x) denoting the complex amplitude of the surface velocity in the z-direction.
Therefore, considering that

Dçfw(x) = - (4.6)az
yields Possio's equation

w() = ¿p() K( - , M00,) d with (4.7)
pV00 j0

Í1MoMooI') H2
(DM00 lI\1

4ß
L ii 1 - ßnfty2 )j

Iln(
M + e"H2(M00 Ivi) dv+

1 2 /1 + i/ßoo

]
(4.8)

Lßoo \. 00 Jo

where = x/i, = /l, = - and = wi/V00.
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4.3 Sears' Gust-Response Solution

In 1938 von Kármán & Sears [123] obtained formulae for the lift and the moment of a two-dimensional
flat-plate in an arbitrary unsteady flow. Later on the analysis was applied by Sears [126] to determine
the unsteady lift and the moment exerted on a thin airfoil passing through a sinusoidal upwash gust.

Von Kármán & Sears' theory exploits the basic concepts of the circulation theory [5}, according
to which the total circulation around an airfoil in nonuniform motion vary, and vorticity is shed from
the trailing edge into the field. The analysis is based on a flat-wake hypothesis which is satisfied by
a small amplitude oscillating airfoil. A conformal mapping technique is used to describe the unsteady
aerodynamic field around a rigid two-dimensional flat-plate. The flow is supposed to be incompressible
and inviscid.

Consider an infinite-span flat-plate extending from ito i in the streamwise direction. The airfoil
wake extends from i to oo on the plane of the plate. The vorticity distribution over the plate is composed
by a quasi-steady contribution 'yo (x), which would be produced by the plate motion if the vake had
no effect, and by a vorticity distribution 'y (z) induced by the wake. Equivalently, the circulation P
around the flat-plate has a quasi-steady contribution Fo and a wake contribution F1.

The vorticity distribution d-yi (z) induced by a wake segment of intensity 'y(C) dC and satisfying the
zero velocity Kutta condition is given by

d'yi(x)
1 7(C) d 'ix- Cx Vl+x

'y(x) 1\/1x
roo

1+xJ Cx

C+i
Ci

Integrating over the length of the wake yields the wake contribution to the vorticity distribution

Furthermore, the wake contribution to the airfoil circulation can be obtained by integrating the vorticity
distribution (4.10) over the flat-plate. It thus results that

/ Ii'ii
Fi = I

Ji Vei 1)(e)dC (4.11)

The total circulation of the airfoil-wake system Inust vanish. Thus

Fo+F1 +f (C) dC=0 (4.12)

and, by using equation (4.11),

The total momentum1 of a vortex distribution on both the flat-plate and its wake is given by

pl rOO

I = Pf ('o(x)+-ri(x))xdx+j 'y(C)CdC1 i

= p f y0(x)xdx +
[i /1 - z r00 7(C) le + 1

dC + p I(C)CdCxdx IJi _1Vi+x Ji C-xVC-i Ji

= PI1
00

yo(x)xdx+p f 7(C)C2_1dC (4.14)Ji Ji
lin literature the same quantity is usually referred to as hydrodynamic impulse.

(4.9)

(4.10)

Fo + 100 dC=0 (4.13)



where use of (4.10) has been made.
The lift exerted on the flat-plate is the time derivative of the total momentum, namely

dI
L=_ã (4.15)

In order to carry out the time derivative of the wake contribution to the total momentum (4.14),
consider the generic integral of form

A=fI
+1700 t y(f()d (4.16)

which represents a generic contribution at the instant t generated by a wake convected at the velocity
V. The wake can be supposed to be stationary relative to the fluid, whereas the airfoil translates
at the velocity V. Therefore, space and time can be considered as two explicit forms of the same
convective variable (x - Vt). It is convenient to express 'y in a body frame of reference by means of
the Galilean transformation a = - + i + Vt. Hence, the generic integral (4.16) takes the form

pVoot

A= I 'y(a)f(a,t) da (4.17)
Jo

Now, if f(a = Vt, t) = O then the time derivative of (4.17) takes the form

dA foo /Of\
--=J 7(a)-.)da

and changing back to the variable yields

dA l+Voot Of
(4.19)

This result can be used to differentiate the total momentum (4.14) and to obtain the lift expression

L _4f17o(x)xdx_Pvf'° 7) d (4.20)

Finally, using the condition (4.13) that the total circulation must vanish, the lift can be also written in
the form

d '
y r° -y()L=_PjJ7o(x)xclx+pVFo+p

This shows that the lift is composed by three contributions:

1. the quasi-steady contribution, i.e.

(4.18)

(4.21)

L0 = pVF0 (4.22)

the apparent mass contribution, i.e.

L1 =Pf7o(x)xdx (4.23)

the wake contribution, i.e.

L2 = pV d (4.24)
Ji /2_1
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°°(i+
g L 2_1 iW

= Ko(iw/V) + Ki(iw/V) (4.33)

where K0 and K1 denote the modified Bessel functions of second kind.
Finally, substituting 'y from (4.26), with g obtained from (4.33), into the wake contribution (4.24),

yields
T T? i1 itpv,(JØe

Ko(w/V,) + Ki(iw/V)
The three lift contributions (4.27), (4.28) and (4.34) provide the airfoil response to a generic periodic
motion.

Consider a thin airfoil of chord i with upwash velocity w measured positive downward, namely

W Vet {A0 + 2
n= i

Ancos(nO)} (4.35)

where O is related to z through the following expression

z = cos O (4.36)

(4.32)

The resulting total lift acting on thé airfoil is given by

L = {(Ao + A1) C(w*/2) + (A0 - A2) iw*/4} (4.37)

If the motion of the flat-plate is periodic, both the quasi-steady circulation F0 and the wake vorticity
distribution are periodic, the latter being convected at the free-stream velocity V. Thus, let us write

Fo = Go e' (4.25)

= g e1t e/l"0o (4.26)

where G0 and g are constant. Hence, the quasi-steady and apparent-mass lift contributions are given
by

L0 =pVGoet (4.27)

L1 = _iwpetfg(x)xdz (4.28)

with

G0
=

f_ 90(x) dx (4.29)

From equation (4.11) it follows that the total circulation around the airfoil is given by

Fa = Fo + F1 = eIWt {c0 + gf°°
(

± i) e'' de} (4.30)

Since the total circulation of the system must be constant, an increment of circulation dFa must be
canceled by a wake vortical element shed from the trailing edge in the time interval dt, namely

dFa = 'y(l) V dt (4.31)

Thus, from equation (4.30) and the edge condition (4.31) the following relation between G0 and g can
be obtained
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where w' = wi/V00 denotes the reduced frequency and

C(w*/2)
Ki(iw*/2)

Ko(jw*/2) + Ki (i w*/2)

is the complex Theodorsen's function.
The total lift expression (4.37) can be also used to determine the response of an airfoil at rest to a

convected sinusoidal gust of form

v(x,t) = We(t_x/) Wet e_i Ç cosO (4.39)

where the upwash velocity y is measured positive upward. By exploiting the identity
00

e2CO5O = Jo(z) + 2i2 Jn(z)cos(nO) (4.40)

where J(z) denotes the Bessel function of first kind and order n, the sinusoidal gust (4.39) takes the
form

v(x,t) = Wet {JO(w*/2) + 2 (_)fl J(z) cos(nU)} (4.41)

where use of the property J(z) (_i)fl J(z) has been made. Comparing the velocity expressions
(4.35) and (4.39) yields

A0 = '4'TJ(w*/2) (4.42)

A = (i)nïJn(w*/2) for 1 (4.43)

Therefore, the lift expression (4.37) takes the form of an airfoil lift response to a vertical sinusoidal
gust, namely

L = irplV00Wet {[J (w*/2) - i J1 (w/2)] C(w*/2) + [Jo(w*/2) + J(w*/2)] i w/4} (4.44)

Finally, using the recurrence formula

2nJ(z) = J_1(z) + J11(z) (4.45)

the airfoil response (4.44) can be written as

L irplV00WetS(w*/2) (4.46)

where
S(w*/2) = {Jo(w*/2) _iJi(w*/2)]C(w*/2) +iJi(w*/2) (4.47)

is the well-known Sears' function.
In 1936 Küssner [125] in Germany and contemporarily Cicala [132] in Italy calculated the lift acting

on a vertically oscillating airfoil by applying a thin airfoil theory. Their analysis can be now applied
in order to determine the local pressure jump induced on the airfoil surface by a convected harmonic
gust.

The vorticity distribution along a thin airfoil is the solution of an integral equation resulting from
the imposition of the slip condition on the airfoil surface and satisfying the Kutta condition at the
trailing edge. By assuming a small amplitude periodic motion, the integral equation takes the form

i r1!2 1 1
r00 e"(')/"

w(x) = - I - I / d 'y(C) dC (4.48)2- J1/2 X - V00 e - C

(4.38)
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where w is measured positive downward and is given by (4.35). Following Glauert [133], the vorticity
distribution can be expanded in the series

7(0) = Voe {2B0 tan(0/2) +4
n=1

which intrinsically satisfies the Kutta condition at the trailing edge. Thus, by introducing the expansion
(4.49) into the integral equation (4.48), the expansion coefficients take the form

B0 = _C(w*/2) (A0 + A1) + A1 (4.50)

B - nA + for n> 1 (4.51)

Then, substituting (4.42) and (4.43) into (4.50) and (4.51), and applying the recurrence rule (4.45) give

B0 = _C(w*/2) (J0(w72) _iJm(w*/2)) - i_Ji(w*/2)

B=0
As a result, the vorticity distribution takes the form

7(0) 2W tan(0/2) S(w*/2)

and the pressure jump across time airfoil surface is given by

L.p(x, t) = pVoe7(0) ei(2t = 2pVW

n
sin(nO)

}

i - 2x/1 S(w*/2)
i + 2x/l

4.4 Filotas' Model of Oblique Gust-Airfoil Interaction
Filotas [134], following the analysis of Chu & Widnall [135], generalized the Sears' gust response solution
to an infinite-span wing flying subsonically through a sinusoidal gust at an arbitrary skew angle.

Consider an oblique Sears-type gust of reduced frequency w = wl/Voe, that is

w(x, y, t) = WO exp {i [k12 (x - Voet) ¡t + k22y/l]}

with k1 = w*/2. The gust is convected past a thin wing of section chord i. The instantaneous lift
coefficient at the spanwise position y induced by the gust can be written as

Ci(y,t) = T(k1,k2, Moe) a(y,t) (4.57)

where T is the aerodynamic transfer function and (y, t) = w(0, y. t) /Voe is the instantaneous angle of
attack at midcliord.

As shown by Graham [6], in the subcritical case (.!vÍ < 1) the loading coefficient per unit upwash
induced by an oblique gust is related to that induced by an incompressible parallel gust through the
relationship (10.50). Thus, by applying the similarity rules of Graham for the case M < 1, the
aerodynamic transfer function takes the form

TA(kl,k2,Moo) = ao/3'S(ki/ß2) F(k1//32,k2/ß, Moe)

where

(4.49)

(4.54)

(4.55)

(4.56)

(4.58)

a0 = TA(0, 0, 0) = 27r (4.59)

(4.52)

(4.53)



is the two-dimensional steady lift curve slope, S(k1) = T(k1, 0, 0)/ao is the Sears' function (4.47), and
the function F accounts for unsteady compressible effects and the obliqueness of the gust. The function
F has the form

( K2 '
.F(K1, K2,M) = F1 (/M0K? + K, tan MK1)) F2 (/iq + K,tan (4.60)

with

Fi(r,O)
Jo(re18) 1J1 (re18)

- Io(rsinO)+Ii(rsìnû)

F2(k,.À)
T(k,À) T(k,lambda)

- T(k,ir/2) - S(k)

Fi(r,O)

F2(r,O)

S(k)/
k+0.1811 ex{ik[1 ir2/2 1)

- 0.1811+1.569k+2irk2 1+2irkjJ
Filotas [127] obtained the following approximated functions

/ 4ir + 2 cos2 Or3 + ir sin Or4
V 4ir+ircos2ûr2+irr4

exp{ ircosO
I.(ir/2-0)+rcos0l
L

(ir/2_O)+rcosû]}

2ir+r3 27r+lrsin2Àr2+irr4/2
1 +irr2 +irr4/2 2ir+sin2)r + ircosÀr4/2

exP{ik [i sinA--- ir2/( irA(2+cos))/2 i2+ 4irk) +
i +irk(2+cosÀ)J}

where J and I,, are Bessel functions and T denotes the normalized incompressible Filotas' gust transfer
function [127].

By considering the Sears' function approximated expression

(4.63)

(4.64)

(4.65)

4.5 Amiet's Theory of Low- and High-]equency Unsteady Flow Past
a Thin Airfoil

Alniet investigated the aerodynamic problem of a thin airfoil in a compressible stream and proposed
analytical procedures for both low- and high-frequency unsteady flows.

4.5.1 Low-Frequency Case

As shown by Küssner [136] and by Ainiet & Sears [137], the convected wave equation (10.29) for the
perturbation velocity potential j, with time-dependent boundary conditions, can be reduced to a stan-
dard wave equation for zero mean flow by applying a Galilean and a Lorentz combined transformation.
The Galilean transformation

z' z - M co t, y' = y, z' = z, t' = t (4.66)

changes equation (10.29) into a standard wave equation. In addition, the Lorentz transformation

x= Y_y', Z=z', T= t+Mc0
(4.67)
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reestablishes the relative motion between the stream and the surface of the body. Thus, the combined
transformation

x=ßX, y=Y, z=Z, t=T_MX/c0
/3

reduces the linearized potential equation (10.29) to the following standard wave equation

çbxx +q5yy+qzz - 5TT=0

F=3F8(x)8(y)S(z) et

The acoustic field is the solution of the following convected wave equation

co co

that is

(4.68)

(4.69)

but leaves the body at rest.
Let be a parameter related to the ratio between the characteristic dimension of the body b and

the acoustic wavelength ), namely

2irb M00 wb M00
e - P.2 - i - M iT - i )1ñ2 (4.70)

P 00 00 00

where k = wb/U00 is the reduced frequency.
In the low-frequency limit e « 1, neglecting terms of order O (2) and of higher order, the second-

order time derivative in equation (4.69) can be neglected and the problem reduces to that of solving
the Laplace's equation

xx + yy + çbzz = 0 (4.71)

In 1976, Amiet [130] discussed the consistency of such low-frequency approximation when the prob-
lem is solved in terms of small perturbation pressure instead of perturbation velocity potential, and a
boundary condition on the velocity is imposed on the body. This is the case of lifting bodies with shed
vorticity. Consider a point force acting as a harmonic dipole with axis in the y-direction, namely

(4.72)

(4.73)

p(x,y,z,t)= -exp{i (wt+cM0o)}- [---exP(_i i)] (4.74)

where o- = \/X2 + /32 (y2 + z2).
The pressure perturbation is related to the perturbation velocity potential by the following linear

expression
p= po(qt+M00coq5) (4.75)

which can be solved in the variable q5 leading to

q5(x,y,z,t) =
fX

P(,y,zt x_e)
d (4.76)

p0M00c0 M00c0

The perturbation velocity normal to the mean flow can be calculated by using equation (4.74) into
equation (4.76) and differentiating with respect to y. Thus, on the axis ahead of the dipole, it results
that

v(x < 0,0,0,t) ß2F1 li (4.77)exp- 8poM00c0b2 (Wt_)}
where

b2 PDOI=_ 1+i(k i)
[

x
- ]b

exp [i (k* + )] - k*2ß2 exp - (4.78)
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and k* = /M is the reduced frequency k divided by ß2.
In order to investigate the consistency of the low-frequency approximation, the solution of the

transformed equation

pxx+pyy+pzzVF (4.79)

can be compared with the exact solution (4.74). It thus results that

F i- -j3(x,y,z,t) = expi (wt+Moo)}_ () (4.80)4ir '-

while the perturbation velocity is given by equation (4.77) with I having the following approximated
expression

i.= (1+i.k*)exp(iik*) _k*2fexp(i.k*e). (4.81)

Thus, comparing equation (4.74) to equation (4.80) and equation (4.78) to equation (4.81) yield

As a result, in the low-frequency limit e « 1, the exact and the approximated solutions for both the
pressure and the velocity differ by terms of order O (ea).

The same analysis for a line force yields different results. In fact, in a two-dimensional case, even
though the O(e) terms in the pressure expressions p and are identical, the O(e) terms in the velocities
y and í3 differ. Following Amiet [130], it can be written

and

where

I=.ik* (1+ß'
2ir M)

k*
1 M--- H2( fracixib) - J42) (1-t)] exp(i k

lxi

(k2 - 2) f exp(i k*) H2 (]L) dC

and

i wyFp(x,y,t) - 4ß exp{i (wt+eM)} Hf2)(e)

v(x,0,t) /3F1
= b PO

exp { ( t - k) }

Interestingly, equation (4.86) is the kernel of Possio's [128] integral equation. The approximated solution
is

- /3yF (wt+eM0)}p(x,y,t) =
expIi2 ir ci2

b exp(ik*)
2irx

+i-k*
[ + 1n(k*) + - i k f ln(C) exp(i k*) de]2ir

X

b

(4.86)

(4.84)

(4.85)

(4.87)

= p + Q (ca) (4.82)

13=v+Q(c2) (4.83)

(4.88)



Concluding, when no condition must be imposed on the velocity, the generalized Prandtl- Olauert
transformation, together with the low-frequency assumption of neglecting the second- order time deriva-
tive in the transformed wave equation, yields consistent solutions both in two- and three-dimensional
cases. On the contrary, when a wake of shed vorticity is present, provided that a condition on the
velocity has been imposed, the low-frequency approximation leads to consistent results only in three-
dimensional problems.

4.5.2 High-Frequency Case

In 1976 Amiet [129] proposed an analytical procedure for a gust-airfoil interaction problem. It is based
on the separation of the leading edge and the trailing edge effects on the unsteady pressure distribution
upon a thin rectangular wing embedded in a high-frequency, oblique gust.

Because of the short-wavelength character of the gust, a twofold simplification of the interaction
problem is possible. First, as observed by Amiet in writing equation (10.68), at high frequencies the
unsteady pressure on a rectangular airfoil differs from that induced on a similar infinite-span wing
only in a small tip-region. Therefore, the three-dimensional pressure field can be approximated by
a spanwise Fourier superposition of two-dimensional solutions of the interaction problem between an
infinite-span wing and an oblique gust. The second simplification consists in the fact that, at high
frequencies, the leading edge and the trailing edge contributions to the airfoil response are essentially
independent. Therefore, these can be separately determined and matched in an iterative scheme.

Landahi [138] showed that the pressure distribution on the surface of an infinite-span airfoil embed-
ded in a parallel gust of arbitrary wavelength can be determined by alternatively solving a leading edge
problem, where the airfoil chord is supposed to extend infinitely in the downstream direction, and a
trailing edge problem, where the chord is permitted to extend infinitely in the upstream direction. The
leading edge solution satisfies bothi the upstream boundary condition and the slip velocity condition on
the airfoil, but does not satisfy the condition of pressure continuity at the trailing edge and across the
wake. On the contrary, the trailing edge solution satisfies both the downstream wake boundary condi-
tion and the slip velocity condition, but does not satisfy the upstream boundary condition. These two
solutions can be matched in an iterative scheme which converges as faster as smaller is the wavelength
of the gust.

Adamczyk [139] determined the response of an infinite-span swept wing to an oblique gust, by
considering the first two terms of the series resulting from the iteration scheIne. The leading edge and
the trailing edge problems were solved by means of the Wiener-Hopf technique.

Amiet [129] extended Adalnczyk's analysis in order to account for a difference between the free-
stream velocity and the convection velocity of the gust. The leading edge and the trailing edge problems
were solved in terms of Schwartzchild solution for a semi- infinite boundary-value problem.

The linearized equation for the perturbation velocity potential is

2J2+32MOOJ20 (4.92)

where quantities have been made dimensionless by the semichord b and the mean flow velocity U.
Furthermore, D/Dt = (b/U)8/D t + aia x is the linearized form of the dimensionless Lagrangian
derivative.
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Then, expanding the Hankel functions for small values of the parameter yields

ï3=p+O(2) (4.89)

where

f(M)=(1ß)lnM+ßln(1+ß)ln2

(4.90)

(4.91)



Let us consider a sinusoidal Sears-type gust

w(x,y,t) WO exp { [_k (x - - kv]} = w(x,y) eIt (493)

with w(x,y) = wo exp(i kx - i k,y), k = wb/U and k = ktanA. The boundary conditions for
an airfoil in the plane z = O embedded in the gust are

y, O, t) = O for x <0 (4.94)

(x,y,O,t) = bw(x,y) et for O <x 2 (4.95)

(x,y,O,t) continuous for all x (4.96)

Dq5--(x,y,O,t) = O for x 2 (4.97)

The boundary condition (4.95) states that the flow velocity has a normal vanishing component on the
airfoil, whereas, the boundary condition (4.97) requires that the fluctuating pressure p = po Dq5/Dt
has no discontinuities at the trailing edge and across the wake.

Since the airfoil has an infinite span, the potential has the saine y-dependence of the incident
gust. Thus, the following variables separation can be performed

'I(x,z) ei(wt_11) (4.98)

Moreover, making the following change of variables

where

and
(X, Z) = q5(x, z) (4.108)

It can be noticed that ¡L2 is negative for M/ sin A < 1. In this case no sound is radiated from the
airfoil.

k z M \((x,z) = (x,z) exp(i ¡32 )
X=x Z=ßz

equation (4.92) takes the form

a
with boundary conditions

2 kMk/32 k2+k2 / 2
X IF sin2A= /34 - /32 sin2A

(4.99)

(4.100)

(4.101)

(4.102)

Î'(X,O) = O for X 0 (4.103)

bw0 / kX'\
(X,O) = --j- expi

/32 ) for 0< X 2 (4.104)

(X,0) continuous for all X (4.105)

(i+)Î(X,o)=o for X>2 (4.106)
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Consider first a generic Sears-type parallel gust, namely

w(x) = wo exp(i k x) (4.109)

The boundary-value problem takes the form

xx + + p2 =0 (4.110)
(X,0) = O for X 0 (4.111)

(X,O) = w(X) exp(i pMX) for 0< X 2 (4.112)

0) continuous for all X (4.113)

( k* + (X,0) = O for X 2 (4.114)

where k* k/í32, k O and p = Mk*.
The boundary-value problem posed by equations (4.110) through (4.114) can be solved in terms of

iteratively matched Schwartzchild solutions. The first is the solution of the semi-infinite leading edge
problem (equation (4.110) with boundary conditions (4.111), (4.112) and (4.113)). The second solution
is that of a semi-infinite trailing edge problem (equation (4.110) with boundary conditions (4.112),
(4.113) and (4.114)).

The generic solution of equation (4.110) with boundary conditions

(X,0) F(X) for X > 0 (4.115)

for X<0 (4.116)

is referred to as Schwartzchild solution. It is given by

(X,Z) = - /G(X,,Z) F() d with
ir o

G(X, , 0) = (X/)2 [1/ ( - X)] exp {i p ( - X)} for X <0 (4.117)

The first term in the iterative scheme is the solution of equation (4.110), satisfying the no flow condition
(4.112) through the airfoil surface. It is thus given by a distribution of elementary sources whose
intensity is related to the gust upwash velocity w(x), namely

= /LM(x)} p42) { [(x_)2+ß2z2]h/2}w(e) d (4.118)

where use of the physical co-ordinates (x, z, t) has been made.
The zeroth-order solution (0) can l)e corrected in order to satisfy the boundary condition (4.111).

Thus, let us write

where ?/J() denotes the leading e(lge correction. The first-order correction (1) can be found in the form
of Schwartzchild solution applied to the boundary- value problem

2 (1) 02 (1)

Ox2
+

0z2
+ [L ,(1) = O

for x<0
(1)

(x,0)=0 for x>0

(4.119)

(4.120)

(4.12 1)

(4.122)



Hence, considering equation (4.117) yields2

'(x 0) _I f (x/)112 exp { (1 M) p ( + x)} (0)(_, 0)
d1

(4.123)

The first-order solution q) can be further corrected in order to satisfy the boundary condition
(4.114). Thus, let us write

q5(2) = (') +.?I,2) (4.124)

where 1'(2) denotes the trailing edge correction.
The pressure and the velocity potential are related by the relationships

Pe"t p (4.125)

«x, t) = b f P(, z) exp { k (x )} d (4.126)
poU

Thus, the boundary condition (4.114) is equivalent to the condition P = 0. Furthermore, because
the pressure and the potential are linearly related, P satisfies the Helmholtz equation (4.110), the
vanishing normal derivative boundary condition (4.112) and the wake condition P = 0. Thus, it is
more convenient to find the trailing edge correction in terms of pressure, that is p(2) = p(') +
with satisfying the boundary-value problem

a2 (2) 2 (2)
X + X + 2 = 0 (4.127)

ôx
X2(x,0) P(1)(x) for x > 2 (4.128)

(x, 0) 0 for x < 2 (4.129)
(IZ

which can be solved in terms of Schwartzchild solution. From equation (4.117) it follows that

2(x, 0)
f°°

(2 x) 1/2

exp {i (1 + M) p ( +2 x)}

P1(2+,0) d
(4.130)

where p(') is related to by equation (4.125).
The iterative scheme3 could be continued finding higher-order corrections (n) and x up to the

required order of accuracy.
Substituting the parallel gust upwash (4.109) into equation (4.118) and integrating, the zeroth-order

solution takes the form

°(x,0) =--e'
Then, introducing 0) into equation (4.123) provides the leading edge correction

= (1i) E{k* (1 1)x]°)(x,0)
where

E(x)
fX

eitdt

(4.13 1)

(4.132)

(4.133)

2The sign of z must be changed in equation (4.117) because is specified for z <O and 41 for z> O rather than
the contrary as in equations (4.115) and (4.116).

3The convergence of the iteration scheme is as faster as smaller is the gust wavelength.
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is a combination of Fresnel integrals. The first-order pressure, obtained from equations (4.125) and
(4.132), is given by

P3(x, O) = p U WO [ir k z (1 + M)]"2 e (1-M)x-i ir/4 (4.134)

Finally, the trailing edge correction can be found by introducing p(l) into equation (4.130) and inte-
grating. An approximated result for the second-order solution is given by Amiet [129] in the form

P3(2)(x,O) P.9')(x,0) poU00wo[2irk(1+M00)]"2
{1 - (1 + i) E*(2,j (2 z))} e_Moo)x_/4 (4.135)

where E* denotes the complex conjugate of E.
The first and the second order pressure distributions (4.134) and (4.135) on the airfoil can be

integrated in order to obtain the lift induced by a parallel Sears-type gust. It thus results that

(1 - i) j1/2 (ir /L ß) E* [2JL (1 - 1W00)]

+
ß (ir)3I2 V i - M

{[/ i
+00E* {2ji (1 + M00)]

1; i]
e 2(1M) +

i I E*(4/)}

(4.137)

where both L1 and L2 are normalized by the factor 2irp b U00 wo//3. Adainczyk [139] had obtained
equations (4.134) to (4.137) before Amiet [129] by means of the Wiener-Hopf tecimique. Interestingly,
the high-frequency limit of equation (4.136) is

ihn
iß

oc k'
fL-*OO irk/IJ

-1/2
q5°(x,0) bwo

- c7 + Moop)2] e' "

(4.136)

(4.138)

The Sears function for an incompressible flow behaves as k'2 for sInall values of the gust wave-
length. Therefore, it should be concluded that the flow compressibility has a predOlninant effect at high
frequencies.

If a Sears-type skewed gust is considered (k 0) the iterative scheme applies in the same way as
for a parallel gust, but the exponential factor in equations (4.123) and (4.130) must be replaced by

/k2 \1/2
ip.(1 M00) - _ii2) +ijiM00 (4.139)

/k2 \1/2
iii(1+M00)_*_(_ii2) iíiM00

respectively. Consider now a parallel gust convected at other than the free-stream velocity U00, namely
a Kemp-type gust given by

W(x) =wo exp(-i )x) (4.141)

where À k.
By making use of equation (4.14 1) into equation (4.118) and integrating, the zeroth-order solution

takes the form

(4.140)

(4.142)



It can be observed that, for ) = k it results that

1/2 /3

and equation (4.142) reduces to equation (4.131).
From equations (4.125) and (4.142) it follows that

P°(x,0) = i
PO (,T00 (k - )) (x,0)

b

(4.143)

(4.144)

Thus, inserting equation (4.142) into equation (4.123) and integrating leads to the leading edge correc-
tion As a result

j°(x, 0) + ')(x, 0) = (1 + i) E* [x ( (1 - Moe) 40)
0) (4.145)

This is not the first-order solution 1) because the zeroth order solution does not satisfy the wake
condition (4.114). Thus a first-order trailing edge correction must be found by considering equation
(4.130) and integrating. It thus results that

X(1)(X,0){(1+i)E*{(2_X)[iL(1+Moe)+.\x]}_1}piO)(X,0) (4.146)

Finally, adding to the pressure corresponding to equation (4.145), the first-order solution can be
obtained. Its integrated value provides the following expression for the first-order normalized lift

L1 ji [2_
k

{ k (i E [2i (1 - Moe)] - (k - e_ 2ZE* {2 [i (1 - Moe) -
\ 1/2

lMoe)
-1/2+k Px - 1) [2 - x + Moo

1/2

k 1 + Moe)
e_i 2)E* [2ii (1 + Moe)]

_(1+i)E*{2[I2(1+Moe)+.Xx}}+1_e_i2} (4.147)

By comparing the analytical approximated results with Graham [6] numerical solution of the exact
problem, Anìiet [129] estimated that the cut-off limit for real u is about ir/4. Above this value the
Landahi's separation technique gives accurate aerodynamic results.

4.6 Goldstein & Atassi's Gust-Airfoil Second Order Theory

Chu & Kovásznay [76] denionstrated that three modes of fluctuation can exist independently from each
other in a disturbance flow field, namely, the vorticity mode, the entropy mode and the acoustic mode.
The vorticity mode has a divergence-free velocity field. It governs the behaviour of an incompressible
turbulent flow. The entropy mode governs the heat transfer dynamics in a low speed flow. The acoustic
mode governs the propagation of acoustic disturbances within a flow field.

Based on a mnodal decomposition, the perturbation velocity u at any point x of an unsteady coni-
pressible and vortical flow around a three-dimensional obstacle can be split into the sum of a solenoidal,
rotational part uR and an irrotatiorial part V. The solenoidal part UR is a known function of the
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imposed upstream distortion field and the mean flow variables. The irrotational part Vq5 is related to
the acoustic pressure disturbance p' by the linear relationship

D0q5
P = Po--

D0 (1 D0q5\ - V. (poVq5) = V. (pofu)Dt) Po PO

(4.148)

where Do/Dt denotas the convective derivative based on the mean flow velocity, and Po = p0(x) is the
local density of the mean flow.

By assuming a steady mean potential flow, the perturbation potential q5 can be described by the
linear, inhomogeneous convected wave equation

(4.149)

where c0 = co(x) denotes the local mean sound speed. In equation (4.149) the vortical disturbance
acts as a dipole-type source term whose strength Po uR is a known function of the imposed upstream
distortion field.

Far upstream from the obstacle the fluid density Po is constant and UR approaches the imposed
solenoidal vortical disturbance. Thus, the source term vanishes and the outgoing wave solution qS
approaches zero as x - oo. Conversely, near the obstacle the mean flow induces a distortion on the
vortical disturbance and destroys its solenoidal character. Therefore, the distortion effect of the obstacle
is to generate an acoustic mode of fluctuation. Moreover, a solid surface in a fluctuating velocity field
has the effect of coupling the vortical and the acoustic modes. The vanishing normal velocity boundary
condition yields

.. UR n (4.150)

where n denotes the unit vector normal to the surface of the obstacle.
For a uniform parallel flow, no distortion of the vortical disturbance occurs and the divergence-free

character of the convected vortical disturbance is retained even in proxilnity of the body. Therefore,
for a flat-plate at zero angle of attack, the surface modal coupling effect is the only sound generation
mechanism.

Equation (4.149) was used by Goldstein [140] in order to extend the rapid-distortion theory of
turbulence4. The rapid-distortion theory describes the effects induced by mean flow gradients on a
turbulent flow which is distorted in a time which is short relative to the Lagrangian integral scale.
Thus, viscous effects are neglected by this theory.

Goldstein [140] applied the rapid-distortion theory to describe the interaction between vortical and
entropic disturbances and a generic obstacle immersed in a mean compressible flow. The obstacle is
neither required to have a small transverse dimension, as in a Sears-type [126] aerodynamic probleln,
nor to be a Lighthill- type [144] blunt body.

Goldstein & Atassi [131] used the same rapid-distortion approximation in order to investigate the
interaction between generic airfoils and convected sinusoidal gusts in incompressible flows. Their second-
order analyses provide useful formulae for the airfoil unsteady loading at low frequencies (the gust
wavelength is large compared to the airfoil chord).

Myers & Kerschen [145] applied Goldstein's [140] formulation in order to develop a complete first
order high-frequency subsonic model for the gust-airfoil interaction probleni. They investigated the
noise generated when short-wavelength vortical disturbances are convected past an airfoil at non zero
angle of attack in a compressible flow. Myers & Kerschen concluded that the influence of the airfoil
mean loading on the acoustic far field is significant even for small incidence angles. Furthermore, they

4The rapid-distortion theory was developed by Hunt [141] on the base of the preliminary works by Praiidtl [142] and
Batchelor & Proudman [143]



showed that, at high frequencies, all the important source terms are located in a region around the
airfoil leading edge.

The influence of the mean loading on the aerodynamic noise from a blade in a vortical flow was firstly
investigated by Goldstein et al. [9]. They showed that the quadrupole noise contribution from a loaded
airfoil is proportional to the mean flow circulation and tends to become important and comparable to
the dipole noise contribution at higher airfoil loadings. This is a consequence of the distortion induced
by the mean flow gradients in proximity of the airfoil onto the impinging vortical disturbances.

In the present section the second-order gust-airfoil interaction theory of Goldstein & Atassi [131] is
described. It will be shown how the mean steady potential flow around an arbitrary airfoil affects the
aerodynamic response function of the airfoil when it is embedded in a small-amplitude periodic gust.

Consider a two-dimensional incompressible and inviscid flow. The Euler's governing equations
become

where quantities have beemi made dimensionless by the airfoil semi-chord c/2, the reference velocity U,
the reference time c/2U and the reference pressure poU.

The velocity and pressure fields can be split into the sum of a steady contribution and a fluctuating
perturbation contribution by writing

V = v(x) + eu(x,t) +... (4.153)

P = p(x) + p'(x,t) +... (4.154)

where c is a small amplitude paramneter and u and p' are of order unity.
By assuming an irrotational steady flow, the steady velocity satisfies the conditions

Vv=Vxv=O (4.155)

Since the unsteady velocity field is divergence-free, a stream function '/' can be introduced, such that

mtl = , U = - (4.156)
ax2 DX1

Taking the curl of equation (4.152) and neglecting terms of order 2 gives

(+v.V)=O (4.157)

where S is the negative of the vorticity and is related to the stream function by the Poisson equation

(4.158)
Dx2 Ox1

By introducing the steady potential 1 and the stream function W, provided that

y . V = lui2

equation (4.157) can be written as

ZÀV+O.V)VVP

20'+M ì=0

(4.151)

(4.152)

(4.159)

(4.160)
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which has the formal solution

=f(f(vi2_1) d+_tW)

where f is an arbitrary function of its arguments.
Far upstream from a lifting airfoil the steady potential and the stream function behave like

where (1) is of order unity.
The unsteady perturbation flow quantities can be supposed to have the form

u(x,t) = exp(i k1 t) [u(°)(x) + au)(x) + .

p'(x, t) = exp(i k1 t) [p(°)(x) + ap)(x) +...]

(x, t) = exp(i k1 t) [wo) (x) + a' (x) +...]

(- k1 + = o

(- k1 + v2 = (' . y ((0))

(4.161)

where o, /3 and E0 are constants, fi being a parameter related to the airfoil lift. Thus, in order
to approach the vorticity of a longitudinal and transverse periodic gust imposed upstream, equation
(4.161) imist have the form

= -i lkI exp k1 [f (lvl_2 - i) d + t] + i k (W Eo)} (4.164)

where k = k1 + i k2 and the normalization factor -i kl is chosen as a matter of convenience. However,
it should be observed that, far upstream from the airfoil, say x1 -+ oo, the vortical wave (4.164) takes
the limit form

-i Jkexp{i {k1 (x t) +k2 (fin lxi +X2)]} (4.165)

which differs from a Sears-type vortical wave = -i kl exp {i [k1 (x1 t) + k2x2]} if the perturbation
parameter fi differs from zero.

Without loss of generality it can be supposed through out the present analysis that both the stream-
wise and transverse wavenumbers k1 and k2 are positive.

The aerodynamic interaction problem has been reduced to the solution of the Poisson equation
(4.158) for the unsteady stream function &, with the source term given by (4.164). The boundary
conditions are the slip condition u n = O on the airfoil surface, the Kiitta condition at the trailing edge
and the continuity of both the pressure and the normal velocity across the vortex-sheet downstream of
the airfoil. In order to simplify the analysis, suppose that the mean steady flow is slightly perturbed
from a uniform parallel flow by a thin airfoil with a small angle of attack and small camber. Thus,
denoting as a an airfoil perturbation parameter, the mean velocity field has the form

(4.166)

(4.167)

(4.168)

(4.169)

Thus, by substituting equation (4.169) into equations (4.157) and (4.158), and by equating terms of
equal power of a, the following perturbation problem can be obtained

(4.170)

(4.171)

0+Xi (4.162)

W E0 +X2 +ßln lxi (4.163)
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where
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(o) (o)

= SX u2
= (4.172)

(1) (1)
1 = 5X2 = (4.173)

Equation (4.170) is related to the first-order theory of Sears. It can be integrated giving

i Jke (4.174)

which can be substituted into equation (4.171) yielding

(_ k1 + -) v21 = - Iki k v'e' k'x (4.175)

In equation (4.174) the normalization factor i kl has been chosen to be compatible with equation
(4.164). Setting z = x1 + iX2, w' () + P(1) and ((1) = - iv1, with dW(')/dz =
Goldstein & Atassi [131] obtained the following formal solution of equation (4.175)

= -j [F+ - - eX a(kW(1)(z))] + f(x2) eiklxl + P(z) + O() (4.176)

where f is an arbitrary function of X2, where J and Ò are analytic function of z and ', respectively,
and where

= ±exP(±ik) 71±(z) (4.177)

with

?-1(z) f (1)(z)exp(±ik) dz (4.178)

The functions ?-L are analytic multivalued functions of z. In fact, ((1)(z) behaves like i F/z for large z,
aF being the steady circulation around the airfoil. Thus, it should be supposed that the branch cut of
7-Le lies along the positive real axis and that the branch cut of 7-1- lies along the negative real axis.

The velocity (') can be obtained by differentiating the stream function (4.176). It can be split into
the sum of a homogeneous solution, namely

where

with

u(x1,x2) f'(x2) e'' + F(z) + G()
u(xl,x2) = _ikif(X2)e"'' +i {F(z) -

and a particular solution

u(Xi,x2) -j-j {J+ _ i_ik2eik)J(k [w(1)cz - wo])}

U(X1,X2) = {J+ +71- k1eik(k [w(1)Z - wo])}

J±(k,x) = exp(±ik) [7-1±(z) - D±7-1±(z)]

f' exp(±i kXi) dx1

f1 ¿\((1)(x1)exp(TljkXl) dX1

(4.179)

(4.182)
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The arbitrary functions f, F and G and the complex constant Wo can be determined by requiring the
boundary conditions to be satisfied, whereas, the constants D± are such that

= 0, i4(xi) = O for x1 <-1 (4.183)

and that

i.uÇ(xi) = e1k1x1 (kw(1)(z))

= 11e (kW(1)(z)) for s1 -1 (4.184)

where f(si) denotes the jump in the function f(xi,X2) across the real axis at the point xi The
conditions (4.183) derive from the fact that '.<'(xì) LIW(1)(xi) = O for x < -1 and lead to

= ¿t4(x1) = Lu(Xi) for xi <-1 (4.185)

The conditions (4.184) derive from the fact that ¿(')(xi) O and that ¿W(')(xi) is constant for
s1 -1 and yield

¿u(x1) = Ï.eikix1lJ(kW(1)(z)) + Lu(xi)

= _2te 1x1(kW(1)(z)) +u(x1) for Xi 1 (4.186)

For a lifting airfoil the complex potential W(')(z) behaves like iFlnz as z + oc. As a result

?-L+(z) exp iZ for O arg(z) <2ir, z * oc (4.187)
kz \2 J

2F / 1-\?-L_(z)-=-exp1--ikzJ for arg(z)<7r, z-*oo (4.188)
kz \ 2 j

and, from the definition (4.181)

o(i) as z * oc (4.189)

Thus, it can be concluded that uP diverges as k1' exp(i k. x) kFlnz) as z * oc. On the other
hand, since it is impossible to choose the functions f, F and G in equation (4.179) in order to cancel
the diverging terms of uP, the solution UL + describes indeed the behaviour of the velocity field only
in the airfoil inner region.

In order to determine the outer expansion of u, let us consider the following result which is valid
for a generic steady, two-dimensional, potential flow

1-1o+i ('J1-Eo)=z+a{iFlnz+(a+ib)z+i (e-eo)+O(z2)} as

where a, b and e are real constant and eo = Eo/a. The term z denotes the potential of a uniform
stream, whereas ternis within the brackets denote the steady perturbation induced by the airfoil angle
of attack, thickness amid camber. The expression (4.190) can be written as

+ i ('Ji E0) = z+ a (W(1)(z) w0) + O(az2) (4.191)

where

W(1)(z)-Wo=i (
b-ia

)
Flnz+ +e e

z

z-+00 (4.190)

(4.192)



and
Wo =lim')(xi,x2)+ieo as xi -+ oo with x2 finite (4.193)

Then, since I d ( + i 'I') / dzj2 Ivi2 -+ 1 as z * oo, equation (4.165) has the following limit form

fì=_ijkiexp{i EJ(k(_o+iJ!_iEo))kit]}
= -i kl exp { [k. x - a (k (W(')(z) - w0)) - kit] } + O(a2,az2)

as z oo, a * 0, 0 < arg(z) <2ir (4.194)

Equations (4.158) and (4.194) can be used to determine the velocity field at large distance from the
airfoil. It results that, within an error O (a2, a z2)

flout _jjex{i k.x_ a(k (W")(z) - wo)) _k1t]} [k2 +aF()]
+ {..'F(z) + Ç()] exp(i k1t)

gout = exp{i [k.x_a(k (W(')(z) - wo)) - kit]} [k1 - ar()J
+i [.T(z) Ç()Jexp(ik1t) (4.195)

where .F and Ç are arbitrary analytic functions of their arguments. It should be demonstrated that the
pressure field obtained by inserting the far field velocity in the momentum equation (4.152) is uniformly
bounded at infinity only if there is a constant M such that

M M.T(z)=+o(z) and
z z

Furthermore, the pressure field can be continuous only if M = 0. It thus follows that F(z) = o(z-1)
and Ç(z) =

From equations (4.172) and (4.174) the following far field expression for the zeroth order velocity
can be obtained

= + O(z2)

40) je1x + O(z2) (4.197)

Therefore, by matching the outer expansion (4.195) of the velocity field with the inner expansion

u(x, t) = exp(-i k1 t) [u'°)(x) + a (u'(x) + u°(x))] (4.198)

where u" and are given by equations (4.197), (4.179) and (4.180), respectively, the matching
conditions u, ?4 * O as z -+ oo can be found. Furthermore, the inner and outer expansions of the
pressure field can be matched in some intermediate domain only if a more severe requirement is satisfied,
that is

+(h - [kD+ kD_ j + o(z)
z . /

h ir IkD (kD_1+(_l) as z-+oo

(4.196)

(4.199)
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On the other hand, since the inner particular solution diverges as z -4 oo, this expression provides
the outer behaviour of the velocity field.

A homogeneous solution must be found that satisfies the boundary condition (4.199) at infinity and
permits the velocity field to satisfy the boundary condition on the wake and the airfoil surface. In
addition, singularities at the airfoil leading edge and trailing edge must be removed from the solution.

The zeroth order velocity u° is the solution of a Sears-type problem and is given by

where 1u0 is a homogeneous solution that decays like z2 as z + 00. Both Hu(0) and (°) exhibit
jumps across the airfoil and the wake surface, namely

on the airfoil surface, i.e. 1 <z1 < i

(o) = = h3(zi) + hb(xi)
(o) = H(0) = o

where
2k1 Ilx1h8(x1) = --S(xi) Vi + Xi

=

and

denoting the complex conjugate Sears function. It can be noticed that h5(x1) has a square-root
singularity at the airfoil leading edge, and that hb(zl) is bounded at the airfoil edges (hb(-1) = O
and hb(1) = 2k1 !kl ìo).

In the wake region, i.e. xi > 1

(0) jj(0) 2k1= = -j-loexp{ik1 (z1 - 1)} (4.207)

(o) = ¿"i4° = 0 (4.208)

where

2k1
hb(zl)= -.j-cìoexp{iki (z1 i)}

+2
/

S(k1)exp(ikixi) / exp(_iklxl)V +1 dz1
Ji

2k1 4k1 1 Jo(k1)+iJ1(k1) io = exp(ik1) [Hp(k1)
_iH(ki)]kl kl

Then, the zeroth order velocity can be written as

(0) b (0) k1= ni + S(k1)
1

Vz+iJ

= IL2 -- iii(0) b (0) 1S(k1)
'z-1

V z+1

(4.203)

(4.209)

(4.210)

with

8(k1) = {k1 [H')(k1) - ¡ H»(k)]
}_1

(4.206)

= - (1k2 2k1) lkl eCX +"° (4.200)

(4.201)

(4.202)

(4.204)

(4.205)



where 'u is bounded and satisfies the Cauchy-Riemann conditions

abu1 9bu2+=O
ax1 (9x2

abu2

ôsi (9X2 -

In order to determine the boundary conditions on the airfoil and the wake surface, let us suppose
that the airfoil shape is defined by:

angle of attack: aß;

mean camber line: X2 = ayc(xi);

thickness distribution: ab(xi);

upper and lower surfaces: x2 =

and that the wake is defined by the function

= ag(x1) + c(xi, t) + ac(xi, t) (4.212)

From the theory of unsteady inviscid flow, the following linearized boundary conditions can be
obtained for the first order velocity field

on the airfoil surface, i.e. 1 < x1 < i

k2d= - {cxi _ßxi]i4°)(xi) - pb(xi)exP(ikixi)}

In the wake region, i.e. x1 > i

= íìo {WW(xi,o) exp [ k1 (xi - i)]}

where it has been supposed that g(xi) = 'I'(')(xi3O).

