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Surveillance, Environnement, Commissariat à l’énergie Atomique
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A parallelized algorithm based on an existing 3D wide-angle parabolic equation model is devel-
oped to perform numerical simulations of underwater acoustic propagation on a massively parallel
computer. The parallelization method used is a suitable two-level procedure: A frequency decom-
position and a spatial decomposition of the calculations, which are respectively dedicated to reduce
CPU times for broadband and cw signal propagation. The high-performance of the parallelized
algorithm is examined for the 3D extension of the classical ASA wedge benchmark. CPU times
are reported and both speedup and efficiency are analyzed. An investigation of significant 3D
effects at higher frequencies and at longer propagation ranges than in earlier works [F. Sturm,
J. Acoust. Soc. Am. 117(3) (2005) 1058–1079] is performed with reasonable CPU times by using
the new parallel algorithm. Further, the feasability of the procedure applied to a realistic oceanic
environment problem involving both real sound speed profiles and bathymetry data sets is also
illustrated.

Keywords: Sound propagation modeling; parabolic equation; azimuthal coupling; parallel process-
ing; high-performance computing.

1. Introduction

In some underwater acoustic propagation problems, horizontal refraction effects are weak
enough to allow 2D models to predict sound propagation accurately. However, it is well
known that for some particular oceanic environments involving bathymetric slopes and/or
horizontal sound speed gradients, significant 3D effects can be observed.1–7 It is then nec-
essary to use full 3D models to account for coupling of the propagating acoustical energy
from one vertical plane to another. Among these models, 3D parabolic equation (PE) based
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models have proven to give good results.8–17 Their main drawback is that they can be highly
computationally time consuming, even when harmonic sources emitting at very low frequen-
cies are considered. Investigations of most 3D benchmark problems using PE models are
thus often limited to source frequencies of few tens of Hertz only (e.g., 25 Hz for the classical
3D wedge benchmark problem). This issue is all the more crucial as one is concerned with
the study of broadband and/or long-range propagation problems.

The aim of this work is to solve realistic underwater acoustic propagation problems that
were hardly reachable in reasonable CPU times until now. For that purpose, a parallelized
algorithm based on an existing 3D parabolic equation based model 3DWAPE15–17 is devel-
oped and numerical simulations are carried out using the parallelized version of the code
on a massively parallel computer providing a high computational efficiency. The Message-
Passing Interface (MPI) communication library is used in the parallel algorithm which is
based on two principal levels dedicated to reduce CPU times for broadband and cw signal
propagations, respectively. The paper is organized as follows: Section 2 deals with compu-
tational complexities and communication issues associated to N× 2D and 3D computations
at a single frequency or for a broadband source. The parallelization strategy is detailed
in Sec. 3.1 and the computational performances are analyzed in Sec. 3.2. Finally, Sec. 4
shows that the new parallel algorithm allows to investigate significant 3D effects at higher
frequencies and at longer propagation ranges for the ASA 3D wedge benchmark (Sec. 4.1)
and for a realistic oceanic environment (Sec. 4.2).

2. Computational Complexity Analysis of 3DWAPE

Generally speaking, the computational complexity deals with the resources being required
during computation to solve a given problem. The most common resources are time (how
many steps it takes to solve such a problem) and space (how much memory it takes).
Here, we only consider the time complexity which is given by the number of steps that an
algorithm takes to solve a problem, as a function of the size of the input data. Because
CPU time of an algorithm can be directly related to its computational complexity, it
is necessary to analyze the complexity to optimize an algorithm. Indeed, an analysis of
complexity gives the required number of operations, and then, can provide an a priori
relationship between CPU time and the number of processors used. Ideally, for a parallel
computation, complexity and CPU time are inversely proportional to the number of pro-
cessors used. However, in practical cases, it is not true when the number of processors used
increases since idle and communication times between processors occurring in a parallel
computation are non-negligible, and hence tend to deteriorate the efficiency of the parallel
algorithm.

Let us analyze now the computational complexity of the 3D PE based model
3DWAPE.15–17 This model solves the problem of acoustic waves emanating from an isotropic
(omnidirectional) point source, and propagating in general 3D oceanic environments. The
propagation domain consists of a multilayered waveguide composed of a water column over-
lying one or several fluid sediment layers. Cylindrical coordinates are used with r, θ, z,
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representing respectively the horizontal range from the source, the azimuthal (bearing)
angle, and the depth (increasing downwards) below the ocean surface. No cylindrical
symmetry is assumed on the geometry of the waveguide. Hence, the geometry of each
layer is fully 3D. The point source is located at r = 0 and z = zS . Its time dependence
can be either transient (broadband source) or harmonic (cw source). The 4D (i.e., three
spatial dimensions and time) problem of broadband pulse propagation is solved using an
approach based on Fourier synthesis of frequency-domain solutions (discussed in more detail
later on).

In the case of a harmonic point source emitting at frequency f , the model solves the 3D
acoustic problem in the frequency domain using a parabolic equation based approach. The
acoustic field ψ = ψ(r, θ, z;ω) (with ω = 2πf) is calculated as the solution of the following
outgoing equation

∂ψ

∂r
(r, θ, z;ω) = ik0

( np∑
k=1

ak,npX
I + bk,npX

+
1
2Y

I + 1
4Y

)
ψ(r, θ, z;ω) (1)

for 0 ≤ r ≤ rmax, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ zmax, and the initial condition ψ(r = 0, θ, z;ω) =
ψ(0)(θ, z;ω), with ψ(0) a given complex-valued function simulating a point source at r = 0
and z = zS . In Eq. (1), np is the number of Padé terms, k0 = ω/c0, with c0 a reference
sound speed, I is the identity operator, and X , Y are operators defined by

X = (n2
α − 1)I +

ρ

k2
0

∂z(ρ−1∂z) and Y =
1

k2
0r

2
∂2

θ , (2)

with nα(r, θ, z) = (c0/c(r, θ, z))(1 + iηα) the complex (to account for lossy layers) index of
refraction, α the attenuation expressed in decibels per wavelength, η = 1/(40π log10 e), and
ρ the density. The operator Y handles the azimuthal diffraction. By neglecting this term in
Eq. (1), but conserving the azimuthal dependence in nα(r, θ, z), the 3D model becomes a
N× 2D model, or pseudo 3D (i.e. without azimuthal coupling). The 3D parabolic equation
given by Eq. (1) is a paraxial approximation of the 3-D Helmholtz equation. It has a very-
wide-angle capability in depth and a wide-angle capability in azimuth, but does not have
a wide-angle capability as referring to the discussion in Ref. 17 [Sec. II.C]. Regarding the
energy-conservation issues inherent in one-way PE models, the method used to compute
the correct outgoing field is based on a single-scatter formalism and is similar to the one
used in Refs. 18 and 19. The acoustic field ψ is related to the frequency-domain acoustic
pressure P̂ = P̂ (r, θ, z;ω) by

