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Surface modes with controlled axisymmetry triggered by bubble coalescence
in a high-amplitude acoustic field
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When two bubbles encounter each other in a moderate ultrasound field they coalesce into a single bubble that
shows purely spherical oscillations. For a sufficiently large acoustic field, this coalescence can lead to sustained
nonspherical oscillations of the resulting bubble. We experimentally capture the time-resolved dynamics of the
coalesced bubble, starting with the moment of film rupture. This allows the transient and steady-state regimes of
the oscillating bubble to be studied. The amplitude dynamics for both of these regimes are successfully compared
to numerical modeling, taking into account the coupling of volume and surface modes. Initial conditions for each
surface mode are taken from the Legendre polynomial projection of the experimentally obtained bubble shape
immediately after film rupture. We also observe that the symmetry axis of the zonal spherical harmonics is
defined by the coalescence. The axis is identical to the rectilinear translational motion of the two approaching
bubbles before impact. This high-amplitude coalescence technique provides a unique opportunity to study
axisymmetric and sustained nonspherical bubble oscillations under controlled initial conditions.
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I. INTRODUCTION

Extensive efforts have been devoted to the theoretical
investigation of nonspherical bubble oscillations, which his-
torically have been due to their importance in describing the
mechanisms underlying bubble sonoluminescence [1–4]. In
the first studies, the shape stability and distorsion amplitude
were described according to uncoupled mode theories [1],
which correctly characterized the onset of surface mode emer-
gence but neglected possible nonlinear saturation effects of
surface mode amplitude. The models were later extended to
account for energy transfer between translational, spherical,
and surface modes [5–8], which therefore included inhibition
of shape perturbation growth. In the context of biomedical
applications, shape-oscillating bubbles are promising vectors
for microstreaming enhancement and drug delivery processes
[9,10]. The latest analytical developments on surface insta-
bilities hence included the shell behavior of ultrasound con-
trast agents [11–13] and the description of shape-induced
microstreaming patterns for transport and mixing processes
[5,14]. In contrast to theoretical approaches, only a few ex-
perimental studies have focused on the analysis of bubble
surface oscillations, as they had to cope with the intrinsic
difficulties linked to bubble instabilities. Among these, trans-
lational instabilities and diverging amplitudes of nonspherical
modes have been used to investigate bubbles submitted to
short acoustic pulses [15,16]. These studies were centered
almost exclusively on the pressure threshold pn

th above which
a bubble will show a given surface mode n, with the temporal
dynamics of nonspherical oscillations only described quali-
tatively. A recent alternative approach consisted of driving
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bubbles with an amplitude-modulated ultrasound field, while
allowing periodic onset and extinction of shape modes [17].
Nonspherical oscillations were therefore excited over a suffi-
ciently long duration (in terms of the acoustic timescale) to en-
able the capture of the temporal dynamics and the observation
of nonlinear mode coupling [18]. Experimental difficulties are
the positional stability of the bubble as well as the appropriate
observation of bubble shape modes (possibly decomposed
on spherical harmonics with out-of-plane deformations). To
overcome such difficulties, attention is usually paid to the con-
trolled trapping of the bubbles using optical tweezers [15,19].
The bubbles are then subjected to propagating ultrasound
waves that define the symmetry axis of nonspherical oscilla-
tions [20]. In all cases, experimental studies on temporal dy-
namics or threshold determination are based on the emergence
of surface mode instability from an initially spherical bubble.
An interesting alternative would consist of driving initially
deformed bubbles with a sufficiently strong ultrasound field
to sustain surface modes. Such initial states of deformations
can be obtained through the process of bubble coalescence.