By requiring that the pressure is continuous across the wake, it can be obtained

Au
2k1 d

1{(')(xi3O) +Ko} exp [i k1 (z1 - i)J} for= --f20-
1k! dz1

(4.211)

(4.213)

(4.214)

x1 > i (4.215)

where K0 is an arbitrary constant of integration.
By supposing that yc(xi) and b(zi) go to zero fast enough at the airfoil edges, the only singularities

in tile boundary condition (4.213) are due to the term

ß--- {x1Hu0)(x1)} (4.216)
dz1

with ¿h140) (z1) given by (4.201). These singularities can be removed by introducing a new homoge-
neons velocity

r

(dzL Vz+l])IR Iz-zi/ I

74' =iißS(ki) -g-- I 'z-il'IZZ41 I (4.217)
(dzL Vz+i])
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whose jump across the airfoil surface and the wake satisfy the conditions

1u(xi) ¿uÇ'(xi), L.i4'(x1) = ¿t4(xi) for lxii > i

and

= + 2ßj'S(ki) ----- (xi
dx1

Since = + as z - 00, uH satisfies theO same boundary conditions as also the
condition at infinity (4.199). In addition, uf and u have the form (4.179) where 1(x2) must be put

(1) h (i)equal to zero in order to satisfy the condition (4.199). Thus, smce Lu1 = O and Lu2 =
= O for x < -1, from the theory of piecewise analytic functions it follows that

and

u_iu=_f

for all z outside the cut -1 <z < 00.
The velocity jumps ¿t4 and Lu can be obtained by inserting (4.180), (4.186), (4.217), (4.218)

and (4.219) into the boundary onditions (4.213), (4.214) and (4.215), and by using (4.200) and (4.201).
It thus results

2k1 d {[(')(o) +Ki] exp [ik1 (xi - i)]}--cl0-
kl dz1

¿u'(xi) 2k1 d= ____ {(1)(xi,o)exp{iki (xi - i)]}
kl dz1

for xi >1

=
{r+(xi) - r_(xi)] + ex(i kixi) (kIW((zi))

k2d d
{b(xi) exp(ikixi)} + yc(Xi) txHu0)(x1)}

ll' dz1 dz1 ..

{xih(xi)} for - i <z1 <1
dx1

where

(4.218)

for lxii < 1 (4.219)

(4.220)

for xj > 1 (4.221)

(4.222)

k2 f ir(z1)= --exP(±ikxi)f zi)exP(±ixi) dx1

k2

exp(±

\- -ikxj ) D I A((i)(xi)exp(ikxi) dx1
4 / J-i

Furthermore, by requiring that the velocity jump u1 is finite at the trailing edge, the limit of (4.220)
as z approaches the real axis is

¡'z'
Vi+xi

R(1) d.}
:i 1i - xi

+'° [ i
!1 + i f- { [(,o) + K1] exp [ k1 (i - i)j}

j V z1 - i 1 - XI
d1 (4.225)

(4.223)

(4.224)
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R(xi)
k2 d i d r

= {[yc(X1) fixi] exp(ik1x1)} + - 1b(xl)1u0)(xl)}
dx1 4dz1

k1

-jj {q+(xi) + q(xi)} + --exp(ikixi)i{k [(W(')(xi)) - w0]}

lX1
q(x1) = ÇexP(±ikxi)

J (<(')(xi))exP(±ixi) dx1
:1:00

k2 -. D±J (')(xi))exp(ikxi) dx1exp(±x')
In the above expressions, for any function f(xi, X2) it results that

f(xi3O) + f(xi3O)
2

The constant K1 can be determined by requiring that u11 satisfies the condition (4.199) at infinity.
Therefore, by inserting equations (4.221) and (4.222) into equations (4.220) and integrating by parts,
it can be shown that, for arìy 8 > 0, there exist two constants â and b, such that

- i '-' â/z and iij-11 - i i" b/z as z * oc for 8 < argz < 2ir 8 (4.229)

As a consequence, the solution obtained by integration of equations (4.220) can match the condition
at infinity (4.199). However, this is possible only if the following condition is satisfied

f0

u". dS = - f /u'(x1) dx1 (kD_ kD+) (4.230)

GTo being a large circle enclosing the airfoil, with a perforation corresponding to the airfoil wake.
Therefore, by substituting equations (4.221) and (4.225) into the condition (4.230) and integrating, an
equation for tile constant K1 can be obtained.

An inner solution has beeiì determined that satisfies all tile equations and boundary conditions
governing the problem. However, this solution is nonuniformly valid at the airfoil edges. The second
term on the right-hand side of (4.217), in fact, causes tile O (ac) term to be more singular at the airfoil
edges than the O (c) Sears solution. This singular behaviour can be removed by introducing the slightly
strained co-ordinate = + i 2 = z/ (1 - i aß) into the solution (4.167) and expanding for small values
of aßij. It thus results that

where

u exp(ikit)

u2 exp(i k11)

(0) b (0)= u1 u1 (1,2)
Ii 1)aßS(k1){i_ViÌ+O(a2)

(0) b (0)= u2 (i,2)+ 2 (1,2)
Ii il .ìaßS(ki){i [i_v +ijÌ+O2)

a a-
UÇ2

with bu(0), uP and given by (4.200), (4.210), (4.180) and (4.220), respectively.

(4.226)

(4.227)

(4.228)

(4.231)

(4.232)

(4.233)
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The solution for the gust-airfoil interaction problem is now complete. A uniformly valid inner
velocity field has been determined. This solution matches the outer expansion (4.199). The next step
consists in using the velocity field to determine the pressure field and the airfoil unsteady lift.

Consistently with the expansions (4.154) and (4.168), the unsteady pressure on the airfoil surface
can be written as

= e_1t íôp(°)\ i
{P(0)(Ci±0)+a[P(1)(C1±0)+ (Yc±)

j
+O(a2)}

(4.234)

Inserting equations (4.153), (4.154), (4.166), (4.231), (4.232) and (4.168) into the momentum equation
(4.152), using (4.200), (4.211) and (4.210) and equating the C2 component of the O (E) yields

(ap(o)
t o2 =0 for ICiJ<1 (4.235)

C(k1)
- iH(ki)

(4.24 1)

whereas equating the component of O (aE) yields

[pi1 - jex(ikiCi) Lv(Ci) + (v(Ci)) Hui(o)(ei)] -
= (ikl_) (Ci)+u'(Ci)]

for Cil < i (4.236)

The airfoil fluctuating lift per unit span can be written as

L' = L + aL'1 (4.237)

where L is the fluctuating lift obtained by Sears for a fiat-plate at zero-incidence, namely

pcU2/2
exp(ik1t)

= f' p(0)(') d = 2exp(ik1t)S(k1) (4.238)

with S denoting the complex conjugate Sears function (4.206), and LÇ denoting the O (aE) contribution
to the lift given by

L'1 1h

pcU2cx/2
exp (i kit)

= j
zp( (e) dCi (4.239)

By evaluating the integral in (4.239), an expression for L'1 can be obtained which depends on the
velocities y and u. However, for a zero-thickness airfoil a significant simplification is possible and a
specific formula for L'1 can be obtained which depends only on the steady velocity y. It results that

LÇ = pc U2 exp (- k1t)
I Fk i

[21k1 (D+)+ik1 f (1xi)Ro(xi)dxiC(k1) / Ro(xi)dxi]
J-i J-i

(4.240)

where D is given by (4.182),



is the complex conjugate of the Theodorsen function [124],

d/1+ xi
1xi {k1 exp(ik1x1)(kao)

dx1
+ [q(xi) - q(xi)J

}
with

± k (+ikx1q0(xi)=exp
2

[L: (v'i)) exP(±imxi) dx1 + D (v'(ei)) exp (4 kxi)
(4.243)

and
a0 = (i'V(1)(xo)) - wo (4.244)

xo being the point where the surface of the airfoil crosses the x1 axis, and W0 being defined in (4.193).
Atassi [146] demonstrated that, for a thin airfoil with a small camber and a small angle of attack,

moving in a periodic gust, the unsteady lift L'1 can be constructed through a linear superposition of
three independent components accounting for the effects produced by the thickness, the camber and
the angle of attack. Thus, by denoting as aO, aß and arm the airfoil thickness, angle of attack and
camber, respectively, the unsteady lift LÇ can be written as

LÇ(ki,k2,ß,m,O) =OI4(ki,k2)+ßL(ki,k2)+mL'm(ki,k2) (4.245)

For a zero-thickness airfoil, Atassi [146] obtained specific formulae for the angle of attack and camber
contributions:

- angle of attack contribution, i.e.

L'ß k1

[_

(i(kaoß) + 42) s(ki) +e+() - e)]irpcU2cexp(ikit) =

C(ki)
+

' kj
[A+()_A()]

where

7rzJl(zY(H±(z)J±(z)) - J(z)
=

A±(z) = ±z2(H±(z) J±(z))
J(z) = Jo(z) ± Ji(z)
H(z) = I4(z) ± H'(z)

- camber contribution, i.e.

T' ;4k1
pcU2eexp(ik1t) = kl

[(km) +8k2(_)1 8(k1)
kl4 j

16k1 k2

+
[k1c() E()] 4C(ki) [F+() F)]

ki I

(4.242)

(4.246)

(4.247)

(4.248)

(4.249)

(4.250)

J0, J1, H' and H1 denoting the Bessel and Hankel functions of the complex variable z, and
aoß = i (x - eoß).

(4.25 1)
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where

E(ki) = kiJ2(k1) + C(ki) [k1J(k1) - J1(k1)]

G(z) =

z irzJ-i-(z'jG(z' - Ji(z')F(z) =
Ji(z)

The lift function LÇ = L'0 + a (ßL + mL'm) accounts for the effects of the gust distortion due to the
steady aerodynamic field. Nevertheless, as in a steady thin airfoil theory, it linearly depends on the
airfoil angle of attack and camber.

(4.252)

(4.253)

(4.254)
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5

Theories of Aerodynamically Generated Noise

5.1 Introduction

Lighthill's 1952 primary work is usually referred to as the starting point of aeroacoustics. However,
as pointed out by Doak [50], Lighthill's theory of sound generated aerodynamically can be inserted in
a larger context permeated by the classical theories developed by Stokes, Kirclihoif and Rayleigh to
describe the fluctuating types of motion, say modes, in a fluid medium. From Rayleigh's 1877 book [147]
a fundamental concept emerges: the coexistence in a generic small-amplitude fluctuating motion of three
distinct modes describing the propagation of acoustic waves, the vortex dynamics and the behaviour of
entropy spots. Although Rayleigh dici not detail the modal coupling mechanisms, his studies showed two
ways for more exhaustive investigations. The first led to a modal approach describing the generation
of second order fluctuating motions by interaction of first order flow perturbations. The second was
concerned with the role of physical boundaries in coupling different modes of fluctuation. Thus, both
jet-noise and interaction noise, the main topics of modern aeroacoustics, can be founded on Rayleigh's
primary intuitions.

In 1958 Chu & Kovásznay [76] shed light on the role of nonlinearity in the generation of modes of
fluctuation. They classified the second order bilateral interaction terms according to their source-like
behaviour. They showed that Lighthill's stress tensor is a source for the acoustic mode, generated by
the self-interaction of the vortical mode. In these terms, the generation of noise by turbulence is only
a particular aspect of a more general modal coupling dynamics in a fluid.

A classical approach in the aerodynaniics of wings consists in defining surface distributions of
singularities whose strength permits to satisfy .both boundary conditions and compatibility conditions.
In 1936 Gutin [148] developed a theory to predict the noise generated by a rotating propeller. The
propeller surface was described as a moving distribution of mass, density and linear momentum density
sources generating acoustic waves in a medium at rest. Therefore, Gutin was the first to relate the
acoustic mode of fluctuation in a fluid to generalized sources of aerodynamic noise and to physical
boundaries. In these terms Lighthill's acoustic analogy could be considered as an extension of Gutin's
model and the fluctuating Reynolds' stresses can be interpreted as moving source distributions of linear
momentum density flux.

In 1972 Doak [50] reviewed the existing theories of noise generated aerodynamically, giving emphasis
to Lilley's [149] theory of mixing noise for a unidirectional, transversely shared turbulent mixing layer. A
generalized Rayleigh's approach was used in order to show the similarities between the existing theories
and to develop an unified jet aeroacoustic theory. Contrarily to previous models, Doak's theory is
explicitly formulated for a generic nonlinear fluctuating motion amid no restrictions are made on the
mean velocity and the temperature gradients.
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5.2 Rayleigh's Approach and Phillips' Theory

Starting from the linearized equ4ions of mass, linear momentum and energy, Rayleigh obtained three
sets of equations, which are uncoupled in a portion of fluid in which the linearization is supported and
where no physical boundaries are present.

In a similar way, Doak [50] considered the exact transport equations and obtained three sets of
coupled equations that exhibit common aspects with Chu & Kovásznay's [76] perturbative recursive
equations described in chapter 2, and include, as a special case, a wave equation previously obtained
by Phillips [150].

Consider a Newtonian fluid of nonzero bulk viscosity (see (1.48)) and define the following set of
variables'

P 2 p Kr =lnp a =ln e =y k = -
p7 p

I_i 4 x u. Q77-7)+ Pr= qe= (5.1)
p 3 p k pc,.,

where ij = 2/p and x = 2A. By rearranging the flow governing equations presented in chapter 1, the
following equations can be obtained

Dr Da
(5.2)

a
+

r D D [ln (pi)]l I D D2

{ ax, .1

Dv r D D [in (pv)] 11 Dv Dvj DVJc i2ö,I +y f - y -- + 'y u [b +
Dx j [ ôXk

Equation (5.4) is a generalized inhomogeneous scalar diffusion equation for the entropy mode of fluc-
tuation.

Taking the curi of equation (5.3), a generalized vector equation for the convection and diffusion of
the vorticity mode can be obtained. Conversely, rearranging equations (5.2) and (5.4) leads to

Dr D2r Dv D2a cii + cie

T

'As far as possible, the nomenclature used in this chapter is the same used in chapter 1.

(5.6)

and

where i is the following

(5.3)

(5.4)

(5.5)

r a D[in(pij)]1 Ikô0+ cij+cie]
a iL T

D2a Do t92r ci+cie
T

positive definite internal dissipation function

ykPr f cD[ln(KT)] T f (52'>
+ +

1 1P D \3 ) \Dxk) j
y k Pr (Dvi D 2ô

'\DX
+ &j Dr ') a
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By taking the divergence of equation (5.3) and subtracting from it the material derivative of equation
(5.6), the following generalized equation for the sound mode of fluctuation can be obtained

(9 / ¿9 9 [in (ini)] \ I D- 11+ r+

IDI 2\ 1'2'9 D2)
('y 1) k) + - C h-) - r =

0f Dv 8v ¿9 1 F 8 8 [In (pv)] 1F Dv 8v Dvk 1)
Dxi i

f I ('9 9 [In (pif)] '\ - ..P..1. Ik_1 + i + e
l L k5 + öx j] Dtf 8x T

Equation (5.7) has the form of a convected inhomogeneous scaiar wave equation for a viscous heat-
conducting nonuniform acoustic medium.

Equations (5.3), (5.4) and (5.7) can be linearized with respect to a uniform flow with constant mean
velocity Uj, constant thermodynamic variables , , T and , constant viscous and thermal properties
71, '17 and k. Thus, denoting by primes the fluctuating components and neglecting second order terms,
the following set of linearized equations can be obtained

I 2
ô2r 8f' ( 2 ( 52J F

{vxvx +} (V x v)= (V x f')

1_02 15) , 82r'kja =('-1)k--
where

vi). = (V x f').

Dx? Dt T
2This is the saine parameter utilized by Chu & Kovásznay and defined in equation (2.41).

(5.7)

(5.8)

t ¿9 ¿9

and v is the solenoidal component of the fluctuating velocity.
Equation (5.9) describes the convection and diffusion of the vorticity mode. In the small pertur-

bation limit, the vorticity mode is uncoupled from both the acoustic and the entropic modes. These
latter two modes, on the contrary, are coupled to each other.

The second term on the right-hand side of equation (5.8) can be written as

() (5.12)

Consider the Stokes number2 = f i7/2. It results that « i for a large range of frequency f. Hence,
the first term on the right-hand side of equation (5.10) and the first two terms in equation (5.12), being
of higher order in c, can be neglected and equations (5.8), (5.9) and (5.10) take the forni

{
(5.13)

(5.9)

(5.10)

(5.11)

(5.14)

(5.15)
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In the small Stokes number limit the coupling between small amplitude modes of fluctuation is only
due to the boundary conditions: the velocity continuity condition couples all the three types of motion,
the temperature continuity condition couples the acoustic and the entropic modes.

In 1960 Phillips [150] obtained an exact convected wave equation for the logarithmic pressure. This
is a special case of equation (5.7) for the particular conditions f = x = 0. However, Phillips did
not notice the generalized Rayleigh form of his equation. This was merely interpreted as a wave equation
in a moving non-homogeneous medium, with a right-hand side accounting for the fluid viscosity effects,
and describing the production of acoustic waves by velocity and entropy fluctuations. This physical
interpretation is imprecise in two points:

- Phillips did not extract from the viscous terms the part responsible for the damping of the wave
propagation, which should be written on the left-hand side, as done by Doak in equation (5.7)
and by Chu & Kovásznay in their iterative set of equations (2.21), (2.22) and (2.23).

- The term --y(Dv/Dx) (Dv/Dx) is not a pure source term, but it also accounts for a shear
refraction contribution that should be moved to the left-hand side.

In order to shed light on the latter point, let us consider the following simplified inviscid form of the
Phillips' equation

D (2 Dr\ D2r Dvi Dv
I\C rD2 --J (5.16)

and apply to it the material derivative operator. For an inviscid fluid, the following exact relation is
satisfied

D (DVi Dv'\ Dv D 1 2 ôv Dvi Dvk'yb-- _-_) = 2-- c _) + 27---.-- (5.17)

Thus, the material derivative of equation (5.16) takes the form

D I D 1 2 Dr'\ D2r) ôVj D / 2 Dr'\ Dv Dvj ôvk

where the shear layer refraction contribution has been isolated and moved to the left-hand side.
The following linearized forni of equation (5.18), for a model shear layer v = 1(x2) + u, was

obtained by Lilley [149]

D1 f D (-2 Dr"\ Dr'Ì 2' D (-2 Dr'
Dt1Dx Dxi) Dt2f' Dx2Dx1 Dx2

DiJ1 D'a2 Duk Du Du Duk6-y + 27
Dx2 Dxk Dx1 Dxj Dxk Dx

where
D1 D D= +Ji(x2)---- (5.20)Dt Dt Dx1

An analysis of the order of magnitude of equation (5.19) is useful to enlighten some mechanisms
involved in the internal generation and propagation of acoustic waves in a shear layer configuration.
The relative magnitude of the refraction terni is given by

Di51 D 1_2 Dr' \ D I D ( 2 Dr \) / V5
)J0\Lf

where V3 is a shear layer reference velocity, L5 is the shear layer thickness and f is a characteristic
frequency in the convected frame of reference. Considering that

(5.18)

(5.19)

(5.21)

(5.22)
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Expanding the expression

[Eq.(5.24)] + -- [Eq.(5.25)] 25P 202P
axi
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leads to the Lighthill's equation
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(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

at a given Mach number M3, the refraction term becomes significant for an acoustic wavelength A
greater than, or comparable to, the shear layer thickness. Furthermore, a comparison between the
refraction term and the source term provides the following result

&u1 a (-2 ar' \ &iJ 8U2 OUk - (L
(5.23)

where L is the length scale of the turbulent eddies, which is comparable to the shear layer thickness.
Concluding, the greater is the difficulty in distinguishing the refraction term from the source term

(Lt/A « 1 in equation (5.23)), the greater is their influence on the propagative behaviour (A/LS » 1 in
equation (5.21)). Therefore, an adequate use of a jet-noise aeroacoustic model requires the refraction
contribution to be separated a priori from the source term and to be moved to the left-hand side of the
wave equation.

5.3 Lighthill's Acoustic Analogy

Pressure fluctuations generated somewhere in a fluid may propagate as acoustic disturbances within
the fluid medium. On the ideal assumption of separating the sound generation mechanisms from its
pure propagation, the flow governing equations can be arranged in the form of an inhomogeneous wave
equation where all those terms discarded by the propagation pattern are gathered at right-hand side
and interpreted as source terms. Such a model is referred to as acoustic analogy model.

Depending on both the reference wave equation and the mechanism that generates the pressure
disturbances (free turbulent flows, turbulent flows confined by solid surfaces, etc.), the acoustic analogy
approach leads to different formulations. The first model was proposed by Lighthill [1] and describes
the noise generated by a turbulent portion of fluid and propagating in a quiescent unbounded medium.
Despite its concise formulation, Lighthill's theory succeeded in predicting the so-called eighth-power
law, describing the dependence of the jet-noise intensity on the meaii jet velocity.

More detailed measurements showed that Lighthill's acoustic analogy is too concise to provide a
clear identification of all the cause-effect mechanisms in the noise generation from turbulent mixing
regions. Indeed, Lighthill [1] first discussed the physical consistency of the acoustic analogy model. He
argued that the sound back reaction onto the aerodynamic source of noise restraints the validity of the
acoustic analogy approach. A brief discussion about Lighthill's model is reported below.

The Navier-Stokes equations (1.62) and (1.63), in the absence of both mass injections and external
forces, take the form
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where

= p vivi + (p - cp) äj - Tj (5.29)

is the Lighthill's stress tensor.
The constant co is mathematically arbitrary. However, it can be identified with the sound speed by

supposing the existence of a region of fluid surrounding the aeroacoustic source region with a uniform
mean temperature T0 = c/-yR. Therefore, the acoustic analogy can be established by supposing that
the terms 02Tjj/i9xjt9x are of second order in the exterior region where they can be neglected. This is
equivalent to suppose a quiescent fluid exterior to the source region.

Equation (5.28) can be interpreted as a standard wave equation for the acoustic pressure, provided
that the acoustic approximation

ppo=c(ppo) (5.30)

is used. The consistency of this approximation can be investigated beneath the light of Stokes-Kirchhoff-
Rayleigh's theories.

and small but non vanishing Stokes number w [ij + ('y - 1) ko] /c. Under the same hypothesis equation
(5.28) can be linearized yielding

c.(ppo).(ppo)=
32(v,v) 02 1 2 aPo 2 Ppoco(PPo)+r)o(ppo)

Ox, at

Consider now the linearized Rayleigh equation (5.10) for the thermal type of motion in a quiescent fluid
and in the absence of heat additions, nalnely

f 0 3) , 02r'1kojo =(y--1)ko--- (5.34)

In the small amplitude approximation (r' p'/po and a' p'/po - yp'/po) equation (5.34) takes the
form

O fppo\ O (pp\ 02 PPo 02a'
Po ) - 7Ot Po ) (' - 1) k0 (

Po
) - k0

Ox
= 0 (5.35)

The second time-derivative of (p - PO) ¡Po obtained from equation (5.35) can be substituted into equa-
tion (5.33), providing

(5.33)

1
92

'y - 2 O kop0 2 Da'(ppo)+-g c
o(ppo)+

2 (vv) 02 02 0
Po PPo)r1o(ppo) (5.36)

Consider the linearized Rayleigh equation (5.13) for the acoustic mode of fluctuation (r'
in a quiescent fluid in the absence of body forces and heat additions, namely

p'/po)

I i\7 i 2 i 2 i
2 11-'P up 0 531Ot ]" ôt

This equation has been obtained in the limit of both small

- -P Po P Po«1

amplitude fluctuations

vi«1 «1 (5.32)
Po Po Co
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Then, substituting p - PO = (p - po) /c - (p/7) a' yields

2 1io + ('y - 1) k0 (9 1 52P' ¿92p' 2(92 (vjvj) Poco2
2

c0 2 5 + 1j -- - --- = poc0 + (i - ko) --- (5.37)

Finally, by neglecting terms of higher order in the Stokes number, equation (5.37) takes the form

r .' i\7 ì i 2 2 F
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Comparing the homogeneous linearized Rayleigh equation (5.31) to the linearized form of the
Lighthill equation (5.38) shows that Lighthill's acoustic analogy is rigorous only in the vanishing Stokes
number limit.

A more suitable version of Lighthill's acoustic analogy theory can be obtained by rearranging equa-
tion (5.28) in the following form

02p 1 &2p 2 (PVjvj) - 1 2
,, 2 5 39- - (9x,8x c
- ( . )

In the acoustic field of a nearly quiescent Stokesian fluid, even at first order in the Stokes number, Stokes-
Kirchhoff-Rayleigh's theories states that (p - po) = (p - po) /c. Indeed, because of the parabolic
nature of the entropic mode of fluctuation, the thermal effects on the mass density fluctuations are
typically confined to a region closer to the source, and do not propagate farther away from it. Thus,
by comparing equation (5.28) to equation (5.39) and by applying the uniqueness theorem of a wave
equation solution, it follows that the difference between the source distributions

2
1(92

(p - cep) and (p - co2p)

is of higher order in the Stokes number, even in the source region.
Concluding, the Lighthill equation (5.28) and equation (5.39) are perfectly equivalent in a practical

use, but the second is conceptually more rigorous since it can be directly reduced to a correct Rayleigh
equation for the acoustic mode of fluctuation.

5.4 Doak's Momentum Potential Theory
Between 1970 and 1973 Doak ([151], [50] and [152]) developed a unified theory of noise generated
aerodynamically. This is based on the identification of acoustic, thermal and turbulent motions in a
small amplitude fluctuating field, and on the extension of the modal approach to nonlinear fluctuating
motions.

In the present section only the main guidelines of Doak's theory are described. The reader should
refer to the original works for an exhaustive treatment.

The starting point of Doak's theory is the linear momentum density decomposition in its solenoidal
and irrotational parts, i.e.

pv=BVb (5.41)

with B = V x A. The vector B is purely solenoidal (V . B = 0) and the vector V is purely irrotational
(V x Vib = 0). It thus results that

(5.40)

V (pv) = V2'?/' (5.42)

V x (pv) = V x (V x A) (5.43)
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where A and are the vector and scalar linear momentum density potential, respectively. Therefore,
the continuity equation (5.24) takes the form

(5.44)

which involves only the solenoidal part of the linear momentum density.
In the case of a time-stationary process, the generic flow quantity g can be decomposed into its

mean stationary part and its fluctuating part by writing

g(x, t) = (x) + g'(x, t) (5.45)

with

g(x, t) dt
T/2 (5.46)

i r'/
(x, t) = j; JT/2 g'(x, t) dt = 0 (5.47)

T is one period if g is a periodic function, and the limit T * oo if g is a random quantity.
As shown by Doak [151], for a time-stationary process in the linear momentum density and in the

mass density, the time averaged part of the scalar potential 'çl.' can be supposed to be identically zero
without loss of generality. Therefore, the linear momentum density can be written as

pv=+B'Vi4i' (5.48)

with 75v = . Therefore, the fluctuating counterpart of equation (5.44) is

= v2' (5.49)

In analogy with electromagnetisms, ' and B can be defined as the pykodynamic and the pykostatic
part of the linear momentum density, respectively. In these terms, the acoustic problem is reduced to
the determination of the pykodynamic and the pykostatic contributions of the fluctuating pressure.

In a earlier work Doak [151] considered an inviscid, non-heat-conducting fluid with negligible exter-
nal forcing and heating. Thus, he showed that when the linear momentum and the energy transport
equations are linearized in all their fluctuating quantities, except the solenoidal linear momentum fluc-
tuations3, the acoustic and the thermal parts of the fluctuating mass density, the scalar potential and
the pykodynamic part of the fluctuating pressure have a physically meaningful nature.

In a successive work Doak [152] showed that the existing theories of aerodyimamically generated
noise can be interpreted as special cases of a generalized theory, whose applicability is ensured by the
fact that second-order terms in the solenoidal part of the fluctuating linear momentum density have
been retained in the formulation.

In spite of Doak's complete formulation, only a simplified equation is reported below which is valid
in regions where neither mean velocity gradients, nor mean temperature and/or pressure gradients are
significantly large4. Therefore, the simplified form of Doak's equation is an inhomogeneous convected
wave equation for the acoustic fluctuating pressure p', i.e.

(-2 1 02p' 02p' iJ 92p'
1C 2 (.p j ôxOx at p 8x,c9t

3Second-order solenoidal linear momentum fluctuation were retained as possible sources.
41n the flow portion where the flow quantities change appreciably over distances of the saine order of the acoustic

wavelength, as in high shear regions or at the boundaries of shock cells in over-expanded jets, suitable boundary conditions
must be used in order to describe such regions as localized discontinuities.



where the equivalent quadrupole source is given by

L.P' +B+BB
J

'Z3 -
p

(5.51)
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6

Theory of Vortex Sound

6.1 Introduction
The theory of vortex sound is due to Powell [153] [154]. It is based on the concept that the vorticity
within a compact eddy in a weakly compressible isentropic medium drives a near hydrodynamic field
and feeds an acoustic far field. Therefore, sources of aerodynamic noise are associated with regions of
the flow field with non-vanishing vorticity.

The theory of vortex sound did not receive a great attention until Howe [20] showed the consistency
of Powell's formulation with Lighthill's acoustic analogy. Howe demonstrated that it is possible to
manipulate the Lighthill's stress tensor in such a manner that Powell's source term would be seen to
be dominant at low turbulence Mach numbers. Howe's discussion on the consistency of Powell's theory
is illustrated in section 6.2. Less rigorously, we will show hereafter how the concept of vortex force due
to Prandtl [155] can be used to justify the theory of vortex sound.

The equation of motion for an ideal and incompressible fluid can be written as

Dv / v2\
(6.1)

where f denotes an external force per unit mass. Equation (6.1) shows that the term y x w acts
as an equivalent body force called the vortex force. The concept of vortex force is the fundament of
the circulation theory developed by Kármán & Burgers' [5], that describes the response of a wing to
unsteady flow conditions. A body force f exerted on a compressible fluid provides a dipole acoustic
source which is proportional to V f. Thus, in acoustic analogy, the term V (y x w) acts as a dipole
source of aerodynamic noise.

6.2 Sound Radiation by a Compact Turbulent Eddy
As primarily shown by Lighthill [1], rearranging the momentum and the continuity equations yields

D2p - cV2p
= (6.2)

where p is the fluid density, e0 is the speed of sound in free space and PUiUj + Pij - Cpö1j
is Lighthill's stress tensor. Since the propagation of acoustic perturbations in free space is governed
by D2p = 0, the right-hand side of equation (6.2) can be fornially regarded as a quadrupole source
distribution which generates acoustic waves in an ideal fluid at rest.

A turbulent eddy of size i and characteristic velocity U generates sound with frequency of the
order U/I. If the acoustic wavelength A = (9(l/M), with M = U/c, greatly exceeds the eddy size
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(low turbulent Mach number) then, as shown by Crow [156], the sound generation problem can be
formulated as a singular perturbation problem and solved by means of matched asymptotic expansions.
Therefore, Crow showed that the acoustic source is

82 (vivj)
Po OxOx

(6.3)

where y is the divergence-free vortically induced velocity field. It is given by

v=VxA with
A=-1- f w(y)

d3y (6.4)
411-j Ixyl

As a result,
y = o (ml vi) as lvi - 00 (6.5)

provided that the total hydrodynamic impulse

m=fyxwd3y (6.6)

converges.
Employing the Helmlioltz decomposition described in section 1.5, the velocity field can be written

as
u=v+Vq5 (6.7)

where the velocity potential is such that

lDp
pDt

Equation (6.8) implies that
= O(IUM2)

in the eddy region.
The result (6.3) obtained by Crow [156] can be used to find a formal solution of equation (6.2).

Thus, a convolution with the free space Green's function yields

P1f82(vivi)5(t_T_lX_YIlco)d3d (6.10)
Po 4irc0 8Yz8Yj Ixyl

Since V y = 0, the following vector identity is verified

02(v,v) 2 7v2\=V.(wxv)+V (-1 (6.11)
U?JzD?Jj 2 j

As a result, at a low turbulent Macli number, a turbulent eddy is acoustically equivalent to a dipole of
strength poV (w X y) and an isotropic quadrupole of strength pV2/2.

The Green's function depends on x and y only in the combination x - y. Hence

8(ä(tTjxyI/co)
Dy, k Ixyl ) - Dx k. Ixyl

and equation (6.10) can be written as

P

Po = 4ircDxjf' Xv)
8(ti- !xyI/eo) d3ydrIxyl

1 02

I(v:)
8(t_r_!x_yilco)d3d+ 47re0xDx -

(6.12)

(6.13)
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If lxi » li then
o

Oxi Ixicoot
and equation (6.13) becomes

x 5f 3
= 3 2 - ¡ (wxv)(tixyi/co,y) d y

4irc0 lxi c'& j

+
8 lxi 0t2

f v2(t - lx - yJ ¡co, y) d3y (6.16)

where integration over r has been performed by exploiting the properties of the Dirac 6-function. The
order of magnitude of the two integrals in equation (6.16) can be estimates as follows.

Consider the momentum equation' (1.63) (th = 0, f = 0). Changing from the conservative to the
convective form yields

P
po

'In this section the flow velocity is denoted as u.

lap lor
+tL3 ----+----at ax p 8x p Oxj

Then, using the vector identity

(u.V)u=V(-) +wXu

introducing the stagnation enthalpy
lt2B=h+-

with h denoting the specific enthalpy, and recalling the thermodynamic relation

dh=TdS+ dp/p

with S denoting the specific entropy, equation (6.17) can be written in Crocco's form

5u SB SS lSTj+ = (a, x u)+T+ ----i
St Ox osi p Ssj

Hence, the inviscid isentropic momentum equation can be written as

Dv ífdp u2 Oçb)_+V1J

15v2 1 IfdP 2 55l)---+V<vI ++-jj=-v.wxV
t IL P 2

Ifdp 2 0q5vII++-
[j p 2 Dt

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

where use of the Helmholtz decomposition (6.7) has been macle. Taking the scalar product of this
equation with y, and recalling that V y = 0 yields

(6.23)

This equation can be used to estimate the order of magnitude of the second integral in equation (6.16),
namely

2 p
12 = 4 f I v2(t ix I /co,y) d3y (6.24)

87rc0 lxi St j
Integrating equation (6.23) over all space and applying the divergence theorem, the second term on the
left-hand side gives a vanishing contribution because, as it results from (6.5), the term

(6.25)

(6.14)

(6.15)



which is of order

1, = o(fÇ) (6.31)

As a result, for small turbulence Mach numbers M, I » 12. Moreover, the estimate (6.31) leads to
Lighthill's [1] U8 law.

From the above analysis it follows that, as firstly proposed by Powell [153], the source of aerody-
namic sound in low Macli number turbulence can be identified with those flow regions of non-vanishing
vorticity. More precisely, the Lighthill's equation (6.2) is equivalent to Powell's equation

= poV (w x y) (6.32)

where the term on the right-hand side can be calculated by assuming that the flow is incompressible.

6.3 Howe's acoustic Analogy

In 1975 Howe [20] reformulated the Lighthill's acoustic analogy in terms of a convected wave equation
for the stagnation enthalpy, with source terms incorporating the concept of vortex sound and the effects
due to entropy inhoniogeneities.

The thermodynamic relation (6.20) yields

1DT1DS i Dp
TDt _Dt+pcpTDt

where c is the specific heat at constant pressure. The differential form of the equation of state of an
ideal gas p = pRT, that is

x 82 rI
47rc xi3 at2 J

(x y) (x - w x y) d3y (6.30)

(Ip dp
+

dTpp T

(6.33)

(6.34)

tends to zero at least as fast as iyL3 as li * co. Therefore,

fy2 d3y - f v (w x Vq5) d3y (6.26)

The integration on the right-hand side is confined to the flow region of non-vanishing vorticity. Thus,
making use of (6.9) yields

120(
iM6

lxi ) (6.27)

In order to estimate the order of magnitude of the first integral in equation (6.16), namely

'i
3 2 f(w x v)(t - lx i ¡co,y) d3y (6.28)

4irc0 lxi 9t

consider that, for lxi » lyl, the retarded time can be approximated as t lxi /CQ + x y/co ix!.
Furthermore, the variation in retarded time can be expanded as a Taylor series

(w x y) (y, t + x Y) (w x y) (y, t +
X

(w x y) (y, t - +... (6.29)
Co c0 lxi CO CO lxi at

The first term on the right-hand side of (6.29) yields a vanishing contribution to the integral of equation
(6.28) because the integrand w x y can be expressed through (6.18) as a divergence. Therefore, the
leading term in the far field density perturbation is
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and the continuity equation

= pV u (6.35)

lead to
lDp 1DT

(6.36)

Hence, arranging equations (6.33) and (6.36) gives

lDp 1DS-- + V. u = --pc Dt cDt
The Crocco's equation (6.21) for an inviscid flow takes the form

Du---+VB=wxu+TVS (6.38)

Then, taking the divergence of equation (6.38) and subtracting the partial time derivative of equation
(6.37) yields

(6.39)

The first term on the left-hand side of equation (6.39) can be expanded as follows

D(1DpD(1Dp 1DuDp fD(1Dp D(1Dp
640

Dt pc2 Dt) - Dt pc2 Dt) +
pc2 Dt Dx

+ 3
i Dt pc2) Dx Dx pc2) Dt

The last term on the right-hand side vanishes because the term pc2 = -yp is a function of the pressure
alone (-y = const.). The other terms on the right-hand side of equation (6.40) are transformed as
follows. Concerning the first term,

(6.41)pDt pDt p Dt Dt

where use of the thermodynamic relation (6.20) and the momentum equation

(6.37)

DuVpDtp (6.42)

has beemi mna(Ie. Concerning the second term,

--=Vp.(VB+cxuTVS) (6.43)
t xi

where use of Crocco's equation (6.38) has been made. Thus, substituting (6.41) and (6.43) into equa-
tion (6.40) and considering equatiomi (6.39) leads to the Howe's [20] acoustic analogy equation for the
stagnation enthalpy, i.e.

JD(iDV.p v2lB_
1Dt \c2Dt) pc2 J -

D ¡1DS\ D 1TDS
(6.44)

In an ideal, homentropic and irrotational flow, the Crocco's equation (6.21) becomes

=0 (6.45)
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The continuity equation for a homentropic and irrotational flow has the form

lDp 2_
pc Dt

Then, applying the time derivative

O / 1 Dp\

where 7 is the velocity potential. Thus, a first integral of the momentum equation is

+ B = f(t) (6.46)

The velocity potential q is undefined to within an arbitrary function of time. Thus, the function f(t)
can be set equal to a constant or zero. Equation (6.41) for a homentropic flow yields

lOp DB
pOt - Dt

Hence, applying the Lagrangian derivative to equation (6.46) and substituting equation (6.47) leads to
the pressure equation

(6.47)

(6.48)

(6.49)

(6.50)

and considering equation (6.40) yields

(6.51)

Finally, substituting equation (6.48) gives'

D11D\ 1 2"

1_(-_)__VP.V_V =0Dt cDt pC

This convective wave equation governs the propagation of sound in irrotational homentropic flows. It
contains the nonlinear propagation operator of equation (6.44).

All terms on the right-hand side of equation (6.44) vanish in irrotational and homentropic regions
of the flow. Thus, the sources of aerodynamic sound are indeed confined in regions in which w O and
vs50.

When S const, equation (6.44) becomes

{D (1D) V (pV)
} B = .V. (pw x u) (6.53)

At low Mach numbers, when the flow is at rest at infinity where p = PO and c = CO, neglecting
nonlinear effects of propagation and the scattering of sound by vorticity and taking p = PO and c =
equation (6.53) takes the form

/ 1 02 _V2)B=V.(wxu) (6.54)

In the far field the acoustic pressure is given by

ppoB (6.55)

which is the linearized form of equation (6.47). Therefore, equation (6.54) reduces to Powell's equation
(6.32).

(6.52)
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If equation (6.44) describes the interaction between a flow field and a rigid surface, a boundary
condition for B is required. In the immediate vicinity of the surface Crocco's equation (6.21) becomes

VB =0 (6.56)

Hence, on a rigid surface the normal derivative of the stagnation enthalpy vanishes, that is

aB0
0m

6.4 Vortex Sound and Rigid Surfaces

The analysis of section 6.2 shows that the dipole source V.(w x y) in free space is acoustically equivalent
to a quadrupole distribution, provided that the vorticity is concentrated within an acoustically compact
region. Clearly, the situation is different if the vortical region is located near a rigid surface. In this
case the wall pressure fluctuations act as dipole-type aeroacoustic sources, which are more effective.

In this section two methods will be described which allow to solve equation (6.32) in the presence
of a rigid body. The first was proposed by Howe [157], the second is due to Möring [158].

6.4.1 Howe's Compact Green's Function

Howe [157] proposed a formal procedure for calculating the leading order monopole and dipole terms
in the multipole expansion of the acoustic field generated by a source in proximity of a solid surface.

Consider first a harmonic source (k0 = w/co) near a body of characteristic size i. Suppose that
the body is acoustically compact, that is k01 < 1. The Green's function G(x,y;w) of the Helmholtz
equation

(V2 + k) G(x,y;w) = ö(x - y) (6.58)

in the presence of a body can he determined by solving a scattering problem in which the spherical
wave

koxy
G(x,y;w) (6.59)

4ir ix - y
generated by a point source in x, say the free-space Green's function, is scattered by the body surface
S. If y is close to S, the compactness condition k01 « i permits G(x, y; w) to be expanded in the form

_eik0Id1 I i koxG(x,y;w) = i - (yj - c(y)) +
4ir lxi lxi

X'(ko1)'n(,y for
'ixi

(6.57)

n>2

y'O(l),ixi *00 (6.60)

The first term represents the incident wave (6.59) evaluated at y = 0. The second term is O(kol) and
represents the leading order effect due to the surface S. The other terms are of order (kol)2 or smaller
and can be neglected. The function c (y) is the velocity potential of tIme incompressible fluid motion
generated by a translational rigid motion of S in the i-direction at unit speed. Therefore, q5 (y) is
defined by the shape of the body and satisfies

=ni on S (6.61)

Furtherniore, the ftmction Y(y) yj - (y) is a solution of Laplace's equation satisfying OYj/On = O

011 S.
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fi a(+u.v)2_v2}(xt) =6(x_xA)e_t

The time-domain low frequency Green's function can be obtained by transforming the first two
terms of the Green's function (6.60), that is

G(x,y;t,T)
=

f G(x,y;w) exp{iw(t - T)} dw (6.62)

It thus follows that

G(x,y;t,T) (__ Ix! /co)± ö'(tT IxI/co))

8 trIxI/co+4irJxj \ C lxi

4p1_y18(t_T_IX_Yl/CO) as lxi oo (6.63)

Finally, replacing x by X = x«(x), the Green's function (6.63) can be made symmetric, in accordance
with reciprocity. Therefore

G(x, y; t, T)
= 8(t - - IX - Y ¡cO) (6.64)

is the compact Green's function satisfying ôG/5x = aG/5y = O on the body surface S and the
reciprocal requirement according to which the noise in y generated by a point source in x is equal to
the noise in x generated by a point source in y. In the frequency domain the corresponding compact
Green's function is

koXY
G(x,y;w)

- 4irIX-Yl (6.65)

The above analysis can be extended to account for the presence of a low Maèh number mean
flow. The coefficients in the convected wave equation (6.52) are function of both mean (steady) and
perturbation (unsteady) quantities. Small-amplitude acoustic disturbances satisfy a linearized version
of this equation. Thus, the convective derivative can be approximated as

D ô
(6.66)

where U(x) is the mean flow velocity. Furthermore, since the mean flow is time independent, the time
derivative q5 can be replaced by the perturbation potential qY.

At low Mach numbers (M2 « 1, M = U(x) /c) variations in the mean density and sound speed
can be neglected in the linearized version of equation (6.52) which reduces to

Setting q5'(x, t) = '(x) e_wt, equation (6.67) becomes

(k+v2+2ikoM. V) ç' = 0 (6.68)

where terms of order M2 have been neglected.
The reciprocal theorem in the presence of a mneami flow applies as follows. Let çti, (x, t) be the solution

of the convected wave equation

(6.69)

Ii ¡a
(6.67)
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and let q5' (x, t) be the solution of the reverse convected wave equation

Ji 8

l_ (
_u.v)2 v2}(Xt) ä(xxB)et

Then the reciprocal theorem states that ÇIJA(xB, t) = (xA, t).
Accordingly to the reciprocal theorem in the presence of a mean flow, the compact Green's function

of equation (6.68) must be defined by considering the reverse flow problem

(kg + V2 - 2 k0M . V) G(x, y; w) = 8(x - y) (6.71)

Consider a flow past a stationary acoustically compact rigid surface S. The mean flow can be
expressed as

U(y)=Uo.V(y) (6.72)

where U0 is the uniform mean velocity at large distance from S and Y = - (y) is a solution
of Laplace's equation satisfying 8Y/8n = O on S, with «(y) denoting the velocity potential of the
incompressible fluid motion generated by a translational rigid motion of S in the i-direction at unit
speed. Thus, applying the Taylor's [159] transformation

G(x,y;w) = O(x,y;w)e0M0 (6.73)

where M0 = Uo/co, equation (6.71) takes the Helmholtz form

(V2 + kg) Ò = ö(x - y) e_i k0M0.X (6.74)

Thus, the no-flow compact Green's functions (6.64) and (6.65) lead respectively to

G(x, y; t, T) = 4 IX Yl
8(t - r - IX - Yl ¡co + M0. (X - Y) ¡CO) (6.75)

and

C(x,y;w) =
e1 ko{1XY1M0(XY)}

47rJXYI

(6.70)

(6.76)

6.4.2 Möring's Vector Green's Function
A formal solution of Powell-Howe's vortex-sound equation

(
- V2) B V. (w >< u) (6.77)

with boundary condition n VB = O on the body surface S is

B(xt)=fV.(wxu)Gd3ydr (6.78)

where V is the region outside the body with non-vanishing vorticity and G is the solution of

(
- V2) G = ö(x - y,t - T) with n VG = O on S (6.79)

In the far field B reduces to p'/po. Thus, integrating equation (6.78) by parts yields

p'(x, t) = po f (w X u) d3y dr (6.80)
V
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Möring [1581 argued that the formal solution (6.80) can be expressed as a function of the vorticity
w only. He defined a vector Green's function G as

VxG=VG (6.81)

If G exists, equation (6.80) can be written as

p'(x, t) = pof (w x u). (V x G) d3y dr (6.82)

and integrating by parts

p'(x, t) = PO
Iv

V x (w x u) . G d3y dr (6.83)

Then, considering the vorticity equation

+ V x (w x u) = 0 (6.84)

yields

p'(x,t) =ofJ Gd3ydr (6.85)

Finally, integrating by parts, i.e.

p'(x,t) = PO f 3----d ydr (6.86)

and considering that G depends on t and r only via t - r, yields

p'(x,t) =pofw.Gd3ydr (6.87)

The formal solution (6.87) proposed by Möring [158] depends linearly on the vorticity field. Therefore,
the contributions from several vortices add linearly.