P̂ (r, θ, z;ω) = H
(1)
0 (k0r)ψ(r, θ, z;ω),

where H(1)
0 denotes the zeroth-order Hankel function of the first kind. The acoustic field ψ

satisfies a pressure-release boundary condition at the ocean surface z = 0, an outgoing radia-
tion condition at infinity, a 2π-periodicity condition in azimuth, and appropriate boundary
conditions at each interface. In addition, to simulate a bottom half-space, an increasing
attenuation coefficient is introduced in the lower part of the domain to prevent unwanted
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reflections from the pressure-release imposed boundary condition at the maximum com-
putation depth zmax. As an alternative, one could replace advantageously the absorbing
subbottom with the perfectly matched layer20–22 (PML) absorber as in Ref. 23. The PML
technique is currently not implemented in 3DWAPE. The angular frequency ω is treated as
a parameter, the complex-valued field ψ being sought as a function of the spatial variables
r, θ, and z, only.

The numerical method used to solve the initial and boundary value problem described
above is a marching algorithm similar to an alternating direction implicit (ADI) method for
parabolic partial differential equations. Let {r0, r1, . . . , rL−1, rL} be a uniform partition of
[0, rmax] such that r0 = 0 and rL = rmax, and ∆r denote the constant increment in range:
rn = n∆r, 0 ≤ n ≤ L. Given the 3D field ψ at the discrete range rn, ψ is obtained at the
next discrete range rn+1 in two steps. By letting

µ
(k)
± = bk,np ±

ik0∆r
2

ak,np, 1 ≤ k ≤ np,

the first step consists in computing np intermediate fields denoted u(1)(θ, z), u(2)(θ, z), . . . ,
u(np)(θ, z), by solving

step 1



[I + µ
(1)
− X n+ 1

2 ]u(1)(θ, z) = [I + µ
(1)
+ X n+ 1

2 ]u(0)(θ, z),

[I + µ
(2)
− X n+ 1

2 ]u(2)(θ, z) = [I + µ
(2)
+ X n+ 1

2 ]u(1)(θ, z),
...

[I + µ
(np)
− X n+ 1

2 ]u(np)(θ, z) = [I + µ
(np)
+ X n+ 1

2 ]u(np−1)(θ, z),

for 0 ≤ θ ≤ 2π and 0 ≤ z ≤ zmax, where u(0)(θ, z) = ψ(rn, θ, z;ω). The second step consists
in computing u(np+1)(θ, z) from the last intermediate field u(np)(θ, z) obtained in step 1, by
solving

step 2
[
I − ik0∆r

4
Yn+ 1

2

]
u(np+1)(θ, z) =

[
I +

ik0∆r
4

Yn+ 1
2

]
u(np)(θ, z),

where u(np+1)(θ, z) = ψ(rn+1, θ, z;ω). In the case of a N× 2D approach, step 2 is ignored
and u(np)(θ, z) = ψ(rn+1, θ, z;ω). For a 3D computation, both step 1 and step 2 must be
considered.

Let {θ1, θ2, . . . , θM , θM+1} be a uniform partition of the azimuthal interval [0, 2π] such
that θ1 = 0 and θM+1 = 2π, and {z0, z1, . . . , zN , zN+1} be a uniform partition of the
depth interval [0, zmax] such that z0 = 0 and zN+1 = zmax. Let ∆θ, ∆z be the increments,
respectively in azimuth (θi = (i − 1)∆θ, 1 ≤ i ≤ M + 1) and in depth (zj = j∆z, 0 ≤ j ≤
N + 1). For 0 ≤ k ≤ np + 1, we denote

u
(k)
i,j = u(k)(θi, zj), 1 ≤ i ≤M, 1 ≤ j ≤ N.
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The discretization in the depth direction is done using a piecewise-linear finite-element (FE)
method. Hence, at each discrete range, step 1 is replaced by step 1′:

step 1′



[IN + µ
(1)
− X

n+ 1
2

N ]u(1)
i = [IN + µ

(1)
+ X

n+ 1
2

N ]u(0)
i , 1 ≤ i ≤M,

[IN + µ
(2)
− X

n+ 1
2

N ]u(2)
i = [IN + µ

(2)
+ X

n+ 1
2

N ]u(1)
i , 1 ≤ i ≤M,

...

[IN + µ
(np)
− X

n+ 1
2

N ]u(np)
i = [IN + µ

(np)
+ X

n+ 1
2

N ]u(np−1)
i , 1 ≤ i ≤M,

where IN and X
n+ 1

2
N are square matrices of order N , IN is the identity matrix, X

n+ 1
2

N comes
from the FE discretization of the differential operator X n+ 1

2 , and

u(k)
i = [u(k)

i,1 , u
(k)
i,2 , . . . , u

(k)
i,N ]T , 1 ≤ i ≤M, 0 ≤ k ≤ np.

Solving step 1′ requires the inversion for 1 ≤ k ≤ np, of M algebraic linear systems of
order N (with tridiagonal matrices). These inversions correspond to the calculation of the
intermediate fields at successively adjacent azimuths θ1, θ2, . . . , θM , as shown in Fig. 1(a).
Each linear system is solved using a Gaussian algorithm optimized for tridiagonal matrices,
the number of elementary arithmetic operations required to invert each of these linear
systems being of the order of N . Since each inversion must be repeated for each term of the
Padé series expansion, the complexity of step 1 is in O(npMN).

The discretization in the azimuthal direction is done using a (2	+1)-point stencil finite-
difference (FD) scheme. This scheme, which corresponds to a higher-order centered FD
scheme and can be seen as an extension of the more classical 2nd-order FD scheme (	 = 1),
allows one to reduce the required number of points in the azimuthal direction while still

(a) (b)

Fig. 1. Resolution schemes for the N× 2D part (a) and the azimuthal coupling part (b).
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obtaining accurate solutions.16 At each range step, step 2 is replaced by step 2′:

step 2′
[
IM − ik0∆r

4
Y

n+ 1
2

M

]
ũ(np+1)

j =
[
IM +

ik0∆r
4

Y
n+ 1

2
M

]
ũ(np)

j , 1 ≤ j ≤ N,

where

ũ(k)
j = [u(k)

1,j , u
(k)
2,j , . . . , u

(k)
M,j]

T , k ∈ {np, np + 1}, 1 ≤ j ≤ N.