Summed up very briefly, the process of bubble coalescence
can be divided into (1) bubble encounter, (2) formation of
a thin liquid film between the two bubbles, (3) film rupture,
and (4) establishment of a steady-state regime. Most of the
existing literature reports on the hydrodynamic coalescence
of rising bubbles and focuses on the bubble approach [21],
film drainage [22], and bouncing behavior [23]. Analysis of
micrometric colliding bubbles revealed the surface dynamics
of the resulting bubble, whereby the coalescence is followed
by large-amplitude ellipsoidal deformation, before relaxation
into the spherical shape [24]. Recently, bubble coalescence
was investigated by applying an ultrasound field so that the
main force ruling the approach and collision of the bub-
bles became the primary (radiation) and secondary (mutual
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interaction) Bjerknes forces acting on the bubbles [25]. The
main findings were an increase in the coalescence time for
free micrometric bubbles [26], which led to modification of
the film drainage theory [27]. These studies were all carried
out in a relatively low ultrasound field, and consequently, the
coalesced bubble returned to purely spherical oscillations.

In the present paper, we take advantage of the process
of bubble coalescence in a sufficiently strong acoustic field,
to initiate and sustain large-amplitude surface deformation.
Control of the symmetry axis for nonspherical oscillations is
demonstrated. The temporal dynamics of surface oscillations
from the film rupture to their steady-state regime are captured,
and the shape mode amplitudes are successfully recovered
through recent theories that account for mode coupling.

II. EXPERIMENTAL SETUP AND PROCEDURES

A schematic of the experimental setup is given in Fig. 1(a).
The experiments are conducted on gas bubbles in bidistilled
nondegassed water. The experimental setup consists of an
8-cm-edge cubic water tank. Single bubbles are nucleated
by focused laser pulses [λ = 532 nm, second harmonic of a
Nd:YAG pulsed laser (New Wave Solo III); pulse duration,
6 ns]. The size of the nucleated bubbles can be influenced
slightly by tuning the energy of the laser pulse. The bubbles
are trapped in the acoustic field induced by an ultrasonic plane
transducer (SinapTec; diameter of active area, 35 mm). The
voltage amplitude of the transducer is varied between 1 V
and 6 V, with no gain amplifier used. All of the experiments
are conducted at a driving frequency set to 31.25 kHz, which
corresponds to a resonant radius Rres ≈ 104 μm, following
Minnaert’s theory [28].

US transducer
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focusing lens

camera

LED source

2nd bubble

1st bubble

(a)
100 µm

1st bubble2nd bubble
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FIG. 1. (a) Schematic presentation of the experimental setup.
(b) Visualization of the bubble trajectories before coalescence: a
single bubble is trapped at a stable position in the acoustic field (top
half); once a second bubble is approaching from the left, the two of
them will be attracted towards each other due to secondary Bjerknes
forces (bottom half, superposition of several photos). The moment of
coalescence is not shown here but will be discussed in the following
sections. Once the bubbles have coalesced, the new bubble will return
to a stable position.

Experiments are captured with a CMOS camera (Vision
Research, v.12.1) equipped with a 12× objective lens (Navi-
tar). Backlight illumination is assured by a continuous light-
emitting diode (LED) light source. A frame size of 256 ×
256 pixels is used to allow a frame rate of 67.065 kHz. For this
setup, the depth of field of the camera objective and lenses is
about 200 μm.

Each experiment is conducted as follows [Fig. 1(a)]: One
bubble is nucleated at a few millimeters from a pressure
antinode of the acoustic field. The bubble is then driven
toward, and trapped at, the antinode, due to primary Bjerknes
forces of the acoustic field on the bubble. A second bubble
is nucleated, and its trajectory [see example in Fig. 1(b)]
is influenced by primary Bjerknes forces and by secondary
Bjerknes forces between the two bubbles. The coalescence
is captured, covering the approach of the two bubbles, their
impact, and the coalesced bubble. Eighty experiments were
conducted, with radii of the coalesced bubbles ranging from
30 μm to 90 μm. If desired, a trapped bubble can be grown
by multiple coalescence. All of the bubbles are below reso-
nant size. Uncertainties on the radius are mainly due to the
pixel size and the image-processing parameters, and they are
estimated as ±3 μm. For experiments where two spherical
bubbles coalesce into a single spherical one, conservation of
volume, as V1 + V2 = Vcoal, has been verified.