The existence condition (6.81) of the vector Green's function G is equivalent to V2G = 0. However,
the Green's function G is the solution of

i a2c
V2G= -S(x-y,t-r) (6.88)

The S-function vanishes if y 5' x. Thus, provided that y is in the vortical flow and x is in the far field,
and provided that the term

(6.89)

vanishes to lowest order in the Mach number, V2G vanishes and the véctor Green's function G exists.

6.5 Sound Radiation from a Line-Vortex Near a Rigid Half-Plane
In this section the theory of vortex sound is employed to determine the noise radiated by a line-vortex
convected past the edge of a semi-infinite rigid plate under the action of only the image vortex system.
This model problem was first studied by Crighton [160] by means of matched asymptotic expansions.
Later on, the same problem posed in terms of vortex sound, was solved by Howe [20] by means of
the compact Green's function technique, and by Möring [158] by means of the vector Green's function
technique. Howe's and Möring's analyses are described below.
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Semi-infinite plate

F

Edge

FIGURE 6.1: Line-vortex near the edge of a semi-infinite rigid plate.

Consider a line-vortex with circulation F near the edge of a rigid half-plane xi < 0, x = 0,
as sketched on Fig.6. 1. The vortex moves under the induction of the image vortex and generates a
vorticity field

w = F(y - yw(t)) (6.90)

where Yw (t) denotes the vortex path and ê3 is the unit vector taken out of the paper.
Let us consider the Powell-Howe's equation

whereR= and tanO=x2/xi.

B= V (w X u)c0t2 J
with

a=ai+as
where

(6.91)

w x u = F ê3 x '(t) ö(y y(t)) (6.92)

Following Howe [20], equation (6.91) can be solved by means of a convolution with the compact Green's
function G, which is the solution of

{_}GxY,t_T with

UG
= O on Yi <0, y2 = 0 (6.93)

UY2

The Green's function G can be determined by using the reciprocal theorem: the acoustic far field in
x generated by a point source in y close to the edge of a semi-infinite plate is equal to the noise in y
generated by a source point in x. Clearly, as Ix! * oo, the problem beconìes that of determining the
scattering of a plane acoustic wave by a semi-infinite plate. As quoted in chapter 8, this scattering
problem was solved by Crighton & Leppington {161J by means of the Weiner-Hopf technique. In the
frequency domain, the Green's function is

i I . I Ixy3ê31exp siw It
47r1xyse3I t. \ CO

- . *(*(,) ( 1. I Ixy3ê31G3 = 3 2 j exp i - w t (6.96)
7rv1 Ixysêsl / COJ i. 4 CO

The contribution Ò represents the incident field without scattering, whereas the contribution G3 rep-
resents the leading approximation to the field scattered by the semi-infinite rigid plate. The function
4 (x) is the velocity potential field for incompressible irrotational flow around a half-plane, that is

=
(6.97)

(6.94)

(6.95)



The Green's function for a two-dimensional application can be obtained by integrating (6.95) and
(6.96) over all values of y3. As obtained by Howe [20] by using the method of stationary phase, the two-
dimensional contribution G- is independent of y and is therefore significant only in problems involving
monopole sources. The two-dimensional scattered contribution is given by

Ò8(x,y,w) ex{_iw (t_
)} (6.98)

7rIXI CO

Therefore, multiplying by (2ir)1 exp(i wi-) and integrating provide the time-domain compact Green's
function

q*(x) q*(y)5( _ - j4
irlxl co

Using the Green's function (6.99) to convolute equation (6.91) yields

tr--) d3ydrP' PO;)fV.(Fê3 xw(r)ö(y_yw(r))) *(y)( R\
COI

pOIq5*(X)- [e3 . :çrw(r) X V]
retirR

G3(x, y, t, r)

where square brackets enclose quantities evaluated at the retarded vortex position y(t - RICO). Since

(6.101)

where W is the stream function conjugate to *, the solution (6.100) can be written as

where a =
The result (6.

totic expansions.
the edge, in fact,
is silent.

poFsin(O/2) IDW
iriJi Dt ret

(6.99)

(6.100)

(6.102)

where D/Dt denotes the rate at which the vortex crosses the streamlines W =const of a hypothetical
potential flow with velocity potential q5*(y), that is

'1!(y) = - acos -- (6.103)

+ y2 and ' - tan(yW2/yWl) are the vortex polar co-ordinates.
102) agrees with the prediction made by Crighton [160] by means of matched asymp-
It states that the noise is generated only when the vortex is near the edge. Far from
the vortex moves along a streamline. Thus, the term D'I'/DI vanishes and the vortex

Interestingly, the acoustic field (6.102) exhibits a sin2(O/2) directivity pattern which is typical for
semi-infinite rigid plates.

The vector Green's function procedure of Möring [158] can be used to solve the same model problem.
Thus, considering the formal solution (6.86) and substituting the vorticity field induced by a line-vortex
provide

p' Gd3ydr

The vector Green's function G exists since

82G*(x) (a2r(y)\8(R"0
5y irR Oy ) co)

Thus, applying the definition (6.81) yields

(6.104)

(6.105)

*((y)(
R"G(x,y,t,r) tr - ) ê3 (6.106)- -irR co)
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Finally, substituting the vector Green's function (6.106) into (6.104) yields

poFsin(O/2) IDilli
- 7/ LDti,

which coincides with the solution (6.102) obtained by both Crighton [160] and Howe [20].

(6.107)
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7

Aeroacoustics of Solid Boundaries in Arbitrary
Motion

7.1 Introduction
Today's technological maturity of the aerospace technology concerning performances and efficiency, even
more stringent certification rifles and the increased sensitivity of the community result in an increasing
attention to safety, emission and noise.

Low noise requirements are particularly important for aircrafts operating in and nearby populated
areas. This is the case of civil helicopters and civil transport jets in landing and take-off conditions.
Since a great deal of progress has been made in understandiiig the sound generation mechanisms, more
attention is currently devoted to the development of accurate and efficient prediction methods.

Nowadays two different large groups of numerical methods are available, one based on the Computa-
tional AeroAcoustic approach (CAA), the other based on integral formulations. CAA methods consist
in solving the flow governing equations including acoustic fluctuations by means of classical CFD meth-
ods (finite difference, finite volume, finite elements, etc.) with high accuracy (low-dispersion) numerical
schemes. Thus, reasonable cost solutions are restricted to near field predictions. On the contrary,
integral methods allow to propagate a iiear field information to the far field with a computational cost
that does not depend on the observation distance. The near field information can be obtained by means
of the integral method itself, as in Boundary Element Methods (BEM), or by means of a CFD/CAA
method, as in a hybrid approach.

Hybrid methods are the domain of the acoustic analogy approach. This approach is based on the
ideal assumption of separating the sound generation mechanism from its pure propagation. Thus, the
flow governing equations are arranged in the form of a wave equation where all the terms discarded
by a wave propagation pattern are gathered at the right-hand side and interpreted as source terms.
Depending on both the reference wave equation and the mechanism that generates the pressure dis-
turbances (free turbulent flows, turbulent flows bounded by solid surfaces, etc.), the acoustic analogy
approach leads to different formulations. The first model was proposed by Lighthill [1] and describes
the noise generated by a turbulent portion of fluid in an otherwise quiescent unbounded mnedmm. Later
on, Lighthill's model was extended by Ffowcs Williams & Hawkings [2] (FW-H) to flows confined by
surfaces in arbitrary motion.

The FW-H analogy is the most appropriate theoretical support for understanding the mechanisms
involved in the generation of aerodynamic sound from bodies in complex motion. This is typically the
case of a helicopter rotor. The rotating wing of a helicopter generates aerodynamic noise by different
mechanisms: the fluid displacement due to the blade thickness, steady and unsteady blade loadings,
rotating shocks, blade-vortex interactions, blade-turbulence interactions. In the FW-H equation these
mechanismns appear as source terms of an inhoinogeneous wave equation.

The first solutions of the FW-H wave equation were obtained by integrating the pressure field upon
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the physical surface of the body. This strategy confines all the flow nonlinearities into a volume integral
extended over a domain exterior to the body. Because of the computational cost required by an accurate
prediction of this volume integral, for several years only the linear effects due to the body thickness
and aerodynamic loading have been predicted by means of the FW-H analogy.

An important source of rotor noise is indeed related to the compressibility effects occurring in the
blade tip region. At values of the advancing tip Mach number higher than ' 0.85, shock waves appear
in the flow field around the rotor, which generate an annoying impulsive noise. A prediction the so-
called High-Speed Impulsive (HSI) noise requires the nonlinear effects to be taken into account in the
FW-H analogy. An alternative to the computation of the volume term in the FW-H equation consists
in using methods based on Kirchhoff's theorem. These methods relate the acoustic field to the pressure
field upon a control surface enclosing the blade and all the near-blade flow nonlinearities. As in the
FW-H analogy, a CFD computation provides the flow data upon the integration surface.

For several years the Kirchhoff (K) formulations has been considered as an ineluctable alternative
to the FW-H analogy for the prediction of high-speed rotor noise. Only recently, di Francescantonio
[42] has shown that the FW-H analogy can be extended to a penetrable control surface and that the
surface integrals account for all the nonlinear terms enclosed by the integration surface. In response to
di Francescantonio [42], Brentner & Farassat [43] pointed out that, although di Francescantonio was the
first to apply the FW-H analogy to a Kirchhoff-type integration surface, Ffowcs Williams had already
described several implications of a penetrable surface formulation. Moreover, Brentner & Farassat
discussed in great detail the conceptual difference between a K formulation and a FW-H penetrable
formulation. Their analysis is an example of both elegance and effectiveness. It shows that, since the
K equation follows from a linear wave equation, its application to acoustic analogy predictions requires
the integration surface to be placed in the linear flow region. On the contrary, since a FW-H equation
is an exact rearrangement of the flow governing equations, the placement of the integration surface is
only a matter of convenience as long as the quadrupole sources are taken into account by the surface
integration. Thus, the FW-H nalogy allows accurate noise predictions even when the integration
surface is not in the linear flow region.

Depending on the mathematical formalism used to obtain integral solutions of both the K equa-
tion and the FW-H equation, singularities may appear in the final expressions of the noise radiated
by a moving surface. Diverging behaviours typically occur in transonic kinematic conditions (for ex-
ample, when the velocity component of a surface rotor element in the observation direction is sonic).
Fortunately, these singularities do not have a physical origin and can be removed by using different
mathematical manipulations. The greatest contributions to the development of suitable analytical for-
mnulations for rotor noise predictions have been done by Farassat and coworkers at NASA Langley
Research Center (LRC in the last quarter 20th century. The strategy developed at LRC consists in
using the most suitable formulation for each blade element, depending on whether it moves subsonically
or supersonically.

In the present chapter a first section is devoted to the description of some physical effects related
to the movement of an acoustic source. Later on, sorne elements of generalized functions theory and
differential geometry are introduced. These provide the mathematical formalism by which the aeroa-
coustic theory of solid boundaries in arbitrary motion can be developed. Then the K approach and
the FW-H acoustic analogy methods are described and discussed in great detail. Formal solutions are
derived for both the K and the FW-H equation and for both the subsonic and the supersonic regime.
In section 7.10 an advanced time approach is presented, which allows to perform acoustic analogy pre-
dictions by using aerodynamic data as soon as they are computed by a CFD solver. Finally, in section
7.11, a convective form of the FW-H equation is used to describe the aerodynamic sound generation by
unsteady flows past stationary surfaces.



7.2 Acoustic Fields of Moving Elementary Sources

In this section the effects related to the motion of an acoustic source are illustrated with reference to
the model problem of an elementary acoustic source in arbitrary motion.

The sound radiated from a moving source differs from that radiated when the same source is
stationary. The well-known Döppier effect is one of the two effects related to the source motion. It
consists in a frequency shift of the detected acoustic signal and is easily experienced by a listener
approached by a whistling train. As the train passes by the listener and recede from him, the detected
whistle undergoes a frequency fall. The second effect due to the source motion is an amplitude variation
of the detected signal and is usually referred to as Döppler amplification.

7.2.1 Noise from a Moving Monopole

The Döppier frequency shift and amplification can be illustrated by considering the acoustic field
generated by a monopole of strength Q(t) moving along the path x = x8(t) in a quiescent medium.
The radiated acoustic pressure is described by the wave equation

102 a- V2p = Po {Q(t) 8(x - x8(t))} (7.1)

where po is the medium density and c is the sound speed. Making use of the free space Green's function

G(x,t;y,r) 8(t r - Ix - yI/c)
(7.2)

4irjx-yI
the solution of equation (7.1) can be easily obtained. This takes the form

p(x,t) = Of
Q(r)8(y x3(r))5(t - r - Ix yJ/c) d3ydr

47r jx - (7.3)

Exploiting the properties of the 8-function to evaluate the y-integral yields

p(x,t) = f Q() 8(t - r - Ix - xs(r)I /c) dr (7.4)
47r1x-x3(r)I

The integral in the above equation has the form f Q(r) 8(g(r)) dr. It can be further simplified by
performing a change of variable and exploiting the properties of the 8-function. Thus, let us consider
the general result

¡'7

fQ(r) 8(g(r)) dr e:) (7.5)
n=1 ar n

where the sum is taken over all the zeros T of the equation g(T) O. In the present case the function
g(r) is given ly

g(r) =trjxxs(r)I/c (7.6)

and its derivative is
= - + - x5 dx5

= 1 + Mr (7.7)dr c IXXs(T)I dr
where c Mr is the projection of the source velocity on the radiation direction, i.e.

cM=v5F (7.8)

with
dx5

vsi =
dr (7.9)
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and
xi_xsi-

Ix - x(r)I

Hence, substituting equations (7.6) and (7.7) into equation (7.5) and considering that

Q(T)

p(x,t) =
n= i

4ir Ix - xs(r)I

the expression (7.4) takes the form

Q(r)
at l47rIxxs(r)II1Mr(T,DI

where r are solutions of the retarded time equation

T=tIXXs(T,)I/c

- i x - x.5(r,) dx5 Or
at - c Ixx(r)I dT at

leading to

E

lai
[ Iret 1Ma'i ret

Hence equation (7.12) takes the fornì

r i

a{
Qp(x,t) =po

[ 4(i _Mr)}]ret

(7.10)

(7.11)

(7.12)

(7.13)

and represent the times at which signals detected at the same time t are emitted by the source. If
the source moves subsonically, only one emission time T* corresponds to a given reception time t.
Conversely, if the source moves supersonically, more than one solutions of the retarded time equation
(7.13) may exist. This physically accounts for the fact that impulses emitted at different times can be
detected at the same time.

The relationship between the emission and the reception time can be enlightened by evaluating the
time derivative of the retarded time r,. Froln equation (7.13) it follows that

(7.14)

(7.15)at - 1Mr()
The factor 1 - Mr(r,) accounts for the Döppler frequency shift. For an approaching subsonic source it
results that O M,. 1 and (1 - M,.)1 1. This corresponds to a contraction of the reception time
scale, resulting in higher detected frequencies. Conversely, for a receding subsonic source it results that
1 < Mr < O and 0.5 < (1 - Mr) < 1. This corresponds to a dilatation of the reception time scale,
resulting iii lower detected frequencies. Moreover, for the case of an approaching supersonic source it
may be M,. > i and (1 - Mr)1 < 0. This physically accounts for the fact that signals emitted later
are detected earlier.

Consider a monopole moving subsonically and let ['ret denote evaluation at the retarded time r.
The relationship (7.15) can be used to translate the reception time derivative into an emission time
derivative by writing

(7.16)

(7.17)

where r = Ix - xs(T*)l is the observer distance from the source at its retarded time location. Taking
explicitely the retarded timne derivatives yields

1
1 f i aQ Q Dr Q aM,.)1p(x,t) = o

Li Mr 14r(1 - M,.) D 4r2(1 - M,.) +
4r(1 - M,.)2 Dr II (7.18)

ret
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Then, making use of the following relations

where

= (7.23)

In equation (7.22), the O (r')_term dominates the far field, whereas the O (r2)-term dominates the
near field. The factors (i - Mr)2 and (1 - Mr)3 are responsible for the Döppier amplification in the
far and near field, respectively.

7.2.2 Noise from a Moving Dipole

Consider a point force F(t) moving along the path x3(t) in a quiescent medium. The radiated acoustic
pressure is described by the wave equation

p(x,t) =

PO

47r r(i

¿9

Oxi

CMr
Or
Oj

r
OMr ir OM 2

=-rrj---+c(Mr _M2)}
Or r

the acoustic pressure from a subsonically moving monopole takes the form

QCMr
47r r(1-Mr)2 r2(1_Mr)2

Q

- Mr)2
+

r2 (i - Mr)3

i
axi

The solution is

p(x,t) =
n=1

Q
+r2(1_Mr)3 {rtr+c (M_M2)}]

ret

{rfr+c (Mr_M2)}]

Ox2

[ F
47rr11-M

The observer space derivative can be translated into an observer time derivative by using the relationship

LI

F
Iret

¿9 I F2 i I Ff i
rIiMrI LrIi_MrI]ret Lr2Ii_Mrliret

By considering a subsonic dipole and using the relation (7.16), the acoustic field (7.25) takes the form

I Fr i i IFr{T1r(MrM2)}1 FrFi47rp(x,t)=--1
I I

C Lr(1_Mr)2]re, c
[

r2(i_Mr)3
]r,t

[7.2(1_M)2}

(7.19)

(7.20)

(7.21)

(7.22)
ret

(7.24)

(7.25)

(7.26)

where P = Pi and FM =
Comparing the monopole and the dipole noise expressions in (7.22) and (7.27), respectively, shows

that higher order Döppier factors appear for higher order multipole sources.

(7.27)
ret
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7.3 Generalized Functions

Discontinuous functions encountered in various physical problems can be easily handled by using some
results of the generalized functions theory. The functional approach introduced by Schwartz in 1950
to formulate his theory of distributions [162] is the first tentative to define generalized functions as
mathematical objects. The functional approach is indeed the most popular approach to generalized
functions, since it extends, with a minimum of abstraction, the concepts of ordinary differentiation and
integration to discontinuous functions.

In this section some rudiments of Schwartz functional approach are illustrated with emphasis given
to some aerodynamic and aeroacoustic applications.

7.3.1 Definition

The delta function 8(x) introduced by Dirac in the form

«x) 8(x) dx = «0) (7.28)

is a generalized function in Schwartz theory of distributions. No ordinary function, in fact, could
satisfy the sifting property, an ordinary function being a locally Lebesgue integrable function with a
finite integral over any bounded region. The Dirac delta function can be introduced in mathematics by
changing the way to think of an ordinary function. This can be done by introducing the functional

F [1 L 1(x) «x) dx (7.29)

where the function ç5(x) comes from a given space of functions which is referred to as the test function
space. The relationship (7.29) maps the test fuñction space into real or complex numbers. According
to an ordinary definition, a function 1(x) is represented by a table of ordered pairs (x, 1(x)) where,
for each x, 1(x) is unique. Now, according to the definition (7.29), a function f(x) is represented by a
table of its functional values over a given test function space.

A familiar example of this new way of thinking about functions is the Fourier transform of a function
f periodic with period 2ir, i.e.

i r2
F[ç5] = -j f(x)exp(inx) dx (7.30)

2ir

where çb = exp(i nx) (n = 0, ±1, ±2,...) constitute the test function space. The table F [] contains
the same information as f(x). Hence, the Fourier coefficients F [72] can be interpreted as functional
values of f(x) on the test function space .

A special test function space is one constituted by all infinitely differentiable functions with bounded
support, hereafter referred to as D. The support Supp, of a function «x) is the closure of the set on
which q5(x) 0. The functional F[q5] of an ordinary function 1(x) over the test function space D lias
the following two properties:

i. linearity. Considered two test functions and 2, then

F [aq1 + ßq2] = aF [i] + 13F [c2} (7.31)

where a amici /3 are two arbitrary constants.

2. Continuity. Consider a sequence ç of test functions satisfying the following two properties:

(a) there exists a bounded interval I such that for all n, Supp C I;



(k)(b) hrn çb = O uniformly for all k.
n-y 00

Hence, the functional F{çb} is continuous in the sense that um F [qj = 0.
n-400

The continuous linear functionals on space D are now defined as generalized functions on D. Moreover,
the space of generalized functions on D is hereafter referred to as D'.

A typical example of space D mapping into generalized functions is that constituted by the test
functions

a
(x;a) f exp( a2_x2) for

for

A second result concerns the derivative of the Heaviside function

(x >0)
(x <0)

(7.32)

(7.38)

(7.39)

for a given a> O. A sequence satisfying the property b) coming from D is, for example,

Çln(X) = (x;a) (7.33)

A key point of the generalized function theory is that even non ordinary functions can generate
some continuous linear functionals on D. This is typically the case of the Dirac delta functional defined
as

ö[J = q5(0) (7.34)

Since S[q5] satisfies both linearity and continuity it can be regarded as a generalized function.

7.3.2 Generalized Differentiation

The derivative of a generalized function is a concept which allows to handle partial differential equations
in the presence of discontinuous fields.

Let f(x) be an ordinary function with continuous first derivative, and let F'[] denote the func-
tional of its derivative, that is

F'{çb}
= f f'çbdx (7.35)

Integrating by parts and using the fact that the test function has a compact support yield

F'[ç] = _f fçb'dx F [5'] (7.36)

Since qY E D, F [qY] is a functional on D. Hence, equation (7.36) can be used to define the derivative
of all generalized functions in D'. For higher order derivatives we can write

F)[} = (-1)' F [ (n)] (n = 1,2,...) (7.37)

which illustrates the fundamental theorem that generalized functions have derivatives of all orders. As
a consequence, even locally Lebesgue integrable functions that are discontinuous are infinitely differen-
tiable when regarded as generalized functions.

A first result concerns the derivative of the Dirac delta function. Using the definition (7.34) into
the formula (7.37) provides
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In functional notation h(x) can be written as

H[q]
=

f ç(x) di (7.40)

The Heaviside function is discontinuous at i = 0. However, its generalized derivative can be obtained
by using the formula (7.37) to write

H'[q] = H[']

-f
= «0)

ä[q5]

Hence, we can symbolically write

(7.41)

h'(x) = 8(x) (7.42)

where h' signifies generalized differentiation of h.
A general result concerns the derivative of discontinuous functions. Let f(x) be a piecewise smooth

function with one discontinuity at X represented by the jump

f=f(x)f(x) (7.43)

Let q5 be in D with support Supp = [a, b], and let i0 Supp. Then, the generalized derivative of
f(x) can be obtained by writing

F'[q] = F[']

= -fb f(x)'(x) dx

4
= - Jf(x) çV(x) dz - J I(i) çfí(x) dx (7.44)

o

Integrating by parts yields

F'[çb] f'(x) q5(x) dx + [f(x) - f(x)] q(xo)

=
fb f'(x) «i) dx + f«xo) (7.45)

that can be symbolically written as

ji(x) = f'(x) + zfö(x - iO) (7.46)

where overbar denotes generalized derivative.
In the more general case in which the function f(x) has ri discontinuities at x with jumps =

f(xt) - f(XT), then

T(x) = f'(x) + - z) (7.47)
i= i

The generalized derivative concept can be extended to accounts for multidimensional discontinuities.
Let f(x) have a jump L\f across the surface g(x) = 0, i.e.

¿ïf=f(g=0) f(g=Oj (7.48)



Then, as shown for example in Ref. [163], the differentiation operations can be generalized as

Vf = Vf + f Vg 6(g) (7.49)

. f = V . f + Vg . ¿f 6(g) (7.50)

x f = V X f+Vg X ¿f6(g) (7.51)

7.3.3 Generalized Integration

By definition, the integral functional G[q] of the functional F{çb] is such that

G'[q] = F[çb] (7.52)

For example, the Heaviside function is a generalized integral of the Dirac delta function.
Let C[J be a generalized function such that

C'[] = 0 (7.53)

As shown in Ref. [164], the only solution of equation (7.53) in D' is

C[] = f cç5(x) di (7.54)

where c is an arbitrary function. Now, if G{q5] is the generalized integral of F[q}, then (G + C)[çb]
G[q] + C[q] is also an integral of F[q]. This result corresponds to the indefinite integration of an
ordinary function, i.e.

11(x) di g(x) + c (7.55)

where the indefinite constant c is interpreted as a constant distribution C[].

7.3.4 Some Useful Elements and Results of Differential Geometry

In this subsection we illustrate some results which will he used to describe some aerodynamic and
aeroacoustic applications of the generalized function theory.

7.3.4.1 Multiplication of a generalized function with a C° function

Consider the generalized function F[] and the C°° function a(x). It results that

aF[] = F[a] (7.56)

where the left-hand side is defined by the right-hand side. A typical example is

aö(qf) = 8(aqS) = a(0) 6(0) (7.57)

that can be symbolically written as

a(i) 8(x) = a(0) 6(x) (7.58)
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FIGURE 7.1: Gaussian co-ordinates on the surface 1(x) = O and normal extension.

7.3.4.2 Multidimensional delta functions

The multidimensional interpretation of 8(x) is

f«x) 6(x) dx = «0) (7.59)

where
6(x) = 8(x) 6(x1) .. . 8(x,) (7.60)

is defined in a n-dimensional space.
The sifting properties (7.34) and (7.38) can be extended to a multidimensional 8function by writing

f6(x) «x) dx = «0) (7.61)

f(_cx) «x) dx = -(0) (7.62)

7.3.4.3 Some important results from differential geometry

Consider the local Gaussian co-ordinates (u1, u2) on the surface 1(x) = O and extend these co-ordinates
along normals to the surface, as sketched in Fig.7.1. Define the local tangent vectors on the surface by

r1 =

(7.63)r2 -
8U2

and set

9ij = r r (7.64)

9(2) = det(g) = 911 922
gii 9ii =

- g?2

i.e.

ri X r212

923
93k = 8ki, 6ki denoting the Kronecker delta

(7.65)

(7.66)
9(2) 9(2)
an

(7.67)ni = -

(7.68)r=
aUa

b = n = - r- n- (7.69)



b = gikbk.

i 19ik '9gkFijk = + 0ui auk
r'k kipIij9 '-Z31

where are elements of the inverse of the matrix {gij}, n is the unit normal to f = 0 pointing in
the region f > 0, Fijk is the Christoffel symbol of first kind and is the Christoffel symbol of second
kind. The above symbols are now used to illustrate some differential geometry results.

Denoting as dl an element of length of a curve on the surface f = 0, the first fundamental form
says

FIGURE 7.2: Geometrical meaning of II.

dr
ds

(7.70)

(7.71)

(7.72)

Let us parameterize a curve in space by the length parameter s, such that the unit tangent t to
the curve is

(7.79)

dl2 = gjj du du

where the summation convention on repeated index is used.

The element of surface area dS is given by

(7.73)

(7.74)dS du' du2

The second fundamental form says
H = b du du

where H 2n dr (see Fig.7.2).

(7.75)

The Weingarten formula says
ni = lii r (7.76)

The Gauss formula says
= rk + n (7.77)

A useful results is

(7.78)F/g(2)=
0u
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and the local curvature k is given by

(a\/2)
Du3

\ u3=O

kN==k
ds

where

k= d2r
ds2

and N is an unit vector pointing to the center of curvature. For a curve on a surface, the local
curvature vector k has components along the tangent and normal directions to the surface, i.e.

du du d2uk=
/ d2u1 k du du'\ / du du'\

= ds2

= k9 + k (7.82)

where k9 is the geodesic curvature vector and k is the normal curvature vector.

There are two orthogonal directions on a surface along which the normal curvature is maximum
(k1) and minimum (k2). Hence, the Euler's formula says

ka(a) = k1 cos2 a + k2 sin2 a (7.83)

The following curvatures can be also defined

- Mean curvature

H =
i= (kn(a) + k (a + i))

- Gaussian curvature

K = k1k2
= b11bbb (7.85)

Let us displace tile surface S f = 0 defined as r(u', u2) by the constant distance a along the
local normal to S. The resulting surface S' is defined as r'(u',u2,a) r(u',u2) + an(u',u2).
Hence, an important result is

\/g(2) = (i 2Ha+ Ka2) (7.86)

By setting u3 a, the three-dimensional space near the surface S can be paraineterized by
(u1, u2, u3) and g(3), the determinant of the coefficients of the three-dimensional first fundamental
form, is given by

g(3) 9(2)(u, u2 u3) = (i - 2Hu3 + Ku3 u)2 9(2) (u', u2)

from which an important result can be obtained by differentiation, i.e.

an

(7.80)

(7.81)

(7.84)

(7.87)

= 2H (7.88)



An important result concerns the divergence of a vector field Q in the vicinity of the surface S. Let
parameterize the space in the vicinity of S by introducing the Gaussian co-ordinates (u', u2, u3).
Denoting g Qi the contravariant components of Q we can write

V Q = /5aui {-Qi} (7.89)

Making use of the relation g(3) = g(2)(u', u2, u3) yields

&Q3 Q3 /92)

}
(V. Q)

= {
{g2)Q'} + {gQ2} + +

aus
\/g(2)

Now, using the result (7.88) allows to write

ôQ(VQ)S=V2.Qt+ 2HQ
an

= \/9(2)(u1,u2,u3) du2 du3

Now, substituting into equation (7.93) and making use of the relation (7.74) give

I
=

f q5(x) 8(u3) du' du2 du3

= f {(x)}3_ g(2) du' du2

= f(x)dS
which shows that I provides the surface integral of q5 over the surface f = O.

'If VfI 1, then we can always redefine the surface as f, = f/ VII.

(7.90)

(7.91)

where Qt is the surface component of Q, Q is the normal component of Q, V2 Qt is the surface
divergence of Qt, and H is the local mean curvature of S. The above relation can be used to
obtain the following useful result

V.{pñä(f)} V.{û6(f)}
= V (ñ) 8(f) +6'(f)

I -,= jV2 (p + - 2Hfp
3

6(f) +p6 (f)

= 2H18(f) +6'(f) (7.92)

where use of the restriction property 8k/On = O has been made (see subsection 7.3.4.7).

Further details about the differential geometry theory can be found in the book of Kreyszig [165].

7.3.4.4 Integration of (x) 6(f)

Consider the surface f = O and suppose that jVf j = i An equivalent form of the integral

1= f(x)6(f) dx (7.93)

is herein derived.
Let us parameterize the three-dimensional space in the vicinity of the surface f = O by the Gaussian

variables (u1,u2,u3), as shown in Fig.7.1. Denoting as g3 the determinant of the coefficients of the
three-dimensional first fundamental form, it results that

dx = Jdu' du2 du3
(7.94)

(7.95)

7.3. GENERALIZED FUNCTIONS 383



384 CHAPTER 7. AEROACOUSTICS OF SOLID BOUNDARIES IN ARBITRARY MOTION

FIGURE 7.3: Integration of ç(x) 6(f) 6(g) upon two intersecting surfaces f = O and g = O.

7.3.4.5 Integration of q(x) ö'(f)

Again, consider the surface f O and suppose that VII = 1. An equivalent form of the integral

j'
= f«x) ô'(f) dx (7.96)

is herein derived.
Introducing the local Gaussian co-ordinates (u',u2,u3) upon and near the surface f = O allows to

write

I,

i'
= f (x) 6'(u3) g2) du' du2 du3

Making use of the sifting property (7.62) yields

I, = - f 1(x)
\/92)}U3_ØaU3 t.

Equations (7.88) and (7.74) can be now used to write

= f í_± + 2Hf} 'g(2) du' du2
J 0U3

= f í_+2Hj(x)b(x)}clS
Jj=o E. an

(7.97)

du' du2 (7.98)

(7.99)

where Oçb/ôn stands for the normal derivative of , and Hf(x) denotes the local irìean curvature of the
surface f O. The normal unit vector to the surface f O points in the direction of f > O.

7.3.4.6 Integration of q(x) ô(f) 6(g)

Singular generalized functions are not, in general, defined pointwise. They define a functional when
are multiplied by a test function and appear under an integral sign. This means that when a singular
generalized function appears in the solution of a real physical problem, it is always in an intermediate
stage of the analysis. For the same reason, multiplications of two arbitrary generalized functions
generally may be not defined.

The product of two generalized functions reaches a physical sense in one special case. Consider
the surfaces f = O and g = O intersecting along the curve F, as sketched in Fig.7.3. Let ñ = Vf and
n' = Vg denote the unit iiormal vector to the surfaces f = O and g = O, respectively. On the local
plane normal to the F-curve take the vectors u1 = f and u2 = g. Then define U = F as the distance



along the F-curve. Extending u and u2 in the space near the plane, along the local normal direction
to the plane, we have

where sinO = ñ x i'. This result can be used to interprete the integral

I
= f q5(x) 5(f) S(g) dx (7.101)

In fact, using equation (7.100) into equation (7.101) gives

7.3.4.7 Restriction to the support of a delta function

Consider the expression
E = «x) 5(f) (7.103)

Denoting as (x) the restriction of «x) to the support of the delta function, that is the surface f = 0,

then E can be also written as
E = (x) 8(f) (7.104)

This second form is advantageous since it allows to exploit two important properties

an (7.105)

and
v=v2 (7.106)

where V2 is the surface gradient of (x) on f = 0. Therefore, using the restriction of «x) to
the support of the delta function in expressions involving «x) 8(f) allows to reduce the algebraic
manipulations. This can be illustrated by considering the following one-dimensional example. Taking
the derivatives with respect to x of both sides of the equation

q5(x) 8(x) = q(0) (x) (7.107)

yields
'(x) 8(x) + «x) 6'(x) = «0) 8'(x) (7.108)

which shows that the generalized function on the right-hand side is simpler than that on the left-hand
side.

7.3.5 The Divergence Theorem

The divergence theorem can be easily demonstrated by using generalized functions. Moreover, an
extension of the theorem to discontinuous fields can be easily obtained by interpreting derivatives as
generalized derivatives.

Let f be a finite volume and «x) a C1 vector field. Consider the discontinuous vector field

du1 du2 du3dx=
sinO

f «x)8(f)8(g)

q5i(x)
{«x) for xEf

for xØf

q5(x)
dF

sinO

(7.100)

(7.102)

(7.109)
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Thus, the vector field & (x) is discontinuous across the boundary f of the control volume .
Using the relationship (7.50) yields

= y . + ¿ fi 6(f) (7.110)

where Lq5 = çb(f = 0) and ñ = Vf, provided that IVI I = 1.
Integrating V & over the unbounded three-dimensional space yields

f''.&=o (7.111)

Then, using the property (7.95) and considering that

5V. for xEQ
for

lead to

V.dxfndS=O (7.113)

where çb = ñ. Equation (7.113) is the divergence theorem.
Suppose now that the vector field is discontinuous across the surface g = 0. Equation (7.111) is still

valid, but the divergence in equation (7.113) must be regarded as a generalized operator. Therefore,
the divergence theorem takes the general form

V.dx_fc5ndS+ftqnidS__0 (7.114)

where i' Vg denotes the unit vector normal to the surface g = 0, Lçb' = . i' and S9 is the
portion of the surface g = O enclosed in the region ft

The divergence theorem is used in physics to derive conservation laws in differential form. Therefore,
the generalization (7.114) implies that the conservation laws are still valid for discontinuous vector fields,
provided that the derivatives are interpreted as generalized derivatives.

7.3.6 The Transport Theorem

As shown in chapter 1, the transport theorem is used in the derivation of conservation laws. Here we
show how generalized functions can be used to obtain two forms of the theorem.

Consider first the expression

i=d_f Q(x,t)dx (7.115)dt t)

where «t) is a time-dependent region of space and Q(x, t) is a C' function. We are interested in taking
the derivative inside the integral. If we suppose that the integral in equation (7.115) is continuous in
time, then we can replace d/ dt with d/ dt and bring the derivative inside the integral. Hence, we can
write

L

L

1 = -afh(f)Q(x,t)dx

dx= f{5(f)Q(x,t)+h(f)DQ)
at j

= f Q(x,t) dS+ f Q(x,t) dx
Jft)

(7.112)

(7.116)



1= (x,t)5(f) dx
(It

where use of the property (7.105) has been made. In equation (7.122) D/Dt stands for

Ô5Q DQ

Therefore equation (7.118) takes the final form

1
= f {

+ v- - 2vHjQ(x, t)} dS
Dt Dii

Concluding, we have demonstrated that

Q(x,t) dx=f vQ(x,t) (ls+f Q(x,t) dxdt 0t)
<- + vn--- f Q(x,t) (IS= f IDQ _2vHfQ(x,t)} dSdt JDct) Dt Dn

where the surface f = O denotes the boundary Dí(t), such that f > O in fi and x' = Vf = û
is the unit inward vector normal to the surface. In equation (7.116) use of equation (7.95) has been
made. Let v' and v, denote the local normal velocities in the direction of inward and outward normals,
respectively. Thus, substituting Df/Dt = v into equation (7.116), the well-known form of the transport
theorem follows, i.e.

1 = fvQ(x,t) dS+f --Q(x,t) dx (7.117)
act) t) Dt

Consider now a restriction of the transport theorem to the boundary Dfl(t) and write

1= -f_f Q(x,t) dS (7.118)dt ôt)
Again, we are interested in taking the time derivative inside the integral. First, convert the surface
integral into a volume integral by introducing the delta function 6(f), i.e.

1= Q(x,t)ö(f) dx (7.119)

where f = O describes the boundary öfl(t). Now, consider the restriction of Q(x, t) to the support
f = O of the delta function, i.e.

(7.120)

Supposing that the integral in equation (7.118) is continuous in time, the time derivative d/ dt can be
replaced by the generalized d/ dt that can be bring inside the integral. Hence, we can write

1 = f {61(f)(xt)+s(f)} dx

= f {_nö'(» (x, t) + 6(f) dx (7.121)

where í3 denotes the velocity normal to the surface f = 0, restricted to the surface. Then, using
equations (7.95) and (7.99) into equation (7.121) gives

i = f{(x,t)}dS_f 2vnHíQ(xt)dS+f dS
512 act) t

= f- 2vHjQ(x,t)1 dS (7.122)OÇt)I5t

(7.123)

(7.124)
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/ L: f=f=

FIGURE 7.4: Definition of an open surface as f(x, t) = 0 and J(x, t) > 0. The edge is defines by
f = f = 0 and z' denotes the unit inward geodesic normal.

7.3.'T Solutions of Standard Inhomogeneous Wave Equations

In this subsection we illustrate sorne aeroacoustic applications of the generalized function theory.
As will be shown later on in this chapter, the wave equations describing the various mechanisms of

aerodynamic sound generation in the presence of moving surfaces may have the following inhomogeneous
forms

02 (p'H(f))

(p' H(f))

d(p'H(f))
i(p'H(f))

(p'H(f))

ñ(p'H(f))
(p' H(f))

(p' H(f))

where

Q(x,t)8(f)

= {Q(x,t)6(f)}

= V.{Q(x,t)ö(f)}
= Q(x,t)H(J)8(f)

= Q(x,t)6(f)ö(f)

= (x,t)H(J)ö'(f)
= Q(x,t)H(f)

a2
{Q(x, t) H(f)}= axzaxj

02=IX_V2
e2 9t2

(7.127)

(7.128)

(7.129)

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

is the generalized D'Alambertian wave operator. In the above equations, f(x, t) denotes a moving
surface, usually assumed to be closed. Conversely, an open surface, such as a blade surface element,
is described by f(x, t) = O and f(x, t) > 0, where f(x, t) = O and f(x, t) = O denote the edge of the
open surface, as sketched in Fig.7.4. In equation (7.132), Q(x, t) denotes the restriction of Q(x, t) to
the support of 8(f).



As already discussed in section 7.2, the Green's function of the wave equation fl2 = O in unbounded
space is í) T<tG(y,T;x,t) = 4'rr -

to T>t
where 9tT--

C

and

(7.136)

(7.137)

r=IxyI (7.138)

In the above expressions, (x, t) and (y, T) are the observer and source space-time variables, respectively.

7.3.7.1 Solutions of D2 (p' H(f)) = Q(x, t) 5(f)

Three formal solutions of equation (7.127) are given here. Using the Green's function (7.137), the
formal solution of equation (7.127) is

47rp'(x, t)
= f T) 5(f) S(g) dydT (7.139)

where the time integration is over (oo, t) and the space integration is over the entire unbounded space.
In the above equation we have used the hypothesis that Vf I = 1.

A change of variable T * g can be performed in equation (7.139) in order to exploit the properties
of the 5function. Since the Jacobian of the transformation is unity, an integration over g gives

47rp'(x, t)
= f [Q(y, T) (f)]ret dy (7.140)

where [Iret stands for evaluation at the retarded time.
Consider now the surface given by

F(y;x,t) = [f(y,T)] = f(y,t - = oret

This is referred to as influence surface and represents the locus of points on f = O whose emitted
signals are detected simultaneously at the time t by an observer in x. The >surface is generated by
the curves of the intersection of f = O and the collapsing sphere g = O for oo <T t. These curves
of intersection are called the Fcurves. Using the influence surface F = O in equation (7.140) yields

4irp'(x, t)
=

f [Q(y, T)}ret 5(F) dy (7.142)

Equation (7.95) can be now used to reduce the volume integral in the above equation to a surface
integral. However, since IVFI / 1, a modification of equation (7.95) is first necessary, i.e.

(7.141)

f(x)5(f) dx = f dS (7.143)

This can be used iii equation (7.142) to obtain

r 1 dE
4irp'(x, t)

= JF=O r
r)] ret (7.144)

IVFI

By differentiation of F = O with respect to y we obtain

VF=
aT ar ret

(7.145)
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with

where v is the local normal velocity on f = 0. It thus results that

VF = [ñ - Mnî'It
and

IVFI = [(i + M - 2M cosO)
1-. ret

Vf = n (7.146)

(7.147)

(7.148)

(7.149)

where M = v,/c and cos O = n î' is the cosine of the angle between the local normal to f = O and the
radiation direction î' = (x - y) ¡r. Hence, we can write the first formal solution of equation (7.127) as

47rp'(x,t) f i [Q(Yr)J dE (7.152)

The retarded time formulation described in section 7.2 for elementary point sources can be general-
ized to the case of a surface source distribution. Therefore, let us introduce the Lagrangian variable 'i
on the surface f = O in equation (7.139), such that the Jacobian of the transformation is unity. Since
y = y(ij,r), a change of variable T -3g generates the Döppler factor Dg/Dr = i Mr. Now, integrating
equation (7.139) with respect to g and then using the result (7.95) to integrate (5(f), the second formal
solution of equation (7.127) results, which can be written as

47rp'(x,t)=f
[ j

dS (7.153)
=o rJl - 14I ret

where M,. = JMZ'?i denotes the projection of the surface local Mach number in the radiation direction.
The third formal solution of equation (7.127) can be obtained by using equation (7.102) to integrate

(5(f) (5(g) in equation (7.139). Since Vgl = c' 1, a modification of equation (7.102) is first necessary,
which yields

47rP'(x,t)=f dFdTf cQ(y,r)
J f=o rsinO

9=0

where O is again the angle between the local normal to f = O and the radiation direction î' = (x- y) ¡r.
In the above expression, the time integral extends between the times when the collapsing sphere g = O
enters and leaves the surface f = 0.

It is interesting to observe that the three formal solutions (7.152), (7.153) and (7.154) of equation
(7.127), can be obtained directly from equation (7.139) by applying the variable transformation

dy dr = cdrdrdf dg dEdFdg dSdf dg
sinO A I1MrI

(7.150)

(7.151)

(7.154)

(7.155)

7.3.7.2 Solutions of (p' H(f)) = {Q(x, t) 8(f)}

Three formal solutions of equation (7.128) can be obtained by applying the procedures used for equation
(7.127). Since the operator D2 commutates with the operator D/Dt, the formal solutions are

47rp'(x,t)
= f

i [Q(rr)]
dE (7.156)

Dt p-.0r A ret



where O is again the angle between the local normal to f = O and the radiation direction i = (x - y) ¡r.
In equation (7.158), the time integral extends between the times when the collapsing sphere g = O enters
and leaves the surface f = 0.

7.3.7.3 Solutions of 02 (p'H(f)) = V. {Q(x,t) 6(f)}

Again, three formal solutions of equation (7.129) are given here. These can be obtained by considering
that the operator 02 commutates with the operator ô/Dx, and by using the relation

1(g)1 1i(g)] i5(g)Li ret - c Dt L r i ret L r2 i ret

in the final step of the procedure used to solve equations (7.127) and (7.128). Therefore, the three
formal solutions are

i D t 1 1Q(y,r)1
d

f 1 1T)1 dE (7.160)4irp'(x,t) =
c Dt JFO r L A J ret JF0 r2 A i ret
i

f 0E
Qr(Y,T) dS_f

[

Q,.(y,r) i= -
r l - Mr!] ret = r2 1 - MT!]

dS (7.161)
ret

i
Dff cQr(Y,T)drd f cQ,.(y,r)

1=0 rsinû J r2sinO
dFdT (7.162)

g=0 g=0

where Qr Q2r.

7.3.7.4 Solutions of(p'H(f)) = Q(x,t)H(f) 8(f)

Equation (7.130) can be solved by applying the procedure used to obtain the solution (7.152) of equation
(7.127). By letting P(y;x,t) = J(y,t - nc) = [f(y,T)] , the formal solution of equation (7.130) is

ret

4irp'(x,t)= f i IQ(y,r)
dE

JF=0 r L A iret

7.3.7.5 Solutions of d(p'H(f)) = Q(x,t)8(J) 8(f)

The formal solution of equation (7.127) is

4irp'(x,t) =f Q(y,r)8(f)ô(f)5(g) dydr

(7.159)

(7.163)

(7.164)
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= Q(y,T)-:j dS (7.157)
0ErIlMrIj

=
cQ(y,T) dFdr (7.158)

r sin O

4irp'(x,t)
= f K" (7.165)

where L is the edge of the Esurface described by F = P = 0. We can also write

A0 = AA sin O' (7.166)

This equation is similar to equation (7.102) with sinO replaced by VF x VP, here denoted as A0.
Hence, it results that



with u denoting the unit inward geodesic normal to the Ledge, as sketched in Fig.7.4, and is the
unit vector along the projection of 1 on the local tangent plane of f = O.