Here, IM denotes the identity matrix of order M and Y
n+ 1

2
M is an Mth order square matrix

which comes from the FD discretization of the differential operator Yn+ 1
2 . It is to be noted

that Y
n+ 1

2
M is (2	+ 1)-diagonal matrix with entries in the upper right and lower left corners

to account for the continuity condition in the azimuthal direction. Solving for the azimuthal
coupling part (step 2′) thus requires the inversion of N algebraic linear systems of order
M . As shown in Fig. 1(b), the inversion of these N linear systems now corresponds to the
calculation of the acoustic field at successive fixed depths z1, z2, . . . , zN . As the matrices
depend only on the discretization in range, an LU decomposition followed by a forward-
and back-substitution is used to solve the N linear systems at each range step. This can be
directly performed at a work load in O(	2M) and O(	NM), respectively. The complexity
of step 2′ is thus in O(	2M + 	MN) ≈ O(	MN), since N is large compared to 	.

Finally, the total computational complexity for solving 3D problems can be expressed
as the sum of the computational complexities of step 1′ and step 2′, times the number of
range steps L (recall that step 1′ and step 2′ must be repeated for each discrete range rn,
1 ≤ n ≤ L). It thus depends linearly on L, M , and N . Suppose that a 3D computation is
performed and that the frequency f of the harmonic point source is multiplied by a given
factor C. Then, the three spatial increments ∆r, ∆θ, ∆z (respectively L, M , N) must be
reduced (respectively multiplied) by the same factor C. Due to the linear complexity of
the algorithm with respect to L, M , N , the CPU time will thus be multiplied accordingly
by C3. For instance, by doubling f , the CPU time is multiplied by a factor of 23 = 8
(instead of a factor of 22 = 4 for an equivalent N× 2D computation). Suppose now that,
instead of doubling f , the maximum computation range rmax is doubled. We still assume
here that a 3D computation is performed. Then, by using the same value of the range
increment, the number of points in range (L) is doubled. Besides, to maintain the neces-
sary arclength between adjacent azimuthal angles, the number of points used in azimuth
(M) must be doubled as well. Hence, the CPU time is accordingly multiplied by a factor
of 22 = 4 (instead of a factor of 2 when a N× 2D computation is desired). Notice that
when doubling both the frequency and the maximum computation range, CPU time will
be multiplied by a factor of 23 × 22 = 32 for a full 3D computation, instead of a fac-
tor of 22 × 2 = 8 for its equivalent N× 2D computation. (It will be shown in Sec. 3.2
that the study of the 3D wedge benchmark problem at higher frequencies, requires to
increase the maximum propagation range in order not to miss some of 3D effects present in
the waveguide.)
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Assuming now a broadband source, solving a pulse propagation problem with the
Fourier synthesis approach requires to decompose the source pulse using a Fourier trans-
form, then to select a frequency spacing and solve the 3D propagation problem for each
discrete frequency within a frequency-band of interest, and finally to perform inverse
Fourier transforms of the frequency-domain solutions to obtain the time signal at any given
receiver:

P (r, θ, z; t) =
1
2π

∫ +∞

−∞
Ŝ(ω)H(1)

0 (k0r)ψ(r, θ, z;ω)e−iωt dω , (3)

where Ŝ(ω) is the source spectrum, and ψ(r, θ, z;−ω) = ψ(r, θ, z;ω) so that the time-
domain acoustic pressure P = P (r, θ, z; t) is real-valued. As explained before, solving the
3D propagation problem for each discrete frequency is performed by 3DWAPE using the
parabolic approach.

In summary, the computational complexity analysis of 3DWAPE gives an indication
about the CPU time required for a calculation, and shows that the algorithm can be natu-
rally parallelized. The relevant parallelization strategy is indeed straightforward and consists
of two stages: First, since Fourier synthesis is used to solve a pulse propagation problem, a
broadband computation can be handled by distributing the calculations at each frequency on
different processors. Second, since the model uses a PE approach coupled with an operator
splitting technique that allows the separation of the marching algorithm into two successive
steps (referred to in this paper as the N× 2D and the azimuthal coupling steps), the calcu-
lations at each single frequency can be accelerated by distributing all the required matrix
inversions on different processors. The parallelization strategy is detailed in the following
section.

3. Multiprocessor Implementation

3.1. Parallelization strategy

We describe here each parallelization algorithm when they are used separately and/or simul-
taneously. For each case, some elementary examples are given to illustrate the parallelization
method. In the following, two classical parameters, namely the speedup and the efficiency,
are used to characterize the computational performances of a parallel calculation. Suppose
p processors are used. The speedup is defined as the time to complete an algorithm with
only one processor, divided by the time to complete the same algorithm with p processors.
The efficiency is defined as the ratio of the speedup over p.

3.1.1. First parallelization algorithm: Frequency decomposition (FD)

The first parallelization algorithm is specially dedicated to handle efficiently broadband-
signal propagation. Computing the time signal at a given receiver requires to perform the
following steps: First, the source pulse is decomposed using a Fourier transform. Then,
the 3D propagation problem is solved independently at each frequency. These uncoupled
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frequency-domain calculations are performed in parallel using different processors. In prac-
tice, it often happens that the number of discrete frequencies, Nfreq, is larger than the
number of processors available, p. In that particular case, more than one discrete frequency
are handled by the same processor. This implies that the total number of frequencies be
first divided into g frequency groups F1,F2, . . . ,Fg, with g equal to the number of proces-
sors used. All the discrete frequencies within the same frequency group are then handled
sequentially by the same processor. Recall that several numerical parameter values (e.g., ∆r,
∆θ, ∆z) depend on the acoustic wavelength and that higher frequencies are more CPU time
consuming than lower frequencies. In order to reduce idle time and consequently optimize
the first parallelization algorithm, a cyclical repartition of all the discrete frequencies is used
to equilibrate the workload per processor. For example, suppose that the source spectrum is
sampled using 256 discrete frequencies (Nfreq = 256) denoted fk, 1 ≤ k ≤ 256, with fk < fk′

if k < k′, and that 64 processors are available (p = 64). The total number of frequencies is
divided into 64 frequency groups (g = p):

F1 = {f1, f65, f129, f193}, F2 = {f2, f66, f130, f194}, . . . , F64 = {f64, f128, f192, f256}.

Here, each frequency group is composed of 4 elements. An illustration of this cyclical repar-
tition is given in Fig. 2. Each frequency belonging to Fk is handled by the same processor.
Hence, each processor handles both lower and higher frequencies within the frequency band-
width, and, on average, is allocated about the same computational load. At the end of all the
calculations, the frequency-domain solutions at the desired receiver position are collected
by only one processor in order to perform an inverse Fourier transform. Note that the com-
munications between processors occur only at the beginning and at the end of the whole
process. Communication times are negligible and, hence, will not deteriorate significantly
the performances of this first parallelization algorithm.