7.3.7.6 Solutions of fl(p'H(f)) = (x,t)H(J) o'(f)

The formal solution of equation (7.132) is

4irp'(x,t) = f(Y,T)h(f)ö'(f)o(g) (lydT

This equation is in the form of equation (7.96), with a minor modification due to the fact that IVFI =
A 1, namely

f q5(x)ö'(F) dy=f
{

i a
(F1)

2HF dE (7.173)
VFIÔn IVFI2J

where HF is the local mean curvature of tl1e Esurface F = O. Hence, equation (7.172) can be written
as

47rp'(x,t) = J i a / {] h(P) \ 2Hp [] h(P)
fF=O ÌAÔN

ret

)
+ et

j dE (7.174)

Using

in equation (7.174) yields

4irp'(x, t) f 1 a ([o]
)

[] N VP5(P) 2HF [] h ()

}
+ retret h(P) ret

JF=olAaN rA rA2 rA2

= f[(y,r)] h(P)8'(F)dy
ret

h(P) =N.Vfr5(fr)

fç5(x) vP o(P) dE
= f=o siû' (IL

F=O F=O

(7.172)

(7.175)

(7.178)
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where

A2 = 1+M-2McosO (7.167)

A2 1+M-2Mcos (7.168)
VF nMí 1MucosON MsinO

(7.169)
= IVFI = A = A

t1+
A

Ñ= VP uMî
(7.170)

A

cos O' = N Ñ (7.171)

(7.176)

From equation (7.171) it follows that NVP = VP cosO' which can be used in the above expression
to write

47rp'(x,t) ,j
{

a ([a]
)

[] VP cosû'S(P) 211F [] ii(P) i+ retret h(P) ret

rA rA2 rA2 f
dE

(7.177)
Then, using the relation



gives

4irp'(x, t) - J 1 U
/ [II 2HF [Q] 'Ì [] cot O'
I ret 1 + ret d - f ret dL (7.179)

fF=O J F=O rA2
fl'>°

rA ) rA2
J

where O' is the angle between N = VF! IVFI and Ñ = Vfr/ V.Ê, and dL is the element of the edge

The first term on the right-hand side of equation (7.179) can be simplified by writing

Hp -

f

ci ret%
''

([ca]

\ ' '9ret
rA ) = ;:i UN + Qret ()

and observing that
Uret

+
Ur

UN - UN
ret L .Jret

where

[] cot O'
ret (IL
rA2

I Ur

LUN ret

U MsinO

L
= Ut1 A

= [Vr.N] ret

= [2r.N]
ret

= [.N
[C ret

= [v.N]
ret

E v

;lMncosO MsinO1= . +V1
A iretA

47rp' (x, t)
= f J i I U M sinO 1

+ _.N_]
fr>o

A c Ur
ret

M
(

sin2û) (lMr)2 1Mr
1

2A2
+

A3
H1+

A3

1sin2o(+M2k +(.q)(.ft)+
2A3 )

(7.180)

(7.181)

(7.182)

(7.183)
ret

where use of equation (7.169) has been made, together with the restriction property (7.105) yielding
to VQ . û = UQ/Un = 0. Hence, using equations (7.182) and (7.183) in equation (7.181), the formal
solution (7.179) takes the form

Qret '9 (i\ 2HF[] '1

+ ret1j>
A UN trA) rA2

J

(7.184)

Farassat & Farris [166] derived tile following expression for the local mean curvature HF of the
ssurface

(7.185)
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and

UQ

UN
ret
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where
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4irp'(x, t)

4irp'(x,t) =

cos O = = f. n
= f - n cos O

M = M - Mñ
L.q = n X w
C

A = n x f
-y = n X Mt
it=n.M

rl
4irp'(x, t)

= J - [Q(y, r) H(f)]ret dy

Introducing the influence surface given by

F(y;x,t) = [f(y,)J = O

into equation (7.194) yields

Jfdr
[ [Q(y,T)] H(F)_tr ç

t

f [cQ(r)] H(F) d(y) dr
-00 ret

(7.186)

(7.187)

(7.188)

(7.189)

(7.190)

(7.19 1)

(7.192)

In the above expressions, k1 and k2 are the local principal curvatures of the surface f = 0, k7 is the
local normal curvature of f = O along -y, (1, )2) and (y1,2) are the components of A and y in
principal directions with respect to unit basis vectors, respectively, and w is the angular velocity of the
surface f = 0.

7.3.7.7 Solutions of £12 (p' H(f)) = Q(x, t) H(f)

Three formal solutions of equation (7.133) are given here. Using the Green's function (7.137), the
formal solution of equation (7.133) is

47rp'(x,t) = f Q(y,r)H(f)ö(g) dydr (7.193)

where the time integration is over (oo, t) and the space integration is over the entire unbounded space.
A change of variable r * g can be performed in equation (7.193) in order to exploit the properties

of the Hfunction. Since the Jacobian of the transformation is unity, an integration over g provides

(7.194)

(7.195)

= f[Q(Yr)IretH(F) dy

= f[Q(y,r)] dVE (7.196)
F>O r

which is the first formal solution of equation (7.133).
By denoting as the collapsing sphere r - c (t - r) = 0, the second formal solution of equation

(7.133) can be written as

(7.197)

The third formal solution of equation (7.133) can be obtained by introducing the Lagrangian variable
i on and near the surface f = O in equation (7.193), such that the Jacobian of the transformation is



unity. Since y = y(i, r), a change of variable r + g generates the Döppier factor Og/ôr = 1 Mr.
Then, integrating equation (7.193) with respect to g provides the retarded time solution of equation

7.3.7.8 Solutions of (p' H(f)) = 02 {Q(x, t) H(f)} /0x0x

Three formal solutions of equation (7.134) are given here. These can be obtained by applying the
procedures used to solve equation (7.133), and by exploiting the fact that the operator U2 commutates
with the operator 02/ôx0x. Hence, the three formal solutions are

4irp'(x,t) =
02

f i [Q()J dV9x0x F>0'1
02 1t f [cQjj(y,r)1 H(F) d1(y) dr= aa J_00 J J ret
02 1Q(y,r)l

axax fj>o Lrii - Mn] ret
dVs

(7.199)

(7.200)

(7.201)

The observer space-derivatives can be translated into observer time-derivatives by applying twice
the rule (7.159), namely

8(g)' I3o - t3 8(g)l
i ret

+
L

r3 i ret

where ö,j denotes the Kronecker symbol. Hence, the formal solutions (7.200) and (7.201) take the form

1 02 rt
f 2rLH(F) d(y) dr47rp'(x,t) = -J 7.

+ tJf3ü 11(F) d2(y) dr
r2

+ c [ f 3QT Qu H(F) d(y) dr (7.203)
J-o0 Jç1

and

47rp'(x, t)
1

2 r I Qrr '

Jf>0 LiIi_MrI]ret
dV

i O f I3QrrQiil+ JL2llMIj
+ f[ QTT QiJ

dVs (7.204)
1>0 L 1 MrIJ

where the quantity Q,.,. is time double contraction Qjí,'îj.

7.4 The Kirchhoff Formula and the Curie equation
In 1955 Curle [52] extended Lighthill's acoustic analogy in order to describe the aerodynamic noise
from turbulent flows past stationary surfaces. The Curle's method is based on the Kirchhoff formula

dV

(7.202)

(7.133), i.e.

4irp'(x,t)
= f Q(y,r)

dVs
ret

(7.198)
[rl - Mr1 ]

where M,. = denotes the projection of the volume local Mach number in the radiation direction.

02 [8(g)] 102 Iíi i i ¿9 I3f
0x0x L r i ret c2 at2 L-

¿5(g)] +
cret L r2
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FIGURE 7.5: Configuration used to illustrate the Kirchhoff formula for a stationary surface. The volume
V is delimited by an inner stationary surface S and an outer stationary surface S0, connected by the
coincident oriented surfaces SC and Sc2 VQ denotes a source region adjacent to the portion SQ of the
inner surface.

for linear wave fields in domains bounded by stationary surfaces. Therefore, let us first derive the
Kirchhoff formula for a stationary surface.

Consider the volume V delimited by an inner stationary surface S and an outer stationary surface
as shown in Fig.7.5. Suppose that the volume V includes a source region VQ. The volume portion

VQ is adjacent to a portion of S, denoted as S. The remaining portion of S is denoted as S. The
outer and the inner surfaces are connected by the coincident oriented surfaces Sci and 5c2, which make
the volume V simply connected. The unit normal ñ to S, S, Sci and S2 points into the volume V.
The inner surface SQ U S may be a physical surface or a control surface, say Kirchhoff surface. In
the latter case, the actual sources can be partially or completely contained by S U S. Because of its
generality, this configuration is useful to illustrate the classic Kirchhoff formula for a stationary surface.

Suppose that the scalar quantity q(x, t) satisfies the linear wave equation D2 = Q(x, t) in the
volume V (f > 0), and that the source distribution Q(x, t) vanishes exterior to the source region VQ.
Thus, a formal solution of the wave equation D2 = Q(x, t) can be found by using the Green's formula,
i.e.

(x,t) H(f) f f Q(y,r)G(x,t;y,r) dydT-00 VQ
f j' 10G 0ÇL+ j j - G n dS dr (7.205)

Joo J5u50 (.. 8Yi 0Yi)

where G(x, t; y, T) = ö(g) /4irr is the free-space Green's function, with r = Ix - yf and g = t -T - nc.
Suppose now that the outer surface S is sufficiently far from the source region, such that no waves can
reach it in the time interval of interest (rs0 > Ct). Moreover, the integrals upon the surfaces Sci and
5c2 cancel each other. Hence, the surface integral at the right-hand side of equation (7.205) reduces to
the surface S U S, that is

(x,t) H(f)
f

f Q(y,r)G(x,t;y,r) dydT
-00 VQ



47rq(x,t) H(f) =

+

4ir(x,t) H(f)

+

f "

-00 JSQUS3 i 0Yi Dvi J

The gradient of the Green's function in the above equation can be evaluated as follows

DC 5(g)D(r1) 10g
Dvi 47r Dy 4irrDy

47rr2 Dvi 47rr Dy

S(g)i 5'(g)?
= 4irr2 4irrc

where use of Vr = 2 has been made. Then, substituting into equation (7.206) yields

ft
f 5(g) dydr

J-OO JVQ r
I5r7 - - -!!8(g)} dSdr (7.208)ff

where çb, = Vq il and = ñ. Finally, integrating with respect to T leads to the classic Kirchhoff
formula for a stationary surface

f[QIIret
dy

VQ r

f {Ç5Iret Tn

JSQUS3 r2
dS +

where = Dq/DT.
The Curie equation can be now derived by substituting = p' and Q(y, T) = D2Tjj/DyDy int

equation (7.209), being the Lighthill's stress tensor. Moreover, since the Kirchhoff formula is valid
for a linear wave field, the linearized momentum equation in the normal direction can be used to write

= where u, is the normal component of the flow velocity. Hence, equation (7.209) takes the
form of the Curie equation

02 [T4p'(x, t) H(f) = 23Iret dy
DX,DX f, r

+ f 'I; ' dS +
fSQ US5JSQUSS

If the integration surface is a physical rigid surface, then p = POÙn = O on SQ U SS and tl1e Curie
equation takes the form

02 [T4p'(x, t) H(f) ]ret

xix fVQ r

+

!SQUSS

f Hret + fJSQUS3
7.2

- çbJ
ret dSr

{- 'p' í + PoÜn]

r

(7.206)

(7.207)

(7.209)

ret dS (7.210)

ret dS (7.211)
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Integration Surface: S

FIGURE 7.6: Scheme of the FW-H acoustic analogy. The flow field enclosed by the integration surface
S is replaced by a quiescent fluid (Po, Po, U O). The vectors u and y denote the velocity of the flow
and the velocity of the integration surface, respectively. The listener moves at the constant velocity y0.

7.5 The Ffowcs Williams and Hawkings Equation

The FW-H equation is the most general form of Lighthill's acoustic analogy. It can be obtained by
using generalized functions in order to embed the exterior flow problem in unbounded space.

Let f(x, t) = O be a control surface whose points move at the velocity v(x, t). The surface f = O is
defined such that Vf = ñ, where ñ denotes the unit normal vector pointing out of the surface. Using
generalized flow variables, the flow portion enclosed by the surface, i.e. f < O, can be replaced by
a quiescent fluid and a surface distribution of sources which restore the conservative character of the
field. Therefore, the generalized continuity and the linear momentum equations can be written as

[(p - PO) H(f)} + [pui H(f)} = Q 6(f) with

Q=poUñ and

and

n
u

u2
(1

p"--)vi+
Po) Po

- +[(pujuj+Pj) H(f)] =L1ö(f)
Dxi

L = + pui (u, - v) and

(o - Po) ij -

Listener

Integration Volume: V

with

(7.212)

(7.213)

where Q 6(f) and L 6(f) denote surface source distributions of mass and linear momentum, respectively.
The following generalized derivatives have beemi used in equations (7.212) and (7.213)

011(f)
= 6(f) = 6(f) v (7.214)

DH(f)
= 6(f) .L = 6(f) n (7.215)

Dx

Outside of the source region, the fluid can be considered at rest and the previous equations (7.212)
and (7.213) can be reduced to the standard wave equation describing the propagation of an acoustic



02
D2{(ppo)c2H(f)} = {TH(f)}/_{La(f)}+{Q8(f)}axioxi

where

(7.217)

= p uu + (p' - c2p') 8jj - (7.218)

is the well-known Lighthill's stress tensor.
If the density perturbations are small, as usually happens at the observation distances, the term

(p - PO) c2 can be replaced by p' and equation (7.217) can be interpreted as an inhomogeneous wave
equation for the acoustic pressure.

In the aeroacoustic literature, the three source terms on the right-hand side of equation (7.217) are
known as the quadrupole, loading and thickness source terms, respectively.

The thickness and loading terms are surface distributions of sources, as indicated by (f). When
the control surface encloses a physical surface, the thickness source accounts for the fluid displacement
produced by the body motion, and the loading source accounts for the unsteady loading exerted by the
body on the fluid. The quadrupole source is a volume distribution of sources, as indicates by H(f).
This accounts for all the flow nonlinearity in the domain exterior to the control surface.

In the case of a body moving in an otherwise quiescent fluid, the flow nonlinearities are due to the
body motion and may consist of vortical disturbances, shocks and local sound speed variations.

7.6 The Kirchhoff Equation

The technique of the generalized function can be also applied to the standard linear wave equation
EJ2p' = O, in order to replace the acoustic field in the region f < O by an elementary quiescent fluid
p' = O. A distribution of sources on the surface f = O is thus necessary to maintain the fictitious
discontinuities introduced in the original field. Considering the generalized derivatives

(p'H(f)) = -H(f) - Mp'8(f) (7.219)

(p'H(f))} = -PÇ-H(f) - .-Mö(f) - (p'Mö(f)) (7.220)

V(p'H(f)) = Vp'H(f) +p'ûö(f) (7.221)

(p' H(f)) = V2p' H(f) + Vp' ñ 8(f) + V. (p' ñ 8(f)) (7.222)

and subtracting equation (7.222) from equation (7.220), the generalized linear wave equation leads to
the Kirchhoff (K) equation for a moving surface, i.e.

(p'H(f)) = - ( +
6(f) - {Mp'8(f)} - /_ {p'8(f)} (7.223)

where M is the local normal Mach number of the surface f = O.

disturbance p' in a quiescent medium, i.e.

D2p' (-_v2)pt=o (7.216)

where c is the sound speed in the quiescent medium.
If the flow perturbations are included, equations (7.212) and (7.213) can be arranged into the

FW-H equation where the flow perturbations appear as source terms of the standard wave equation.
Therefore, by subtracting the divergence of equation (7.213) to the time derivative of equation (7.212),
the differential form of the FW-H equation can be obtained, i.e.
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The Kirchhoff formula for a subsonically moving surface was firstly derived by Morgans [44] in 1930.
The derivation of this formula was based on classic analysis and was lengthy. The simpler procedure
described above was proposed by Farassat & Myers [45] in 1988. It shows the effectiveness of the
generalized function technique.

7.7 The FW-H Equation versus the K Equation
The Kirchhoff equation is valid for any physical problem governed by the standard linear wave equation.
In acoustics it governs the propagation of linear flow perturbations in a medium at rest and felt by the
control surface S : f - 0. In aeroacoustics, the linear perturbation on S are the result of all sources,
regardless to their nature (linear or nonlinear, quadrupole or not, etc.), located in the interior domain
f < 0. As a consequence, in aeroacoustics the Kirchhoff approach is only valid for S surrounding the
nonlinear flow region. Moreover, the Kirchhoff equation does not account for any aerodynamic source
located in the exterior domain f > 0, or on the surface itself. In particular, only quadrupole source
terms enclosed by S are taken into account and nonlinear aerodynamic sources located on S are not
handled. It follows that the use of the Kirchhoff approach in practical application is quit limited. This
is because unsteady flows extend over a large distance in the streamwise direction (e.g. jets, wakes,
etc.) and would require very large integration surfaces and very large flow region accurately predicted.

This formal difficulty is removed by the FW-H equation. Being an exact rearrangement of the
flow governing equations, this intrinsically accounts for the nonlinear flow perturbations on both the
integration surface and the exterior domain.

The Kirchhoff formulation is attractive because no volume integration is necessary. For this reason
it was used in past years for rotor noise predictions at high-speed tip Mach numbers, provided that,
sufficiently far from the aerodynamic source region, the input acoustic pressure p' and its derivatives
Op'/ôt and i9p'/Dn are compatible with the wave equation EJ2p' = 0.

More recently [42], the FW-H formulation has been applied to rotor noise predictions by integrating
the aerodynamic data upon a penetrable control surface. Since the surface source terms in equation
(7.217) are compatible with the flow governing equations, the placement of the integration surface in
a FW-H approach is only a matter of convenience as long as the quadrupole sources are taken into
account by the surface integration.

Thus, the FW-H analogy allows accurate noise predictions even when the control surface is not
in the linear flow region. This is the main advantage of the FW-H aeroacoustic formulation on the
Kirchhoff method.

The equivalence between the FW-H formulation and a Kirchhoff method in the linear flow region
can be easily verified by introducing the linear approxiniations p' p'/c2 and n nj cZ< i into equation
(7.217). Thus, concerning the thickness noise source, it results that

where use of the relation

Ui-
PO C

p U 6(f) p' 8(f) + Uj ñi 6(f)
C

- {' 8(f)}

- {' 6(f)}

o- (v5(f))--

+íj6(f) {pnj} +Uj {ñö(f)}

DP'6(f) O
Uj {v8(f)}

oxi

(7.224)

(7.225)

(7.226)

and

{p0U8(f)}
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has been made. Analogously, the loading noise source reduces to

ö(f)t9p' u,25(f)v9p' a----{L(f)}
c2 at

a v5(f)ôp' ô
2 pu(v8(f)) (7.227)

where use of the linearized continuity equation

(pus) (7.228)

has been made. Finally, substituting the linearized expressions (7.225) and (7.227) into equation (7.2 17),
and neglecting the nonlinear quadrupole contribution, yields the Kirchhoff equation (7.223).

7.8 Solutions of the FW-H Equation
In this section the most popular formal solutions of the FW-H equation (7.217) are obtained on the
base of the model solutions described in subsection 7.3.7. The notoriety of these formulations lies on
their numerical relevance and convenience.

Different formulae are proposed for subsonic and supersonic applications. In the subsonic case, the
most suitable formulation is based on a Lagrangian change of variable, which generates the transonic
Döppler factor i - M,. in tue dominator of the integrands. For supersonic surfaces, there exist directions
in which Mr i and thus mathematical singularities appear in the subsonic formulation. This forces
to use, in the supersonic regime, different formulations which do not contain the Döppler singularity.

Aerodynamic noise predictions based on the integral approach are performed by dividing the inte-
gration surface into panels, and the contribution of each panel is evaluated separately and summed.
In rotor-noise applications, the tip-region of the advancing blade is frequently in supersonic motion.
Although a supersonic formula caii be used to compute the noise from a subsonic surface, it is expedient
to use the most suitable formulation for each panel. Therefore, formulations containing the Döppier
factor i - Mr are used for subsonic panels, and ad hoc formulations deprived of the transonic singular-
ity are used for supersonic panels. Such a hybrid subsonic/supersonic formulation requires the integral
solutions to be extended to an open surface (e.g. a panel). It can be shown that no additional terms
appear in the subsonic formulation when applied to an open surface. On the contrary, one edge line
integral generally appears when the supersonic formulation is extended to an open surface.

The aeroacoustic sources in the FW-H equation can be divided into surface and volume sources.
The surface sources, denoted by 8(f), accounts for the thickness and loading noise contributions. The
volume source, denoted by H(f), accounts for the quadrupole contribution. When the integration
surface f = O coincide with the body surface, the surface sources account for the displacement effect
induced by the body motion on the surrounding fluid (thickness noise), and for the aerodynamic force
exerted by the body on the surrounding fluid (loading noise). The volume contribution accounts for
all the flow nonlinearities in the vicinity of the rotor blade. In helicopter rotors in high-speed forward
flight, the quadrupole source gives a significant contribution to the High-Speed Inipulsive (HSI) noise.
HSI noise is associated with the presence of shocks and a transonic flow around the advancing rotor
blades. When the supersonic flow region extends off the blade into the field, a phenomenon referred to
as delocalization 2, HSI noise becomes dominant over all the other rotor noise sources.

In the following subsections, the surface and volume contributions are treated separately. Suit-
able formulations for both subsonic and supersonic sources are illustrated. Moreover, two approxi-
mated procedures for the volume noise evaluation are described. The first consists in integrating the

2When delocalization occurs, shocks on the blades can extend far beyond the blade tips.
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quadrupole sources along lines normal to the rotor disc, and then treating the integrated sources as
surface sources distributed upon the rotor disc. The second approximated procedure consists in inter-
preting the quadrupole sources in the presence of shocks as surface sources distributed upon the flow
discontinuity surfaces.

7.8.1 Surface Noise

The surface noise in the FW-H equation is described by

{p'H(f)} {Qä(f)} - _{L5(f)} (7.229)

where

Q=p0Ufi,

7.8.1.1 Subsonic surface

In the subsonic regime (Mr < 1), a suitable formal solution of equation (7.229) is the well-known
Formulation i of Farassat [39]. This can be obtained by using the retarded time formulae (7.157) and
(7.161) for the thickness (Q) and loading noise (L), respectively, that is

a r I Q(y,T) i4rp(x,t) J Lrti Mr)] dS (7.232)
ret

4p(x, t) (7.233)

where Lr =
A more effective formal solution of equation (7.229) can be obtained by taking, in equations (7.232)

and (7.233), the time derivatives inside the integrals. As shown in section 7.2, this can be made by
using the rule

(7.230)

In equation (7.234) the symbol I indicates derivatives taken at fixed observer position. Hence, the
well-known Formulation lA of Farassat [39] can be obtained, i.e.

r po(r+un)
4irp(x,t) = I dS

r (i - TVIr)2

a i a
at - [i_Mrôr

X] ret

(7.234)

together with the following relations
X

Dr
=

Dr
CMr (7.235)

ai fjCMrCMi
(7.236)r

ôMr i I
r DM (M_M2)} (7.237)

Dr
+ C

Dr

= i ô 1

- Jj=o
f Lr(y,T)

ds+fret j
I Lr(y,T) dS[r (i - Mr)] [r2 (1 - M)]r ret

and
L- = î; + fUj ('un - vs), Pj = (P - PO) ôii - (7.231)



4irp(x, t)

+ r
u (rifr + C (M - M2))]

dS
1=0

L
r2 (1 - Mr)3

;ffo[
Lr i-

= T(1_Mr)2j
F i+
Lr (1 - Mr)2j

dS

dS
ret

+Ii f [L. (r& + c (Mr - M2))]
dS (7.239)

r (1 - Mr)3

ret

ret

(7.238)

where M is the Mach number vector of a source point on the integration surface, and the remaining
terms are defined as

Un - Ujj, Uñ = Uit, Ùn = Ùii
M = M Mr = M

= L f;, Lr = L LM = L M (7.240)

In the above equations dots on quantities denote time derivatives with respect to the source time r.

7.8.1.2 Supersonic surface

The surface contribution of the FW-H equation is herein derived for a supersonic open surface J(x, t) >
0, e.g. a panel, f = f = O describing the edge of the panel. The extension of the open surface formulation
to a closed_surface is trivial.

Let Vf = u denote the unit inward geodesic normal at the edge. The surface noise for a single
panel is described by

{p'H(f)} = {QH(J) 8(f)} - !_ {LH(J) 6(f)} (7.241)

The monopole source term can be written as

{QH(f) 5(f)} {H(f) :5(f)}

H(J) 8(f)cM6(J) (f)

cMH(f) IVI I 6'(f) (7.242)

where denotes the restriction to f = O of the monopole source (7.230), and M = M u is the local
Mach number in the direction of the geodesic normal. Let notice that IVf I multiplying 6'(f) is not
restricted to the surface of the panel. Therefore, it cannot be set Vf I = 1. The dipole source can be
written as

---{L1H(J) o(f)} - --[LH(J) 8(f)}= axi t.9x

= - (y2 L - 2HfL) H(J) 8(f)

- L8(f) 8(f)_LH(f) VII ö'(f) (7.243)
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whereL denotes the restriction to f O of the dipole source (7.231), V2 L is the surface divergence
of L, L is the component of L normal to the panel, L1, = L i' is the component of L in the direction of
the geodesic normal, and H1 is the local mean curvature of the panel. Again, it cannot be set IVI I = 1.
Hence, the surface noise expression (7.241) becomes

{p'H(f)} qiH(J) 5(f) +q2H(f) ö'(f) +q35(f) 8(f) (7.244)

where

qi = - V2 L - 2H1L ( .245)

q2 = - vf i (c + L) (7.246)

q3 = cM1, - L1, (7.247)

The solution of equation (7.244) can be found by using the results of subsections 7.3.7.4, 7.3.7.6 and
7.3.7.5 in order to determine the contributions related to the source terms qj, q2 and q. Setting
p' p'1 +p +p, from equation (7.163) it follows that

47rpÇ(x,t) = fF=O
[qulret d

rA
Ê>o

From equation (7.184) it follows that

rNI8q2 M sinO i c9q2 i [q2}re, ¿9 / 1 \ 2HF [q2} ret
} dE4Irp(x,t)

= fF=O { [ A
+

c 5rj A Ñ +
rA2F>O

- f[q2Jr
cot O'

rA
dL (7.249)

F=O

Finally, from equation (7.165) it follows that

4irp'3(x,
= f=° dL (7.250)

Now, adding the above contributions p, p'2 and p, and making use of the following relations (see
subsection 7.3.7.6)

MscosOrN=
A

¿9 (1 VAN MacosO
- - rA2 r2A2

cot O' A cos O'

A2 = AA0
the formal solution of equation (7.241) takes the form

fg

i I 9q MsinO t9q2McosOl
[qi -

A2
+

cA i ret

dE

rA2 E(2Hf +
VA . N M - cosû\ i

A
+

rA )2I dE
J Jret

dL (7.254)
i AcosO'

A
ret

(7.248)

(7.251)

(7.252)

(7.253)



7.8.2 Volume Noise

The quadrupole noise (T) in the FW-H equation is described by

{p'H(f)}
=

{TjH(f)}
x2 X3

where

is Lighthill's stress tensor.

7.8.2.1 Subsonic volume

In the subsonic regime (M,. <1), a suitable formal solution of equation (7.255) is given by the retarded
time solution (7.204), i.e.

4irp(x,t)
= f [r(1Mr)] dV

ret

15 f I3TrrTiil+
Jí>o Lr (1 - Mr)] ret

dV

f[3Trr_ii] dV (7.257)
f> ret

where the quantity Tr,. is the double contraction of Lighthill's stress tensor. In the above
expression M is the Mach number vector of a volume source fixed in the body reference frame.

A more effective formal solution of equation (7.255) can be obtained by taking the time derivatives
inside the integrals. This can be made by applying the rule (7.234) and by using the relations (7.235),
(7.236) and (7.237) together with

t92Mr
.. + (Ittr - M11t!) + (M - M2)2

Sr2
= Mr

Hence, the quadrupole noise in the subsonic regime is given by

47rp'(x,t) = f 1K1 K2 K31 dVs (7.259)
J>o

L+ - +
Jret

with

r &Trr+31,. 31Tr,K1=
(1 Mr)3 (1 - IVIr)4 (1 - IV!r)5

4tjr + 2Tr + Jlfr

= p ujuj + (p' - c2p') ¿5jj -. (7.256)

(1 - II/Ir)2 (1 - JVIr)3

3 {(l_M2) _2fi)ITAI_M)IT}
+

6& (l_M2) T,.,.
+

(1 - Mr)4 (1 - Mr)5

2TMM - (i - M2) 6 (i - M2) TMr 3 (i - M2)2 Trr
K3

= (1 - Mr)3 (1 - Mr)4
+

(1 - Mr)5

where

TMM TAIr

TMr='IjMi'?j, r=jzj, 'rrTzjfY?j

(7.255)

(7.258)

(7.260)

(7.261)
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Blade position at r

Collapsing sphere at
source time r

r= c (t-r)

X

Observation point

FIGURE 7.7: Intersection between the collapsing sphere and a rotor blade.

7.8.2.2 Supersonic volume

In the supersonic regime (Mr 1), a suitable formal solution of equation (7.255) is Farassat & Brent-
ner's [167] collapsing-sphere formula (7.203), that is

i a2 r
H(F) d(y) dr4lrp'T(x,t)

= jJ
a p t 3TrrTjj

+ j_J- r2
H(F) dTl(y) dr

pt '3Trr - TiiH() d(y) dT (7.262)+c/ IJoo JÇÌ r3

7.8.2.3 Approximate collapsing-sphere formulations

In this subsection we describe a first approximated procedure to evaluate the quadrupole contribution
in rotor-noise predictions.

Let us consider the collapsing-sphere formulation (7.262). The collapsing sphere is defined by the
equation g = r - t + nc = 0, where r and t the source and observer time, respectively, and r is the
distance between the observer position x and the point source y. The observer co-ordinates (x, t) are
held fixed during the integration. Hence, the solution to g O can be interpreted as a sphere centered
on the observer x and radius r, which collapses as r approaches t (see Fig.7.7).

In equation (7.262) the quadrupole sources are integrated over the entire collapsing sphere. However,
since the Lighthill stress tensor vanishes away from the nonlinear flow region, only the collapsing
sphere portion near the blade contributes to the integrals in equation (7.262).

As first shown by Yu et al. [168], for an observer in the far field, the collapsing sphere can be
locally approximated by a cylinder with axis passing through the observer and perpendicular to the
rotor plane (see Fig.7.8). Moreover, if the observer is supposed to be in the rotor plane, an integration
of the quadrupole sources in equation (7.262) can be performed in the direction normal to the rotor disc
independently of the observer position. Hence, the integration over the approximate collapsing sphere
can be carried out in two stages. The Lighthill stress tensor is first integrated along the direction
normal to the rotor plane. Thus, denoting as z the co-ordinate normal to the rotor disc, a new source
tensdr can be defined as

= fT dz (7.263)
1>0

The surface source Q23 is then integrated upon the Fcurves which are the intersection of the collapsing
sphere and the rotor blade (see Fig7.7). Thus, the approximate collapsing-sphere formulation takes



the form
102 t47rp'(x,t) = _ff+_dFdT
o rt r 3QQ+ I I drdr
¿5tj_00j1+=o r2

+
ft f3 dF dr (7.264)
00 g=O

where f+ denotes the rotor disk plane, including the blade surface.
Starting from the solution (7.264), a subsonic and a supersonic quadrupole noise formula can be

obtained.
For subsonic moving sources, a retarded time formulation with time derivatives taken inside the

integrals is the most suitable formulation. This can be derived by first considering the variable trans-
formation (7.155), i.e.

cdFdr dS
(7265)

sinO I1Mri
When the observer is in the rotor plane, sinO = i and equation (7.264) can be written as

102f Qrr
c2 0t2 Jf+0 r l - Mn] ret
io f [3QrrQii
c Ot J+o r2 ] - Mn ret

+ f- dS (7.266)
f+0 r 1-1141 ret

Then, taking the time derivatives inside the integrals by using the rule (7.234) together with the relations
(7.235), (7.236), (7.237) and (7.258), yields the well-known Formulation Q1A of Brentner [40], i.e.

4irp(x,t)
= f [-í- + + j] dS (7.267)

f - ret

with

¿rn +&Qrr+3Ittrrr 3A1,?Qnr

(1 - M)3 (1 - Mr)4
+

(1 Mr)5

4irp(x,t) =

+

Far field approximation of the
collapsing sphere

Rotor blade

dS

dS

Collapsing sphere

FIGURE 7.8: Collapsing sphere approximated by a cylinder in the source region.
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K' 4QMr + 2QMT + M,.
2 (lMr)2 (1Mr)3

3 {i - M2) 2rr - 2I1fr QMr - MÌI QT}
+

6& (i - M2) Qrr+
(1 - IVI,.)4 (1 -

, - (lM2) Q 6 (iM2) QMr 3 (i - M2)2 QrrK3 (1M)3 (1M,.)4 + (1M,.)5

where

QMM=QMMj, QMr=QijMjíj, Q,.Qijj
QMr = jM i3, Qrr = íi íj, Qrr = f;j

In the above expression M is the Mach number vector of a surface source fixed in the body reference
frame.

For supersonic moving sources, a singularity free solution can be obtained by first considering the
variable transformation (7.155), i.e.

cdFdr dE
7270sinO - A

When the observer is in the rotor plane, sinO = 1. Furthermore, assuming that the rotor is nominally
in the rotor tip-path plane y, Y2, and that the blade is sufficiently thin with not significantly blunted
edges, allows to write I' i and

cdFdr dE (7.271)

Using the above change of variable in equation (7.264) yields

1 82 j' [Qrr}retdE4irp'2(x,t) = ¿28t2Jf+ÇJ r
1 0 t [3 Q,.,. - Qiilret dE+

r2

where f denotes the entire Yi y2plane. Since the integration domain is fixed in time, the observer-
time derivatives can be bring inside the integrals without worrying about the limits of integration.
Furthermore, since the tensor Qj is defined in the xframe of reference, which is fixed to the undis-
turbed medium, it results that

0Q
Or

O [Qij1

Ot

O [Qjj]

Ot

[3 Qrr - Quu}ret dE
r3

O

Or X] ret

Now, introducing the reference frame fixed with the rotor blade gives

= Qui+vii

°: _V.VQ]

[L,. ret

ret

(7.268)

(7.269)

(7.272)

(7.273)

(7.2 74)

where V = Orj/Or is the velocity of the point ,j specified in the frame fixed to the undisturbed medium.
Then, using equation (7.274) into equation (7.273) yields

(7.275)

+ If+ =0



1f [LQ]
ret dE- c2 r

where Qjj , denote the components of the tensor Qj3 represented in co-ordinates that are instanta-
neously aligned with the moving frame. Since does not depend upon t or r, the operator L operates
on Qt3 only. Hence, equation (7.272) takes the form

4irp(x, t)

+ f - LQ] ret dE
cOt J--_ r2

+ f [3 TT Quuhxet dE (7.276)r

The above singularity free solution can be used for both subsonic and supersonic quadrupole noise
predictions. It was obtained by Farassat & Brentner [169] and is referred to as Formulation Q2.

Equation (7.276) can be algebraically simplified by setting

V=Vp+wxq (7.277)

where VF is the forward velocity of the rotor, and w is the angular velocity of the rotor. Hence, as
shown in Ref.[169], the operator L takes the form

n

- 2V . V-
Or

+(V.V')2+(w XVF).V
n

(7.278)

where V' does not operate on V.
The approximate collapsing-sphere procedure is rigorous for an observer in the far field and in the

rotor plane. Since the HSI noise is maximum in the rotor plane, the approximate formulae (7.267)
and (7.276), referred to as Formulation Q1A and Formulation Q2, respectively, allow a quite accurate
prediction of the quadrupole noise in helicopter applications.

Formulation Q1A can be only applied to subsonic sources because of the presence of the Döppier
factor i - M,. in the denominator of the integrands. Formulation Q2 is valid for both subsonic and
supersonic sources and is quite simple.

Because of high flow gradients at the leading edge of a blade and across a shock trace, the accuracy
of Formulation Q2 is remarkably affected by the accuracy of the numerical evaluation of the source
spatial derivatives.

When delocalization occurs, Formulation Q1A can be only used to integrate the quadrupole sources
up to the sonic circle (see Fig.7.9). On the contrary, Formulation Q2 can be used to account for all the
significative quadrupole sources beyond the blade tip.

Farassat & Brentner [169] used Formulation Q2 to perform volume noise predictions in the presence
of delocalization. They showed that the sources over the blades and beyond the tips have a different
effect on the shape of the acoustic signature. The sources around and in the vicinity of the blades
account for the peak level, whereas, the sources beyond the tip determine the steepening and the
broadening of the waveform.

7.8.2.4 On the surface nature of the quadrupole sources in the presence of shocks

In this subsection we describe a second approximated procedure to evaluate the quadrupole contribution
in rotor-noise predictions.

The FW-H equation has been obtained by handling the flow discontinuity across the surface f = O
through generalized functions. Since there may be other discontinuities in the flow across shocks or
thin vortical wakes, the quadrupole contribution in equation (7.217) is intrinsically represented by

7.8. SOLUTIONS OF THE FW-H EQUATION 409



410 CHAPTER 7. AEROACOUSTICS OF SOLID BOUNDARIES IN ARBITRARY MOTION

Rotor blade

Sonic line
Shock

FIGURE 7.9: Transonic flow past a rotating blade: the phenomenon of delocalization.

generalized derivatives. In the presence of a flow discontinuity across the moving surface k(x, t) = 0,
the volume sources include a surface source distribution whose strength depends on the flow jump
across the surface k = 0. This can be shown by taking into account extrinsically the generalized nature
of the quadrupole source in equation (7.217). Thus, let us write

{TH(f)} 8{TH(f)} z{TH(f)} thö(k) (7.279)

{TH(f)} O{TH(f)} f0{TiiH(f)}l k
ja - ôxi9x

+ m3

{z {TH(f)} ñi ö(k)} (7.280)
X3

where = ( - () denotes the jump of a flow quantity across the discontinuity surface, and xii = Vk
is the unit normal to the discontinuity surface k = 0, pointing into region 2. Equation (7.280) shows
that, in the presence of a flow discontinuity surface, the quadrupole source can be decomposed into a
volume term which is familiar in the jet-noise theory, and two surface terms of monopole and dipole
types, respectively.

Farassat et al. {170] argued that the surface contribution to the quadrupole noise is dominant in
the presence of rotating shocks on rotor blades. Therefore, they performed HSI noise predictions by
taking into account only monopole and dipole source distributions upon the shock surface.

7.8.3 Solution of the FW-H Equation for a Stationary Surface
For a stationary surface, the monopole and dipole source terms (7.230) and (7.231) become U =
and L = (p - PO) ñj = p'ñj, respectively (the viscous stresses r having been neglected). Using the
subsonic results derived in subsections 7.8.1.1 and 7.8.2.1 allows to write the formal solution of the
FW-H equation for a stationary surface as

82 p 1T-147rp'(x,t) H(f) /
L 3Jret dy

5X5X Jj>o r

+ f[Piret dS + f dS (7.281)
SQUSS r SQUSS r

which coincides with the Curie equation (7.281).

+ PO'iLn]
ret



7.8.4 Solution of the FW-H Equation for a Moving Observer

The integral formulation of the FW-H equation can be extended to an observer moving at the constant
velocity cM0. This is done by interpreting the time derivative of the thickness noise in equation (6.24)
as a Lagrangian derivative. The other time derivatives, in fact, have been obtained by using the rule
(7.234) where derivatives are taken at fixed observer position. Thus, let us write the thickness noise
expression for a subsonic surface as

8 t Í p0U i 8 f

[

fOUn47rp'(x,t)
= ôtJf=0 Lri _Mr)jret

dS+cM0 j (1 _Mr)]ret
dS

0x r

Then, using the relation (7.159) in order to translates space derivatives into time derivatives, yields

8 r I poU i
dS4irp(x,t)

= 8t11=0 [r(1Mr)]et
r Ip0UnMorl dS ÍPoUnMorl

Jí=o [r(1Mr)jret
cf L2(1M)j dS (7.282)

where M0 = M0 fj is the observer Mach number vector in the radiation direction. Finally, moving
the time derivative inside the integral, yields

1Po (Ùn+un)1 1Po Un (r!fr +C(Mr _M2))1
dS4irp(x, t)

= f
L

r (1 - M)2
dS + f I

J ret .r=o [ r2 (1 .Mr)3 i ret

I 0(U+u)1
dS f POUfl i dSIMorf IM (lMr)2 I

L
r (1_Mr)3]

I =°L
r

Jret 10
M2 MM(1 Mr) _MorM} Uni

11=0
LP0C{2M0rMr_M0r r2 (1Mr)3 ]ret

1IM0 r PO C U i
1=0 [r2 (1_Mr)] ret

where [}ret denotes evaluation at the retarded time

= Ix(t)
C

7.9 Solutions of the K Equation

(p'H(f)) = ?5(f) {p'ñ8(f)}
ari 8x

dS

(7.283)

(7.284)

As discussed for the FW-H equation, the more effective numerical approach for rotor-noise computations
based on the K equation consists in using a hybrid subsonic/supersonic formulation in which the
supersonic formulae are extended to an open surface, namely, a supersonic panel.

7.9.1 Stationary Surface

In this subsection a formal solution of the K equation for the special case of a stationary surface is
derived. Setting Mn = O into equation (7.223) gives

(7.285)
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whose formal solution can be written as

4irp'(x, t) = -f [Vn]ret dS - [P]ret dSr , r

where p' = ôp'/5n. The following algebra can be now performed

a
9x

([7/1 niretIr J

ni a a(r-')r't+'j niret

apba-,-= Lar aj ret

n.raphí1= Lar Cit
c-1'f Iap'l

r Lar ire,

n ar
[P'] ret r2ôx

ret r2

I

[P]ret

and Vr = í. Then, substituting into equation (7.285) gives

(7.286)

(7.287)

47rp'(x, t) = - f [Pnlret dS + f C rfl rapn
dS + f '

ret J=o
[p j ret dS (7.288)r J1= r [J

which coincides with the classic Kirchhoff formula (7.209), provided that VQ * O and that ç5 p'. The
condition VQ -* O means that the acoustic sources are enclosed by the surface f = 0.

7.9.2 Subsonic Surface

In this subsection a formal solution of the K equation (7.223) for a deformable surface moving subson-
ically is derived.

Convoluting the wave equation (7.223) with the free-space Green's function gives

4ir(x, t) H(f) =

The divergence operator in the last term can be taken in the integral, where it operates only on 5(g) ¡r
that depends on the observer co-ordinates x. Then, the spatial derivative can be translated into a time
derivative by using the rule

a (8(gy\ i (iö(gY\ ijä(g)
cat r ) r2

Hence, equation (7.289) takes the form

4irq5(x, t) H(f) =

ft f/fl (+c-1M) 8(f)5(g)

i a
00 fil

MflP'8(f)5(g)

__ftfffi5(f)5(g) dydr

Till i ¡ap
5(f)S(g) dydr(+c ôrj

i a ft ff[MflP'5(f)5(g) dydrcat jjj r

(7.289)

(7.290)

where 'i = r n



Let us now parameterize the surface f = O by introducing the Gaussian co-ordinates (u', u2) with
domain V. Then, let us parameterize the space near the surface f O by extending (u,, U2) along the
normal to f = O and by taking u3 = f. It thus results that

dy \/9(2) du1 du2 du3 (7.295)

where g2)(u1,u2,u3) = (i - 2Hu3 + Ku3u3)2 g(2)(u',u2), 9(2) being the determinant of the coeffi-
cients of the first fundamental form (see subsection 7.3.4.3). We assuiíie that the domain V is time
independent, whereas, for a deformable surface, the determinant 9(2) is a function of time r. Hence,
equation (7.294) takes the form

4irq5(x,t) H(f)

i a it+ - j JJj 5(f) S(g) dy dr

i
+ I fffP'n5(f)5(g) dyd'r

J-00

where = iñj. Setting

Q,(y,r) p'n
r\8n

Q2(y,T)= pr
equation (7.29 1) can be written in the compact form

4ir(x, t) H(f) =
f

fff Q, (y, r) 5(f) 5(g) dy dr

i ô it+ _j j/fQ2(Y,r)5(f)5(g) dydr

I [[f Qi (u1, u2, u3, r) 5(u3) 5(g) g2) du' du2 du3 dr
Jo0 JJJ

i a 1

+
_j

fff Q2(u',u2,u3,r) 5(u3) 5(g) \/g2) du' du2 du3 dr

=
f if Q, (u', u2, O, r) S(g) du' du2 dr

Vs

io+ - f if Q2(u',u2, O,r) 5(g) g(2) du' du2 dr
V5

Now, integrating with respect to r, provided that ag/ar = i - M gives

4(x,t) H(f)
= ff

[Qi(u1u2Or)

]
du1 du2iMr

V5 ret

i a u ÍQ2(u',u2,O,r)v'fl
-JJ

L
lMr iretVs

du' du2

(7.291)

(7.294)

(7.296)
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Using the rule (7.16) to translate the observer time derivative into a source time derivative gives

4irç5(x, t) H(f)
= ff

[Qii/]
du1 du2

ret

and

Vs

+IIi ft[
cJJ iMr 1_Mrìjret

Vs

du1 du2

This is the formal solution of the K equation (7.223) for a deformable subsonic surface It was
originally obtained by Morgans [44] by using the Green's formula, and later on by Farassat & Myers
[45] by using the above method. Moreover, the latter authors wrote equation (7.297) in the following
useful form

4irq(x,t)H(f)= f
f E

dE+ I p'E2
JV5 [r (1 - Mi)] ret Jv [r2 (1 Mr)]t dE (7.297)

where

E1 = (M, - i) + M M . V2p' - c'Mi' + & ( -
c(1 - Mr)2

+ c(l_Mr){(_Mm_ThM)P+(r7MP'+_M}
(M+M2) +Mn(Mr+M2)

(1 - Mr)2

E = [ij du'du2
ret

= + c M, + cM . V2p' (Lagrangian derivative)
Or On

Mt . V2p' = M1 + M2---
Oui Ouloa

=

= AI
nr = ni

= Itrn
flM=71iM

3Because of the transonic Döppler singularity, equation (7.297) is unsuitable for supersonically moving surfaces.

(7.298)

(7.299)

(7.300)

(7.301)

(7.302)

(7.303)

(7.304)

(7.305)

7.9.3 Supersonic Surface

In this section we derive the supersonic Kirchhoff formula for an open surface. The extension to a
closed surface is trivial.

Let us define the panel f> O on the surface f(x, t), with edge f = O and local unit geodesic normal
to the edge Vf = u (see Fig.7.4). The K equation (7.223) for the panel becomes

d(p'H(f)) = - (- +
H(f) 5(f) - . {Mp'H(J) s(f)}

- _{p'nH(f) ö(f)} (7.306)



The second term at the right-hand side of the above equation can be written as

{Mp'H(i) ä(f)} -{ici;'H(f) 6(f)}
= {&'} H(J) 6(f)
- MMp'6(f) o(i) - Jtp'H(f) IVI I ö'(f)

where a tilde over a function stands for the restriction of the function to the surface f = 0. The symbol
M,, = M z' is the local Mach number of the edge in the direction of the geodesic normal. We have
removed the restriction sign where it is not necessary. Let notice that jVf I multiplying ö'(f) is not
restricted to the surface of the panel. Therefore, it cannot be set IVf I = 1. The third term at the
right-hand side of the above equation can be written as

_{p'nH(f) 6(f)} {'nH(J) 6(f)}

= _2Híp'H(f) 6(f) +p'H(f) IVf I ô'(f) (7.308)

where use of the divergence result (7.92) has been made. Hence, the governing equation (7.306) becomes

(p'H(f)) = q H(J) 6(f) + 2 H(i) 6'(f) + q3 o(i) 6(f) (7.309)

where

I 9p' 1M + c' (i') - 2H1 ' }qi = -ç+c
i ari

q2 =
q3 = M M,, p'

The solution of equation (7.309) can be obtained by using the results of subsections 7.3.7.4, 7.3.7.6
and 7.3.7.5 in order to determine the contributions related to the source terms q, 2 and q3. Setting
p' p + p + p, from equation (7.163) it follows that

From equation (7.184) it follows that

4irp(x, t)
= fF=O {

1 IDq M sinO 1 ôq2l ['21ret a / i
+ 2HF [21ret

d>1+-rNI
A c ÔTJreL A I) rA2 J

fF=o
fr=o

Finally, from equation (7.165) it follows that

4irp'(x,t) = f ---dL (7.315)
jF=O A0r

fr=o

Now, adding the above contributions pÇ, pÇ and p, and making use of the following relations (see
subsection 7.3.7.6)

[21ret cot O
dL

rA2

4irpÇ (x, t)
= fF=O

[qiiret dE
rA

Ê>O

- MacosOrN=
A

(7.307)

(7.313)

(7.314)

(7.316)
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4irp'(x, t)

+

+

¿9 (l\ VAN MacosO
5i \i) - - rA2 r2A2

cot o' A coso'
A2 AA0

the formal solution of the K equation (7.223) for a supersonic panel takes the form obtained by Farassat
& Myers [171], i.e.

i f q2 M sinO 82 M - cos 01
K

[qi -
- A2

+
cA2 f

d
J ret

1 1 AcosO' i
I q3rAo[ A 2j

ret

41n a retarded time approach the computational time is the reception time.
In an advanced time approach the computational time is the emission time.

dL (7.319)

After taking all the derivatives explicitly, the above result leads to the well-known Formulation 3 of
Farassat [172] [173].

7.10 The Advanced Time Approach

As shown by Casalino [41], a hierarchical inversion between the emission time and the reception time
changes a retarded time formulation into an advanced time formulation. This approach allows to
compute the acoustic field as the CFD simulation is processed. The advanced time approach offers the
following advantages.

- Since the acoustic time-step is typically several orders of magnitude greater than the aerodynamic
time-step, the computational time for the noise prediction at each acoustic time-step may be
smaller than that required by the CFD simulation to cover an acoustic time-step. In this case,
provided that a parallel architecture is used, the acoustic prediction has a negligible computational
cost.

The advanced time is an algebraic function of the observer and point source location at the
emission time. Hence, no iterative solutions of the retarded time equation must be performed at
each time-step.

- The advanced time projection of the current source status at a given time is univocal. Thus, the
application of the advanced time formulation to sources in supersonic motion does not require a
modification of the computational algorithms.

- No disk-recording of the flow time history is necessary for the purpose of the acoustic computation.

In this section we describe the fundamental aspects of the advanced time approach. The retarded
time approach consists in evaluating the signal received at a given time4 t through a summation of
all the disturbances reaching the observer at the same time t. Depending on the source location in
the integration domain and the kinematics of both the observer and the integration domain, these
disturbances are emitted at different retarded times and cover different distances before to reach the
observation point.

The advanced time approach merely consists in using a retarded time approach, but from the point
of view of the source. Therefore, at a given time5 the contributions from the integration domain

fgg rA2 E(2Hf +
VA . N M - cos O\ i- A

+
rA )q21 dE

J Jret

(7.317)

(7.318)



are calculated, based on the current aerodynamic data and the current kinematics of the integration
domain. At each computational time and for each source element, the time at which the corresponding
disturbance will reach the observer is calculated and is referred to as advanced time. The observer
location at the advanced time is used to calculate the relative position between the observer and a
point source. The signal is finally re-composed in the observer time domain through a summation over
all the computed contributions.

Let us consider the retarded time equation

Ix(t) y(Tret)ITi-ct = t
C

At an observer time t + T this yields

Tret = t + T

Thus, setting Tr'et t leads to

x(t + T) - y(T,et)I
C

T= Ix(t+T)y(t)I

The quantity t + T is the time at which a disturbance emitted by a source element y at the time t will
reach the observer x. Thus, it is interpreted as the advanced time

tadv = t + T (7.323)

Let us suppose that the observer moves at the constant velocity cM0. Equation (7.322) can be solved
in T, providing

rM0± (ri M0)2 +r2 (1 Md)T= c(1M)
r JMor±/M2 ±1_M2)or

1Mi
Oj

(7.320)

(7.321)

(7.322)

(7.324)

where r = x(t) - y(t) is the radiation vector and Mor - íj M0 is the observer Mach number vector
in the radiation direction. Since a signal cannot be received before it is emitted, the quantity T must
be positive. Notice that the T depends only on the observer velocity and not on the source velocity.
The following cases can be distinguished:

observer at rest: M0 = 0. Only the solution T+ = nc is a physical solution.

Observer in subsonic motion: M0 < i

Mor±/Mr+a2 >0 (7.325)

with ct2 I - M. Hence, only the solution T+ is a physical solution.

Observer in supersonic motion: M0 > i

Mor ± /Mr 2 < (7.326)

with 2 = 1 + M. Hence,

1. observer moving far away from the source: Mor > 0. Both solutions T± do not match the
physical condition T> 0.
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2. observer moving towards th source: M0 r < O. Both solutions T± are physical solutions,
provided that Mor < 1/M - 1.

By assuming a subsonic observer velocity, only the solution + must be considered and the advanced
time is given by

and in discretized form

tadv = t + r(t) J Mor(t)+ /M(t)+1 M
c 1Md (7.327)

It is interesting to notice that a source time t corresponds only to one value of the advanced time t,,.
This happens for any velocity of the source. Furthermore, the advanced time expression is given by an
explicit form.

The implementation of the advanced time formulation does not require a modification of the source
terms in the integrals (6.41), (6.42) and (6.43). However, difficulties may arise in the reconstruction
of the signal. Due to the Döppler effect, in fact, an equally spaced discretization of the source time
domain does not correspond to an equally spaced discretization of the observer time domain. This can
be understood by taking the time derivative of expression (7.327), i.e.

dtadv MM0 {M0+ MorMoj+ (i _MO2)fi}
(7.328)dt

=1+ 1Ms Mr+1M
where M denotes the source Mach number. Considering, for simplicity, a fixed observer position yields

dtadv = 1 - Mr (7.329)dt

t' -adv _tdV+(1Mflt
where Lt is the computational time-step. In Fig.7.1O the advanced time is plotted for a fixed observer
and a source moving at different velocities y0 along a rectilinear trajectory. The source intercepts the
observation point at t0 ro/y0, r0 being the initial distance of the source. For t < to and subsonic
source velocities the curves have positive slopes, with values O < lM,. < 1. This situation corresponds
to a contraction of the advanced time scale. For t < to and supersonic source velocities the curves have
negative slopes. Thus, signals emitted before are detected after. Finally, for t > t0 the curves have
positive slopes, with values 1M,. > 1. This situation corresponds to a dilatation of the advanced time
scale. When the computed disturbances are sampled on an equally spaced advanced time domain6, the
following situations can take place:

only one contribution p from the source element S falls in the interval [ti, t]adv;

no contribution from the source element S is projected in the interval [ti, ti]ady;

more than one contribution () from the source element S falls in the interval [ti, t3+h}adv

Since the Döppier factor is already accounted for in the source terms, contributions () must not

be added, but used to determine a suitable contributionp. A summation over all the source elements
must be made as a final step, namely p1 = >, p, providing the pressure value at the advanced time
jI.t. The procedure used by Casalino [41] to build-on the pressure signal in the advanced time domain
is essentially based on a linear interpolation and is described in subsection 7.10.1.

6The same discretization used in the source computation is used in the advanced time domain.

(7.330)
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FIGURE 7.10: Advanced time versus current time for a source in constant motion at different Mach
numbers in the direction of a fixed observer. The source initial distance from the observer is r0 =
100m and the sound speed is c0 = 30Dm/s. Source Mach numbers: M0 = 0, - M0 = 0.33,
----M0=0.66, ---M0=1, ---M0=1.33, ----M0-- 1.67.

7.10.1 Interpolation Scheme in the Advanced Time Domain

In this subsection we describe the method used by Casalino [41] to build-on the acoustic signal in the
advanced time domain. Although more accurate schemes can be implemented, the one herein presented
is a good compromise between accuracy and simplicity.

At each source time-step j and for each source element i, the advanced time tdv and the corre-
sponding elementary sound contribution p' are computed. Then, the quantities

adv = int(j1) (7.331)

43
adv- - Jadv

are computed, Jadv denoting the advanced time-step and w the normalized difference between tdv and
the discrete advanced time

Later on, the elementary sound contribution p is computed by means of a case-procedure which
depends on whether a contribution p has been already computed or not, that is

if p = O (not computed), then

= p' (7.333)

(7.334)

if p O (already computed), then

Pw - ww

(7.332)

(7.335)
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Let us now write the linear momentum equation in the form

Doe Op Orj ô(püíí)(puj) = - +Dt Ox Ox1 Ox1

Then, defining the relative Lighthill's stress tensor as

= PÜiÜj + {P - C (P - Poo) } 8ij - Ti1

Both the values of p and w are stored. It is straightforward to verify that, once 4 = O has been set
by a first execution of block b), successive executions do not affect the value ofp.

Finally, a summation over all the source elements, say p1 = > p, provides the pressure value at
the advanced time-step adv

7.11 Noise from a Steady Surface in a Moving Fluid Medium

In this section we address the problem of the noise generated by a turbulent flow past a steady surface.
This is a typical problem in aeroacoustics and is usually referred to as flow noise.

7.11.1 Convected FW-H Equation

The acoustic analogy formulation discussed in section 7.8 can be used to describe the noise generated
by un unsteady flow past a stationary surface and detected by a stationary observer immersed in
the stream. The effects of the mean flow convection on the acoustic propagation can be taken into
account by supposing that both the surface and the observer translate at the mean flow velocity, but
in the direction opposite to the stream. Thus, the velocity fluctuations used in the acoustic analogy
are perturbations with respect to the mean flow velocity, such that the fluid is at rest far from the
surface. An alternative approach is herein described. It consists in rearranging the continuity and
linear momentum equations in the form of a convected wave equation.

Let us write the continuity equation in the form

Doop
+ U00

8(pu)
+ Uoei (7.338)Dt Ot Ox Ox Ox Ox

where ü = - Uoej is the flow velocity in a reference frame convected by the mean flow velocity Uoe.
Taking into account the presence of a surface S 1(x) by means of generalized derivatives gives

{(p - Poe) H(f)} + {püj H(f)} = (p - Poe) H(f) + pü/H(f)

For a stationary surface it results that

H(f) = H(f) + Uoei/_H(f) = u00H(f) (7.340)

Hence, the generalized continuity equation takes the form

{(P Poe) H(f)} + {píL H(f)} = (p - Poe) UoejH(f) + p1H(f)t X, X3 X3

(7.339)

(7.341)

(7.342)

(7.343)

P =P'PwW (7.336)

w=0 (7.337)



7.11. NOISE FROM A STEADY SURFACE IN A MOVING FLUID MEDIUM 421

equation (7.342) takes the form

D - 20(PPco)__'ij(pUi) + Cco -
Again, taking into account the presence of a stationary surface by means of generalized derivatives gives

{püH(f)} + c {(p - p00) H(f)} =

_-../_ {IjH(f)} + {puu +P5ij T} H(f) + pu00/_H(f) (7.345)

Now, arranging the generalized continuity and linear momentum equations in the form

D{(pp00)H(f)}

{Eq. (7.341)} {Eq. (7.345)}
9x

leads to the convected FW-H equation

C0(x,k;y) =

liD2 _v2l{(p_p00)cH(f)}=
J

{H(f)} _ {.s} + {scr}

where, provided that j Vf
I = 1, the quadrupole, loading and thickness noise sources are given by

= püiui + {p - c0 (p Poo)} 5ij Tu

p(üu Uu)(u + U00i) +p00U00U00 +Päij T
Q= (ppr)Uc,oj+pîij

Formal solutions of equation (7.347) can be obtained in the time domain by using the convected
Green's function (1.121). An alternative approach consists in Fourier transforming equation (7.347) and
using the Green's function (1.120) in the frequency domain. This approach has been used by Lockard
[174] among others, and is described in the following subsection.

7.11.2 The Frequency Approach

Applying the Fourier transform pair (1.114) to equation (7.347) gives

{

a2 a2 a 2}{H(f)C2(Xk)}2kM2+k

8xxj {1(x,k) H(f)} + {j(x,) 5(f)} i kc(x,k) 5(f)

where k = w/c00 is the acoustic wavenumber and M = U00/c00 is the mean flow Mach vector number.
The Green's function for the above wave equation has been derived in section 1.4.1 and is given by

exp{1 (Mr+ \/M,?+/32)}
r/M,?+ß2

(7.344)

(7.346)

(7.347)

(7.348)

(7.349)

(7.350)

(7.351)

(7.352)
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where r = Ix - yl, Mr = fj = (x - y) ¡r, and fi = - M is the Prandtl-Glauert factor. The
formal solution of equation (7.351) for M < 1 can be now written as

4irH(f)c/(x,k) = -

The volume integrals are extended to the entire three-dimensional space. The dipole and the quadrupole
terms can be simplified by moving the Green's function inside the derivative operators and applying the
Green's theorem to show that the integral of the divergence is zero. This permits to transfer the spatial
derivatives on the Green's function. Furthermore, the properties of the 5function can be exploited in
order to write equation (7.353) in the form

4irH(f)c'(x,k)= -

f Gc(,k;y) {?(y,k) H(f)} dy

+ f Gc(x,k;y) _ {ij(y,ic) ä(f)} dy

- i kccof Gc(x,k;y)(y,k) dy

fÎ(y,k) H(f) G(x,k;y) dy

- f 1(y,k) 5(f)-G(x,k;y) dy

- i kcfGc(x,k;y)(y,k) dy

(7.353)

(7.354)

The spatial derivatives of the Green's function ¿an be evaluated by considering the analytical expressions
(1.122) and (1.123), together with the property

a a
Gc(x,k;y) = Gc(x, k; y) (7.355)(Jj



8

Sound Radiated by Turbulence Near a
Scattering Half-Plane

8.1 Introduction

The problem of turbulence near a trailing edge generating aerodynamic sound has been treated by many
authors as an acoustic diffraction problem involving a half-plane and turbulent pressure fluctuations.

A scattering body in proximity of an acoustic source converts part of the near field kinetic energy
into far field noise. The intensity of the acoustic field usually exceeds that radiated by the same source
into an unbounded medium. The efficiency of tiiis conversion mechanism depends on the shape of the
body, the reciprocal position between the source and the body, and the boundary conditions associated
with the body surface.

According to Lighthill's [1] acoustic analogy, a turbulent portion of fluid in a quiescent medium is
acoustically equivalent to a distribution of quadrupole sources. Curle [52] showed that the presence of a
hard body (zero normal derivative of the wall pressure fluctuations) in a fluctuating aerodynamic field
is equivalent to a distribution of surface dipoles. If the body is acoustically compact the surface dipoles
are in phase and act as a single dipole. The strength of this acoustic dipole is proportional to the
total force exerted on the fluid. The acoustic intensity from quadrupole and dipole source distributions
are proportional to the eighth and sixth power of a characteristic flow velocity, respectively. As a
consequence, at low Mach numbers the pressure fluctuations induced on the surface of a rigid body
provide a more effective sound generation mechanism. A soft body (zero wall pressure fluctuation) is
acoustically equivalent to a surface distribution of monopole sources. In this case a fourth power scaling
law can be obtained, provided that the body is acoustically compact.

Starting from Lighthill's and Curle's theories of aerodynamic sound, Powell [77] showed that an
infinite plane bounding a turbulent field does not produce an enhancement of the power law of the
acoustic intensity. A planar surface is indeed equivalent to an image distribution of quadrupoles with
phase depending on the boundary condition imposed on the surface. When a pressure-release condition
is imposed, the plane acts as an image distribution of source with opposite phase and its local motion
does not increase the radiation efficiency of the incident field.

Following Powell's analysis, Ffowcs Williams [175] investigated the effects of the surface motion on
the sound radiated by a turbulent boundary-layer supported by an infinite homogeneous compliant
plate. The compliant attribute allows to neglect the structural elastic forces with respect to the inertial
terms. Thus, the surface motion can be described by means of a linear differential equation p f(v)
which relates the wall pressure distribution P to the surface normal velocity v. Consistently with
the acoustic analogy approach, Ffowcs Williams neglected the effects of the surface response on the
structure of the turbulent field. Therefore, he showed that the effect of the surface is simply to reflect
the quadrupole sound generated by turbulence. In terms of reflection coefficient, the influence of the
infinite plane on the spectrum of the radiated pressure field can be written as P = T+ + RT_ where the

423
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terms T+ and T_ account for the incident turbulent field and the image source distribution, respectively.
The reflection coefficient R is real for propagating waves and does not exceed the unit value in absolute
magnitude. Thus, the far field intensity does not exceed that due to the sum of the real and the
image quadrupole source distributions. The sign of R depends on the surface response and determines
the phase between the incident and the reflected acoustic field. For non-propagating components the
reflexion coefficient can be complex and the surface motion can produce an increase of the near field
pressure fluctuations.

Ffowcs Williams & Hall [176] discussed the problem of the sound generated by turbulence near the
edge of a semi-infinite flat-plate. The presence of a scattering sharp edge implies that the reference
length and velocity are not imposed by the turbulent field. As a consequence, Curie's dimensional
analysis does not apply and the sixth power law of a compact surface distribution of dipoles is replaced
by a fifth power law. The turbulent eddies which are responsible for this radiation enhancement are
those characterized by a quadrupole structure with axes normal to the edge. These sources generate
an acoustic far field whose intensity is increased by the factor (k ro)3 both for rigid and soft surfaces,
provided that the acoustic wavenumber k and the eddy distance from the edge r0 satisfy the condition
2 kr0 «1. Finally, the noise directivity predicted by Ffowcs Williams & Hall has a sin2(0/2) pattern
when the plate is rigid, and a cos2(0/2) pattern when a pressure release boundary condition is imposed
on the plate surface, O being the observation angle away from the streamwise direction.

Crighton & Leppington [161] solved the scattering problem of a distribution of quadrupoles near
the edge of a semi-infinite compliant surface. They made use of the reciprocal theorem according to
which the acoustic field at the listener location x0 generated by a monopole source in x is equal to the
acoustic field at x generated by a monopole source in xcj. Thus, if the observation point xo is in the
acoustic far field the problem is equivalent to that of determining the field in x generated by an incident
plane wave. Furthermore, by differentiating with respect to x, the acoustic field at the location x0 due
to a multipole source of arbitrary order can be determined.

The problem of an incident piane wave scattered by the edge of a semi-infinite plate was solved by
Crighton & Leppington by using the Wiener-Hopf technique applied to the system of equations

qo(x,y) = exp{i k0 (xcosOo +ysinOo)} (8.1)

( V2 + k) q5(x, y) = O (8.2)

q5(x,O) (x,O) = {'(x,O)+i kocosûoexp(i koxcosOo)} for x <0 (8.3)

Equation (8.1) represents an incident pressure field of wavenumber k = w/co and reduced wavenumber
k0 = k sin ao. The angles Oo and a are related to the polar representation of the listener location
xo = (TO sin ao cos 00, ro sin o cos 00, ro cos ao), as sketched in Fig.8.1. Equation (8.2) represents the
wave equation for the scattered potential field written in the Helmholtz form, and equation (8.3)
follows from the boundary condition on the plate (x < O, y = O)

d
L [p(x, O) e7tJ = m (v(x) e_t)

dt

which yields
p(x,0) p(x,0+) i pow {q5(x,Oj - q5(x,0)} = i mwv(x) (8.5)

where m is the specific mass of the plate and v(x) is the plate velocity in the positive y-direction. The
no slip condition on the surface of the plate leads to

v(x) = (q5 + q5o)_0 = q5'(x, O) + k0 sin O exp (i k0 x cos Go) (8.6)

Thus, the boundary condition (8.3) can be obtained from equations (8.5) and (8.6).

(8.4)



FIGURE 8.1: Scheme of the half-plane co-ordinate system. x0 denotes the observer location, whereas x
denotes the source location.

The quadrupole sources near the edge can be related to the properties of the turbulent flow, namely,
the rms velocity U and the integral correlation length i. Combining U and i, the following reference
quantities can be defined: a characteristic frequency w = U/i, a reference Mach number M = U/co,
and a characteristic wavenumber k = M l_l.

Calling j the ratio of the scattered pressure amplitude to the direct pressure amplitude, e = 2p i/rn
the fluid loading parameter and p 2 p/rn, Crighton & Leppington [161] estimated the magnitude of
j in two limit cases under the condition k r « 1, namely

relatively rigid surface: = «O

cc (kr)3"2 = (l/r)3l'2 M312 (8.7)

relatively limp surface: = » O

i oc k r3/2p'2 (1/r)3"2 e-1/2 M1 (8.8)

The amplification ratio for a rigid plate, as expressed by equation (8.7), recovers that obtained by
Ffowcs Williams & Hall [176] according to which the effect of an edge in proximity of a turbulent flow
is that of increasing the radiated noise intensity by a factor (kr)3. This enhancement is related to the
fifth power intensity law through the chain

72'quadrupole oc 712 M8 cc U5 (8.9)

Conversely, for a limp surface, equation (8.8) shows two important results:

- the scattered pressure field vanishes as the surface mass m tends to zero (e -4 oo);

- the scattered intensity varies as U6/e in place of U5, as obtained by Ffowcs Williams & Hall [1761.

In a successive work Crighton & Leppington [177] extended their analysis to the scattering by both
rigid and soft wedgelike bodies, with characteristic dimensions larger than the acoustic wavelength.
They showed that the scattered intensity of the near pressure field generated by a quadrupole source
with axes perpendicular to the edge depends on the typical fluctuation velocity in the form predicted
by the expression

I oc U4+ = (8.10)

where (p/q)ir and e are the exterior and the interior wedge angle, respectively. If the interior angle e
tends to zero, a fifth power law predicted for a thin plate is recovered. Conversely, for e -4 ir (infinite
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plane), a sixth power law results. These results agree with those obtained by Ffowcs Williams & Hall
[176] and Crighton & Leppington [161], but disagree with Ffowcs Williams's [175] results according to
which the effect of an infinite plane supporting a distribution of quadrupole sources is simply to reflect
the incident field without modifying the quadrupole radiation character of the turbulent boundary-layer.

The models developed by Ffowcs Williams & Hall [176] and Crighton & Leppington [161] [177], are
based on the extension of Lighthill acoustic analogy theory to an edge diffraction problem involving
a semi-infinite plate or a wedge-like body. These models relate the radiated noise intensity to an
assumed turbulent velocity, that is, to a measurable property of the quadrupole source distribution.
Chase [81] [83] and Chandiramani [82] proposed a different treatment of the edge diffraction problem.
Their approaches consist in relating the far field acoustic spectrum to the wavevector-frequency spectral
density of the hydrodynamic pressure field near the edge. Therefore, in a first step the acoustic problem
is solved by looking for a relation between the spectrum of the scattered acoustic field and the spectrum
of the incident pressure field. In a second step the driving hydro dynamic spectrum is described by means
of a hydrodynamic semi-empirical model.

Both Chase [81] and Chandiramani [82] considered only the case of a turbulent one-side wall jet
crossing obliquely the edge of a rigid semi-infinite plate without wetting its surface.

FIGURE 8.2: Scheme of the half-plane co-ordinate system.

FIGURE 8.3: Turbulent ribbon wetting one side of a half-plane. /3 denotes the angle between the axis of
the ribbon and the normal to the edge on the plane of the plate. L denotes the width of the ribbon.

Chase [81] used the modified isotropic convective similarity model [178] in order to describe the wall
pressure field induced by a turbulent boundary-layer. By defining the radiated sound power per unit
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frequency and per unit solid angle as

H(w,q5,O) = (pc)'r2P(w,r) (8.11)

where P(w, r) denotes the frequency spectral density of the radiated pressure (see Figs.8.2 and 8.3),
Chase obtained the following results:

for w5/U 5 cos fi, ll(w, a, O) varies as w2 and nearly as

for 0.5 5 cos fi, H(w, a, O) does not depend on c and varies as

where fi is the angle between the ribbon direction and the normal to the edge, and where 5 and U
are the eddy size and convection velocity, respectively. Furthermore, the total acoustic power per unit
solid angle varies as U, in agreement with Ffowcs Williams & Hall's [176] result.

Chandiramani [82] proposed a slight modification of Chase's approach. He described the diffraction
of evanescent incident waves with harmonic components'

P(x,y,z) = exp{i (k,0x+k20yk30z)} (8.12)

The wavenumbers k,0 and k20 are real, whereas k30 is imaginary positive and determines an exponential
decay of the incident waves as y tends to zero2. The hydrodynamic near field driving pressure is
described accordingly a Corcos' similarity model [99] and the frequency spectral density of the scattered
acoustic pressure takes the form

P8 (r, O, w) cx
U UØO

sin2 (0/2)
r w2

(8.13)

where O denotes the observation angle away from the streamwise direction.
Later on, Chase [83] refined his previous model by describing the pseudo-sound near field as a

distribution of harmonic evanescent waves generated by the turbulent ribbon on one side of the semi-
infinite plate. A different expression for the wavevector-frequency spectral density of the hydrodynamic
pressure was used. The resulting model fits the spectrum of both the near and the far pressure field of a
jet-flow. For a particular choice of a dimensionless parameter (ii = 2), the spectrum does not depend on
the large-eddy scale 5 at frequency well above the convective large-eddy frequency U/5. The resulting
spectrum has a similarity character and yields a radiate far field spectrum (u = 0, fi = O and a = ir/2)
of the form

P(r,O,w) cx p2 y4 w2 (U/r) (Ut/c) (L/r) sin2(O/2) (8.14)

where y is a dispersion velocity that characterizes the coherence of the hydrodynamic pressure in the
convected frame of reference, and L is the width of the turbulent ribbon crossing the edge.

Equation (8.14) can be compared to the analogous form (8.13) obtained by Chandiramani. It is
interesting to notice that, if y is supposed to be proportional to U00, these two expressions have nearly
the same structural form.

When fluctuations occur in the flow past a trailing edge, vorticity is shed into the field. Despite its
viscous origin, this process is commonly described by means of an inviscid model and an appropriate
condition at the trailing edge. Briefly, a fluctuations in an inviscid flow induce a singular behaviour at
the trailing edge. This singular behaviour can be smoothed by shedding a vortical wake which satisfies
a Kutta condition at the trailing edge.

As discussed in chapter 9, the effect of the vortex shedding onto the trailing edge noise is a disputed
argument in theoretical aeroacoustics. The present chapter is concerned with the scattering of an

'The term exp(iwt) has been dropped.
2This exponential decay has been introduced by Chandiramani in order to control the behaviour of the hydrodynamic

forcing term.



428 CHAPTER 8. SOUND RADIATED BY TURBULENCE NEAR A SCATTERING HALF-PLANE

acoustic field by the edge of a half-plane as a model of the aerodynamic noise from an edge in a
turbulent flow. The procedure commonly adopted to solve this scattering problem consists in two
steps:

- the solution of an acoustic diffraction problem,

- the description of the acoustic sources in terms of hydrodynamic elements associated with the
turbulent flow in proximity of the edge.

All the analyses quoted above are based on this procedure and do not account for the vortex shedding
process. Nevertheless, the theoretical works of Jones [179], Candel [180] and Rienstra [181], and the
experimental work of Heavens [182] showed that the acoustic scattering approach can be extended in
order to account for the presence of a vortical wake. In this way, the effects of the vortex shedding
onto the trailing edge noise can be taken into account. Rienstra, in particular, showed that the vortex
shedding induced by an incident acoustic wave at the edge of a semi-infinite flat-plate in a uniform flow
can couple the acoustic field and the hydrodynamic field. As a result, acoustic power can be absorbed
or released by the vortical wake depending on both the Mach number and the orientation angle of the
incident acoustic waves.

In the following sections the half-plane scattering models developed by Ffowcs Williams & Hall
[176], Chase [83] and Rienstra [181] are described in greater detail.

8.2 Ffowcs Williams & Hall's Model

whose frequency counterpart is

FIGURE 8.4: Scheme of the half-plane co-ordinate system used by Ffowcs Williams & Hall's [176].

By assuming that changes in p are exactly balanced by changes in e2 p and by neglecting the viscous
effects, Lighthill's equation (5.28) takes the form

52(pvv3)
2 8YaY

V2p* + k2p* = j- v92(pvv)
ì. '9Yi9Yj

(8.15)

(8.16)

where stars denote Fourier transform and k = wie is the acoustic wavenumber. A formal solution of
the inhomogeneous Helmholtz equation (8.16) for a half-plane geometry can be obtained by convoluting



with a tailored Green's function G which satisfies

(V2 + k2) G 4ir ö(x - y)
DG

= O on the half-plane

It thus results that
82G4P*(xw)f (pvjvj)* dV

Vo(y) '9Yi8Yj

where V0 (y) denotes the portion of fluid containing the quadrupole sources of noise.
As shown by Macdonald [183], the Green's function for the half-plane has the following far field

(kr» 1) expression

e1'4 {e_i kR UR e kR'
e U2 dU}G(r,0,zIro,0o,zo) I e'2dU+ fR J_ R'

where use of the cylindrical co-ordinates has been made by setting

R= /r2 +r - 2rrocos(O 0o)+(z z0)2

R' = /r2 +r 2rrocos(0+0o)+(z zo)2

D =.(r+ro)2+(z z0)2

and where the terms UR and UR' are defined as

(krr0\ f0-0\
UR=2DR)cos 2 )

( krr0 '\ (0+Oo'\UR! = 2
D + R') cos 2 )

In the geometric far field (r » ro) it results that

D+RD+R2r2+(z_zo)2
(0-0\

UR sJ2 k ro sin q5 cos
2 )

10 + O\
UR' /2 k ro sin cos

2 )
where r

sin ' =
/r2 + (z - zo)2

Hence, the formal solution of equation (8.19) is given by

4p*(r0zw) = fffrrodrodoodzo

where

D2G 52GT = r0 z0

(8.19)

(8.25)
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(8.17)

(8.18)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)
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+

1 a2G i 8G\ a aG\ a /aG\1
+ )j

íac i aGi

rl a a (1ÔG\PVOVzL) +----)] (8.26)

Consider the case of an eddy close to the edge and satisfyng the condition 2k r « i (Uj « i,
UR' «1). The Fresnel integral in equation (8.20) has the following series expansion

e1 r/4 fX
2 1 e"'4

,_ J
e1L du + (1 + 0(x)) (8.27)vlr x

Since R'2 = R2 + 4r r0 sinO sin 00, in the geometric far field R' R + 2r r0 sinO sine0, which yields
kR kR'. Thus, the Green's function (8.20) takes the simplified form

ikR 2 iir/4
G(r,0,zIro,0o,zo)

e

R
+ 2krosincos(Oo/2)cos(0/2) + 0(kro)} (8.28)

where R Jr2 + (z - zo)2 and sin = r/\/r2 + (z - zo)2
Differentiating the half-plane Green's function (8.28) as in equation (8.26) shows some fundamental

properties of the half-plane diffraction problem:

the acoustic radiation from quadrupoles with both axes normal to the edge is amplified by a factor
(2k ro)3/2 with respect to a free-turbulence radiation;

the contribution from quadrupoles with only one axis normal to the edge is only enhanced by a
factor (2k ro)_h/2;

the contribution from quadrupoles with both axes parallel to the edge is not affected by the
presence of the edge.

Therefore, only terms of greater order (2k ro)3/2 in equation (8.26) can be retained, i.e.

ac '-j k e1 kR 2e1'4
- R \r ji7 cos(0o/2) cos(0/2) (2kro)3/2

ir/4
2k2e 2e1

inos(0o/2) cos(0/2) (2krojr0ar0 R
a2c k e kR 2e1"4 / 3/2vsinil cos(Oo/2) cos(0/2) (2kro)r0 R /F
ac 2 e kR 2eihhi4 3/2/sinq5 sin(0o/2) cos(0/2) (2kro)

R /F
a (1 8G\ j kR 2e1'4

- ---) k2
e

R
/sin sin(Oo/2) cos(0/2) (2kro)3/2

i a / ac
k2

e' k R 2e' "14
/sin, sin(0o/2) cos(O/2) (2kro)3ì"2 (8.29)R

Substituting into equation (8.25) and neglecting all those terms of order smaller than
provides the final form of the far pressure field, i.e.

iir/4
p*(rOzú)) = k2

2x3/2 cos(0/2) fff {pvcos(0o/2) + pvcos(Oo/2) + 2pvrvosin(0o/2)}*

(2k ro)3/2

+
I a /1 G\ i avrvo[)+_)j



e1 kR
(2k ro)3/2 s/sin q5 r0 dr0 dO0 dz0

R

Consider a turbulent element whose size is much smaller than an acoustic wavelength and for which
(pv)*, (pv)* and (pvrvO)* are perfectly correlated. The acoustic field from this element is

iir/4 -ikR
p*(rOzw) - k2 e

cos(0/2) \/sin
R

{(pv pv)* I + 2 (pvrvO)* 12} (8.31)- 27r3/2

where

ii
=

fff cos(Oo/2) (2kro)3/2 r0 dr0 dû0 dz0

'2
=

fff sin(Oo/2) (2kro)3/2 r0 dr0 dû0 dz0 (8.32)

If this elementary source region occupies the field portion r1 <ro <r2, 01 <00 <02, z1 <zo <Z2,

'2 = V (kö)3I

where V = irö2Az is the eddy volume. Finally, if the eddy occupies a small region for which

0 = 0 j A0/2

r =Ar/2
with AO « i and Ar « 1, then it results that

Ii = (2k)3/2 y cos(/2)
2 sin (oo/2)

FIGURE 8.5: Idealized model of a turbulent eddy near the edge of a half-plane.

sketched in Fig.8.5, the volume integrals in equation (8.31) become

02

Ii = (2k)312(z2zi) f (Oo/2) dû0 r0 -cos fr2 -3/2
2 Jo1 sin rl

(2k)3/2 [+sin(02/2) - sin(01/2)j 1/2 1/2
= Az4[(0/2)(0/2)] (r2 r1 ) (8.33)

Conversely, if the turbulent element is a cylinder of diameter 25 with center in the edge of the half-plane,
it results that

Il = O

(8.30)

(8.34)

(8.35)

(8.36)
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where V = Lr0Lz is the eddy volume.
The velocity field can be decomposed into a stationary part (Ut, U9, lJ) and a fluctuating part

(U'r, t4, u). If the fluctuating velocity is supposed to be of small amplitude, the following linearizing
relationships can be introduced into equation (8.31)

(2 * 1*pv,.) 2p0U,.0
(2)* 2poUou
(pvrve)* pOUr u' + poU0 u (8.37)

yielding

iir/4 ikR
* 2e . e --3/2p (r,0,z,w) = k

3/2
cos(0/2) ,/sin

R PO (2kro) V

{(Ugu - Ur',) cos(/2) + (U,.u' + Uov.*) sin(/2)} (8.38)

where use of the integral volume expressions (8.36) has been made.
An approximated formula for the radiated acoustic intensity can be obtained by neglecting any

effect of cross-correlation in equation (8.38). Thus, calling a the normalized turbulent intensity, it
results that

k4 sin cos2(0/2) poUa2 V2 cos2 fi {2 (/2) + sin2 (/2) }I(r, 0, z, w) = -
Poc ir3 cR2 (2k)3

where /3 is the angle between the mean flow and the normal to the edge in the plane of the plate.
Setting equal to the eddy correlation length 5, the maximum value of the radiated intensity is given
by

'max
Po k U, a2 V2

(8.40)
ir3 cR2 53

The characteristic frequency of an eddy of size 8, convected at the velocity U is of order U/ (28), thus
setting k ir U/cS into equation (8.40) yields

PO U 2 V2
'max --

r2 c2 R2 54

(8.39)

(8.41)

where we have also supposed that the convection velocity is of the same order of the free-stream velocity
LT00.

The expression 8.41 is the main result of Ffowcs Williams & Hall's [176] analysis. It shows that
the far field acoustic intensity scattered by a half-plane is proportional to the fifth power of the flow
velocity when the turbulent quadrupole source is close to the edge (2 kr « 1). Furthermore, equation
(8.39) shows that the noise level can be reduced by sweeping the half-plane edge with respect to the
flow direction (fi 0).

Consider now the case of an eddy far from the edge at a distance such that (k ro)1t2 » 1. Let
us substitute the Green's function (8.20) into equation (8.19) and then let us differentiate. Terms
containing the Fresnel integrals 'R and 'R', and others containing the factors (k ro)"2 and (k ro)3"2
have a dominant effect.

An analysis of the order of magnitude of the various terms at fixed observer position O and at
variable eddy location Oo shows the existence of three fundamental regions (see Fig.8.6), namely:

A) 0<<ir-0
the half-plane behaves like an infinite rigid flat-plate and the edge have a negligible effect of order
(kro)"2. The radiated pressure is given by

IekR4irp*(r, 0, z, w) = k2 fff (pvjvj)*
R

+ 7?7
R'

r0 dr0 dû0 dz0 (8.42)



where

Vi = (Vr,V,Vz)
¡OR i OR OR\7j=
\Oro ro
"OR' i OR' 9R'\
\arQ

it+O

FIGURE 8.6: Noise generated by a compact turbulent eddy sufficiently far from the edge of a half-plane
(kro)"2» i.Intensity regions.

4irp*(rûzw) = _k2
fff (pv,vj)* {

(8.43)

ir - O < 00 <ir +0
the radiated noise is nearly that of an eddy in free-turbulence, having the edge a negligible effect
of order (k ro)112. The acoustic pressure is given by

-i kR4irp*(rûzw) _k2fff(pvZV)*77
R

r0dr0dû0dz0 (8.44)

ir+0<OoZ2ir
in the geometrical shadow of the observer location the radiated pressure is a factor (k ro)"2 lower
than that from the other regions.

Between the regions A and B there is a buffer region D where 'R and 'R' are of greater order than
(k ro)"2 and the radiated pressure has the form

e_R -ikR'

R IR+R.R, R' 'R' r0dr0dû0dz0 (8.45)

Likewise, between the regions B and C there is a region E where 'R' is of order (kro)'2 and can be
neglected compared to 'R The radiated pressure is thus given by

-ikR4irp*(rOzw) = _k2
fff R IRrodrodûodzo (8.46)

In a final step, Ffowcs Williams & Hall [176] discussed the effects of a pressure release boundary
condition (p* O) on the surface of the half-plane. The problem is solved by introducing the appropriate
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Green's function into the formal solution

* dV - f pv dS4p*(xw)
= fVOY (PViVj)

with Ò = O on the half-plane.
The far field (kr» 1) expression of G was obtained by Macdonald [183] in the form

e"14 I e k R f UR
2 e k R' f U, 2G(r,,zjro,Oo,zo)= / dU ¡ j eU dU

R j

whose only difference with respect to its rigid-surface counterpart (8.20) is the sign of the image term.
For turbulence close to the edge (2kro « 1), G reduces to

ikR 2 iir/4
Ò(r,O,zlro,Oo,zo)=

R 2krosinsin(Oo/2)sin(O/2)+O(kro)} (8.49)

where the term cos(Oo/2) cos(9/2) in G is replaced by sin(Oo/2) sin(O/2). As a consequence, the surface
boundary condition in Ffowcs Williams Hall's analysis affects only the directivity of the acoustic
field.

8.3 Chase's Model

FIGURE 8.7: Scheme of the half-plane co-ordinate system.

Consider a rigid half-plane (Yi < 0, y3), whose upper side is crossed by a turbulent flow along a
ribbon of width L, as sketched in Figs.8.8 and 8.7. The acoustic analogy approach applied to a generic
volume V (y) enclosed by the surface S (y) and containing an aeroacoustic source region Vo (y) yields

* r * a2G
47rp (x,w) = j 'I dV

JV0(y) uYiuYj

-f (pvnvi+pi)*dS+iwf
S(y) 9Yi S(y)

where G is a generic Green's function of the Helmholtz equation

(8.47)

(8.48)

(8.50)

(V2 + k2) G = 4 ir 6(x - y) (8.51)



FIGURE 8.8: Turbulent ribbon wetting one side of a half-plane. ß denotes the angle between the axis of
the ribbon and the normal to the edge on the plane of the plate. L denotes the width of the ribbon.

is Lighthill's stress tensor, v is the normal component of the fluid velocity outward from the volume
V and p is the vector stress exerted by the fluid on the surface S.

Equation (8.50) is verified for a field point x outside the source volume V0 (y). If the analysis is
restricted to the lower half-space and the spillover of Lighthill's sources is neglected, equation (8.50)
becomes

*ÔGdS+iw4*(xw) = _f(pv +p) f(pv2) GdS (8.52)

Y20
oo<y1<oo <y1<oo

Equaíion (8.52) can be simplified if G is obtained by imaging, with opposite sign, the half-plane Green's
function GHP, that is, G(x, y) = GHP(x, y) - GHP(x, y'). The normal derivative of G}p vanishes on the
half-plane, and the Green's function G satisfies the following conditions on the plane Y2 = 0:

for Yi <0, = O

fOryl>0,=2GHPafldG0
Thus, substituting into equation (8.52) yields

2lrp*(x,w)
=

-f dS (p+pv) ''
s 8Y2

where S denotes the half-plane downstream extension.
The diffracted wave vanishes on S. This can be easily demonstrated by considering an integration

volume V (y) bounded by the upper (Su) and lower (SL) half-plane surfaces, and by using the free-space
Green's function G0 in equation (8.50). It thus results that

4p*(X,w)=fT:Go dV+ f (pUpL)--dS
YiôYj JSL ay2

(8.53)

(8.54)

Since a Go/y2 = O when the observer is on the half-plane extension S, the fluctuating pressure on
has a pure hydrodynamic nature and can be described without considering the diffraction by the rigid
plate (the second integral in equation 8.54).
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The aeroacoustic problem (8.53) was solved by Chase [81] by assuming the wavevector component
PO exp { (k10 xi + k30 x3)} as driving pressure on S. Thus, the radiated pressure is given by

p*(x,w)
= (4ir)' r'e1L sin(0/2) (2kasinasecß)"2

1/2 (8.55)
PO

k10 ka sing cos(+f3)

where = w/c is the acoustic wavenumber, and 1c30 are the streamwise and transverse components
of the flow-related wavevector, respectively, and

m=k30klotanßkasecßcosa (8.56)

The frequency spectral density of the radiated pressure at the observer location x can be related to the
driving pressure wavevector-frequency spectral density P(k, w) by convoluting the solution (8.55), that
IS

P(w,x)
=

f T(k,w,r) P(k,w) d2k (8.57)

where T(k, w, r) p*(x, w) ¡po 2 is the absolute square of the radiated pressure per unit driving
pressure, as defined in equation (8.55).

The transfer function T(k, w, r) peaks for excitation wavenumbers in the acoustic range, as results
1/2

from the denominator k10 - kc, sinW cos( + ß) . However, P(k,w) is small in that range. On
the other hand, P(k, w) peaks for a streamwise convection velocity U, that is, at the wavenumber
k10 = w/U0. Hence, by supposing U « c, the denominator of T(k, w, r) can be approximated by k10
and equation (8.57) takes the form

f00
P(w,x) = 2(47r)2 ka (_) sec/3 sina sin2(0/2)J d30

f d0 sin2 [(3 - tanß - ka secß cosa) L/2]
I - 2 Pk10,k30,wj k10 {(k30 - k10 tan/3 - ka secß cosa) L/2]

where the integral over the streamwise component ici covers the convective peak region w/U0.
By neglecting the transverse inhomogeneity of the ribbon caused by the lateral flow boundaries, and

by supposing that L» (Aî30) , ¿Ic30 being the transverse half-width of the wavenumber/frequency

spectrum p k0, w), the double integral in equation (8.58) can be approximated as

2ir P dk
S(w) _j lo P(io,iotanß+ka secß cosa,w)

k10

which can be substituted into equation (8.58) yielding

1 (U
ka secß sina sin2 (0/2) f d10 P(ki0wtanß/Uc,w)r)

(8.58)

(8.59)

Furthermore, since w/U > ka, for a large range of ß, the k30 argument of ' k30, w) can be

replaced by the term tan ß. Thus, it follows that

S(w) = 2ir (-) f dîi0P(i0,wtan/3/Uc,w) (8.60)

(8.61)



A similar result can be obtained by following the evanescent wave approach of Chandiramani [82].
Consider an incident elementary wave

p(x) = PO exp { (k10 x1 + k30 X3 k20 x2)} (8.62)

where k10 and k30 are real and satisfy the conditions Jk10
I

> kc, and k30
I

while k20 is positive
imaginary and is given by

7 . (i2 ,2\1/2_ (i2 ,2\1/2'2=' V'O'a) '
2 2 1/2 2 2 1/2with k0 = (k10 + k30) and kd = (k - k30)

By applying the Weiner-Hopf technique to the half-plane diffraction problem, Chandiramani ob-
tained the following expression for the scattered far pressure field

pS (x) = C(k10, k30, x3) I(k10, k30, x1, x2) (8.64)

with

1/2C(k10, k30, X3) = i (2ir)' (lcd k10) Po k20 eik3o X3 and

I(k10,k30,x1,x2)
flCd

(lcd - k1)V2 (k1 k10)' (k k)2
exP{i [kixi + (k_k)"2x2]} dk1

(8.65)

(8.66)

Chase [83J generalized these results to a flow of finite lateral extent by introducing an appro-
priate function g(2ff3/L) which: (i) modulates the incident field along the transverse co-ordinate

= X3 cos fi + xi sin fi, (ii) has unitary value at X3 = 0, (iii) vanishes for values of its argument
2í3/L» 1. Thus, defining the incident field as

p(x, w) = g(2x3/L) f exp {' (k10 x1 + k30 X - k20 x2)} 13(k, w) d2 k (8.67)

where 73(k, w) is the amplitude of the wavenumber/frequency Fourier component of the hydrodynamic
pressure in the piane y = 0, the scattered pressure takes the form

ps(xw)
=

f d2k73(k,w) H3(k,x) (8.68)

where

HS(k,x)
=

f dk0 h {(k0 - k30) h] C(k0,k0,x3) I(k0,k0,xi,x2) (8.69)

h=secß (8.70)

k0 = k10 + (k0 k30) tanfi (8.71)

In the far field limit kdr» 1 and r» h, tile method of stationary phase provides

Hs(k,x) () e'/sina sin(O/2) k12 (kÇ0 + ksina)"2

[kÇ0 kc, sina cosû]' [(ka cos a k30) h] (8.72)

Thus, the frequency spectral density of the scattered pressure takes tile form

PS(xw) f P(k,w) IH(k,x)l2 d2k (8.73)
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P(k, w) e,, p2 y3 5_2(i._2) 2 k2"
10 *

where
2

(- LTk10)
j.2 - + + +

(8.76)

(8.77)

This model describes the main features of a turbulent shear layer: the convective peaking at = w/U,
the peak depth dependence on the dispersion velocity y (a measure of the turbulence level), and the
w2 frequency dependence imposed by the term k?0. Furthermore, the dimensionless parameters y and
c,, can be adjusted in order to fit a given experimental behaviour. In fact, the value z' = 2 provides an
expression for P(k, w) that features quite well the similarity character3 of a turbulent boundary-layer.
Conversely, the value u = 7/3 better features a jet-flow behaviour.