However, one should keep in mind that the cyclical repartition of all the frequencies,
which is used to reduce idle time, is all the more inefficient as the (average) cardinal number
of each frequency group is small. The most unfavorable situation corresponds to the case
for which each frequency group is composed of only one single discrete frequency. In our
example with Nfreq = 256, this would happen if 256 processors were used, which would lead

Fig. 2. Illustration of the cyclical repartition (first parallelization algorithm) of the 256 discrete frequencies
fk, 1 ≤ k ≤ 256, into 64 frequency groups F1,F2, . . . ,F64.
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to 256 frequency groups (g = p): F1 = {f1},F2 = {f2},F3 = {f3}, . . . ,F256 = {f256}. Idle
time would not be negligible in this case. Thus, for a fixed number of discrete frequencies,
an efficiency loss is expected when increasing the number of processors.

3.1.2. Second parallelization algorithm: Spatial decomposition (SD)

The second parallelization algorithm is based on a spatial decomposition of the 3D PE
calculations. It is thus dedicated to accelerate the calculations at one single frequency.
Suppose the acoustic field is known at a given discrete range rn. As explained in Sec. 2,
the computation of the solution at the next discrete range rn + ∆r is achieved in two
successive steps corresponding to the N× 2D part and the azimuthal coupling part. The
first step requires inverting M algebraic linear systems (see Fig. 1(a)). The parallelization
strategy consists in distributing these inversions on different processors. Once this first step
is accomplished, the results of each single processor are re-distributed on the other processors
to get prepared for the azimuthal coupling part. The same parallelization strategy is then
used to invert the N linear systems of the second step (see Fig. 1(b)). Once more, the
results need to be re-distributed between processors before starting the computation at the
next discrete range. It should be noted that, unlike the first parallelization algorithm, no
cyclical repartition of the grid points in azimuth (for the N× 2D part) or in depth (for the
azimuthal coupling part) is needed here.

For example, suppose that a single-frequency calculation requires 360 azimuthal points
(M = 360) and 600 depth points (N = 600), and that 3 processors are used (p = 3). Then,
for this second parallelization algorithm, the spatial domain is first decomposed into 3 groups
of azimuth denoted Θ1, Θ2, Θ3. All the azimuths which belong to the same azimuthal group
are then handled by the same processor. Once this N× 2D step is achieved, the azimuthal
coupling is performed by applying the same procedure in the depth direction. The spatial
domain is decomposed into 3 groups of depth denoted Z1, Z2, Z3. All the depths within the
same depth group are then handled by the same processor. This example is summarized in
Table 1.

Interprocessor communications are not negligible and can lead to significant efficiency
losses. Indeed, to better understand this, suppose p processors P0,P1, . . . ,Pp−1 are used
and let k ∈ {0, 1, . . . , p−1}. Let also θistart , θistart+1, . . . , θiend

denote the successive azimuths
handled by the processor Pk for the N× 2D part, and zjstart , zjstart+1, . . . , zjend

denote
the successive depths handled by the same processor Pk for the azimuthal coupling part

Table 1. Illustration of the spatial segmentation of the calculation domain occurring in the second
parallelization algorithm at a single frequency. Example with 360 discrete points in azimuth, 600
discrete points in depth, and 3 processors (P0, P1, P2).

Processor ID P0 P1 P2

N× 2D part Θ1 = {θ1, . . . , θ120} Θ2 = {θ121, . . . , θ240} Θ3 = {θ241, . . . , θ360}
Azimuthal coupling part Z1 = {z1, . . . , z200} Z2 = {z201, . . . , z400} Z3 = {z401, . . . , z600}
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Fig. 3. Communications (before starting the azimuthal coupling part of the second parallelization algorithm)
for one processor Pk with k ∈ {0, 1, . . . , p − 1}. The azimuths (depths) handled by Pk for the N× 2D part
(resp. azimuthal coupling part) are denoted θistart , . . . , θiend (resp. zjstart , . . . , zjend). Black squares indicate
data to be sent by Pk to the other processors. Grey squares indicate data to be received by Pk from the
other processors.

(see Fig. 3). Then, at the end of the first step, Pk must send (and receive) blocks of data
to (resp. from) all the other processors.

• Blocks of data sent by Pk correspond to results obtained by Pk at grid points (θi, zj) with
istart ≤ i ≤ iend and with 1 ≤ j < jstart (data sent to P1, . . . ,Pk−1) and jend < j ≤ N

(data sent to Pk+1, . . . ,Pp−1). These grid points are indicated in Fig. 3 by squares filled
in black.

• Blocks of data received by Pk correspond to results obtained by the other processors at
grid points (θi, zj) with jstart ≤ j ≤ jend and with 1 ≤ i < istart (data received from
P1, . . . ,Pk−1) and iend < i ≤M (data received from Pk+1, . . . ,Pp−1). They are indicated
in Fig. 3 by squares filled in grey.

The reverse communication process need to be achieved at the end of the second step, before
starting the computation at the next discrete range. Interprocessor communications have
to be repeated at every step in range. Therefore, for this second parallelization algorithm,
the efficiency may be limited due to non-negligible communication times.

3.1.3. Combination of both parallelization algorithms

When performing broadband computations, both parallelization algorithms can be com-
bined. In this case, the strategy is to allocate more than one processor when performing
each single-frequency run. Suppose for example that the sampling of the source spectrum
leads to 256 discrete frequencies (Nfreq = 256) and that 1024 = 4 × 256 processors are
available (p = 1024). Then, each of the 256 uncoupled frequency-domain calculations is
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performed using a subset of 4 processors. It should be noted that, as already pointed out in
Sec. 3.1.1, it seldom happens in practice that the number of processors available exceeds the
number of discrete frequencies. However, the combination of both parallelization algorithms
is still achievable when p ≤ Nfreq. In that particular case, the total number of frequencies
need to be first divided into g frequency groups F1,F2, . . . ,Fg, and a cyclical repartition of
the frequencies is used to reduce idle time occurring in the first parallelization algorithm.
The number g of frequency groups must be less than the number p of processors. Note
that g = p means that only the first parallelization algorithm is used. Then, the set of pro-
cessors is accordingly portioned into g processor groups denoted P1,P2, . . . ,Pg. For each
k ∈ {1, 2, . . . , g}, a frequency group Fk is associated to a processor group Pk. For each suc-
cessive frequency of Fk, all the processors of Pk are used simultaneously to handle the second
parallelization algorithm. An example is given in Fig. 4 to clarify the method: 64 processors
are used (p = 64) to handle all the calculations; the sampling of the broadband source uses
256 frequencies (Nfreq = 256). The 64 processors are denoted P0,P1, . . . ,P63. For the first
parallelization algorithm, the frequencies are portioned into 16 frequency groups (g = 16).
Each frequency group is then composed of 16 distinct frequencies since g × 16 = Nfreq.
(Notice that the particular case of 64 frequency groups (i.e., g = 64) has been given as an
example in Sec. 3.1.1 and illustrated in Fig. 2.) As shown in Fig. 4, a cyclical repartition of
the frequencies is performed. Therefore, the frequency and processor groups are given by


F1 = {f1+16(k−1), 1 ≤ k ≤ 16}, P1 = {P0,P1,P2,P3},
F2 = {f2+16(k−1), 1 ≤ k ≤ 16}, P2 = {P4,P5,P6,P7},

...
F16 = {f16+16(k−1), 1 ≤ k ≤ 16}, P16 = {P60,P61,P62,P63}.