Thus, making use of equation (8.76) into equation (8.74) and integrating, the frequency spectrum
of the far pressure field scattered by a rigid half-plane in the opposite side of an impinging turbulent
ribbon, takes the final form

= 1/2)1 C,, p2 y4 w1 (wr/UY1 (L/r) (Ut/c) (w6/Uc)22

secß sina sin2(O/2) [sec2ß + (wS/Uc)_2J

where r denotes the gamma function.

8.4 Rienstra's Model

Vortex shedding plays a complex role in the physics of trailing edge noise. Howe [13] investigated the
effect of vortex shedding induced by a fluctuating hydrodynamic field, such as an impinging gust or a
turbulent boundary-layer. He concluded that the shed vorticity has a silencer effect because it induces
a pressure field which is in opposite phase with respect to the impinging vortical disturbance.

Vortex shedding is also produced when acoustic disturbances interact with a trailing edge. Jones
[179] considered the harmonic field of a line source parallel to the trailing edge of a semi-infinite plate
in a subsonic flow. He concluded that the imposition of the Kutta condition has a notable effect only
in the neighborhood of the wake.

Heavens [182] investigated experimentally the diffraction of a sound pulse from an airfoil trailing
edge in a subsonic flow. He observed that the intensity of the diffracted wave greatly increases when
unsteady perturbative phenomena, such as a boundary-layer separation, take place in the flow.

(8.78)

3The spectrum of the wall pressure beneath a turbulent boundary-layer (loes not depend on the scale 6 at frequencies
well above the convective large-eddy frequency U/6.

If the transverse extension of the turbulent ribbon is supposed to largely exceed the large eddy
scale 6, and if the wavenumber/frequency hydrodynamic pressure spectrum is supposed to have a sharp
convective peak at k10 = w/U, with U «c, then a good approximation of P3 (x, w) is

(-) k (L)2
secß sina sin2(O/2)f di0P(i0,wtanß/Uc,w) (8.74)

where use of the relation

dk30 (k30h)I2 (irhY' (8.75)

has been made. It should be observed that equation (8.74), apart from the constant factor of 4_i,
coincides with equation (8.61) obtained by Chase [81].

Chase [83] proposed the following expression for the hydrodynamic pressure wavenumber/frequency
spectrum



Rienstra [181] examined the effect of the Kutta condition on the diffraction of cylindrical sound
pulse, plane sound pulse and harmonic waves by the edge of a semi-infinite plate. He demonstrated
that the vortex shedding process can absorb or release acoustic energy, depending on both the value
of the flow Mach number and the source location. Some details of Rienstra's analysis are hereafter
discussed.

Consider a rigid semi-infinite plate (x 0, y = 0) in a uniform subsonic flow with velocity U0. The
fluid is supposed to be inviscid. Pressure and density of the fluid at infinity are PO and pe,, respectively.

A flow field perturbed by an acoustic field can be described by a convective wave equation for the
potential q5 of the acoustic velocity. If the acoustic field is generated by an impulsive source, the wave
equation has the form

çb + çb - M (q5tt + 2çb + q5.x) = 4ir a 6(x - xO) 8(y - Yo) (t) (8.79)

where M0 = Uo/co is the flow Mach number. The acoustic pressure is related to the velocity potential
through the linear expression

P = t - (8.80)

Equations (8.79) and (8.80) have been made dimensionless by means of a reference length L, a reference
time LILT0, a reference potential U0 L and a reference pressure poUx.

The boundary conditions to be applied on the plane y O are

çb(x <0,0) = O slip condition on the plate (8.81)

q5y(x> 0,0+) = q5(x >0,0-) continuity of v(= q51,) across the wake (8.82)

p(x > 0,0+) = p(x > 0,0-) continuity of p across the wake (8.83)

If a vortex-sheet lies in the half-plane (z > 0, Y = 0), both qS and u (= q5) may have there a bounded
discontinuity.

The physical condition to be applied at the trailing edge is that of finite net force or, equivalently, a
condition of integrable pressure. When a vortex shedding occurs this generic edge condition is replaced
by an explicit Kutta condition which requires a finite pressure or, equivalently, a finite velocity at the
trailing edge.

Finally, a radiation condition must be satisfied by the diffracted acoustic field. For the pulse problem
this condition is imposed by supposing the existence, at any time t, of a circle outside which the acoustic
field is identically zero. Conversely, for the harmonic problem, a convective form of Sommerfeld's
radiation condition must be imposed.

The diffraction harmonic problem with vortex shedding was solved by Jones [179] whose results are
reported below.

Consider the Prandtl-C lauert type transformations

/3=
x=/3X=/3RcosB
Y Y = R sine
k = wM0 = /3K
e1 = cosh(1/Mo)

Fourier transforming equation (8.79) yields

çî'xx+ç7'yy+K2ç+i2KMoç7x=4ira8(X-Xo)ö(Y-Yo)

(8.84)

(8.85)
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where use of the mapping rules (8.84) has been made. The continuous solution of equation (8.85) is

exp {iKM0(XX0)} (8.86)

where G(x, y, w) is the half-plane Green's function. It is given by

G(x,y,w) = Gi(x,y,w) + G2(x,y,w) (8.87)

with

Uri,2
Gi,2(x,y,w)

= f exp(i kri,2coshu) du

= ±asinh {2'' cos
(O Oo)

}
and (8.88)ri, 2

rl,2 = {r2 + r - 2rr0 cos(B - Oo)}h/'2 (8.89)

The potential field of a vortex-sheet on the half-plane x> 0, y = O was determined by Jones in
terms of eigensoliitions of equation (8.85). It is given by

i ir/4e [F(r1)+F(r1)] exp(i KR+iKM0X)

- 2 H(y) cosh(w y) exp(i w x) (8.90)

fe-e1\= (2 KR)1!2 sin(
2 )(e+e\Ti=(2KR)"2sin
2 ) (8.91)

ä(T) i - M0 cos e0 sin(ê/2) sin(eo/2)pc(x,y,t) = 2a
ß2M0 cos®+cosêo (RR0)'12

(8.95)

4The continuous solution of equation (8.85) results from a classical diffraction problem with flow and no vortex shedding.

and

F(z) = exp(i z2) f°° exp(i z'2) dz' (8.92)

The function F(z) denotes the Fresnel's integral and H denotes the Heaviside function which marks a
discontinuity across the vortex-sheet on the half-plane x > 0, y = 0.

The general solution of the harmonic diffraction problem with vortex shedding from the trailing
edge can be written as

qk(x,y,w) = çc(x,y,w) +A(w)çîe(x,y,w) (8.93)

where A(w) denotes the intensity of the wake and depends on the incident acoustic field via the Kutta
condition. It results that

a f1Jt4\' 1/2
A(w) = 2

( + M0) (-i-) sin(eo/2) exp {_ ( + k R0 + KM0 x0)} (8.94)

Transforming back into the time domain and applying equation (8.80) to obtain the diffracted pressure
yields

y, w)

with



and

where
o oTt--(R+Ro)+--- (XX0) (8.97)

The continuous solution Pc(X, y, t) has been expressed with the only front term retained. This term,
in fact, is the only affected by the Kutta condition. The eigensolution pe(X, y, t) has been obtained by
transforming the term A(w) pe(X, y, t). The total diffracted pressure is thus given by

5(T) 1 + M0 cos ®o sin(®/2) sin(eo/2)
Pk(X,Y,t) (1 +r)pc = 2aß2M cose+cose0 (RR0)"2

(8.98)

with

By setting

and

5(T) sin(e/2) sin(eo/2)
pe(X,y,t)) = 2a

ß2 (RR0)'12

r = = M0
cosO-i-cosO0
1 M0 cos

At fixed ®o, the maximum and the minimum values of r are

rmax(O = O) = M0 I+cosep
1Mo

1+cose0rmin(O = ±ir) = M0 1+Mo

The vortex-sheet causes an increase of the diffracted pressure in the circular sector seen by the
source and its image, that is, for lOI <ir - 0o The amplification r factor achieves its maximum rmax
when the field point is close to the wake (0 O).

Consider now a harmonic plane wave. The normal to the wave fronts makes the angle 0 with the
plate. The propagation direction 0 of the acoustic waves is thus given by

sinO1
sin O =

(1+2M0 cosO1+M)1"2
cos 01 + M0

cos 0, =
(i +2M0 cos0 +M8)"2

sine3 = ß sinO3

(i - Msin2 o3)1l2
cos

cos O =
(i Msin20 \1/2

3)

/ 2M0<rx
1 - M0

1-2M0
1+M0 <rmin<O

(o_eF3=(2KR)"2sin
2 ,

(e+o3T3 = (2KR)"2 sink
2 J

and

the incident field is given by

p(x,y,t) = aexp(iwTj)
i aß2

2(x,y,t) = exp(iwTj)w(1 M0 cose3)

(8.96)

(8.99)

(8.100)

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)
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where
= t - (M1/f3) Rcos(ê - ê) + (M//3) X (8.106)

The continuous solution of the acoustic diffraction problem has been determined by Jones [184]. It
is given by

çb(x,y,t) i af3 i
exp(i ir/4 + i w Td) [F(P3) + F(r5)} (8.107)w(1Mocosê5) \/j:

p(x,y,t) = exp(i/4+iwTd) [F(r3) +F3) -
(8 108)

where

Td=tR+X (8.109)

The first term in equation (8.108) is proportional to q5(x,y, t). Therefore, the two contributions of
the diffracted pressure separately satisfy the wave equation and the half-plane boundary conditions in
the absence of a vortex-sheet. However, the second term introduces a non integrable singularity at the
trailing edge that must be removed by imposing a Kutta condition. The discontinuous solution is thus
given by

e - e5r M0
- M0 cos e5

i Mo sin(ê/2) cos(93/2) ( 2 s\1/2

1M0cosê3 'KR)

p(x,y,t) Pc+Pe = ---exp(i7r/4+iwTd) [F(F5) +F(r3)]
v/

where

pe(X,y,t) =i ._=exp(iir/4+iwTd)M05in(ê/2)coseash/2) 2 1/2

Hence, the amplification factor is
1 - M0 cos ê3 ()

i M0 sin(ê/2) cos(®3/2) 2 1/2
r =

i - Mo cose5 () [F(r) + F(r3)] -1

In the far field limit (k R -* oo) r reduces to

and its maxinmm and minimum values are

rm(ê = 0) = M0 icose3 (o <rmax <
2M \\

1-M0 - 1Mo)
1cosO,, (-2M0rmin(ê=±)=Mo 1+M0 1+M0 <rmin o)

(8.112)

(8.113)

(8.114)

The amplification factor is positive in the angular sector ê < 93, where the Kutta condition has an
enhancement effect of the diffracted acoustic field.

The harmonic solutions (8.108) and (8.110) can be used to determine the diffracted field of a plane
pulse p2(x, y, t) = a 8(T). Rienstra [181] obtained the following solution

p(x,y,t) = aH(93 - ê) (T) + aH(ê3 - ê) « +
a H(Td) (2M0R\"2

2ir fi )-es) (e + 93\ 2ß sin(ê/2)cos(ês/2)]
(8.115)sin

2 ) + i i - M0 cos ê3
p(x,y,t) Pc+Pe = aH(ê5 - ê) 6(T)+aH(ê3 - e) 8(t)

a H(Td) (2M0R\1121 e-e)+' (e+ê
+_1 v'l fi ) V 2 2 )]

(8.116)



iM0< 1-2cosO <1/3 (8.121)

As a result, if the mean flow Mach number is less then 1/3, the diffracted acoustic power is always
reduced by the vortex shedding.

where

=t Rcos(e+e3)+X (8.117)

and
a H(Td) (2M0R'\1"2 2/3 sin(O/2)cos(®3/2)

8118pe(,y,t)_
fi ) 7 1M0cosO3 . )

Therefore, as in the case of a harmonic plane wave, a vortex-sheet causes an increase of the diffracted
pressure in the angular sector ei <e3.

The influence of the Kutta condition on the diffracted acoustic field can be investigated by cal-
culating the amplification factor of the far pressure field caused by a vortex-sheet downstream of the
trailing edge. The net effect can be obtained from a balance between the energy absorbed by the vortex
shedding to the incident acoustic field and to the mean flow, and the acoustic energy generated by the
interaction of the shed vorticity with the trailing edge. The net acoustic power can be calculated by
integrating the acoustic energy flux upon two half-planes, one just above the vortex-sheet, the other
just below the vortex-sheet. These two half-planes are connected at the trailing edge. The acoustic
energy flux can be calculated by using the definition of Morfey [185]

I=poUgt {(qx+Mgp)Î+q5y3} (8.119)

Thus, for the harmonic plane wave, the acoustic power P is given by

u42P(O,f) PD M0 cos2(O/2) (1+MocosO)(1Mo+2MocosO) (8.120)2irf

f being the frequency of the wave. The last factor in equation (8.120) is responsiblé for the change of
sign of the acoustic power P. It results that P> O for
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9

Trailing Edge Noise

9.1 Introduction

A solid surface immersed in a turbulent flow has a dual influence on the far pressure field. On one
hand, it affects the structure of the flow field and, consequently, of the aerodynamic source of sound.
On the other hand, a solid surface constitutes an acoustic impedence discontinuity which affects the
pattern of the scattered acoustic field. The noise from a trailing edge is a singular problem for which
the separation of these two effects can lead to physically inconsistent theoretical models.

A trailing edge in a fluctuating flow field generates an unsteady vortical wake. This phenomenon
can be regarded as an unsteady boundary-layer separation due to the viscosity of the fluid. An inviscid
model of the vortex shedding process consists in imposing an edge condition onto the aerodynamic
field. Since the vortex shedding smoothes the singular behaviour of the flow at the trailing edge, a
Kutta-Joukowski condition1 is commonly imposed at the trailing edge. This requires that the flow
velocity is finite at the trailing edge.

The physical connection between the smoothing effect of the vortical wake and the Kutta condition
is not completely clear. The experimental works of Archibald [186] and Satyanarayana & Davis [187],
for example, show that the Kutta condition is only partially fulfilled at the trailing edge of an airfoil in a
high frequency fluctuating field. A viscous flow, in fact, has a characteristic relaxation time over which
the flow reacts to an imposed disturbance. If this relaxation time is greater than the characteristic period
of the perturbation field, the flow would not have enough time to fully satisfy the Kutta condition.

From these preliminary considerations it follows that the aeroacoustic sources are significantly af-
fected by the hypothesis made on the behaviour of the flow at a trailing edge. This is a first difficulty
in modeling the trailing edge noise. Another difficulty lies on the fact that an edge does not distinguish
between an acoustic and a vortical disturbance. As a result, the unsteady pressure field induced by the
wake itself can couple with the vortex shedding process causing an increase of the noise levels. A further
difficulty is related to the diffraction effect of a boundary shear flow. This imposes some restrictions
on the applicability of an acoustic analogy approach which is based on a rough separation between the
description of the turbulent field, the aeroacoustic sources and the diffracting properties of the edge.
Depending on the strategy used to face these difficulties, different theoretical results can be obtained
concerning the role of the Kutta condition on the noise levels, as well as other underlying aspects of
the problem.

Crighton [188], following the work of Orszag & Crow [189], investigated the interaction between an
acoustic incident field, an unstable shear layer and the trailing edge of a flat-plate. He showed that, at
low Mach numbers, a Kutta condition induces a change in the flow velocity dependence of the acoustic
intensity from U to U, provided that the vortex-sheet is unstable.

Jones [179] investigated the diffraction of the acoustic field generated by a source near the edge of a

'The Kutta-Joukowski condition is usually referred to as Kutta-condition.
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semi-infinite fiat-plate. He concluded that the Kutta condition causes an intense beaming effect along
the plane of the plate.

Crighton & Leppington [190] found no significant effects of the Kutta condition on the acoustic
radiation.

Davis [191] determined the noise generated by the vortex shedding from the trailing edge of a semi-
infinite fiat-plate, with and without the imposition of a Kutta condition. He found that, without a
Kutta condition, the far field noise has a sin2 (0/2) directivity pattern and an intensity level increasing
as U. Conversely, with a Kutta condition, a beaming effect along the wake takes place and the noise
intensity level increases as U. Howe [84] pointed out that both Crighton's [188] and Davis' [191]
analysis are erroneous since the radiation condition of outgòing waves at infinity is not satisfied.

Howe [13] demonstrated that the imposition of the Kutta condition removes the flow singularity
at a sharp edge. As a consequence, it always leads to a reduction of the noise levels (see subsection
10.3.5). The wake intensity, in fact, is related in both amplitude and phase to the incident vortical
disturbances and generates a sound field which cancels that generated by the incident turbulent field.

Rienstra [181] showed that the vortex shedding process extracts energy from both the incident
acoustic field and the mean flow reducing the far field noise intensity (see section 8.4). However, the
interaction between the trailing edge and the unsteady pressure field induced by the wake generates a
noise radiation whose energy may exceed that absorbed by the wake.

In chapter 8, some models have been discussed which describe the problem of the trailing edge noise
as an acoustic scattering problem involving a fluctuating pressure field near the edge and a semi-infinite
plate. Ffowcs Williams & Hall [176] and Crighton & Leppington [161] [177] examined the scattering
problem in the context of Lighthill's acoustic analogy theory. They related the acoustic far field to
the turbulent quadrupole sources. Chase [81], [83] and Chandiramani [82] proposed a procedure to
relate the far field acoustic spectrum to measurable statistical properties of the hydrodynamic pressure
field in proximity of the edge. These properties are formally synthesized by the wavenumber/frequency
spectrum of the driving pressure field. Rienstra [181] discussed the half-plane scattering problem of an
acoustic incident field in the presence of a vortex-sheet shed from the trailing edge.

In the present chapter the problem of the trailing edge noise is discussed by giving more emphasis
to the noise generation mechanisms occurring when vortical disturbances are convected past a trailing
edge.

Crighton [160], using the method of matched asymptotic expansions, determined the noise radiated
by a line-vortex convected past the edge of a semi-infinite flat-plate. The vortex moves under the
influence of the image vortex and generates an unsteady near field driving an acoustic far field (see
section 6.5). The radiated noise intensity was shown to have a sin2 (0/2) directivity pattern and a third
power dependence on the flow velocity. The latter result was in agreement with the general result
obtained by Ffowcs Williams & Hall [176] and Crighton & Leppington [161} according to which the
effect of the interaction between a fluctuating turbulent flow and the edge of a semi-infinite plate is to
increase the far field acoustic intensity by a factor of M,3. In fact, the acoustic energy radiated by a
vortex filament in free space or in the presence of an infinite rigid plate follows a sixth power law [192].

Amiet [193] related the acoustic spectrum to the wall pressure spectrum by means of an airfoil
response function. In order to adopt a wall pressure distribution with the same characteristics it would
have in the absence of the trailing edge, Amiet assumed that the turbulence was statistically stationary
when convected past the trailing edge. Thus, he showed that the noise radiated from the edge of a
semi-infinite fiat-plate is generated by dipole sources induced by the turbulent flow near the trailing
edge.

Howe [13] discussed the general problem of the noise from an airfoil interacting with a frozenly
convected turbulent eddy. By supposing a small flow Mach number such that M « 1, the aero-
dynamic problem was posed in terms of an incompressible potential flow problem. In addition, the
acoustic problem was formulated in terms of Howe's [20] acoustic analogy theory, which describes the
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aerodynamic noise generated by vorticity and by entropy gradients (see chapter 6). Tn the limit of a
frozen convection hypothesis Howe showed that, when a line-vortex is convected past the edge of a
semi-infinite fiat-plate, a Kutta condition results in a vortex shedding that exactly cancel the sound
generated by the vortex-edge interaction. Furthermore, in the case of an acoustically compact airfoil,
the effect of the vortex shedding is to annhilate the field diffracted by the trailing edge. Thus, at
low Mach numbers, the effect of a Kutta condition is always to reduce the far field noise. Since the
fulfillment level of the Kutta condition decreases as the frequency of the fluctuating flow increases, the
effectiveness of the vortical wake in reducing the radiated noise decreases at higher frequency. As a
consequence, a trailing edge in a turbulent flow acts as a source of high frequency noise.

Howe [84] revisited the problem of the trailing edge noise and proposed a comprehensive theory.
This includes, as special cases, the models developed by Ffowcs Williams & Hall [176], Crighton [160],
Chase [81] [83] and Chandiramani [82]. All these models were shown to give essentially the same results
when properly interpreted. Extending his previous formulation [13], Howe examined the influence of
the Kutta condition on the noise levels by assuming a wake convection velocity w which differs from
the convection velocity y of the vortical disturbances within the boundary-layer. Hence, he found that
the sound pressure level with no Kutta condition imposed exceeds by a factor (1 - w/v)2 the level
predicted by imposing a Kutta condition. This factor diverges when the Kutta condition is absolutely
satisfied, i.e. when w = y.

Howe's analysis revealed that the edge condition can have a critical influence on the radiation from
a trailing edge and showed the importance of an experimental investigation of the flow behaviour near a
trailing edge. Brooks & Hodgson [85] performed an experimental investigation of the low Mach number
trailing edge noise generated by an NACA-0012 airfoil at several angles of attack and with different
degrees of edge bluntness. The airfoil was provided of roughness trips on both its sides in order to
ensure a well developed turbulent boundary-layer. Brooks & Hodgson discussed the theories developed
by Chandiramani [82], Chase [83] and Howe [84] by relating the statistical behaviour of the far pressure
field to the wall pressure statistical behaviour. This was described by means of two-points correlation
measurements between pressure transducers mounted on the airfoil surface.

In order to investigate the vortex shedding process in terms of a wake convection velocity w, as
proposed by Howe [84], Brooks & Hodgson [85] performed coherence measurements between a cross
hot wire just downstream of the edge and a pressure transducer near the edge. No vortex shedding
was detected. From this result and the verified consistency of the evanescent wave model of Chase [83]
in the edge region without the modification proposed by Howe, Brooks & Hodgson concluded that the
prediction of trailing edge noise requires the wake convection velocity to be vanishing small compared
to the eddy convection velocity within a turbulent boundary-layer. On the other hand, the condition
w + O in Howe's formulation reduces the difference between the acoustic far field predicted by imposing
or not a Kutta condition. Finally, for an airfoil with a sharp trailing edge, Brooks & Hodgson observed
a good agreement with the theoretical U power law and the sin2(O/2) directivity pattern.

The continuous improvements in both the computational fluid dynamics techniques and the com-
puter performances allow numerical investigations of the physical mechanisms involved in the generation
of aerodynamic sound. Some numerical studies have been devoted in the last years to the trailing edge
noise. Singer et al. [194] used a RANS/FW-H2 hybrid approach to predict the noise radiated by a
two-dimensional trailing edge in a turbulent flow. Manoha et al. [195] performed a LES/F W-H3 hybrid
simulation in order to calculate the noise generated by a blunt trailing edge of a three-dimensional
plate. Unfortunately, both these analyses did not attempt to relate the flow behaviour in proximity of
a trailing edge to the sound generation mechanisms.

In the following of the present chapter Amiet's [193] trailing edge dipole model and Howe's [84]
trailing edge noise theory are presented.

2Reynolds-averaged Navier Stokes flow simulation and Ffowcs Williams & Hawkings acoustic analogy formulation.
3Large-eddy filtered Navier Stokes flow simulation and Ffowcs Williams & Hawkings acoustic analogy formulation.
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FIGURE 9.1: Amiet's solution scheme of the trailing edge noise problem.

9.2 Amiet's Trailing Edge Noise Model
Consider a semi-infinite flat-plate (-2b x O, z = O) embedded in a statistically stationary turbulent
field which is unaffected by the presence of the trailing edge. The spectral components of the surface
pressure field are convected at the velocity U along the streamwise direction z and take the form

P = Po exp{i w (t - x/U) - i k, y} = Po exp{i (k z - k y) + iW t) (9.1)

where k = w/U and k are the streamwise and the spanwise wall pressure wavenumbers, respectively.
As sketched in Fig.9.1, the flow field results from a combination of an unbounded distribution of
quadrupole sources in the x-direction and an induced dipole distribution on the plate. Having supposed
a statistical stationary turbulent field, this flow configuration can be interpreted as the superposition
of two configurations: the first consists of the same quadrupole distribution, together with an infinite
dipole distribution in both the upstream and the downstream extensions; the second configuration is
constituted by an infinite dipole distribution. As argued by Schwartzchild [196], the second dipole
distribution is such that the first dipole distribution on the downstream plate extension is canceled
by applying a Kutta condition at the trailing edge and by imposing a no-flow condition on the plate
surface.

In a previous work Amiet [129] obtained from the general Schwartzchild's solution the high frequency
response function of an airfoil in a turbulent flow (see section 4.5). Amiet's analysis was based on the
assumption that the vorticity shed from the trailing edge is convected at the free stream velocity4 Um.
In terms of surface pressure jump induced by the pressure disturbances (9.1), Amiet's high frequency
airfoil response for k = O (parallel gust-airfoil interaction) has the form

g(x,w,Uc)={(1+i)E*[_(1+M)p+ks]_1}exp(_ikx) for 2b<x<O (9.2)

where b denotes the airfoil semi-chord,

+

(9.3)/L= U(1M)
4This assumption conflicts with the turbulent statistical stationary hypothesis. In the trailing edge noise analysis, in

fact, a convection velocity (J has been supposed, which is smaller than U,,,.
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and
E*(x) =f(2)_h/2ede (9.4)

is a combination of Fresnel's integrals.
The pressure measured at a given point and at a given frequency results from a superposition of

spectral components (9.1), for which the product k U is a constant. As a consequence, the sound
field at a given frequency results from a superposition of the sound generated by all these spectral
components. Experimental data show that the convection velocity is a weak function of the frequency.
However, by assuming a constant average value U = 0.8 U,, a given value of w is associated to a single
value of the wavenumber k. With this assumption a standard integral technique can be applied to
relate the radiated sound spectral components to the spectral components of the surface pressure jump
defined in equation (9.2).

By supposing that M, k d» 1, with d denoting the airfoil span, and by assuming a one-side tur-
bulent boundary-layer, Amiet [193] obtained the following expression for the far field acoustic spectrum
in the mid-span plane y = O

f wbz \2 ioo
Spp(x,z,w) = ' (2ircoa2) Scii(wY) dyICj2 (9.5)

where a2 z2 + 132 z2, 132 = 1 - M, Sqq(w, y) is the spanwise cross-spectrum of the wall pressure
fluctuations, and

1 f g(,w, LTG) e1 p(Mooxk) d
J 2b

Substituting the response function (9.2) into equation (9.6) and integrating yields

=1_e_i2e+(l+i)

{

i + M + k/ E* [2 (1 + x/a)]e1 2 - E* [2(1 + M) + 2 k]
i + kx/O

where ® = k + ji (M - x/a).
On the base of Corcos' [99] similarity model, it can be written

Sqq(w,y) = Sqq(w,0) B(wy/U) (9.8)

As a result

f Sqq(w,y) dy= UcSqq(w,0) f B(i7)dr1 (9.9)
Jo w J0

where B (w y/LT) is an exponentially decaying function of its argument. Its integrated value, based on
Corcos' measurements, is approximately 2.1.

Finally, by changing to polar observer co-ordinates and by supposing a turbulent boundary-layer
on both the plate sides, the far field acoustic spectrum takes the forni

2
wb sinO i 2.1 Kl2 Sqq(w,0)S(r,O,w) =2d{2
( _Msin2O)J w

(9.10)

where r is the observer distance from the trailing edge and O = tan' (z/x) is the observation angle
with respect to the streamwise direction.

Equation (9.10) relates the far field acoustic spectrum S to the wall pressure spectrum Sqq near
the trailing edge.

9.3. HOWE'S THEORY OF TRAILING EDGE NOISE 449

(9.6)

(9.7)
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FIGURE 9.2: Scheme of the half-plane co-ordinate system.

FIGURE 9.3: Turbulent ribbon wetting one side of a half-plane. /3 denotes the angle between the axis of
the ribbon and the normal to the edge on the plane of the plate. L denotes the width of the ribbon.

9.3 Howe's Theory of Trailing Edge Noise

Consider an ideal fluid and neglect the dissipation due to the viscosity and the heat transfer. From
equation (1.61) it follows that DS/Dt. Thus, for inlet uniform conditions, a boundary-layer wall jet
flow is also isentropic. As shown by Howe [20], when the acoustic medium is in motion it is convenient
to express the Lighthill's acoustic analogy in terms of total enthalpy B which satisfies the following
wave equation

ID /1 D\ lDv lDv
+-

V_.72}B=
c2Dt

V (wxv)-__ (xv)
where c is the local speed of sound and = V x y is the vorticity vector. The total enthalpy B is
defined as

B=h+- (9.12)

where h = f dp/p is the specific enthalpy.
For a homentropic flow the nìomentum equation written in Crocco's form

+ VB = -w x y + TVS (9.13)

yields
lDv lDv ¿Iv i ôv-.(VB+wxv)_ j=V.-

(9.11)

(9.14)
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which can be introduced into equation (9.11) providing the convected wave equation

ID(1D\ 2 1 0v- V j B = V. (w x y) - Vp (9.15)

In order to simplify equation (9.15), the following approximations can be introduced.

The boundary-layer/wall jet turbulent eddies are frozenly convected past the trailing edge.

- The eddy convection velocity is approximated by the mean shear velocity V = V(x2) = (V1, O, V3).
Consequently, the dipole source term in equation (9.15) can be approximated as V- (w x V).

- A vortical wake is shed from the trailing edge where a Kutta condition is imposed. The vorticity
shed is supposed to be convected at the velocity W = (W1, O, W3) along the plane of the plate
downstream of the trailing edge.

- The mean shear velocity V and the wake convection velocity W satisfy the condition M, M «
1. Thus, the effect of fluid compressibility are not significant near the trailing edge, and the speed
of sound in the wave operator can be assumed to be constant.

Second order terms in the material derivative of B are neglected, it thus results that

(D)2 (+uO/_)2B

where Uo is the mean flow velocity

Therefore, equation (9.15) takes the simplified form

Ji a a 2

(+u0) _V2}B=V.(wxV)+V.(xW) (9.17)

The flow in the vicinity of the plate is irrotational and can be described in terms of velocity potential
q5 by means of Bernoulli's equation

(9.16)

B
Ut

which yields the zero normal velocity boundary condition

OB

Ori

(9.18)

(9.19)

provided that the plate is rigid.
By supposing that turbulent eddies convected at different velocity V are not correlated, the problem

described by equations (9.17) and (9.19) can be simplified by describing B as a combination of solutions
related to independent incident turbulent layer. Thus, setting

w(x1 Vit,x2,x3V3t) xV(x2)=f Q(xi Vit,y,x3V3t) 8(x2y) dy (9.20)

ZF(x1 - W1t,x3 - W3t) x W = 8(x2)f q(x1 - Wii,y,x3 - W3t) dy (9.21)
o

B f Bdy (9.22)

5BQ+Bq (9.23)
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and substituting into equations (9.17) and (9.19) yields

a2
c2

_v2}BQ=v.{Q8(x2_y)}
8x1J

0X2

Let us consider the Fourier transform

where f 3 0+,

Q(x1 - Vit,y,x3 - V3t) =

2

Uo _v2}Bq=v.{qo(x2)}
2 at+ ôxi)

O
(13Q+13q)=O for x1<0, x2=0

= ff dpidp3(/11,y,p3)exp{i (pixl+p3x3)i (plVit+p3V3t)}=
-00

00

=ff dp1 dp3(p1,y,p3)exp{i (p x +p3x3)}exp(i wYt) (9.27)

where wy(y) = p1V1 + /L3V3 denotes the convective frequency. The solution of the diffraction problem
(9.24) in the small mean flow Mach number limit is

=
_

7f dp1 d/23( exp{i [Pi x1 + (m) (y - x2) + p x3]}exp(i w t)
-00

00
sign(x2) +00+i

4ir f_oo+ic dk ff dp1 d/23
-00

p exp { [(k - M0 WY/c) x1 + F(k) 1x21 + 7(/1i) Y + /23 x3]} ex(i W t) (9.28)
v'A+k/A (/21 +Mow/c)[k (/21 +Mow/c)}

IL = (pi, 'y(/2i) /23),

A = J sign(wy)
/()2 2

ill =

for ()2> 2
for ()2 < 2

(9.24)

(9.25)

(9.26)

(9.29)

+
(9.30)

(/11 +

(9.31)

The branches of .JA + k and -i/A - (iii + M0 wy/c) are chosen to be positive or to have positive imagi-
nary parts on the real k1 and Pi axes, respectively.

The solution (9.28) includes two contributions, the first constitutes the evanescent wave field gen-
erates by the dipole source Q in the absence of the plate, tile second accounts for the presence of the
diffracting plate. Setting

[L1V1 + [13 (V3 - W3)

w1
¡/3 = /23 (9.32)
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=
{sin(wY)tx2_

F(k) I sign(Wy) V'A2 - k2-
V'k - A2

A2

for A2> k2
for A2 <k2

for A2>

for A2<



with

Ic=

+

/2.

v/A - (p + M0 wy/c) [k (,LL1 + M0 wy/c)]

(9.37)
JA (y1 + Mow/c) [k (vi + Mo wy/c)]

Only the diffraction contribution (second integral) in equation (9.36) is singular. Thus, as shown by
Howe [84], the condition

v/A(12i+Mow/c) v/A(vi+Mow/c)

is sufficient to ensure that aB/ax2 * O at the trailing edge.

(9.38)

that is viWi + v3W3 = WY and

q(x1 Wit,y,x3W3t)=

=jf dv1 dv3 (v1,y, u3) exp {i (v1x1 + v3x3) i (ii1 Wit +v3W3t)} (9.33)

yields

00

'3q = ff dv1 dv3 exp{i [vi xi y(vi)x2 + i3x3]}exp(i wut)
'y(vi)

sign(x)
f00'6 dk 7f dv1 dv3

47r

u exp{i [(k M0 wy/c) z1 + F(k) 1X21 + (vi) Z + exp(i w t) (9.34)
(u1 + M0 WY/c) [k (u1 +Mow/c)]

where u = (y1, 7(v1) , u3). The branch of /À - (y1 + M0 wy/c) is chosen to be positive or to have a
positive imaginary part on the real axis u1.

The strength of the wake dipole q can be related to the incident dipole strength Q by applying a
Kutta condition onto the trailing edge. Hence, requiring the flow to leave the plate tangentially provides

ax2
(13Q + Bq) * O as z1 - O and x2 = 0 (9.35)

that is

a a
+ =

7fd121 d123 ( e1 7(i) Z (121) + u (vi)) exp { [(k - M0 wy/c) X1 +123X3 - wyt]}

00

- L00+
dk ff d121 d123 À k exp{i [(k M0 wy/c) xi + 123X3 wt]} (9.36)

co
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It can be observed that if W = V then /2 = z', and the edge condition (9.38) leads to a vanishing
sum of l3cj and 8q Therefore, no edge noise is radiated when the incident and the shed vorticity are
convected at the same velocity.

Let us introduce the polar co-ordinates (R, O, a) (see Fig.9.2) by setting

X Rsinacosü
X2 = Rsinasinû

= Rcosa

The far field limit of 13 has the form

i /M,1 sin(O/2)
R (1 - MVR) (1 - M1 sina - M3 cos a)"2

f-îLQexP{ Hz(1_MVcosQ)+(R_MOxl _ct)} (9.40)

where = TTZ/C and M sin acos O are the eddy convection Mach number and its projection
in the observer direction, respectively, and

(1 M3 cosa)

Iwli (1 - cos a)

=

/L2

p3=
w
- cos a
C

At low mean flow Mach number, the radial velocity in the far field is given by

V = cMo +
Po C

which yields
MoRp

2 Po

p being the acoustic pressure. It thus results that

p(R,O,cx,t) iPo sin(O/2) v'sina ° dw r°°f_/dy- R1J(1+MoR)(1_MwR) W Jo

/M1 (1 o(y))Tz.. exp{_1 (1 - M3 cosa) + (R - M0x, - ct)}

(1 JY!VR) (1 - M, sina - M3 cosa)1!2

(9.39)

(9.41)

(9.42)

(9.43)

BQ+M0PQ (9.44)
Po PO

and
PO

PQ = (9.45)
.L + .LV.LOR

A similar procedure provides the far field expression of the wake contribution Pq This, can be added to
p in order to obtain the far field acoustic radiation generated by a turbulent boundary-layer convected
past a trailing edge and by a vortical wake shed from the trailing edge. Finally, by integrating with
respect to y, the far field acoustic pressure takes the form

(9.46)
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P2
vi

= cos a

The dipole source is thus approximated by

.xV(y),Tí2úi3Vi =i H

2V1 [00
(1 (--" f dye_1YeI_M0X1_Ct)6.3(pi,y,p3)

V1)j
As a result, the mean square pressure is given by

(2) p2M,, V12 cos3ßsin2(O/2) sina(1a)2
R21? (1+MOR)2(1 MWR)2 (1 MvR)2 (1 M1 sina)

00 00

ffd (Pi ii) (I (i li) ff dy d e1 Y+i'i) ( (pi, y, ¡3) (23 (Th ,, ¡13))
o o

o

where the function a(y) = W/V(y) results from having applied the Kutta condition (9.38) with í =
(w/Wi) (1 M3 cos a) and ) = (w/c) sin a. Interestingly, if a = 1 the acoustic pressure p vanishes
because the incident and the shed vorticity generate equal and opposite far field perturbations.

Consider a boundary-layer/wall jet flow (see Fig.9.3) for which

(9.47)

From the definitions (9.41) it follows that

(9.48)

(9.49)

where cZ' = (w1,cì2,w3) is the Fourier transform of the incident vorticity w, defined in equation (9.27).
Equation (9.49) shows that the most important contribution to the trailing edge noise is generated by
the component of the vorticity parallel to the edge.

By supposing that the eddy convection velocity V does not depend on the distance y from the plate,
and by introducing the Strouhal number w 11/V1 pi i1 based on the vorticity correlation scale l in
the x1-direction, the acoustic pressure (9.46) takes the form

'R O
po sin(O/2) /sinaM cosß (1 - a(y))

p , ,a, ,, R/(1 + MoR) (1 MwR) (1 MVR) Ji - M1 sina

(9.50)

(9.51)

The correlation of w3 can be written in terms of a dimensionless vorticity spectral density q533, the
vorticity correlation scales li, l and 13 in the (1, 2, 3)-directions, the length scale of the boundary-
layer/wall jet mean velocity profile 1o, and the wetted span segment L. It thus results that

(w3(/tl,y,p3) W3(/11,y,/13)) =

- y y'\ sin [L (p + /13) /2J
L (9.52)11v2 33(l11L1l3P37

12 i) 5(lipi +li) 2[L(p3 +/13)/2J\lO 12!

which can be substituted into equation (9.51) in order to obtain

(2) pMV2v2 cos3ß (13L\ sin2(O/2) sina(1 a)2
) (1+M0R)2(1MWR)2(1MVR)2(1Mvlsina)

00 yy
/ d (/L ii)ff dydje' (,+)

12 'io)Jo
(9.53)
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Finally, setting

00
2 °°

cx = / d(tLlli)ff
12 'lo1012 Jo

o

equation (9.53) becomes

2 2 cos3 /3 M C () sin2 (0/2) sin a
R2

(7)2)
2ir

2(1a)
(1 + MoR)2 (1 - MwR)2 (1 - MVR)2 (1 - M1 sina)

This is a generalized form of Ffowcs Williams & Hall's [176] result (see section 8.2)

ö\2 f\2(p2) = _pv2 v2M (,:) () sina sin2(0/2) cos2ß

which describes the acoustic radiation generated by a compact eddy of volume ¿, characteristic tur-
bulent correlation scale ö and mean square turbulent velocity y2, convected at the velocity V past the
edge of a semi-infinite plate. In fact, by dropping the Döppier factors related to the mean flow and to
the vorticity convection, and by neglecting the effect of the wake, equation (9.55) becomes

2 CpV2V2M (13L\ 2 . 3(p ) = i- j sin (0/2) sin a cos /3
2ir \RJ

Considering a distribution of l'si uncorrelated eddies with total spanwise extention L and effective mean
square volume

L2f(2)
- ö/cosß

equation (9.56) becomes

fL8\
(p2) _pv2V2M

(,--) sina sin2(0/2) cos3ß

which has the same form of Howe's equation (9.57).
In order to describe the effect of forward flight it is convenient to assume an observer fixed position

relatively to the mean flow, and a flat-plate moving at the velocity U0. The observer location at
the emission time is defined by the polar co-ordinates (R, e, q) which are related to the Cartesian
co-ordinates through the relations

x1 = r (Mo + cos

X2 =rcosq5sine
x3 =rsinq5sine (9.60)

Thus, by substituting into equation (9.55), the mean square pressure in the flyover plane (q = 0) takes
the form

(7)2)POV2t'2COS3ßMVCX 113L\
2ir

(1 )2 (1 - M0 + M1) sin2(e/2)
(1+Mocose)[1+(MoM1)cose]2{1+(Mo_M1)cose]2

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

(9.59)

(9.61)
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The formal solutions (9.28) and (9.34), together with the condition (9.38), can be used to express
the fluctuating pressure on the flat-plate. Howe [84] demonstrated that, by neglecting the diffraction
contribution of the plate, the correlation of the wall pressure is given by

+00 00ir fr (1 _o(y))2

(i 13 p3, exp{-2yI(pi+i [piX1±p3X3 -wTj} (9.62)

where the incident vorticity spectrum Ij has been introduced in analogy with equation (9.52) by setting

({/L. Ii,Y,113)} {. (7iiii3)}) =
- (llPi,l3P3 i", ö(lipi + liiii) L (9.63)

In equation (9.62) the assumption has been made that a significant correlation exists only between
turbulent eddies convected at the same velocity, namely, w, =

Having neglected the diffraction contribution of the plate, the wall pressure fluctuations are in-
deed pseudo-sound fluctuations induced by incident harmonic vortical disturbances. An evanescent
wavenumber/frequency spectrum H(pi, p3, w) can be thus defined in analogy with Chandiramani [82]
and Chase [83]. Thus, let us write

(p(xi,x3,t)p(xi+Xi,x3+X3,t+r)) =
+00

fffll(pi,p3,w)exp{i (p1x1 +p3x3 wr)} dpi dp3dw (9.64)
-00

Comparing equation (9.64) to equation (9.62) yields the following form of the wavenumber/frequency
spectrum

ll(IL1,p3,w) = f f(p,y,p) (ww) dy (9.65)

where
P00

f(pi, y, P3)
4 j(p)

exp {-2y (i)I} I l3i3 - -- J dy (9.66)
Jo ' ¿2 'løj

f00° 8(w) dw, in ternis of the function f(pj,p3,z). It results that
The far field solution (9.46) can be used to express the spectral density S(w), defined by (p2) =

2L sina sin2(O/2) 00 f(ji1 Ji3 y)S(w) = dy (9.67)
cR2 (1 + MoR)2 (1 MWR)2 (1 M0)2 (1 M0, sina)

and, equivalently

2L sina sin2(O/2) cosß °° M011(p1,j13,w)

(1 + MoR)2 (1 MWR)2 f_00 (1 MVR)2 (1 M0,
S(w) = (9.68)

Finally, by supposing that the eddy convection velocity is constant and by neglecting the Döppler
factors related to the mean flow and to the vorticity convection, equation (9.68) becomes

S(w) = R2 sina sin2(O/2) M0 cosßf H(pi,cosa,w) dp1 (9.69)

which has the same structural form of Chase's result (8.74).
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lo

Interaction Noise

10.1 Introduction

A vortical flow on the surface of a body is a common source of unsteady loading, aerodynamic sound
and 'structural vibrations.

In several engineering configurations devicès are arranged so that downstream bodies are embedded
in wakes from upstream bodies. Typical examples are those of a bank of heat exchanger tubes in which
vortices from upstream cylinders impinge on downstream cylinders, a turbomachinery stage where the
wake from inlet vanes is chopped by the rotor blades, and a helicopter rotor whose blades may interact
with the tip-vortices shed from the preceeding blades.

In a cavity, a vortex-sheet is shed from the upstream corner and impinges onto the downstream
corner. In this case difficulties arise because of the existence of a nonlinear coupling mechanism between
low-frequency modes of the separated shear-layer, the low-frequency unsteadiness of the recirculating
flow within the cavity, and the acoustic disturbances propagating upstream from the downstream corner.

An unsteady shear-layer impinging on a sharp edge can generate self-sustained oscillations if a phase
compatibility occurs between the upstream propagating acoustic waves and a shear-layer vorticity mode.
As a consequence, self-excitement of the selected vorticity mode enforces a tonal emission. The discrete
tones radiation from an isolated airfoil in a laminar regime and the sound emitted by an organ pipe are
typical examples of self-sustained oscillations'.

Under some conditions of powered descent, the tip-vortices shed from the main rotor blades of a
helicopter can impinge on the following blades. This periodic interaction can be described by means
of theories based on the airfoil response to a gust. These theories relate the unsteady pressure field on
the airfoil surface to the wavenumber of the impinging gust and other interaction parameters.

The first section of the present chapter describes the underlying physics of a vortex-body interaction.
In the second section, some analytical models for the vortex-airfoil interaction problem are presented.
The third section is concerned with the numerical prediction of the blade-vortex interactions.

10.2 Physics of Vortex-Body Interaction

A vortex-body interaction problem is predominantly affected by three factors:

- the distance of the oncoming vortex,

- the orientation of the oncoming vortex with respect to the body surface,

- the characteristic wavelength of the vorticity field.

'The reader should refer to the works of Tam [197], Goldstein [198] and Rockwell [199] for an exhaustive treatment of
the subject.
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The orientation of the impinging vorticity vector has a fundamental role in blade-vortex interaction.
For example, depending on the flight conditions of a helicopter, blade-vortex interactions may occur
with different angles, varying between three extreme cases: parallel, streamwise and normal interaction.
In terms of unsteady loading and sound generation, the most severe conditions occur when the blade
leading edge is parallel to the vorticity vector. Based on this assumption, two-dimensional analyses
are commonly performed, despite the fact that a strong vortex-body interaction is an intimately three-
dimensional phenomenon2.

A streamwise blade-vortex interaction, as shown by Bodstein [200], exhibits elements of great com-
plexity. For example, the existence of a local separation zone induced by a spanwise pressure gradient,
a vortex breakdown near the maximum thickness location or upstream of the leading edge in the case
of a direct blade-vortex interaction, and strong vortex-wake interactions.

A normal vortex-body interaction involves both a vortex bending and a vortex chopping. When the
airfoil is sufficiently thin, the vortex is chopped but not significantly bended. The vortex chopping is
accompanied by a compression of the vortex core on one blade side and an expansion on the opposite
side. Both the compressed and the expanded portions of the vortex propagates away from the surface
as the vortex moves along the blade. The terms compression and expansion do not refer to phenomena
related to the compressibility of the fluid, but to the strength of the vorticity field. A review of this
interaction mechanism is given by Marshall & Grant [7].

A parallel vortex-airfoil interaction is accompanied by a deformation of the vorticity field in the
plane normal to the airfoil. The vortex distortion is as stronger as smaller is the distance between the
oncoming vortex and the airfoil. Therefore, a direct interaction usually indicates a parallel interaction
with the vortex impinging directly onto the airfoil leading edge3. Accordingly, a nearly direct interaction
is defined as that occurring when the deviation of the vortex trajectory from the airfoil plane is a fraction
of the airfoil thickness.

The vorticity field is strongly distorted during a direct or nearly direct vortex-airfoil interaction.
Furthermore, the pressure field induced on the airfoil surface depends on the vorticity distribution
especially when the vortex is at a small distance from the airfoil. As a result, the distortion of the vortex
must be taken into account when a prediction is made of the unsteady loading and noise generation
during a vortex-leading edge interaction. On the contrary, when the oncoming vortex is sufficiently
far from the airfoil, the unsteady pressure field induced on the airfoil surface depends only on the
overall vortex circulation. In this case the distortion of the vorticity field can be neglected in favor of
a line-vortex description.

The characteristic wavelength of the vorticity field is the size of an isolated vortex, as well as the
wavelength of a gust. In the case of a Kárrnán vortex street from an upstream rod, for example, the
wavelength of the vorticity field is the distance between two vortices on the same row. The influence
of the gust wavelength on the unsteady flow past an airfoil is combined with the influence of the skew
angle. In fact, as shown by Graham [6], the gust parameter affecting the interaction dynamics depends
on both the skew angle and the gust wavelength. The influence of the size of an isolated vortex
can be related to the distortion of the vorticity field. The vortex distortion, in fact, is a nonlinear
rearrangement mechanism occurring when the curvature radius of the leading edge and the impinging
vortex have a comparable scale. On the contrary, when the vortex is of small size compared to the
curvature radius of the leading edge, say compact, the flow nonlinearity is responsible for a strong
dependence of both the vortex trajectory and the induced pressure field on the upstream position of
the vortex. In these ternis the size of an oncoming vortex affects the dynamics of a vortex-airfoil
interaction. Moreover, as observed by Kaykayoglu & Rockwell [8], when a compact vortex moves along
the airfoil surface, it induces a wavelike pressure disturbance. The amplitude and the wavelength of

2The rapid-distortion theory of turbulence developed by Prandtl [142], Batchelor & Proudman [143] and Hunt [141]
shows that a strong blocking of a nearly two-dimensional vorticity field originates transversal velocity fluctuations.

3A direct interaction is commonly referred to in literature as a head-on interaction.



this convected disturbance affect both the resulting unsteady loading and interaction noise.
In three cases the fluid viscosity has an important role on the interaction dynamics:

- the vortex impingement on a sharp edge;

- the convection of an intense vortex along a planar surface;

- the convection of vortical disturbances past a trailing edge;

In the first case, as described in sectiLn 10.2.2, a strong opposite secondary vortex is shed from the
leading edge. In the second case, as shown by Doligalski & Valker [201}, a local boundary-layer separa-
tion may occur. This is accompanied by an eruption of the boundary-layer which transfers a portion of
the wall-layer vorticity into the outer flow. In the third case, a vortical wake is shed from the trailing
edge.

Some experimental results are described in the following subsections, concerning with parallel
vortex-body interactions. Three configurations are considered: vortices impinging onto rounded lead-
ing edges, vortices impinging onto sharp leading edges, vortex-corner interactions in the presence of
recirculating flows.

10.2.1 Vortex-Airfoil Interaction

Gursul & Rockwell [101 investigated the interaction between a vortex street and an elliptical airfoil.
Experiments were carried out in a water channel. The vortex streets impinging onto the elliptical airfoil
were generated by using upstream plates of different thickness. The Reynolds number based on the
plate thickness was in the range 309 - 619. The frèe-stream velocity was = 9.65 X 10_2 s and kept
constant in the experiments. Gursul & Rockwell showed that the interaction process is strongly affected
by two factors:

- the wavelength of the oncoming vorticity field, namely the distance between two next vortices on
the same row;

the offset distance between the axis of the vortex street and the streamwise axis of the elliptical
airfoil.

Two vortex streets of different wavelength were considered: a large scale vortex street, and a small
scale vortex street. Three flow configurations were observed:

both the small scale and the large scale vortex streets, at small values of the offset distance, are
split into two separate rows which embrace the airfoil.

Both the small scale and large scale vortex streets, at large values of the offset distance, are
convected along one side of the airfoil and preserve their structure.

When one row impinges directly on the airfoil leading edge, only the large scale vortices are split
into less coherent structures. Moreover, these vortices are stretched in the cross-stream direction,
but no boundary-layer separation occurs. The small scale vortex street, on the contrary, behave
as described in a) or in b).

Homer et al. [11] investigated the interaction between a vortex and a rotating blade. The blade had
an NACA-0015 symmetric section of chord 0.149m. The wind tunnel speed was 47 m/s, whereas the
rotor tip velocity was 59.25 rn/s. Different blade-vortex intersection configurations were investigated
by means of Particle Image Velociinetry (Ply). During a direct blade-vortex interaction, the PIV data
showed some basic mechanisms. In proximity of the leading edge the vortex is first deformed and
then split into two fragments which are convected along the two airfoil sides. Because of the opposite
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induction effect of the image vortex system, the convection velocity is different along the two airfoil sides.
The slower fragment spreads across the surface, whereas the faster one undergoes a slight distortion.
As the vortex fragments approach the trailing edge, secondary vortices are shed into the airfoil wake.
Finally, a further interaction occurs in the airfoil wake between the main vortex fragments and the
secondary vortices.

Lee & Bershader [12] investigated a direct blade-vortex interaction by means of holographic inter-
ferograms. The blade section was an NACA-0012 of 0.05 m chord and the span extended by 0.05 m.
The chord based free-stream Reynolds number was in the range 0.9 x 106 - 1.3 x 106. The free-stream
Mach number was in the range 0.5 - 0.7. Lee & Bershader observed that the impinging vortex induces
two opposite pressure peaks near the leading edge. These peaks collapse as the vortex passes above the
leading edge. As a consequence, a pressure wave is radiated from the airfoil into the field. Moreover,
a boundary-layer separation on the lower side of the leading edge was observed. This implies that the
effects related to the viscosity of the fluid play an important role in a strong blade-vortex interaction.

10.2.2 Vortex-Wedge Interaction

Rogler [202] investigated the impingement of distributed vorticity upon the leading edge ofa flat-plate.
Nonlinearity and viscosity were shown to have a predominant effect near the leading edge where vortex
shedding occurs at a rate that depends on the incident vorticity field. Such a mechanism was thus
related to the existence of a pressure singularity at the leading edge that Rogler determined in the form
of a r112 law for the fluctuating pressure amplitude, with r denoting the distance from the leading
edge. Ziada & Rockwell [203] observed the impingement of a row of vortices on the sharp leading edge
of a wedge. They investigated the strong dependence of the interaction dynamics upon the transverse
distance between the incident vortex and the edge and observed the following flow features.

- Because of the induction effect of the image vortex system, the impinging vortex exhibits the
tendency to pass above the leading edge. As a consequence, the vorticity field undergoes a
different distortion at positive and negative values of the offset distance (see Fig.10.1).

- A vortex of opposite circulation is shed from the leading edge towards the underside of the wedge.
Such a secondary vortex is stronger at negative values of offset.

- The aerodynamic force induced on the wedge has its maximum value at zero offset and drops
at slight leading edge displacement. Moreover, in agreement with Rogler's [202] analysis and
observations, Ziada & Rockwell observed a strong induced effect only in the vicinity of the edge.

Kaykayoglu & Rockwell [8] investigated the interaction between a periodic row of vortices with the
sharp leading edge of a wedge. They interpreted the instantaneous pressure field on the wedge surface
as downstream propagating waves on the basis of the following expressions

Dp . D a a
with

p

dd=1 (10.1)

In these expressions f and q denote the frequency and the streamwise phase of the induced disturbance,
respectively, whereas U and ), are the phase velocity and the wavelength of the convected vorticity
disturbances, respectively. According to (10.1) a higher phase velocity is related to a larger vorticity
wavelength and to a smaller phase variation. As a consequence, the force induced by an elongated
vorticity structure has a higher amplitude. Kaykayoglu & Rockwell argued that, because of the rapid
distortion of the vorticity field, a wavelike description of the unsteady pressure field is not consistent in
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proximity of the edge. The phase variation, in ftct, while negligible along the lower side of the wedge7
showed an abrupt jump on the upper side. This jump was associated with the flow sweeping about the
edge. On the contrary, downstream of the edge region, the long wavelength measured on the upper
side of the wedge was related to the elongation of the incident vortex, whereas the shorter wavelength
on the lower side was related to the secondary vortex shedding. Kaykayoglu & Rockwell supported the
existence of a singularity at the leading edge and suggested that an inviscid model of the vortex-wedge
interaction should not incorporate a leading edge Kutta condition.

10.2.3 Vortex-Corner Interaction in a Cavity
The vortex-corner interaction in a cavity coexists with a zone of recirculating flow. A large-scale vortex
impinging ou the downstream corner is constituted by a number of small-scale vortices originated
by a hydrodynamic instability of the separated shear-layer along the aperture of the cavity. Such
instability exhibits a convective character. As a consequence, a nonlinear coupling between the low-
frequency modes of the recirculating flow and the vortex shedding process can generate a low-frequency
modulation of the flow within the cavity.

Numerical simulations 204W [205] show that the existence of a modulated flow behaviour is related
to the length of the cavity. For large values of the cavity length the recirculating zone takes the form
of a large eddy that is convected downstream by the mean stream and that overshadows the role of the
smaller vortices. On the contrary, for small and moderate values of the cavity length the low-frequency
unsteadiness of the recirculating flow can enforce a low-frequency flapping of the shear-layer.
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FIGURE 101: Impingement of a row of vortices onto the sharp leading edge of a wedge for twu values of
the vertical offet c. Hydrogen bubble snapshots: first column E/OR 0.2, second column E/fil? = 1.2,
°R denoting the thickness of the upstream plate (after Ziada Rockwell 12031, figures 4 and 5).
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10.3 Blade-Vortex Interaction Noise

As discussed in chapter 7, sound is generated when an unsteady force is exerted on a fluid portion. The
force acts as an acoustic dipole with axis parallel to the line of action of the force.

A steady aerodynamic force exerted on the surface of an airfoil in accelerated motion is unsteady in
the fluid reference frame. Therefore, a lift distribution on the rotating blades of a propeller is equivalent
to a distribution of dipoles on the rotor plane which radiate noise predominantly in the direction normal
to the rotor plane When an airfoil is embedded in an unsteady flow, the resulting unsteady force
provides the same noise generation mechanism.

Flow unsteadiness is usually associated with vortical flows. When the vorticity field exhibits a
spatially organized structure it is better referred to as a gust. For example, the tip-vortices shed from
the blades of a helicopter in steady flight conditions can impinge with regularity on the following blades.
As a consequence, the tip-vortices act as an oblique harmonic gust convected towards a steady airfoil.
Even when an airfoil is embedded in a turbulent flow, a Fourier decomposition of the impinging vorticity
field, supported by a linear flow assumption, permits a description of the interaction problem in terms
of a gust-airfoil interaction. In section 10.3.1 an equivalence is shown to exist between a gust and a
pair of vorticity waves.

Sears [126] obtained an analytical expression of the unsteady lift induced by a space-harmonic gust
on a thin airfoil. The gust was supposed to be frozenly convected past the airfoil by an incompressible
flow. Different gust-response theories were developed successively in order to extend Sears' model to
compressible, oblique, high- and low- frequency gusts.

As discussed in chapter 7, a classic aeroacoustic approach takes advantage of the acoustic analogy
theory in order to relate the acoustic far field to thepressure distribution on the airfoil surface. Indeed,
the wall pressure field depends on the gust-airfoil interaction dynamics, as predicted by a wing-gust
aerodynamic theories. Thus, the radiated acoustic field can be ultimately related to the properties of
the incident gust.

Widnall [206] investigated the sound generated by the interaction between a two-dimensional airfoil
and an obliquely incident vortex. The airfoil was assumed to be chordwise compact, but not necessarily
spanwise compact. The vortex was supposed to remain stationary as it was convected past the airfoil.
The velocity field induced by the vortex was decomposed into Fourier components. These components
were introduced into Filotas' [127] airfoil response function in order to determine the fluctuating pressure
field on the airfoil surface. Finally, the sound generated by the blade-vortex interaction was determined
by using the pressure field induced on the airfoil surface.

Amiet [207] described the acoustic field generated by an airfoil immersed in a turbulent flow. He
related the spectral behaviour of the far pressure field to the spectral properties of the incident turbulent
flow. For the case of an airfoil in a low Mach number stream, the Sears' function was used as airfoil
response function.

Amiet [130] demonstrated that a generalized Prandtl-Glauert transformation can be used to reduce
a small perturbation problem in a compressible stream to a standard wave equation in a medium at
rest. Furthermore, in the low-frequency limit, the second-order time derivative in the transformed wave
equation can be neglected leading to a Laplace's equation. The solution of this Laplace's equation can
be matched to an outer compressible solution, allowing a prediction of the acoustic far field.

Amiet [129] proposed an analytical procedure to calculate the unsteady lift induced by a compress-
ible high-frequency gust on a thin airfoil. The method was based on the assumption that, as shown by
Landahi [138], the leading edge and the trailing edge aerodynamic problems, at high frequencies, can
be separately solved and matched in a converging iterative scheme. Amiet solved the leading edge and
the trailing edge problem in terins of Schwartzchild solution up to a second-order matched solution.

Martinez & Widnall [208] used the first two terms in the series of Adamczyk's [139] iteration

4As discussed in chapter 7, a transonic rotor generates a high impulsive noise mainly in the rotor plane.
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scheme in order to predict the pressure field induced by an oblique high-frequency compressible gust
on a rectangular thin blade. A three-dimensional surface pressure distribution was recovered by means
of a spanwise Fourier superposition of two-dimensional solutions.

Martinez & Widnall [209] extended their previous formulation to the case of a rotating blade en-
countering an oblique high-frequency gust. The pressure field on the blade surface was build via a
spanwise Fourier superposition of two-dimensional solutions, but having linearly increasing magnitudes
along the blade span.

Models based on airfoil gust-response theories are particularly suitable in relating the spectral prop-
erties ofthe acoustic far field to those ofthe incident turbulent flow. However, in order to understand the
aerodynamic mechanisms involved in a vortex-airfoil interaction, different analysis must be developed.

Howe [13] exploited the vortex-sound acoustic analogy [20] in order to describe the interaction noise
generated by a turbulent eddy frozenly convected past an acoustically compact airfoil in a low subsonic
stream. He showed that imposing a Kutta condition at the airfoil trailing edge always leads to a
reduction of the interaction noise.

Howe [24] showed that fictitious acoustic sources can be introduced when the vorticity shed from
the airfoil trailing edge is not properly convected. As a consequence, inaccurate noise predictions can
be performed if these spurious sources are not removed.

As remarked in section 10.2, distortion and nonlinear rearrangement of the vorticity field occur
during a direct or nearly direct vortex-airfoil interaction. Furthermore, if the leading edge is sharp or
the impinging vortex is intense enough, boundary-layer separation and shedding of a secondary vortex
can take place. No one of the aforementioned analyses accounts for the distortion of the incident
vorticity field. Even Goldstein & Atassi' s [131] second order gust-response theory accounts only for
a steady deflection of the convected sinusoidal gust. In this scenario numerical prediction are usually
performed in order to investigate vortex-body interactions in circumstances of practical interest, such
as the helicopter Blade-Vortex Interaction (BVI).

BVI predictions involve two different scales of simulation: the local scale, where the physics of the
vortex interaction is investigated from a basic point of view, and the global scale of the rotor, where
the wake convection problem is predominant. Classic CFD methods have proven to be quite effective
in describing the local interaction problem: both distortion of the vorticity field and viscous effects can
be adequately simulated. However, Navier-Stokes solvers require an adequate grid resolution in order
to minimize the numerical dissipation of the vortical disturbances. Wake & Choi [67] used a 5th order
solver to simulate the convection of a two-dimensional vortex and showed that a minimum of 14 points
across the vortex core was required by their high-accuracy discretization scheme in order to preserve
the vortex strength. Therefore, the central problem in the numerical prediction of helicopter BVI is
the prediction of the wake on its global scale. In subsection 10.4 some numerical methods for the BVI
problem are described.

10.3.1 Equivalence between a Vorticity Wave and a Harmonic Gust
As discussed in chapter 6, the generation of aerodynamic sound is always related to the presence of
vorticity or entropy gradients in the flow. Neglecting both viscous dissipation and heat conduction,
Howe [20] obtained the following convected wave equation

(10.2)

which shows that, in the presence of a mean flow, the specific stagnation enthalpy B plays the role of
an acoustic variable.

Equation (10.2) can be linearized by splitting the velocity field into a steady, irrotational and
isentropic base flow U and a fluctuating part y' induced by the vorticity c. In the remaining part of
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the present subsection the specific stagnation enthalpy B, the pressure p and the vorticity w will denote
perturbation quantities. By neglecting second order terms, equation (10.2) takes the form

Ii ,f3 )-(+U.V) V2B=V.(xU)'y(x,t) (10.3)j j

Setting U = U0V and Fourier transforming equation (10.3), the following convected wave equation
in the frequency domain can be obtained

{v2+2k0M0v.vMgv.v(v.v)+kg}Ê =(x,w) (10.4)

where

= et dt (10.5)

and
'5'(x,w)=V.(xU) (10.6)

By linearizing the momentum equation (6.38) written in Crocco's form for a inviscid homentropic
irrotational flow, the following expressions for the fluctuating velocity in a vorticity-free field can be
obtained

(10.7)

As proposed by Taylor [159], at a sufficiently low Mach number, such that terms involving M can
be neglected, equation (10.4) can be transformed into a Helmholtz equation by setting

i.=ÊeiM0dI) (10.8)

It thus results that
V2Ê + kg A = ''(x, w) elMo ko (10.9)

Consider the vorticity field of a line-vortex of circulation F convected along the path y(t), i.e.

5A Green's function tailored to the particular problem have been assumed.

The source term in equation (10.3) takes the form

-y(x,t) = UnVw3 (10.11)

where n is the unit normal to the path of the vortex and U denotes the modulus of the local mean
velocity. A formal solution of equation (10.9) is

A(x,w)
= f G(x,z,w)(z,w) eiAokodz (10.12)

V

where V is a region of non-vanishing '5', G(x, z, w) is the Green's function of the Helmholtz equation5
and

00

5'(x,w)
=

-f -y(x,t) e dt (10.13)
00

From equations (10.10), (10.11) and (10.12) it follows that

F r--°°
Ñ(x, w) = - J

UeIM0 ko 4(z)eitc(x z, w) n V6 (x - z(t)) dz1 dz2 dt (10.14)

Wi = W = O

w3 = F5(xy(t)) (10.10)



Then, exploiting the properties of the delta-function yields

F r+0o
L(x,w) =

UeIM0k0)e1tVG.n dt

Equation (10.15) describes the acoustic field generated by a distribution of dipoles along the vortex
trajectory, with axis normal to the trajectory. Therefore, a convected line-vortex is spectrally equivalent
to an infinite sum of vorticity waves with frequency w and wave speed U.

Consider now a line-vortex convected by a uniform incompressible flow U = (U, 0). Equations (10.8)
and (10.15) lead to

G(x,y) = -- In (x-yJ) (10.17)2ir

is the Green's function for the incompressible problem (k0 * O). From equation (10.7) the following
expression for the fluctuating velocity induced by the vortex can be obtained

F
eiklxl e_1k1x21 (10.18)13Ç(x,w) = -sign(x2)

4ir2U
F ik,xj e_1k1x2! (10.19)v(x,w)= i42Ue

where k1 = w/U. Then, changing to the time domain yields

F
ei1x1_wt) e_1k1x21vÇ(x,t) = -sign(x2)

4ir2U

If two parallel vorticity waves of equal strength arc placed at a distance 2 e from each other, the induced
velocity on the centerline vanishes in the x1-directioii, whereas the normal component is given by

Ê(x,w)=_J e'--G(x,y) dy12ir_ 8
where

F e(1dix1_t) e_Ikl x21v(x,t)= '47t2U

F.v(x,t) =
2ir

e( ixiwt) e11

(10.15)

(10.16)

(10.20)

(10.21)

(10.22)

A sinusoidal gust frozenly convected at velocity U in the xi-direction has the form

v(x,t) = Aei ki(xi-Ut) = Aei1_7t) (10.23)

Therefore, provided that
F

e_IidlfI
27r2 U

(10.24)

a gust is equivalent to a pair of vorticity wakes.

10.3.2 General Features of Helicopter Blade-Vortex Interaction
Two important aerodynamic phenomena occur when a helicopter rotor operates in high-speed flight
conditions: (i) the presence of a transonic flow on the advancing side of the rotor, (ii) the presence of
an extended vortex system around the rotor. Unsteady transonic conditions on the rotor blades are
responsible for high vibration levels, power divergence, component fatigue and aerodynamic noise. The
helical tip-vortex system interacts with the rotating blades and generates aerodynamic noise and vi-
brations. Furthermore, blade-vortex interaction can also occur in transonic flow conditions. Both these
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FIGURE 10.2: Modeling scheme of a gust-airfoil interaction.

two aerodynamic phenomena generate a high impulsive aerodynamic noise which is usually referred to
as blade slap noise.

A rotor interacts with a tip-vortex under a wide range of relative orientation angles. However, the
underlying physics of a blade-vortex interaction can be described by considering a rectangular blade of
infinite aspect ratio and an infinite line-vortex at a skew angle A. In Fig.10.2 a blade-gust interaction
is sketched. In this case A denotes the angle between the blade axis and the gust wavefronts.

By supposing that the oncoming gust is frozenly convected past the airfoil,the interaction is steady
in a co-ordinate system (x', y') that translates along the blade at the velocity of the intersection point
between the blade centerline and the vortex projection onto the plane of blade, that is

X' = x

y' = y - U cot A (10.25)

When A =ir/2 the vortex is perpendicular to the blade and the speed of the intersection point is zero.
Conversely, when A = O the vortex is parallel to the blade and the speed of the intersection point is
infinite. As a result, a two-dimensional problem is intrinsically unsteady.

The condition A = ir/2, usually referred to as low-speed interaction, occurs principally during a
hovering flight. On the contrary, the condition A = 0, usually referred to as high-speed interaction,
occurs during a high-speed flight and a descent flight.

Finally, it can be noticed that when A < tan (M) the intersection point translates at a supersonic
speed.

Consider an oblique gust of wavenumber k. The streamwise and spanwise wavenumbers are given
by

k cos A

= k sin A

A = tan () (10.26)

The trace velocity U of the moving co-ordinate system and the free-stream velocity U,. relative to this
system are given by

Ut=Uoo (10.27)

(10.28)
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Graham [6} showed that, dependingon the value of a gust parameter which is related to the free-stream
Mach number and to the intersection angle A, the space of solutions of a gust-airfoil interaction problem
can be divided into two subspaces. Each subspace is represented by a model problem whose solution is
known. Therefore, by means of appropriate similarity rules, any solution of a blade-vortex interaction
problem can be related to the model solution of the related subspace. The two model solutions are
that of an incompressible oblique blade-vortex interaction, and that of a two-dimensional compressible
problem.

Suppose that the aerodynamic field of a small-amplitude gust frozenly convected past a thin airfoil
can be described by a linearized form of the velocity potential equation (1.90). Setting y' = Vq5, where
q5 is a perturbation velocity potential, the linearized potential equation takes the form

(10.29)

where the x-axis is parallel to the mean flow.
Consider a thin blade lying on the plane z = 0, with section chord i parallel to the x-axis. Then

suppose that the blade is embedded in the upwash gust

w = wo e = w0 e1 (wtkxk, ) (10.30)

where w = k U. The boundary condition on the blade surface can be imposed in the form of a
vanishing normal velocity, i.e.

I içb = woei(t_ ky) for z = 0, - x
2

By using the transformation

(10.31)

q5'(x, z) = q5(x, y, z, t) exp {- (w t - k y)] (10.32)

into equation (10.29), the aerodynamic interaction problem is described by the equation

2 wM
¡

- q5' = 0 (10.33)2co co )
Finally, introducing the Prandtl-Glauert transformation

X=, y=/L, Z=ß with

= i - M, (10.34)

and the Reissner [210] transformation

(X,Z) = ç5'(x,z) exp( kxxMo)
(10.35)

equation (10.33) takes the form

(10.36)

where
Mco

- k ¡3 = -j- cotA (10.37)
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is Graham's gust parameter and

K=K with K=-1
is the reduced transformed streamwise wavenumber.

In the same transformed plane the boundary condition (10.31) takes the form

Wlz= ---- exP(_iKx)

whereas the linearized pressure equation

yields

cp= _1exP(iXMo) ( (10.41)

where Gp denotes the pressure coefficient.
The Kutta condition at the trailing edge and the continuity of the pressure across the wake must

be imposed as additional conditions. Thus, it results that

for Z=0, X>1 (10.42)

The boundary condition at infinity depends on whether equation (10.36) is elliptic or hyperbolic.
If M < 1 the problem is elliptic and a vanishing disturbance condition must be imposed at infinity,
namely

0 asR-400 (10.43)

Conversely, if M > 1 the problem is hyperbolic and a Sommerfeld radiation condition must be imposed
at infinity, namely

exP{iK(1_)R}_O as Z*±oo

61t should be reminded that K = k 1/2 and K = k 1/2.

M=0
K

-1x -
K7 = -/i - M2

(10.38)

for Z = 0, 1 X 1 (10.39)

(10.44)

with R = v'X2 + Z2.
Consider the subcritical case M < 1. Setting X2 K2 (i - 11M2), equation (10.36) can be

written as

In the subspace of solutions 1 = (MOO,KX,KY) of equation (10.45)6 with boundary condition (10.39),
a line at fixed values of X and K/ß2 defines a set of similar solutions. Intersections between two distinct
lines are not possible. Furthermore, each line intersects the surface M = O (M = 0) only in one point.
This surface consists of all the incompressible oblique solutions. Therefore, each solution can be related
to its incompressible counterpart K;, K7) via the following similarity rules

(10.46)

(ô ô"
(10.40)

xx + :I1ZZ - X2 =0 (10.45)



No similarity rules are required in order to satisfy the boundary condition (10.43) at infinity.
Consider the supercritical case M 1. Setting X2 = K2 (i - 11M2), equation (10.36) can be

written as

xx + zz + X2= O (10.47)

Again, in the subspace of solutions (M, K, K) of equation (10.47) with boundary condition
(10.39), a line at fixed values of X and K/ß2 defines a set of similar solutions. Intersections between
two distinct lines are not possible. Furthermore, each line intersects the surface M = 00 (K = 0) only
in one point. This surface consists of all the compressible parallel (A 0) solutions. Thus, each solution
can be related to its compressible parallel counterpart K, K) via the following similarity rules

MM/1-
K=K (+)
K = 0 (10.48)

The boundary condition (10.44) at infinity is automatically satisfied by all the similar solution at
constant value of X.

It is interesting to notice that, if M = i then K M K//3 and the two sets of similarity rules
(10.46) and (10.48) overlap.

Equations (10.28) and (10.37) provide the free-stream Mach number relative to the moving axis
system

1C (M, K, K) = C+ ( 1 - , K

1+ exp{iKy (x_)}

s critical flow: M = i

K21+k 0

(10.51)

K \i
CL»(MØQ,KX,KY) cA±(o -, 0) expçi (xM0 _KY)} (10.52)

Mr = \/M+ß2M2 (10.49)

At low subsonic free-stream it results that Mr M. Therefore, the subcritical and supercritical
flows correspond to subsonic and supersonic velocities, respectively, of the free-stream relatively to the
moving co-ordinate system (10.25). -

From equation (10.41) and the similarity rules (10.46) and (10.48), Graham [6] obtained the following
expressions for the loading coefficient per unit upwash

s subcritical flow: M < 1

E /1_M2)/32'
/3

1 /K 2exP-XM) exP{i KY [/i_M2_1]} (10.50)

supercritical flow: M > 1
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where CAP-, C, and C± are the loading coefficients induced by a unitary oblique gust in an
incompressible flow, by a parallel gust in a compressible flow and by a parallel gust in an incompressible
flow, respectively. The former solution can be expressed in terms of Filotas' [127] gust-response function,
the second can be obtained by means of Possio's [128] integral equation for a two-dimensional unsteady
compressible flow, whereas the third is the solution obtained by Sears [126] for a two-dimensional
incompressible gust.

10.3.3 Amiet's Analysis

Amiet investigated the aeroacoustic problem of a thin airfoil embedded in a turbulent stream. The
unsteady pressure field on a fiat-plate was modeled as a distribution of acoustic dipoles whose strength
is related to the incident turbulent field by means of an aerodynamic gust-response function.

Consider a harmonic dipole in the point (xi,yi,zi = 0), with axis normal to the plane z = O and
strength F(xi, yi, ). The acoustic far field radiated in a uniformly moving medium has the following
expression.

i Wzp(x,y,z,w;x1,y1) = 42 F(xi,yi,w)exP{iw [t +
M(x - z1) - a xx1 + yyifi2l)

coß2
+

cofi2a j
(10.53)

where the xaxis is parallel to the flow, a = /x2 + /32(y2 + z2) and fi = v'i - M2. As a consequence,
the power spectral density of the sound radiated by a distribution of dipoles is

(x,y, z,w) ffffp(x,y,zw;xiyi) (x,y,z,w; x2,y2) dx1 dx2 dy1 dy2()2
ffffSww(xix27ìw) e {(M_ 1X2)+ H dz1 dz2 dy1 dy2

(10.54)

where 77 = Y2 - Yi and SW(x1,x2,77,w) is the cross power spectral density of the dipole strength
distribution.

As shown in chapter 7, a solid boundary in a turbulent field is equivalent to a distribution of acoustic
dipoles whose strength is related to the pressure induced on the body surface. Thus, a flat-plate can
be modeled as a distribution of dipoles whose strength is given by the pressure jump between its upper
and lower sides.

Consider a rectangular airfoil of chord 2b and span 2d and let the airfoil spanwise direction y be
normal to the free-stream velocity U. Then, suppose that a frozen vertical gust convected in the
x-direction, has the generic form

+00

w(x, y, t)
= ff k) ei Ek(x-Ut)+ky] dk dk (10.55)

-00

where iii is a gust spectral component of wavenumbers k and k.
In a linear approximation, the pressure jump induced on the airfoil surface can be related to the

gust spectral components by means of an aerodynamic transfer function g(x, k, ku). Thus, it results
that

+00

LXp(z,y,t) = 2irpo Lib ff í)(k,k) g(x,k,k) ei(_ktvY)dkxdky (10.56)

-00
or, equivalently

p(x,y,t) = 2pob ff?(kxky) g(x,k,k) e'dk dW (10.57)

-00
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where the change of variable w = kr U has been performed in order to isolate the following time-
spectral component

+00
¿j3(x,y,w) = 27rPobf (K,k) g(T,K,k) elkYhldky (10.58)

with K = w/U.
The cross power spectral density of the pressure jump between two points on the airfoil surface is

given by

SWW(xI,x2,yl,y2,w) = um (.1 E[LJ3*(xi,yi,w) ¿73(x2,y2,w)]}
T-+oo t.T

where E [...] denotes the expected value of a random quantity. The only non-deterministic quantity in
y, w) is tî'(K, ku). Thus, substituting equation (10.58) into equation (10.59) yields

S(x1, X2,yl, y2,w) = (2Po b)2 fig*(Xi K, k1) g(x2, K, k2)

with

e (_kiy1+1c2y2) um { E [tî*(K k1) ú,(K, k2)]} dk1 dk2Too

Because of the statistical orthogonality of the wavevectors, the ensemble average of the gust velocity
can be written in the form

UTE[th*(Kx,ky1) ií(K,k2)] 8(k1 k,2)I(K,k1)

(10.59)

(10.60)

+00
(K,k1)

= f_
q(K,k1,k) dk (10.62)

and k, k) denoting the energy spectrum of the turbulent velocity field. Thus, making use of
equation (10.61) in equation (10.60), the cross power spectral density of the pressure jump takes the
form

+00
Sww(xJ,x2,,w)=(2pob)2Ufg*(xl,Kx,ky)g(x2Kxky)eikv(Kk)

dk (10.63)
-00

The cross-spectral density S of the airfoil loading can be now substituted into equation (10.54)
in order to obtain an expression for the power spectral density of the acoustic far field radiated by the
airfoil. This is given by

+00
/wzp0b\2Spp(x,y,z,w)= 2coa2) Ufffffg*(xI,K,k)g(x2,K,k)

-00

e1 kY(K k) dke1 [(M_)(xi_x2)+?Y]
dx1 dx2 dy1 dy2 (10.64)

or equivalently

2 +00 +d(wzpob\ uJ'x K k (K,k) (10.65)Spp(x,y,z,w) = k\2c052) , ,
-00 -d
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where

P(x, K, k)
=

f g(xo, K, k) e1 (M_)xo
dx0

b
is an airfoil loading function that, in the small frequency limit, reduces to the airfoil sectional lift
induced by a unitary gust.

Finally, if the latter double integral in equation (10.65) is evaluated analytically, the acoustic power
spectral density takes the form

wzpob 2

UdirSpp(x,y,z,w)
= ( c2 )

} !P(x,K,k)i2 (K,k)
+oo{fl2 [d(y+k)]

J 2d(_Ly+k)-00

An important property of the acoustic far field can be derived from equation (10.67) by letting the
airfoil span tend to infinity. Because of the mathematical property

um
d-400

sin2

ird(y+ky)

equation (10.67) has the following limit expression

2(wzpo b\Spp(x,y,z,ii) =
)

Udir

¡w=8( y+k

(
w

COU )P x,K, y
C U

(10.66)

(10.67)

(10.68)

(10.69)

which shows that an observer at a distance y from the airfoil mid-span plane can listen only the gust
component with spanwise wavenumber k = w/co a. At low Mach number it results that

k k sinO (10.70)

where O is the angle between the line joining the airfoil mid-point to the observer and its projection
onto the mid-span plane y = 0. Since, k = k sin A, then O = A. In particular, on the plane y = O
the skewed spectral components give opposite effects, whereas the only contribution to the acoustic far
field is given by the parallel spectral components.

Equation (10.67) relates the acoustic far field to the incident turbulent field via the airfoil response
function g(x, k, ku). As shown by Graham, depending on both the flow conditions and the characteristic
parameters of the incident gust, the airfoil response function can be expressed in terms of Filotas' or
Sears' gust-response functions, or determined by solving Possio's integral equation. Furthermore, Amiet
proposed a low-frequency and a high-frequency solution procedure for a small perturbation flow, with
time-dependent boundary conditions. The low-frequency approximation was based on a generalization
of the Prandtl-Glauert technique to a time dependent compressible problem, whereas the high-frequency
problem was solved in terms of Schwartzchild solution applied to a skewed gust. Both the low- and the
high-frequency approximation are discussed in section 4.5.

10.3.4 Martinez & Widnall's Analysis

Martinez & Widnall {208] developed an aeroacoustic model for the wing-gust interaction problem. Both
the aerodynamic and the acoustic problem were solved in terms of separated leading edge and trailing



edge boundary-value problems, matched in an iterative converging scheme, as first proposed by Landahi
[138].

Adamczyk [139] and Amiet [129] applied the same iterative scheme to obtain analytical expressions
for the wing response to a high-frequency gust. Adamczyk used the Wiener-Hopftechnique to solve the
leading edge and the trailing edge boundary-value problems, whereas Amiet solved the same problems
in terms of Schwartzchild solution of a semi-infinite boundary-value problem.

Martinez & Widnall [208] extended Adamczyk's analysis in order to describe the noise generated
by the interaction between a skewed Sears-type gust and a wing of both finite and infinite span. The
main results of Martinez & Widnall's analysis are reported below.

By applying the Wiener-Hopf technique both to the leading and the trailing edge problem in which
the boundary-value problem (4.102) with boundary conditions from (4.103) to (4.106) can be separated,
the following expression for the far pressure field can be obtained

2 po wo U exp(i cú t - i k1, y) 1

(x2+z2)'4

exp{1kM
cosO

[
¡32

/1_Msin2o] /x2+z2}

{ (1 - cos 0*12) e'/4// - E* [2 (1 - cos 0*)]

}
2 1/4(1Msin 0)

where the same notation as in section 4.5.2 has been used, and where

P(x,y,z,t)

(10.71)

o = tan1 () (10.72)

= tan (/3 tan 0) (10.73)

Equation (10.71) describes the far pressure field generated by the interaction of an oblique gust with
an infinite-span wing. It can be used to obtain the acoustic far field of a rectangular wing of span 21.
Consider the function

sin(k k) i/b

The k1,-Fourier transform of S is exp(_i k y) for <i/b and zero elsewhere. Therefore, by adding a
factor S to the right-hand side of equation (10.71) and integrating over k1, froiri co to co leads to an
approximated form of the rectangular wing response to a vertical gust w0 exp (WI - kx - ky), i.e.

P21(Xa, Z t)

1f00P21(x,y,z,t) jij dkySe_IkYYf(x,y,z,t)

ipowoU00-./2M00 D(0a,)
7rra (1+M00 cos0asin&)2

iW
exp{1M cos0asin

[t_al
CO j J

(10.74)

(10.75)

where P(x, y, z, t) is the function P(x, y, z, t) defined in equation (10.71), deprived of the factor e k

By substituting equation (10.71) into equation (10.75) and using the Inethod of stationary phase
to evaluate the asymptotic behaviour of P21(x, y, z, t), Martinez & Widnall [208] obtained the acoustic
far field generated by the interaction between a finite-span wing and a skewed gust. In spherical
co-ordinates (ra, °a, çb) it takes the form

(10.76)
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where Ta - (U/b) , 0a = tan' (z/a), ra \/x + y2 + z2, (1 + Moo COS °a sin,)2 denotes the
amplitude Doppler factor and D(Oa, ) is the directivity factor which is given by

with

D(Oa, b)

F1=
hv1

Sin{wb
I f Mcos'

TJ 1+M COSOaSIflI)

.ib f Mcos'
1+M COSOaSjfl

tanA*)

i

i+M00{1 ß2cos2 -

(1+M cosO0 sin)2

}1/2

F

i 5iflGaSi11'Çb/\/

tanA*)}

ß2cos2 1/2
MQ. COSO0Sifl1/)

(1+M00 COSOOSifl1b)2J - ß2 1+M cos90sinI'

F2 (1+M00 COSOa5ifl){1
(1+M00 COS9aSjflP)2J

(2w bM00
F4

)

F4 { .
ß2 cos2 ,b

1/2 M COS Oa Sfl ?/)

(1 + M00 Oa sin)2 } i + Moo Oa sin

where the identities k = (w b/U00) tan A and k (w b/U00) tan A* have been used (see 10.26).
Martinez & Widnall [208] showed that for i(A*) > ir/4 (a real value of corresponds to a supersonic

spanwise propagation speed of the gust in the wing reference frame), the sound at a generic far field
location results from the combination of disturbances from every point on the wing, except the trailing
edge. Conversely, for ,L2(A*) < (./4)2 (subsonic gust spanwise propagation speed), the far field noise
mainly results from the wing tip sections.

10.3.5 Howe's Analysis

In this subsection the model problem of a line-vortex convected past a thin airfoil by a low Mach
number flow is illustrated. The analysis is that proposed by Howe [13] to describe the influence of
vortex shedding on the interaction noise generated by an acoustically compact airfoil.

airfoil wake

ß2 cos2
1/4

FIGURE [0.3: Interaction between a thin airfoil of chord c = 2a and a line-vortex of circulation F.

Consider a flat-plate of chord c = 2a (a < x1 <a, X2 0) in a uniform parallel stream of velocity
V00. Suppose that the mean flow Mach number M00 = V00/co is sufficiently small that M « 1. This
allows to suppose that the flow is incompressible, but does not eliminate the convective effects on the
acoustic radiation, which are of order 0(M00).

Suppose that a line-vortex of circulation F is frozenly convected by the mean flow along the path
X2 = h parallel to the airfoil chord (see Fig.10.3). Since the image vortexsystem disturbs the vortex
path as the vortex passage by the airfoil edges, the vortex circulation is sufficiently small to suppose that

(F1+F2+F3) (10.77)

(10.78)
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(1 D2
Dt

Du

Dq5D
Dt - Dt + V00 O

Dx1

the vortex path is not significantly perturbed from the constant value x2 = h. The incident line-vortex
induces the singular vorticity field

w = FÖ(x1 - V00t) 8(x2 - h) e3 (10.79)

where ê3 is the unit vector taken out of the paper (parallel to the airfoil edges).
Assuming an ideal and homentropic fluid, Howe's [20] inhomogeneous wave equation for the stagna-

tion enthalpy takes the form of equation (6.53). At low mean flow Mach numbers, the speed of sound
can be regarded as constant and equal to C. Furthermore, by linearizing the wave operator, equation
(6.53) becomes

- V2) B = V (w X u) (10.80)

As the vortex is convected past the airfoil, vorticity is shed from the airfoil trailing edge into the
field. In a linear approach the airfoil wake can be described as a vortex-sheet convected along the plane
x1 > 0,X2 = O at the free-stream velocity V00. The strength of the vortex-sheet can be determined by
requiring that a Kutta condition is satisfied at the airfoil trailing edge.

The vortex dipole associated with the incident vortex is

V. (w x u) = PV00 /._{5(xi - v00t) 5(x2 h)} (10.81)

The vortex force distribution associated with the vortex-sheet is

w x u= Z(x,t) (x2) ê2 (10.82)

where the wake strength Z can be obtained from the Crocco's equation

Dt
+ VB = w X u (10.83)

Since the normal velocity is continuous across the vortex-sheet, integrating across a small interval
normal to the vortex-sheet yields

Z = - [B] (10.84)

where [...] denotes the jump in crossing the wake in the +x2 direction. For an irrotational flow
equation (10.83) is equivalent to Bernoulli's equation

B+-0 (10.85)

where the function is the velocity potential. Hence, the wake strength in (10.84) can be written as

Z-F-11
L Dt 2

The wake is convected at the free-stream velocity V00, thus

(10.86)

(10.87)

Furthermore, the pressure is continuous across the vortex-sheet, thus

{Dtj2 (10.88)
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Hence, arranging (10.86), (10.87) and (10.88) gives

Z = V(u2 ui) Vjy(xi,t)

a
V. (w x u) = V ----{-y(xi,t) 5(x2)}

(/X2

Substituting (10.81) and (10.90) into equation (10.80) yields

1

5{
IXYl (X_Y)}G(x,y,t,T)= tr-- +M

471-(X e0

1/ a2
Z X1 + i X = +

479

(10.89)

where 'y(xl, t) is the wake circulation density. The vortex dipole corresponding to the vortex-sheet is

(
- V) B = FV _{5(xi - Vt) ö(x2 - h)} + V {7(xi,t)

Equation (10.91) can be solved by making use of the Green's function technique. The wavelength
of the acoustic disturbances generated by the vortex-airfoil interaction is of order

2a
(10.92)

Therefore, if M is sufficiently small, the airfoil is acoustically compact and a low frequency Green's
function can be used to solve equation (10.91). As discussed in subsection 6.4.1, the compact Green's
function tailored to the airfoil in the presence of a mean flow is

(10.93)

where M is the mean flow Mach number, X = - «(x) and Yj = y (y), with q5 denoting
the velocity potential of the incompressible fluid motion generated by a translational rigid motion of
the airfoil in the i-direction at unit speed. Equivalently, X represents the potential of incompressible
flow about the airfoil which at large distances is of unit velocity in the i-direction. Clearly, in a
two-dimensional field X3 = x3.

The potential X can be determined by using the conformal transformation

(10.94)

which maps a circle of radius a into a flat-plate of chord 2a. The complex potential past the circle,
which is of unit velocity in the i-direction at a large distance from the airfoil, is

W(() = (e0t + e) (10.95)

Thus, substituting the inverse conformal mapping ( z + './z2 - a2 yields

= {zcosûi i /z2 - a2sinûj} (10.96)

It should be observed that, as Izi ¡a - 00, X -+ {ze_iO } = x.o
The conformal mapping technique can be also employed to determine the wake circulation density

-y. Imposing the zero-velocity Kutta condition in the (-plane leads to

+ } +
+ d = 0 (10.97)

{ (ra (ta Ja a

(10.90)

(10.91)
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where ,, is the location of the incident vortex7.
Using the Fourier transform result

8(xi - Voet)
= 2irV i: ö(xi - Y1)exP{iw (L - dyi dw

the singular vorticity field (10.79) induced by the incident vortex can be written as

rw= // ä(xi_Y1)5(x2_h)exP{iw(__t)}dyldwz.ir V00 , 00

The Fourier transform of the wake circulation should have the same form of the incident vorticity wave
(10.99). Therefore, 'yo (w) exp { w/V00 } exp( i wt) is the wake spectral component of frequency w. The
Kutta condition (10.97) yields

(10.100)

where (, = i + i h + /(yi + i h)2 - a2 i the vórtex position in the e-plane. From equation (10.100) it
follows that

rsgn(w) f Jwh' f Jo(wa/V00) +iJj(wa/ V00)yO(w) = exp (10.101)
irVoo i V00j 1H0 '(wa/ V00) + ¡H,' (wa/V00)

Let us now determine the wake and the incident vortex contributions to the acoustic far field.
The noise generated by the wake vorticity 'yo(w) exp {iw/V00} exp(iwt) can be determined by

integrating the noise generated by harmonic wake component

'yo exp {iw/V00} exp(iwt) = yo exp { k,V00 (t - /V00)} (10.102)

over all frequencies w k1 V00.