Then, for each single-frequency calculation, 4 processors are allocated to the second paral-
lelization algorithm. For instance, processors P0, P1, P2, P3 are used to solve the acoustic
problem at frequency f1. In the meantime, processors P4, P5, P6, P7 are used to solve the
acoustic problem at frequency f2, . . ., and processors P60, P61, P62, P63 at frequency f16.

Fig. 4. Illustration of the cyclical repartition (first parallelization algorithm) of the 256 discrete frequencies
fi, 1 ≤ i ≤ 256, into 16 frequency groups F1, F2, . . . ,F16.
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3.2. Computational performances

The first and second parallelization algorithms presented in Secs. 3.1.1 and 3.1.2, respec-
tively, have been tested and validated on several 3D benchmarks.24 It should be noted
that the performances of the combined algorithm presented in Sec. 3.1.3 have not been
analyzed in this paper. Hence, all the parallelized computations presented hereafter were
obtained using either the first parallelization algorithm (frequency decomposition) or the
second parallelization algorithm (spatial decomposition). In this section, some results of the
high-performance computing are presented for the 3D extension of the original ASA wedge
benchmark,25 whose configuration is described in detail in Refs. 14 and 16. This original 3D
benchmark has been selected among others due to its computational cost that is particularly
well suited for the study of the performances of both parallelization algorithms. Indeed, in
order to be able to show the evolution of the computational performances when increasing
the number of processors, and allow a relevant analysis of both efficiency and speedup, CPU
times corresponding to calculations with the largest number of processors available (here
64 processors) should not be too low. On the other hand, calculations performed using only
one processor should not be too long (i.e., less than a couple of days) for convenience. A
good compromise has been found between these two requirements, considering the present
3D test case.

A broadband sound pulse centered at 25 Hz with a bandwidth of 40 Hz covering the
band 5–45 Hz, is considered. The source spectrum is discretized using a frequency sampling
of 0.1429 Hz, leading to 281 discrete frequencies (Nfreq = 281). For this test case, following
the results reported in Ref. 17, an accurate 3D calculation at 25 Hz can be achieved using
M = 3240 azimuthal points (with a 8th-order FD scheme in azimuth), N = 500 depth
points, a range step of 10 m, and two Padé terms in depth (np = 2). The maximum depth of
the computational grid is equal to 1000 m. The parallel machine used is a HP SC45 cluster
with 214 nodes, each of which contains 4 processors running at 1.25 GHz and 4 GB of RAM.

Table 2 presents the CPU times corresponding to full 3D computations for a broadband
pulse, obtained using up to 64 processors and for a maximum propagation range of 16 km.

Table 2. 3D ASA wedge benchmark results for the prop-
agation of a broadband sound pulse (first parallelization
algorithm: frequency decompostion) with a 25 Hz central
frequency and a 40 Hz bandwidth.

Number of 4D 4D 4D
Processors CPU Time Speedup Efficiency

1 1 day 10 h 59 mn 53 s 1.00 1.00

2 17 h 18 mn 59 s 2.02 1.01

4 9 h 33 mn 32 s 3.66 0.92

8 4 h 42 mn 7 s 7.44 0.93
16 2 h 26 mn 30 s 14.33 0.90

32 1 h 13 mn 45 s 28.48 0.89

64 43 mn 4 s 48.77 0.76
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Table 3. 3D ASA wedge benchmark results at a single frequency (second parallelization
algorithm: spatial decompostion) f = 25 Hz.

Number of N × 2D N × 2D N × 2D 3D 3D 3D
Processors CPU Time Speedup Efficiency CPU Time Speedup Efficiency

1 20 mn 46 s 1.00 1.00 52mn 2 s 1.00 1.00
2 9 mn 59 s 2.08 1.04 22mn 4 s 2.36 1.18
4 4 mn 50 s 4.30 1.07 9mn 57 s 5.23 1.31
8 2 mn 24 s 8.67 1.08 6mn 42 s 7.77 0.97

16 1 mn 21 s 15.44 0.97 4mn 5 s 12.75 0.80
32 47 s 26.35 0.82 2mn 23 s 21.90 0.68
64 34 s 36.54 0.57 1mn 40 s 31.17 0.49

Table 3 presents CPU times corresponding to N× 2D and 3D calculations, both for a cw
source emitting at 25 Hz, obtained using up to 64 processors. The maximum computation
range is 25 km. Though it is not necessary to use such a large number of points in azimuth
when performing N× 2D computation (usually, including 360 azimuthal points is reason-
able to re-construct a horizontal plot of the N× 2D field), the same number of azimuthal
points (M = 3240) was used for both N× 2D and 3D calculations, in order to estimate the
computational time cost that can be attributed only to the azimuthal coupling part. Indeed,
the N× 2D results (CPU time, speedup, efficiency) shown in Table 3 correspond to com-
putations performed by simply discarding the 3D parallelized algorithm in the azimuthal
coupling part. By doing that, interprocessor communications are still present at the end of
the N× 2D part at each range step. This explains the (otherwise surprizing) low efficiency
values in the azimuthally uncoupled N× 2D results for p = 32 or p = 64. It should be
noted also that all the results of CPU times presented here are not averaged. Hence, their
values can change slightly from one computation to another, leading to efficiency values
that may exceed 1. Good performances for both parallelization algorithms are obtained.
For instance, the use of 64 processors in parallel allows to solve the 4D propagation bench-
mark problem in less than 1 h (instead of approximately one day and a half by using only
one single processor). As expected, the first parallelization algorithm (Table 2) provides a
better efficiency than the second one (Table 3) since fewer communications between proces-
sors are required. Indeed, with 64 processors, an efficiency of 76% is obtained with the first
parallelization algorithm, whereas the efficiency of the second parallelization algorithm is
around 50%. However, we observe that the efficiency of the first parallelization algorithm
(Table 2) deteriorates when the number p of processors increases. This can be explained
easily by the fact that the number of discrete frequencies handled by the same processor
diminishes when p becomes larger (see the discussion at the end of Sec. 3.1.1).

Table 3 shows that performing a 3D calculation at a single frequency of 25 Hz with only
one processor takes about 1 h of CPU time. By doubling the frequency, the numbers of
points in depth, in range, and in azimuth must all be doubled. According to the compu-
tational complexity analysis given in Sec. 2, the CPU time is then multiplied by 23 = 8.
We thus expect to have CPU times around 8 and 64 h for a cw calculation at 50 and
100 Hz, respectively. These computational costs forbid completely broadband calculations

J.
 C

om
p.

 A
co

us
. 2

00
8.

16
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

A
L

E
 L

Y
O

N
 o

n 
03

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 18, 2008 10:26 WSPC/130-JCA 00354

150 K. Castor & F. Sturm

with a source pulse centered at these frequencies. However, Table 3 shows that a parallel
3D calculation at 25 Hz using 64 processors takes less than 2 min. Then, assuming a good
efficiency for higher frequencies, the same cw calculation at 100 Hz would take about 2 or
3 h, which is now more reasonable than with the use of only one single processor, and would
allow broadband computations for a pulse with a central frequency of 100 Hz with more
acceptable CPU times.

4. Investigation of 3D Acoustical Effects

4.1. 3D wedge benchmark at higher frequencies

The parallelized 3D PE algorithm allows us now to investigate the azimuthal coupling effects
at higher frequencies and at longer propagation ranges with more reasonable computational
times. In this section, we present some results obtained for the 3D wedge benchmark with
a cw source emitting at different frequencies: 25, 50, 75, and 100 Hz. For each frequency,
the maximum computation range is 80 km instead of 25 km as in the original problem.
A Padé-1 approximation (np = 1) is used in depth here, since no significant differences
have been observed with the solution using a Padé-2 approximation. All the parameters
defining the computational grid, need to be reduced as a fraction of the acoustic wave-
length when increasing frequency. N× 2D and 3D computations were performed using
∆r = λ/6 and ∆z = λ/60, where λ denotes the acoustic wavelength. For the 3D com-
putations, the adjustment of the number M of points in azimuth is particularly important
to get a numerical solution that describes accurately all the 3D acoustical effects present
in the waveguide. For each frequency, a convergence study has been required to deter-
mine M . For instance, a 25 Hz computation required the use of M = 5760 points in the
azimuthal direction. Here, convergence is considered to be reached when no significant vari-
ation is observed along the θ = 90◦ azimuth, when doubling the number of azimuthal
points.

CPU times for all the calculations when increasing M are reported in Fig. 5. They
are consistent with the CPU-time behavior predicted by the computational complexity
analysis performed in Sec. 2. For instance, at a given frequency, the CPU time increases
(almost) linearly with respect to M . For each frequency, an 8th-order FD scheme was used
in azimuth. It should be noted that the use of such a high-order FD scheme permitted a
significant reduction of the number of points in the azimuthal direction. Indeed, for a cw
source emitting at 25 Hz, a 3D PE run using the classical 2nd-order FD scheme requires
23040 points in azimuth for a maximum computation range of 25 km (results reported in
Ref. 16). Note that at 25 Hz, there is no energy propagating across-slope at ranges greater
than approximately 40 km (see the upper right subplot of Fig. 6). Thus, a similar 3D run
using the 2nd-order FD scheme would require 36864 = 40/25× 23040 points in azimuth for
a maximum computation range of 40 km. Here, at the same frequency, using a 8th-order
scheme, convergence was reached using 5760 azimuthal points for a maximum computa-
tion range of 80 km. Since there is no energy propagating after 40 km, a 3D PE run using
the same 8th-order FD scheme would thus require the same number of points in azimuth
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Fig. 5. CPU times for the 3D ASA wedge benchmark at different cw source frequencies using 64 processors
(second parallelization algorithm: spatial decomposition). For each frequency, the number of azimuthal points
is first set to 360 and is then constantly doubled until convergence is reached.

(i.e., M = 5760) for a maximum computation range of 40 km, which is well below the
M = 36864 azimuthal points needed by the second-order FD scheme.

Recall that the number of points used in azimuth is the same for all discrete ranges
between 0 and rmax = 80 km. As an evidence, for each frequency, the azimuthal mesh is
oversampled at short range. Using as in Ref. 26 an azimuthal increment that depends on
range would be preferable since it would certainly allow a reduction of CPU times. Besides,
recall that due to the 1/r-term in the azimuthal coupling operator (see Eq. (2)), the problem
has a singularity at r = 0. Numerical simulations showed that using too many points in
azimuth can lead to numerical problems like arithmetic overflow. Adapting the size of the
azimuthal increment with range would also permit to avoid this overflow problem at short
range. This option is currently not implemented in the parallelized version of the code. Here,
the computations were performed using double-precision arithmetic to avoid the numerical
overflow at the vicinity of the source.

Vertical slices of the transmission loss (TL = −20 log10(|ψ(r, θ, z;ω)|/√r) with ω = 2πf)
in the cross-slope direction (θ = 90◦) are shown in Fig. 6 for the N× 2D and the 3D
solutions corresponding to f = 25 Hz, f = 50 Hz, f = 75 Hz, and f = 100 Hz. For a better
comparison between the 2D and 3D cases, TL-vs-range curves corresponding to the cross-
slope direction and to a receiver depth of 30 m are displayed in Fig. 7. The 2D and 3D PE
marching algorithms were initialized at r = 0 using a Greene’s source.27 For each frequency,
the 2D field exhibits for all ranges the interference pattern of all the propagating modes
initially present at the source. There are 3, 6, 9, 13 propagating modes at 25, 50, 75, 100 Hz,
respectively. Their horizontal wavenumbers and grazing angles are given in Table 4. For
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Fig. 6. Transmission loss (in dB re 1 m, vertical slices at a fixed azimuth of 90◦) corresponding to 2D (left
subplots) and 3D (right subplots) calculations at (from top to bottom) 25, 50, 75, and 100 Hz. The cut-off
ranges for mode 1, mode 2, and mode 3, are marked by the vertical bold solid lines on each 3D subplot.

the 3D solutions, the interference patterns are modified during propagation. These changes
are due to the horizontal refraction of each propagating mode. These horizontal refraction
effects appear at shorter ranges for higher modes than for lower modes since their grazing
angles are higher. Indeed, at 25 Hz, across-slope, one can identify successively the cut-off
ranges of mode 3, mode 2, and mode 1, at approximately 11, 16, and 40 km. These cut-off
ranges are also present at higher frequencies and can be seen on each 3D subplot of Fig. 6.
For convenience, the cut-off ranges of only modes 1, 2, 3 are marked on each subplot. Note
that, looking at Fig. 6, the cut-off range of mode 1 is present before 80 km at 25 and 50 Hz,
but not at 75 and 100 Hz.