Using the low frequency Green's function (10.93) to solve equation (10.91) provides the wake con-
tribution

B v0
ffff: dy, dy2dy3dr (exp { k1 V00 (t -w - 4ir

x'Y5{
IXYl (XY)1tr +M- CO CO j

In order to relate the stagnation enthalpy to the acoustic pressure, consider the Bernoulli's equation
(6.46). It can be written as

B=_(_u.V5)
whose linearized form is

B=
= (i+Poco M) (10.105)

where p, q5 and B denote disturbance quantities and U is the mean flow. In the far field the acoustic
pressure and velocity are related by

(10.106)Dr poco

7The same approach has been used by von Kármán & Sears' [123] and by Chiocchia & Casalino [32].

(10.98)

(10.99)

(10. 103)

(10. 104)



which can be written as
pocoVq X

p lxI

Thus, substituting (10.107) into (10.105) yields

B=-(1+M.--
Po\ lxi

As shown by Howe [13], integrating equation (10.103), taking the observer in the far field and using
(10.108) lead to

p iVç,o'yoasinû (7rk1M
Po 4(1+McosO) 2R

)H(kia)exP{_i [klVOOtreL_]} (10.109)

where
Rtrett a(1+McosO)

is the retarded time, R is the distance of the observer from the airfoil and O is the angle between the
observation direction and the +x axis.

Finally, the noise generated by the airfoil wake of circulation density 'y0(w) exp { w/V} can be
calculated by substituting (10.101) into equation (10.109), and integrating over all frequencies. It thus
results that

p iFVasinOe1 (Mir'\
Po - 4irh (1 + M cos O) 2Rh)

J Jo()+iJi() )sgn(v) exp(_ ivi - i Vootret) H) ()
Hg') () + H'

d10.i11)

where the variable transformation ii = wh/V has been performed. This integral can be evaluated
explicitly in two extreme cases:

a/h « 1, vortex passing at large distance from the airfoil, i.e.

p FVsinO /M\ a . (3O\1
Po - 4(i+McosO) 2Ra) [() s1n)j

(10.107)

(10.108)

(10.110)

(10.112)
ret

where (Ra, O) are the polar co-ordinate of the incident vortex.

a/h» 1, vortex passing at small distance from the airfoil, i.e.

p FVsinO (M a/h
1 10113- 4 (1 + M cosO) Ra) Li + (Vt - a)2 /h2] ret

. )

The noise generated by the incident vorticity wave (10.99) can be determined by integrating the
noise generated by a harmonic incident gust over all frequencies.

Consider the Sears-type gust

u = Aexp{i [k1 (x1 - Vt) + k2x2]} (10.114)

and the associated vorticity field

w = k x Aexp{i [k1 (x1 - Vt) + k2x2]} (10.115)
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k?+kw = ¡A2
k1

exp {i [k1 (z1 - V00t) + k2x2]}

00

00
f\/i sgn(v) exp(_ - V00tret) 1i () dv

Again, this integral can be evaluated explicitly in two extreme cases:

a/h « 1, vortex passing at large distance from the airfoil, i.e.

p 3FV00sinO M00\il a . 5O\1
Po - 16(1+ M00 cosO) () LG) sin(--)j

Since the gust is incompressible, k. A k1A1 + k2A2 0. Therefore, equation (10.115) can be written
as

(10.116)

Following Howe [13], the acoustic pressure generated by the incident vortical gust (10.116) can be
determined by convoluting equation (10.91) with the low frequency Green's function (10.93). Then,
taking the observer in the far field and using equation (10.108) provide

p A2V00a sinO (1rkIM00'%
- (1 +M00 cosO) 2R ) Ji(kia)exp{_i [kiVootret - J} (10.117)

This solution can be used to determine the far pressure field generated by the vortex passage past the
airfoil. Thus, convoluting the vorticity wave (10.99), leads to

p iFV00asinOe1 (M00ir'
Po - 4irh(1 +M00cosO) 2Rh)

(10.118)

(10.119)
ret

a/h» 1, vortex passing at small distance from the airfoil, i.e.

p PV00 sin O (M00 \ (V00t + a) a/h2 a/h ipo4ir(1+M00cosO)Ra) L1+(V00t+a)2/h2 1+(V00t_a)2/h2jret

The two terms in the retarded-time brackets of equation (10.120) account for the scattering effects
of the airfoil leading and trailing edges, respectively. An important result is that the diffraction of the
trailing edge is exactly canceled by the wake contribution (10.113). Howe [13] argued that such an
exact cancelation is a consequence of the linear assumptions made by supposing that both the incident
vortex and the wake are convected at constant velocity along rectilinear paths. Furthermore, Howe
showed that the exact cancelation of the trailing edge diffraction contribution is related to the fact
that, when the vortex is convected at the free-stream velocity V00, the normal velocity vanishes at all
points of the wake. In this case the flow conditions are steady in a convected frame of reference and no
sound is radiated.

In conclusion, the vortex shedding smoothes the large pressure gradients near the trailing edge,
reducing the diffraction contribution of the trailing edge. However, nonlinear effects related to the
image vortex system are responsible for the generation of a trailing edge noise contribution.

10.4 BVI Numerical Predictions

Blade-vortex interaction occurs in the flow field about the main rotor of a helicopter, especially when
it operates in steady, descending flight conditions, when the rotor wake is forced to remain in the
rotor disk. The resulting interaction between tip-vortices and advancing blades is a complex three-
dimensional, unsteady, viscous and compressible phenomenon that induces unsteady loadings and high
impulsive noise levels.

Three mechanisms are involved in BVI:

(10. 120)
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- the vortex shedding from the blade-tips;

- the vortex convection in the rotor wake;

- the vortex interaction with one or more oncoming blades.

Because of the different order of magnitude between the local scale of the blade and the global scale
of the rotor, a comprehensive numerical simulation of a blade-vortex interaction is still prohibitive.
Therefore, simplified numerical predictions must be performed by separately investigating the local
and the global scale of the phenomenon.

10.4.1 Local Simulations

The unsteady aerodynamic field about a lifting airfoil in a vortical flow can be described only numer-
ically. Two distinct numerical approaches can be adopted to simulate vortex-airfoil interactions. The
first is the primitive (or conservative) variable approach, which consists in solving a system of goy-
erning partial differential equations, such as the Euler or the Navier-Stokes equations, with a suitable
set of boundary conditions. The second is the linearized approach which is based on the following
approximation: for mean potential flows with small amplitude vortical and entropic disturbances im-
posed upstream, the unsteady velocity field can be split into a known rotational component and an
unknown potential component that satisfies a linear inhomogeneous nonconstant-coefficient convective
wave equation.

The primitive variable approach requires a long computational time and large computer memory.
In addition, because of the nonlinear character of the flow, the accuracy of the unsteady solution may
be strongly affected by the physical consistency of the far field boundary conditions.

A simplified primitive variable approach is usually performed, provided that the flow is assumed
to be incompressible. It consists in describing the incident vorticity field by means of discrete-vortices
convected by a flow which is a solution of a Laplace's equation. Boundary value methods or conformal
mapping techniqùes are then adopted in order to account for the presence of a body in the field.
Discrete-vortex simulations are particularly suitable to investigate the effects of the vortex distortion
during a direct blade-vortex interaction. Furthermore, phenomena related to the viscosity of the fluid,
such as vortex-shedding and boundary-layer separations, can be simulated hut these require additional
conditions.

The linearized approach is valid only for small amplitude disturbances, a requirement that is usually
satisfied in many flows of practical interest. Methods based on the solution of a single linear wave
equation have significant advantages over methods based on the solution of a system of nonlinear
partial differential equations:

- the computational time is far shorter;

- stable and accurate differencing schemes are simpler to be derived;

- physically consistent far field boundary conditions can be determined, which permit more accurate
unsteady aerodynamic predictions.

Linearized approaches are particularly suitable for three-dimensional oblique blade-vortex inter-
actions in highly compressible flows. Moreover, for periodic gust-airfoil interactions, the linearized
approach provides an effective way to investigate the effects onto the near and far pressure field of both
the wavelength of the incident vorticity field and its orientation with respect to the blade leading edge.

Numerical predictions based on potential flow modeling of isolated line-vortices convected past
lifting airfoils [68, 32, 211] show that:

- the noise level is strongly affected by the vortex trajectory;
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u = u + u0

where

Vu=O
V X U0 = O

A vector potential A and a scalar potential can be defined such that

V2A = w with u = V x A

and
V2ç=0 with u=Vq

- the vortex trajectory is a strong nonlinear function of the airfoil lift, the vortex initial position
and the vortex circulation;

- the line-vortex models overpredict the noise levels, especially during a direct vortex-airfoil inter-
action. This is mainly due to the fact that a line-vortex model does not account for the vortex
distortion during a closer encounter.

The distortion of the vorticity field is a nonlinear rearrangement mechanism which occurs especially
when the vortex and the curvature radius of the airfoil leading edge have a comparable scale. The
effect of the vortex distortion on the interaction dynamics is twofold: on one hand it smoothes the
dependence of the interaction process upon some parameters of the problem, on the other hand it
reduces the loading peaks induced under critical interaction conditions [211].

Although nonlinearity plays a dominant role in the direct interaction between a vortex and an
airfoil, it is not the only affecting factor. Vortex diffusion within the airfoil boundary-layer, vortex-
shedding from the trailing edge and boundary-layer separation at the leading edge are viscosity related
mechanisms that must be accounted for when a prediction is attempted of the BVI noise and unsteady
loading. Moreover, when an oblique blade-vortex interaction occurs in high Mach number flows, both
compressible and three-dimensional effects have an important influence on the acoustic power and
directivity.

In the following subsections some analyses and numerical simulations of blade-vortex and gust-
airfoil interactions are reviewed. Three different approaches are presented, based on the discrete-vortex
model, the Navier-Stokes equations and the linearized convected wave equation.

10.4.1.1 Discrete-Vortex Simulations

Lee & Smith [212] investigated the effect of the vortex distortion by describing the impinging vor-
ticity field by multiple vortex elements convected in a two-dimensional flow. The airfoil surface was
described by means of an integral boundary-element method. An adaptative panel distribution on the
airfoil surface as the vortices move along the airfoil was used in order to accurately predict the effects
induced by the vorticity field.

Consider an unsteady, incompressible, inviscid, and rotational flow. In terms of vorticity w k = Vxu,
the linear momentum equation can be written as

9w-- +u Vw = O (10.121)

As shown in section 1.5, the velocity field can be decomposed into a solenoidal field u, and an incom-
pressible, irrotational, potential field u0. Therefore,

(10.122)

(10.123)

(10.124)
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where U_TE and U+TE respectively denote the velocity immediately below and above the trailing edge
on the airfoil surface.

The airfoil surface can be described as a surface distribution of sources with strength taken constant
in each boundary panel. The scalar potential field is thus given by

t) = x-

dFa dF 1 2 2

-a- = --a- = (_ -

q(t) flnIxjxjt ds+7a(t) [tan (YiYj ds (10.131)
2ir Jj 27r J \.xixjJ

where q(t) denotes the source strength of the panel j and 'ya(t) is the airfoil circulation per unit length.
By applying the boundary condition (10.127) at each surface panel, with q given by equation

(10.131), a set of linear equations for qj and 'Ya can be obtained and solved at each time-step.
A vortex is shed from the trailing edge at each time-step and its intensity is given by a discretized

form of equation (10.130). These vortices are moved to their new positions at the local velocity u =
uv + uw + V, where u,i,ì is the velocity induced by the impinging vortices and u,w is the velocity
induced by the shed vortices. Both u,' and u,w can be determined through the Biot-Savart law.

In order to investigate the effects of the vortex distortion, the initial vorticity field is modeled as
multiple, discrete-vortex elements clustered in a circular cloud. The vortex core is that of a Rankine
vortex, having a uniform vorticity distribution. A second order Runge-Kutta time integration algorithm
is adopted in order to reduce the numerical diffusion of the incident vorticity field. Furthermore, the
numerical instability is minimized by:

- assuming vortex elements of equal area, that is, of equal circulation;

- locating each vortex in the centroid of a cloud surface elelnent;

- assuming an aspect ratio of each cloud element close to 1.

(10.130)

These two fields are coupled by the boundary condition of zero normal velocity

+un=0 (10.127)

on the airfoil surface.
By integrating the linear momentum equation (1.74) along a streamline, provided that u = Vq5+u,

the following form of the unsteady Bernoulli equation can be obtained

r....i 2 Oç5 f0u.ìp_iU --j-
where C, is the pressure coefficient.

The tôtal circulation in the flow is conserved, hence

dF(t)
= o with

F(t) =Fa+I'v+Fw (10.129)

where Fa denotes the circulation around the airfoil, F is the circulation of the interacting vortices and
F is the circulation of the vorticity shed from the trailing edge. The instantaneous value of F can be
determined by requiring that the pressure jump between the upper and lower airfoil sides vanishes at
the trailing edge. Thus, from equations (10.128) and (10.129) it follows that
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Lee & Smith [212] investigated the interaction between an isolated vortex and an NACA-0012 airfoil
and observed that:

the amount of vortex distortion, the airfoil lift and the mixing of the impinging vortex with the
airfoil wake are affected by the size and the strength of the impinging vortex;

the main effect of the vortex distortion is to reduce the unsteady loading peaks;

when the vortex passes by the airfoil trailing edge an appreciable lift variation occurs;

the unsteady pressure terms have an important effect on the airfoil lift.

Park & Lee [213] used an Euler-Lagrangian method in order to calculate the unsteady, viscous,
incompressible flow field of a Rankine vortex impinging on the sharp leading edge of a wedge. The
vorticity field was described by means of a random vortex method, the convection velocity of each
vortical element was calculated by means of a fast vortex method, and the physical domain was mapped
into a numerical domain by means of a Schwartz-Christoffel transformation.

In terms of vorticity w, the incompressible, unsteady Navier-Stokes equation has the form

8w 12 with (10. 132)

Vu=0 (10.133)

where Re is a reference Reynolds number.
Consider the Schwartz-Christoffel transformation which maps the numerical domain ( into the

physical domain z, i.e.
\/7ri 'z=af{(_si)Q/'+((+s3)

where a and b are the parameters of the transformation, a is the wedge interior angle and s is a
constant associated with the edge rounding off, which avoids the leading edge singularity. The complex
velocity in the physical domain is given by

(10.135)

where V(() is the complex velocity in the numerical domain. The vorticity field consists of:

- incident vortical elements, which are blob-vortices arranged in a Rankine vortex;

- vortex-sheets which are shed from some generation points within a numerical boundary-layer
along the wedge surface;

- blob-vortices originated when a vortex-sheet crosses the numerical boundary-layer.

Impinging vortex elements are convected by means of a two-step Runge-Kutta time integration
scheme, i.e.

xn+ 1/2 = n + u(x"1)

xn+1 = xn + tu(xnh/2) (10.136)

whereas vortex-sheets and surface vortices are convected by means of a first-order Euler method, i.e.

(10.134)

x1 =x+Ltu(x'1) (10.137)
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In equations (10.136) and (10.137) both blob-vortices and vortex-sheets, are convected at the local flow
velocity u.

By separating the advection part of equation (10.132) from its diffusion part, the local velocity of
a blob-vortex can be rigorously calculated by means of the Biot-Savart law, provided that the vorticity
field w is known. Then, a random walk method can be employed in order to simulate the viscous
diffusion mechanism. It thus results that

n+l n+1
Xconvection + 97

where is a random Gaussian distribution with mean value O and a variance proportional to Lt and
the kinematic viscosity u.

The convection velocity of a vortex-sheet can be calculated from Prandtl's boundary-layer equation

where x and y are the local body-fitted co-ordinates and b is a linear smoothing function given by

h being the length of the vortex-sheet. Therefore, the tangential and normal velocity of the ith vortex-
sheet at the time-step n can be obtained from equations (10.140), (10.141) and (10.143). It follows
that

n(x2(nLt) , y(nzt)) = U1(x) + 'yj b(x(t) - x) H(y - yi) (10.145)

v v(x,(nt) ,y(nzt)) oU(x)
ôx

i

J
j [b(x+_x) _b(xi__-x)]min(YiY) (10.146)

Equation (10.137) is used to convect a vortex-sheet to the next time-step location, whereas a random
walk method is performed to simulate the boundary-layer viscous diffusion. Consistently with equation
(10.139), a randomn perturbation is imposed only in the y-direction.

The local convection velocity of a blob-vortex can be calculated by means of the Biot-Savart law.
However, in order to reduce the computational time, a fast vortex method can be performed. It consists
in solving the following Poisson equation

(i 21x1 /h,
b(x)

= 1. 0,
lxl<h/2
otherwise

(10. 138)

(10.144)

V2 - x) (10.147)

la2w
with (10.139)

and (10.140)

Vu=0 (10.141)

By defining the vortex-sheet strength as the circulation per unit length, i.e.

ry-Ly
= um / wdy (10.142)

Ay-O ,/

the vorticity field is given by

w(x,t) = 'yj b(x(t) - x) ö(y(t) - y) (10.143)
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where g denotes the discretized Laplacian of the velocity induced by a blob-vortex. A Sculley [28]
blob-vortex model

r i
= i + a7r2 (10. 148)

is assun-ied, and equation (10.147) is solved on a discretized numerical domain with the normal boundary
condition on the body surface satisfied via the image method. The velocity at each vortex location is
finally calculated by means of a cubic spline interpolation of the values computed at the grid points.

The numerical simulation is performed by calculating, at each time-step, the velocity convection
of each vortical element in the flow field, moving them to the next time-step locations, and by using
equation (10.145) to calculate the tangential velocity at some generation points on the wedge surface.
Whenever the surface velocity is greater than a control value, a vortex-sheet is generated and its strength
is such that the no-slip boundary condition is satisfied at the generation point. Furthermore, when a
vortex-sheet crosses the numerical boundary-layer it is converted into a blob-vortex which is added to
the field.

Park & Lee [213] showed that, when a Rankine vortex is initially located above the centerline
of the wedge, a secondary vortex is shed toward the underside of the wedge as the oncoming vortex
approaches the leading edge. The secondary vortex is of opposite circulation and less intense than the
incident one. Furthermore, distortion and splitting of the incident vortex occur, but do not depend
upon the viscosity of the fluid. Conversely, the vortex shedding from the leading edge is due to a viscous
interaction process.

Chiocchia & Casalino [32] used a conformal mapping technique in order to describe the unsteady
aerodynamic field of a double row of counter-rotating vortices convected past a Kármán-Trefftz airfoil.
A vortex-sheet was shed from the airfoil trailing edge in order to satisfy a zero-velocity unsteady Kutta
condition. The model accounted for all the induction effects between the oncoming vortices, the airfoil
and the airfoil wake, but the latter was convected at a constant velocity. The interaction noise was
successively predicted by using an acoustic analogy approach and the unsteady pressure field on the
airfoil surface.

Consider a Kármán-Trefftz conformal transformation, which maps the outer region of a circle in the
complex (-plane into the outer region of an airfoil in the complex z-plane, namely

z = (0/4) ((+ 1/4) + (< - 1,'4)
(10.149)

((+1/4)°((i/4)°

where 0 2 - /ir and e is the value of the trailing edge angle. The circle is centered in ( = a + ib,

intersects the real axis at TE 1/4 and has radius R = \/(&E + a)2 + b2. The point eTE maps into
the airfoil trailing edge XTE = 0/4.

Making the change of variable (' = (- ( and letting a line-vortex of circulatioii F (k = F/2ir)
occupy the position (, the complex potential field can be written as

W((')=W3+W+w (10.150)

where W denotes the steady potential of a Kármán-Trefftz airfoil, W, is the contribution of the
incident vortex, and W,, is the potential of a wake shed from the airfoil trailing edge, as required by
an unsteady Kutta condition. Quantities in the following expressions are made dimensionless by the
free-stream velocity V and by the airfoil chord.

The steady potential contribution is given by

W3(() = e"(' + +iIn(' (10.151)
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where a is the airfoil angle of attack and F3 = 4ir R sin(a + ß) is the airfoil steady circulation, which
depends on the airfoil camber ¡3 = tan [b/(TE + a)].

The vortex potential contribution is given by

= k {in ((' - - In (' - + ln('} (10.152)

where the first and the second term describe the potential field of a vortex at and its image within
the circle, whereas the third term accounts for a vortex added to the circle center in order to cancel
the image vortex when the incident one is infinitely far.

Finally, supposing that the wake is a continuous distribution of vorticity along the real axis , its
potential contribution is given by

W(ç') = _L '
in (2ir J

(10.153)

where 'y() is the specific circulation of the vortex-sheet shed from the airfoil trailing edge.
In order to account for the flow unsteadiness, the motion of the oncoming vortex must be taken

into account in the complex formulation. Therefore, the following history is assumed to describe the
vortex-airfoil interaction process.

A vortex of given intensity is located at an arbitrary upstream position, sufficiently far from
the airfoil. As a result, a vanishing velocity is induced at the trailing edge and the vortex-sheet
has a vanishing circulation y. The circulation around the airfoil is thus initially due to the only
steady-state contribution F3.

As the vortex moves towards the airfoil, a wake is progressively shed from the trailing edge,
allowing the Kutta condition to be instantaneously fulfilled. The instantaneous reaction of the
flow around the airfoil is a consequence of both the incompressible and inviscid character of the
flow: the flow perturbations induced by the oncoming vortex propagate at an infinite velocity, no
relaxation effects occur at the trailing edge.

The trajectory of the oncoming vortex is instantaneously perturbed from the steady-state stream-
lines by the induction of the whole vorticity field, namely, the image vortex, the wake already
shed into the field and the image system of the wake.

The circulation of the wake progressively shed from the trailing edge depends on the instantaneous
perturbation induced by all the preexisting vortical disturbances (the oncoming vortex, the wake already
shed and the respective images) at the trailing edge. A physically consistent condition requires that the
velocity induced at the trailing edge is finite. This condition is equivalent to a zero velocity condition
applied onto TE in the circle plane. Hence, the circulation of the vortex-sheet can be determined by
requiring that it induces a velocity at &E which exactly cancels tile velocity induced by the preexisting
vortical disturbances. This is the form of the unsteady Kutta condition adopted in the present fixed-
wake approach.

Since the steady potential satisfies the Kutta condition at the trailing edge by definition, the zero
velocity Kutta condition in the circle-plane takes the form

fdW\
(V*)eTE =

d )eTE
+

d )TE
= (10.154)
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Introducing equations (10.152) and (10.153) into equation (10.154), setting = R e' and
rearranging yields

eF 2Rccosß+.TE
TE R ( - &E)

() d = F () (10.155)

where
1 1

ci5(c;)= + (10.156)Rceç', RCeß *Rce_iß_Rc2
Then, changing back to the airfoil-plane and using the identity -y(x) dx = 'y() d leads to the integral
equation

STE +Vt (x+9/4\fl
JXTE

{1_4Rcosß [i_ xO/4) JJ7=
where the upper limit of integration results from having supposed that the wake is convected at the
free-stream velocity V along the real axis.

It is expedient to express the wake in a body frame of reference by means of the Galilean transfor-
mation a = x + XTE + r, with T = V t. Thus, equation (10.157) takes the form

- 4RCcosß [ (T _a+O/2)]}d
= (10. 158)

with the initial condition 'y (0) = O which is consistent with the condition of zero initial velocity at the
trailing edge.

Interestingly, for ( = O and O = 2, which correspond to a flat-plate, the kernel in equation (2.38)
reduces to /( + 1 - o-) / (r - a), which is the same of the integral equation obtained by Wagner [21]
for an impulsive start of a flat-plate at a small incidence.

The known term in (10.156) is a function of the instantaneous vortex position . The corre-
sponding position in the z-plane is given by z,, (r) = z + f V (zv) dr', where z is the initial position
of the vortex. The convection velocity V is given by the following expression in which use of Routh's
theorem has been made

(d\ (dÇ . F (d2/dz2\
C (za)

- ' d(/dz)<

where Ifr is the overall complex potential deprived of the self-vortex contribution.
Since the vortex velocity VC is an implicit function of time, equation (10.158) must be solved by

successive updates of the vortex position. Moreover, in order to account for the wake contribution, an
integral extending from O to r requires to be calculated at each time-step.

An acoustic analogy prediction requires the unsteady pressure field on the airfoil surface. This is
given by the Bernoulli's equation

(10.157)

C(z,r) = 1 V(z,r) V*(z,r) - 2(_.W(,r))T
<(z)

where G is the pressure coefficient and V is complex the velocity in the airfoil-plane.

10.4.1.2 Navier-Stokes Simulations

(10.159)

(10. 160)

Hardin & Lamkin [69] computed the unsteady aerodynamic field around a lifting Joukowski airfoil
interacting with a distributed vortex.
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By supposing a two-dimensional incompressible flow, the Navier-Stokes equations can be written as

V2'i1'=w (10. 161)

Dw ÔW&t, DWOw
(10.162)

where W denotes the stream function, such that u = W1, and y = Wz, w is the vorticity of the flow
and w is the kinematic viscosity of the fluid. Hardin & Lamkin solved sequentially in time the coupled
equations (10.161) and (10.162) at a chord based Reynolds number of 200 with a no-slip boundary
condition imposed on the airfoil surface.

The oncoming vortex is given by

w=woe_7r2 for r<r (10. 163)

and it is introduced into the field upstream of the airfoil. The cut-off radius 9c is an input parameter
which determines the size of the vorticity field, whereas the parameter 'y is such that the vorticity
strength at r is reduced of one percent of the maximum value w0 in the vortex center. Therefore, it
results that

'= - ln(0.01)
(10.164)

The input parameter w0 is related to the vortex circulation F0 by the relationship

ro= f2ir
Pc 0.99 ir

I wrdrdû=jo o 'Y

In order to predict the radiated acoustic field from the vorticity field around the airfoil, Hardin &
Lamkin [69] exploited the theory developed by Howe [20]. For an isentropic and low Mach number flow,
provided that the characteristic wavelength of the acoustic field is much larger than the airfoil chord,
the far pressure field is given by

po err
p(x,t) - I/I [(wxv).V{(__Mo).y}] dy (10.166)

4irco x (i + M0 -) Dt jjj x ret
X

where Po and c0 are the ambient density and speed of sound, respectively, and M0 is the mean flow
Mach number. The integration extends over the total volume of the flow and the integrand is evaluated
at the retarded time t - (x - M0 . x) ¡co.

Hardin & Lamkin observed that aerodynamic noise is generated even in the absence of the impinging
vortex, as a consequence of the interaction between the boundary-layer fluctuations and the trailing
edge. Furthermore, they argued that the noise resulting from a direct vortex-airfoil interaction is quite
less impulsive when both viscous effects and the distributed nature of the impinging vortex are taken
into account. Finally, they observed that a vortex loses its organized structure and is strongly diffused
after it have impinged onto the airfoil leading edge. Therefore Hardin & Lamkin argued that helicopter
BVI noise is mainly generated by the first encounter between a tip-vortex and an oncoming blade.

Rai [70] used a fifth-order accurate, Osher-type upwind scheme in order to solve the thin-layer Navier-
Stokes equations with an implicit scheme which was second-order-accurate in tilne.

The differencing scheme was demonstrated to preserve the vortex structure for much longer time
than both central and upwind second-order accurate schemes. The vortex preserving test consisted in
checking the core pressure of a Iamb-type vortex, namely

F i
119 = 2irr i + a2/r2

(10.165)

(10. 167)
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convected by a uniform flow. The increasing rate of the core pressure was assumed as representative of
the numerical vortex decay induced by the numerical scheme.

The first numerical prediction was concerned with a non direct vortex-airfoil interaction at a Mach
number of 0.536 and a chord based Reynolds number of 1.3 x 106. The vortex parameters were chosen
in order to fit the experimental conditions of Caradonna et al. [72]. A good agreement was obtained
between numerical and experimental results.

The second numerical simulation was concerned with a direct vortex-airfoil interaction. The flow
conditions were the same as in the first case, but the vortex circulation was higher. Distortion and
splitting of the impinging vortex were predicted. The upper and lower vortex fragments were convected
with different velocities along the respective airfoil sides, and interacted with the airfoil wake.

The third computation was concerned with a non direct vortex-airfoil interaction in transonic flow
conditions. The free-stream Mach number was 0.8, while all the other flow parameters were the same
as in the second case. The two shocks on the upper and lower airfoil sides were perturbed from their
symmetric steady positions by the presence of the vortex. Furthermore, on the lower side, the vortex-
shock interaction induced a large bubble of separation from the shock foot, up to the airfoil trailing
edge. Furthermore, the structure of the lower shock was strongly affected by the vortex passage and a
shock bifurcation near the wall was observed.

10.4.1.3 Linearized Models

Atassi et al. [33] used an integral Kirchhoff method in order to relate the far pressure field to the
aerodynamic field past a flat-plate interacting with a three-dimensional gust. The aerodynamic solution
scheme was developed by Scott & Atassi [214] and was shown to provide accurate numerical results only
in the airfoil near field. In fact, as discussed by Atassi & Scott [215], the far field direct solution largely
differed from the solution obtained by propagating the near pressure field into the far field through an
integral approach.

Consider a two-dimensional airfoil of chord c, placed at nonzero angle of attack into a uniform
stream of velocity U parallel to the x1 axis. Let

u00 = ae k(x_UL)
(10. 168)

be a solenoidal (a. k = 0), small amplitude (a « U00) gust, imposed upstream onto the flow. Let the
velocity field be decomposed into the sum of a steady mean potential flow and an unsteady fluctuating
field, namely

u(x, t) = U(x) + u'(x, t) (10.169)
Then, let us decompose the unsteady velocity u' into the sum of a known vortical (solenoidal and
rotational) component UR and a potential (irrotational) component V, that is

u'(x, t) = UR + V (10.170)

For a flat-plate at zero angle of attack the unsteady velocity can be decoupled from the mean flow and
UR reduces to the upstream gust u00.

Let us consider the motion of an ideal fluid (inviscid and not-heat conducting) governed by the Euler
equations. These can be linearized with respect to the steady mean flow and arranged as a convective
wave equation for the potential ç, i.e.

Do(1D0qY\ 1 1_( -i; ---V.(poV5)=V.(pouR) (10.171)Dt\c0 Dtj po Po

where Po and co are the local mean flow density and speed of sound, respectively, and Do/Dt is the
convective derivative associated to the mean velocity. The fluctuating pressure is given by

D0ç5p = po(x)
Dt (10.172)
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For a uniform and parallel mean flow, because of the solenoidal character of the vortical disturbance,
equation (10.171) reduces to

(10. 173)

which describes the aerodynamic field around a flat-plate, embedded in a small amplitude solenoidal
gust.

For a flat-plate, the boundary conditions of (i) vanishing normal velocity on the airfoil surface and
(ii) pressure continuity across the wake take the form

i;ki(xj-(Jt)+i k33 for z1 , X2 = 0 (10.174)= a2 e
¿9X2

(Lç5) = O for z1 > , X2 = 0 (10.175)

Furthermore, the unsteady potential satisfies the far field condition

Vq5*0 as X1-00 (10.176)

Equation (10.173) and the boundary conditions (10.174), (10.175) and (10.176) can be made dimen-
sionless by the reference length c/2, the reference velocity U, the reference time c/2U, the reference
gust amplitude a and the reference potential c a/2. It thus results that

M_V2=0

8X2
= _a2eikhl_t)+1k2x2 for 1 <Xi 1, X2 O

for x1>1, X20
vI * O as xi * 00

where DO O

Dt 8t
+

Ox

and
k1 = 2U

(10.182)

is the streamwise wavenumber, with denoting the angular frequency of the upstream disturbance.
Equation (10.177) can be reduced to a Helmholtz equation by introducing the Prandtl-Glauert

transformation

X = X1 (10.183)

y = /3x (10.184)

Z = (10.185)

(10. 177)

(10.178)

(10. 179)

(10.180)

(10. 181)

with 32 = i M2 and by setting00

e 't°e k,t-i k3x

Therefore, the wave equation takes the form

82 IfkiM\2
ß2

(k)2}

(10.186)

(10. 187)
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i rl
P(x) = - I ¿XP- dy1

2 1 ( 5Y2 8Y2 J

and the boundary conditions (10.178), (10.179) and (10.180) take the form

__eik1x for 1x<1, y=O (10.188)

(-- + (i) O for x> 1, y = 0 (10.189)

V -0 as x * 00 (10.190)

Finally, the wake boundary condition (10.189) can be integrated leading to

= for z> 1, y = 0 (10.191)

where ¿TE is the potential jump at the airfoil trailing edge.
The boundary-value problem defined by the Helmholtz equation (10.187) and the boundary con-

ditions (10.188), (10.190) and (10.191) can be solved numerically. Then, the pressure field can be
obtained from the potential field by means of equation (10.172).

The pressure distribution on the fiat-plate can be calculated by means of a Possio [128] solver. This
strategy was adopted by Atassi et al. [215] in order to test the numerical solution of the boundary-value
problem.

As shown by Atassi et al. [33], the pressure field satisfies a Helmholtz equation in the transformed
Prandtl-Glauert plane (z, y, z), that is

(V2 + K2) P = 0 (10.192)

where

k1M (k3\
(10.193)K\/(

2 2

= ß2)J)
and

= PO a2U
(wt-k3x3)

e M K1 z (10.194)

with
k1M irc

2

By using the Green's theorem, the transformed pressure P in a field point can be related to the values
taken upon the airfoil surface. It thus results that

(10.196)

where x (z, y, z) denotes the observer location in the transformed Prandtl-Glauert plane, y =
(yl,y2,y3) is a source point in the transformed Prandtl-Glauert plane and G is the free-space Green's
function of the Helmholtz equation (10.192), say

G(Ix - I) = i (7r/2) H2(K Ix y) (10.197)

For a fiat-plate, the condition of vanishing normal velocity is equivalent to the condition aP/ay2 = 0.
Thus, substituting equation (10.197) into equation (10.196) yields

P(x) f AP(y1) H2(KIx
dy (10.198)
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In the far field, say lxi» lyl, the formal solution (10.198) provides the following acoustic pressure

¡3v'k ei7h14 sinO
p(r, O) = F(a)

V" v" (1_M1sin2O)3"4

exp {_ir [K (i - Msin2O)''2 - MoeK1 cosO] } + O(r_3/2) (10.199)

where both the observer and the source point are located in the physical plane (r and O denote the
observer polar co-ordinates). The function F is the Fourier transform of the pressure jump along the
z1 axis, namely

pl
F(cx) = / Lp(y1) dy1

J_l
where P(Yi) = P(Yi, 0) - p(yi, 0-) and

KcosO
2

MoeK1 (íO.2ol)/1-Msin O
In order to compute the acoustic intensity, the far field acoustic velocity must be determined. This

can be obtained by integrating the linearized Euler equation

Doua
Po Dt

=-Vp

with p given by equation (10.199). Hence,

2 1/2KcosûMoeK1.(1 Msin O)
Ua1 = Moe Ki(1_Msin2O)l1'2_M p

coK cosO

ß2MooKsinû
Ua2

K1 (i _Msin2O)h/2_MoeKcosOP

Moek3 (i. - Msin2O)'l"2
1La1 P

K1 (i - Msin2O)'/'2 - MoeKcosû

For an isentropic irrotational flow Goldstein {216] proposed the following expression for the acoustic
intensity vector

I=(p+poUoouai)
PO J

Thus, substituting equations (10.199), (10.203), (10.204) and (10.205) into equation (10.206), and
averaging over a period, yields the mean acoustic intensity vector

i /34M00K sin2O

2 2 1/2 2 IF(a)I- i K r [(i Moe sin o) - KMoe COS0/Ki]

I ß2K1 k33
L1_Msi1120+ (1_Msin20)'"2

(10.200)

(10.202)

(10.203)

(10.204)

(10.205)

(10.206)

] + O(r2) (10.207)

where i is the unit vector in the observation direction. Finally, from the flux of the averaged intensity
vector across a cylindrical surface around the airfoil, the following expression for the acoustic power
can be obtained

p6n '2 . 2t (
= co j sin

dO (10 208)
K187r 10 [(1_Mcosjn2O)h/I2_KMoeCOsO/Kl]2 (i -M,sin2O)
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Atassi et al.' [33] concluded that both the acoustic power and the directivity strongly depend on
the gust parameter K1. For K1 ir/2 (c < À/2), the pressure directivity is a smooth function of the
observation angle with a typical dipole pattern. Conversely, for K1 ir/2 (c > À/2), the directivity
pattern exhibits several lobes.

The acoustic intensity radiated when the airfoil interacts with an oblique gust is generally lower
than that generated by a parallel interaction. The difference is significant when K «K1 and vanishes
when K K1. Indeed, if K Ç O no sound is radiated.

Finally, at moderate and high values of the mean flow Mach number, the acoustic power reaches
a maximum as the reduced frequency k1 increases. As a result, a significant noise reduction can be
obtained by avoiding frequencies around the peak value of P.

Patrick et al. [217] investigated the feasibility of an inverse acoustic prediction. This consists in
determining the spectral behaviour of a vortical flow on the base of the sound generated by its interaction
with a streamlined body.

The inverse aeroacoustic problem includes a gust inverse problem, which consists in determining
the unsteady velocity field from the unsteady pressure distribution on the body surface, and an acous-
tic inverse problem, which consists in determining the surface pressure field from the acoustic field.
Some requirements guarantee the uniqueness of the solution for both the gust and the acoustic inverse
problems.

Consider first the gust inverse problem for a flat-plate in incompressible flow with an imposed
transverse gust. The pressure jump on the plate was expressed by Sears [126] in the form

k1 (H2)(ki) _iH2)(k1))

is the Sears' function. In this case the transverse gust amplitude a2 can be uniquely determined from
the pressure jump on the flat-plate. If a longitudinal disturbance is imposed on the upstream flow
and its wavenumber k2 is known, then the longitudinal gust amplitude a1 can be determined from the
continuity condition a k = 0. Finally, if the gust is three-dimensional, the inverse solution is not unique
since the third component a3 cannot be determined.

Consider now the inverse acoustic problem for a flat-plate in incompressible flow with an imposed
three-dimensional gust. In the small mean flow Mach number limit, equation (10.199) reduces to

p(x1,k1) = 2poUj/1 Xl
a2(ki) S(k1) eiklt

V 1+x1
where

iS(k1) =

'K sinO rl
p(r, O) = / - - exp {i r K + ir/4} / ¿p(y) e1 K cosO Yi dy1

y 8ir J-1
Setting

'8ir /Ff(r,O) --exp{irK ir/4}
equation (10.211) can be written as

I1 P(Y1) e K cosOy dy1 = f(r, û)J1

(10.211)

(10.212)

(10.213)

A collocation technique can be exploited in order to discretize equation (10.2 13). Setting Yi = - cos a,
the pressure jump can be assumed as given by the series expansion

isp(a) = A0 cot() +>A sin(na) (10.214)
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which is physically consistent with both the square root singular behaviour at the leading edge of the
flat-plate and the Kutta condition at the trailing edge. Thus, substituting into equation (10.213) and
integrating yields

ni Jn(Kcos0)Air(i) n
K cos On=I

where J, is the nth Bessel function of first kind. Equation (10.215) is the discretized form of the
Fredholm integral equation of first kind (10.2 13). It can be written as

MA=f (10.216)

where M is a m x n matrix, with m n, whose elements are combinations of Bessel functions, A is a
n x 1 matrix containing the discretized pressure jump and f is a m x i matrix containing the known
far field data.

Rayleigh [51] demonstrated that a source of sound could not be determined uniquely from its far
field radiation, provided that the acoustic field is governed by a standard wave equation. However,
for a harmonic disturbance governed by the Helmholtz equation, the inverse solution can be unique.
Theorems on the uniqueness of an inverse acoustic problem governed by the Helmholtz equation have
been formulated by Colton & Kress [218]. However, even though the uniqueness requirements are
satisfied, the inverse problem can be ill-posed and its solution can be quite difficult. The ill-posedness
of the inverse problem is a consequence of the discrete dependence of the solution on the far field data.
As a consequence, the linear system can be ill-conditioned and extremely sensitive to the far field input
data.

The matrix M has been obtained by projecting the unknown pressure jump on a solution which is
physically consistent with the flow behaviour at the leading edge and the trailing edge of the flat-plate.
Nevertheless, since the elements in the columns of M decrease as the column number increases, the
linear system is ill-conditioned. This follows from the property of the Bessel functions

i (Z\fl
Ja(n) 2n)

a

00

f(r,O) = A0 ir[Jo(KcosO) - i J1(K cosO)] + (10.215)

as n*oo (10.217)

Patrick et al. [217] used two methods to solve the linear problem (10.216). The first method is
based on the singular value decomposition of M. It consists in finding the matrices U, E and V such
that

M=UEVt (10.218)

where E is m x n diagonal matrix whose first n terms are the singular values cr and the remaining
in - n terms are zero, U is a m x m matrix containing the left singular vectors in its columns, and V is
a n x n matrix containing the left singular vectors in its columns. Overbars denote complex conjugates.
The solution of the linear system (10.216) is thus given by

A= (f.u) (10.2 19)
o-i

a

Divisions by very small singular values is responsible for large errors in the solution. Therefore, a
regularization method must be incorporated into the solution (10.219) in order to reduce the sensitivity
of the pressure jump on the far field data. Patrick et al. adopted the spectral cut-off method, which
consists in avoiding summation over singular values smaller than a cut-off value, and the Tikhonov
[219] method, which makes use of the parameter ß to write the solution as

A= ) (10.220)
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The second method is a simple regularization technique which consists in multiplying both the sides
of equation (10.216) by the adjoint matrix of M, namely

MtMA Mtf (10.221)

The solution is thus given by

A = (MtM)' Mt f (10.222)

Patrick et al. showed that, although the simple regularization technique provides accurate results,
the method based on the singular value decomposition is more general.

10.4.2 Global Rotor-Wake Simulations and the Wake-Preserving Problem
Three-dimensional rotor/wake CFD computations have been performed for many years, but these were
mainly concerned with the prediction of rotor performances [220, 221]. These do not require a high.
accuracy in the prediction of the wake convection. On the contrary, aeroacoustic BVI predictions.
require that the rotor/vortex passage distance is predicted within a small fraction of the blade chord
and that the vortex core is preserved during its motion. Simple estimates show that the grid required
to preserve and accurately predict the wake is enormous. Therefore full CFD predictions of helicopter
BVI will remain un practical for many years.

An alternative to using large computational resources is to introduce some modeling in the vortex
treatment in order to reduce the numerical vortex diffusion. A typical approach consists in modifying
the flow equations by adding some artificial terms which reduce a vortex dissipation and preserve its
strength. The Vorticity confinement method [222], for example, consists in adding the acceleration
term

en x w (10.223)

with
Vw

n
= IVwI

(10.224)

to the right-hand side of the linear momentum equation. This acceleration is in the direction of the
tangential flow induced by the vortex and is proportional to the vorticity w. Since a non vortical flow
portion is not affected by this term, the circulation of the vortex is unaffected by the artificial source
term. The effect of this term is to drive vorticity inward the center of the vortex. Therefore, the
size of the vortex results from an equilibrium between the confinement acceleration and the numerical
dissipation. It can be varied by changing the value of the parameter e.
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Abstract
This work deals with the aeroacoustic problem of sound generated by unsteady flows past rigid surfaces. It is the
outcome of a PhD research shared among the Dipartimento di Ingegneria Aeronautica e Spaziale at Politecnico
di Torino, and the Laboratoire de Mécanique des Fluides et d'Acoustique at Ecole Centrale de Lyon.

The model problem of an airfoil embedded in the fluctuating wake of a rod is investigated in the first part.
Such a flow configuration is an effective benchmark for developing and validating numerical methodologies of
aeroacoustic prediction. Furthermore, the rod-airfoil configuration is of great academic concern, for it allows
to investigate some underlying mechanisms involved in the generation of vortex-airfoil interaction noise. The
numerical and theoretical relevance of the rod-airfoil configuration reflects the structure of the first part.

An analytical nodel based on the circulation theory is initially developed. This is used to investigate the
influence of the airfoil geometry and the vortex size on the far pressure field, for a given distribution of vortices
convected past an airfoil. Particular emphasis is given to the nonlinear effects related to the airfoil thickness and
camber, the interaction of the airfoil wake with the incident vortices, and the vortex distortion near the airfoil
leading edge. The limits of applicability of the frozen convection hypothesis and other linear approximations are
discussed in great detail.

Wall pressure and acoustic measurements are carried out with a twofold aim in mind: (i) to obtain data
for comparisons with numerical results, (ii) to investigate the three-dimensional character of a nominal two-
dimensional flow.

Numerical results are obtained by means of a hybrid RANS/Ffowcs-Williams & Hawkings approach. The
RANS solver is a finite volume code developed at LMFA, and the FW-H solver is the rotor-noise code Advantia.
The latter has been developed in the context of the present study and is based on the so-called advanced time
approach, firstly proposed by the author.

The intrinsic three-dimensional behaviour of the flow past a bluff body is described for the first time by means
of a spanwise statistical model. This allows to perform acoustic analogy predictions by using a two-dimensional
aerodynamic field, but accounting, to some extent, for the three-dimensional character of the flow.

The hybrid RANS/FW-H approach and the spanwise statistical model are applied to the rod-airfoil system.
It is shown that, despite the tonal character of the RANS solution, the spectral broadening around the tonal
frequency, as observed in the experiments, is partially recovered.

The second part of the work illustrates theories and models in fluid-body aeroacoustics. It is only concerned
with sound generation in the absence of acoustic feed-back. Therefore, only external flows are considered,
the propagation problem in complex geometries is not addressed, and the aeroacoustic feed-back in resonant
configurations is riot exaniined. Three unsteady flow configurations are considered:

- vortical flows past motionless surfaces,

- surfaces moving in a fluid at rest,

- vortical flows interacting with moving surfaces.

The first case is of main concern in the flow noise theory. A turbulent boundary layer upon a fuselage panel
induces noise and vibrations. Small-wavenumber turbulent fluctuations past an airfoil trailing edge are a source
of high-frequency broad band noise. This kind of problems dealing with acoustically non-compact surfaces are
investigated by means of infinite or semi-infinite plates.

The second case is of main concern in the rotor noise theory. Helicopter rotors operating in quite uniform
flows generate noise because of the unsteady loading exerted on the surrounding fluid. Furthermore, the blade
motion may induce the formation of vortical flows (wakes and turbulent boundary laye .... s in transonic
conditions. Both turbulence and shocks are important sources of aerodynamic

The third case is of main concern in the rotor-stator noise theory. Roto
with incoming flow disturbances. This happens when atmospheric turbule
stator wake is chopped by a downstream rotor.

Unsteady aerodynamic theories are presented in the second part as am
oping aeroacoustic models. Nevertheless, the author's feeling in writing
is an aerodynamic by-product, but aeroacoustics are not a by-product of a