In order to observe more precisely the horizontal refraction effects, the 3D PE algorithm
can be initialized by each individual propagating mode. We performed all the calculations
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Fig. 7. Transmission loss (in dB re 1m) for a receiver at a depth of 30 m and fixed azimuth of 90◦, corre-
sponding to N× 2D (dashed lines) and 3D (solid lines) calculations at (from top to bottom) 25, 50, 75, and
100 Hz.

for each propagating mode at each of the four frequency values but only one example is
presented here. It corresponds to an excitation of mode 3. Figure 8 shows the vertical slices
of the transmission loss in the cross-slope direction corresponding to 3D PE calculations.
Figure 9 displays the modal-ray diagrams of mode 3 in the horizontal plane for different
frequencies. These modal-ray paths were calculated using the method given in Ref. 28.
A higher frequency source leads to a further excursion of the acoustic field in the up-slope
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Table 4. Modal information for frequencies used in the 3D wedge benchmark and for a water-depth of
200 m (kr,m: Horizontal wavenumber of mode m; ϑm: Grazing angle of the up- and down-going plane waves
associated to mode m). Note that ϑm are less than the critical grazing angle ϑc ≈ 28.07◦.

25 Hz 50Hz 75Hz 100 Hz

kr,m ϑm kr,m ϑm kr,m ϑm kr,m ϑm

Mode m [rad/m] [deg] [rad/m] [deg] [rad/m] [deg] [rad/m] [deg]

1 0.103824 7.49 0.208929 3.99 0.313803 2.72 0.418605 2.07

2 0.101052 15.20 0.207388 8.02 0.312731 5.46 0.417783 4.14

3 0.096225 23.23 0.204783 12.10 0.310934 8.21 0.416409 6.22

4 0.201061 16.26 0.308396 10.99 0.414475 8.31

5 0.196163 20.50 0.305093 13.79 0.411972 10.41

6 0.190048 24.84 0.301000 16.64 0.408889 12.53

7 0.296085 19.52 0.405209 14.67

8 0.290319 22.46 0.400918 16.83

9 0.283690 25.44 0.395996 19.02

10 0.390424 21.24

11 0.384185 23.48

12 0.377276 25.75

13 0.369879 27.99

direction. We observe an overall good agreement between the two sets of subplots. Indeed,
one can observe in both modal-ray and 3D PE solutions a succession (across-slope) of three
distinct zones, denoted zones I, II, and III, corresponding to one single modal-ray arrival
(zone I), multiple modal-ray arrivals (zone II), followed by a shadow zone (zone III) for
which there is no modal-ray arrival. It is to be noted that zone II is hardly distinguishable
at 25 Hz. Zones I, II, and III, are delimited by vertical dashed lines on Fig. 8 (vertical slices)
and by black dots in the cross-slope direction in Fig. 9 (top view). In Fig. 8, the transition
between zones II and III exhibits a higher intensity zone (caustic). We also observe in Fig. 8
that zone II starts roughly at the same distance from the source (except for 25 Hz). This
behavior is in accordance with the modal-ray paths in the horizontal plane shown in Fig. 9.
Besides, we observe on both figures that the width (in the cross-slope direction) of the
multiple modal-ray arrival zone increases with frequency, and so the onset of the shadow
zone is accordingly shifted in range.

These 3D effects have already been demonstrated.29–31 For instance, in Ref. 30, analytical
expressions describing modal-ray paths and shadow zone boundaries were derived for several
bottom geometries (e.g., wedge-shaped duct, ridge, conical seamount, circular basin) using
a ray approach, and used to show a shadow zone with a hyperbolic boundary for each
propagating mode. Note that for mode 3, the shadow zone starts before the maximum
computation range (80 km) at each of the 4 frequencies considered and can thus be clearly
observed on each subplot of Fig. 9. Finally, it is worth noting that the 3D PE calculations
predict for each frequency the presence of mode 2 across-slope (evident in the shadow zone
of mode 3, see each subplot of Fig. 8), whereas the initial field only included mode 3. This
effect is a mode-coupling phenomena occurring during down-slope propagation of mode 3.

J.
 C

om
p.

 A
co

us
. 2

00
8.

16
:1

37
-1

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

A
L

E
 L

Y
O

N
 o

n 
03

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 18, 2008 10:26 WSPC/130-JCA 00354

Investigation of 3D Acoustical Effects 155

Fig. 8. Transmission loss (in dB re 1m, vertical slices at a fixed azimuth of 90◦) for an excitation of mode 3,
corresponding to 3D calculations at 25, 50, 75, and 100 Hz. The three distinct zones I, II, III, discussed in
the text, are delimited by vertical dashed lines on each subplot.

Fig. 9. Modal ray diagrams (top view) obtained for mode 3 at 25, 50, 75, and 100 Hz. The three distinct
zones I, II, and II, are marked by black circles on the horizontal axis in the cross-slope direction.
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Of course, the presence of mode 2 cannot be in the modal-ray solutions based on adiabatic
mode theory.

4.2. Computations in a realistic environment

The aim is now to show that the use of the newly developed parallelized PE model is
not restricted to benchmark problems, and that realistic numerical simulations are possible
using some classical geophysical models for the ocean bathymetry and the sound speed
profiles. The feasibility of the procedure is illustrated here by focusing on an example in
the Mediterranean sea close to the East coast of Corsica (see Fig. 10 for two distinct views
of the bathymetry). The point source is located at a latitude of +42.5◦ and a longitude of
+9.7◦. The source depth is 30 m. In the calculations, the Smith and Sandwell data set32

was used providing an average sampling of 2′ (i.e., approximately 1.4 km in longitude and
1.8 km in latitude in this region). The GDEM-V data set33 with a resolution of 30′ was
used to include 16 (very similar) sound speed profiles (SSP) in the region of interest. Note
that for this realistic acoustical problem, the 3D acoustical effects are mainly attributed to
bathymetric variations and not to the SSP spatial dependence. The sound speed profiles
were not interpolated in range (for a detailed profile interpolation procedure, see for instance
in Ref. 13). Notice that some preliminary results concerning this example were already
published for a source frequency of 15 Hz in Ref. 34. Results for a cw source emitting
at 15, 45, and 60 Hz are reported here. The maximum computation range is 50 km. Each
calculation was carried out initializing the PE algorithm at r = 0 with a Greene’s source,
and using a Padé-2 approximation (np = 2) in depth. A fourth-order FD scheme in azimuth
was used since the eighth-order FD scheme used for the 3D wedge benchmark (studied
in Sec. 4.1) is only implemented for an oceanic environment with a symmetry about the
0◦-azimuth vertical plane. The incremental steps in range and in depth are, respectively,

Fig. 10. Maps of the region of interest in the Mediterranean sea (East coast of Corsica). The point source
denoted S is represented on both subplots.
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Table 5. CPU times for the realistic example in the Mediter-
ranean sea at different cw source frequencies using 64
processors (second parallelization algorithm: spatial decom-
position). The number of azimuthal points is doubled until
the convergence is reached.

M 15Hz 45 Hz 60Hz

360 37 s 2 mn 26 s 29 mn 31 s

720 43 s 3 mn 1 s 42 mn 4 s

1440 50 s 4 mn 29 s 1 h 2 mn 39 s

2880 1mn 2 s 7 mn 20 s 1 h 22 mn 57 s

5760 1mn 41 s 13 mn 10 s 2 h 20 mn 28 s

11520 25 mn 24 s 4 h 18 mn 43 s

λ/5 and λ/20, with λ the acoustic wavelength. As already explained in Sec. 4.1, the number
of azimuthal points has been determined by a convergence study. The azimuthal grid spacing
was thus gradually reduced (starting with ∆θ = 1◦, or equivalently with M = 360) until
the numerical solution started to stabilize. The CPU times for all the calculations when
increasing M are reported in Table 5. For each frequency, the highest value of M in Table 5
corresponds to the value for which convergence was reached. Figure 11 shows grey-scale

Fig. 11. Transmission loss (in dB re 1m, vertical slices for a fixed azimuth of 90◦) corresponding to N× 2D
(top) and 3D (bottom) calculations at 15 Hz.
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Fig. 12. Transmission loss (in dB re 1 m) for a receiver at a depth of 30 m and at a fixed azimuth of 90◦,
corresponding to N× 2D (dashed line) and 3D (solid line) calculations at 15Hz.

images of the transmission loss (vertical slice at fixed azimuth θ = 90◦, i.e., along the East
coast of Corsica, see Fig. 10) corresponding to N× 2D and 3D calculations at 15 Hz.

For the same azimuth, Fig. 12 displays the corresponding TL-vs-range curves at a receiver
depth of 30 m. The interference patterns reveal the presence of only few propagating modes
along that specific direction. Note that the water-depth is (weakly) range-dependent along
the θ = 90◦ azimuth. The number of propagating modes is thus allowed to change (slightly)
from one distance to another along that azimuthal direction. By comparing the N× 2D and
3D solutions displayed in both Figs. 11 and 12, one can observe that the modal structure
of the 3D field is strongly modified along the East coast of Corsica, and shows the presence
of typical horizontal refraction effects. Indeed, the N× 2D solution shows approximately
the same number of propagating modes at all ranges along the θ = 90◦ azimuthal direc-
tion, whereas the 3D solution exhibits evident modal shadowing effects at r ≈ 25 km and
r ≈ 45 km (due to horizontal deviation of the propagating energy) along the θ = 90◦

azimuth. It should be noted that these 3D effects, observed here for a realistic three-
dimensional oceanic environment, are very similar to the ones described in detail for the
3D ASA wedge benchmark problem at 25 Hz, although the environmental parameters con-
sidered are different.

We also illustrate the feasibility of the procedure at a higher frequency of 60 Hz by
showing grey-scale images of the transmission loss corresponding to N× 2D and 3D cal-
culations (Fig. 13) along a fixed azimuth of 240◦. The bathymetry along that azimuthal
direction can be seen in Fig. 10. Figure 14 displays for the same azimuth the corresponding
TL-vs-range curves at a receiver depth of 30 m. At 60 Hz, significant 3D effects are also
clearly present. For instance, one can observe in Fig. 14 the disappearance of one propagat-
ing mode at a distance of approximately 25 km, due to horizontal refraction effects. This
(again typical) modal shadowing effect can also be observed in Fig. 13 by comparing the
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Fig. 13. Transmission loss (in dB re 1m, vertical slices at a fixed azimuth of 240◦) corresponding to N× 2D
(top) and 3D (bottom) calculations at 60 Hz.

Fig. 14. Transmission loss (in dB re 1m) for a receiver at a depth of 30m and at a fixed azimuth of 240◦
(right plot), corresponding to N× 2D (dashed line) and 3D (solid line) calculations at 60 Hz.
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N× 2D and 3D interference patterns in the water column at ranges between approximately
25 and 30 km, leading to different mode cut-off effects during up-slope propagation in the
penetrable bottom between 30 and 40 km-ranges. Indeed, the N× 2D solution shows three
well-defined successive beams in the bottom (corresponding to modal energy being radiated
into the bottom), whereas the full 3D solution shows only two beams.

5. Conclusion

Sound propagation modeling in 3D and/or 4D using 3D PE based model were often limited
by computational time issues in the past. To overcome this difficulty, an existing 3D PE
code has been implemented in a multiprocessor environment. The parallelization strategy
chosen consists of a suitable two-level procedure that includes frequency and spatial decom-
positions of the 3D PE calculations. The parallelized algorithm has been validated and
the computational performances have been analyzed for the 3D ASA wedge benchmark.
With the first parallelization algorithm, it has been shown that broadband signal calcu-
lations can be efficiently accelerated by distributing independently on different processors
the calculations for each frequency. As expected, good computational performances have
been obtained in this case since only few communications between processors were needed.
The second parallelization algorithm consists in accelerating the calculations at one single
frequency by distributing on different processors all the required matrix inversions. It has
been shown that this second algorithm provides also good results although interprocessor
communications are no longer negligible.

The use of the parallelized 3D PE code has facilitated a preliminary investigation of
3D acoustical effects at higher source frequencies (and also at a longer propagation range)
for the 3D wedge benchmark. When increasing frequency, it has been observed that for
each propagating mode, the modal deviation due to the 3D wedge predicted using full 3D
PE calculations, is in agreement with adiabatic modal-ray path calculations. Furthermore,
an interesting result concerning modal coupling phenomena occurring during down-slope
propagation has been emphasized. This result has been illustrated in this paper with the
presence across-slope of mode 2 in the shadow zone of mode 3, whereas only mode 3 was
excited at the source location. This mode coupling effect has been only pointed out here.
It certainly needs to be analyzed in detail in future works (e.g., using the spectral decom-
position of the PE fields as in Ref. 35). In this paper, we only focused on the 3D acoustical
effects corresponding to harmonic point sources. Hence, our concern will be also to focus
on broadband signal propagation associated with a study of modal dispersion as in Ref. 17.
Reasonable (or at least accessible) 4D CPU times are expected.

It has been shown that parallel computations can overcome CPU time limitations, thus
making possible the analysis of 3D acoustical effects for several different propagation sce-
narios with higher signal frequencies and/or propagation distances. It has been shown that
it is also possible to use the parallelized version of the code in more realistic configurations
including geophysical data: An example has been presented in this paper. Modal devia-
tion and shadowing effects due to bathymetric slopes have been clearly observed in our
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example in the Mediterranean Sea for two distinct azimuths and two different frequencies.
The analysis of 3D effects in other realistic oceanic environments including different varying
bathymetries and/or sound speed profiles, and also broadband source pulses can now be
addressed.
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