Acoustic field characterization: The acoustic pressure is
deduced from the bubble dynamics in a relatively weak acous-
tic field as follows. When one single bubble is trapped at
the pressure antinode at sufficiently low acoustic pressure, it
shows only spherical oscillations. Typical bubble wall expan-
sions can reach 10% of the equilibrium radius depending on
the applied voltage. By capturing the radial dynamics over
a sufficiently long time and then rearranging it on a single
acoustic period, the obtained waveform can be numerically
compared to the Keller-Miksis modeling [29]. As all other pa-
rameters are known or can be measured directly, the acoustic
pressure can then be deduced from the modeling. Using the
model for a large number of single bubbles, a linear relation-
ship was obtained between the transducer voltage applied and
the acoustic pressure. The acoustic pressure ranges between
5 kPa and 35 kPa, with a ±5 kPa uncertainty.

Surface mode analysis: The centroid and the bubble con-
tour are extracted by image processing. For each frame that
corresponds to the time t , the contour can be described by
rs (θ, t ) using the polar coordinates (rs, θ ), with the origin at
the centroid [see Fig. 2(a)].

Care has to be taken to correctly define the symmetry axis
of the bubble. Our findings on the definition of the symmetry
axis will be discussed in Sec. III. Assuming axial symmetry,
the decomposition in Legendre polynomials Pn according to

rs (θ, t ) =
4∑

n=0

an(t )Pn(cos θ ) (1)

allows computation of the modal coefficients an(t ) [18]:

an(t ) = 2n + 1

2

∫ 1

−1
rs (x, t )Pn(x) dx with x = cos θ .

(2)
The coefficient a0(t ) corresponds to the volume pulsations of
the bubble, noted as R(t ) in the following. The coefficient
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FIG. 2. (a) Definition of the bubble shape rs (θ ). (b) The asso-
ciated modal decomposition. This example corresponds to a bubble
of R0 = 68.1 μm [one snapshot from the series in Fig. 3(c), frame
size 220 μm × 220 μm]. The modal decomposition gives one single
measurement point of the complete graph that will be shown in
Fig. 7.

a1(t ) can be related to translational oscillations, which were
negligible in the present study. The amplitudes of the shape
modes 2, 3, and 4 are expressed by a2(t ), a3(t ), and a4(t ).
Figure 2(b) shows an example of modal decomposition of
the bubble shape shown in Fig. 2(a), which highlights the
predominance of the second mode.

III. TRIGGERING OF SURFACE MODES
BY BUBBLE COALESCENCE

Most of the existing papers report on studies of ultrasound-
induced bubble coalescence in a relatively weak ultrasound
field, thus corresponding to acoustic pressures too low to
initiate the parametric excitation of shape modes. This case of
a bubble returning to spherical shape is illustrated in Fig. 3(a).

When two bubbles approach, a thin liquid film forms
between the bubbles as soon as they are sufficiently close. The
rupture of this film can be interpreted as the first moment at
which one single bubble exists, with an initial shape deforma-
tion (Fig. 3, red box). We therefore assigned the time t = 0 μs

TABLE I. Bubble size, acoustic pressure, and pressure thresholds
of mode n for the cases of bubble coalescence presented in Fig. 3.

R0,1 R0,2 R0,coal pac n pn
th

[μm] [μm] [μm] [kPa] [kPa]

(a) 25.3 30.3 39.5 14.8 - -
(b) 40.3 19.8 44.9 30.6 2 16.4
(c) 62.9 26.2 68.1 10.4 3 6.6
(d) 49.2 32.6 53.6 24.1 4 6.5

to the first image on which the liquid film has ruptured.
This initial deformation is followed by a transient regime
(Fig. 3, blue box, two consecutive snapshots), before reaching
a steady-state regime (Fig. 3, green box, four consecutive
snapshots). For the low-pressure example in Fig. 3(a), the
steady-state regime shows a purely spherical mode oscillation.
When carried out in a stronger acoustic field, bubble coales-
cence can lead to nonspherical oscillations of the resulting
bubble. Such oscillations classically appear if the acoustic
pressure exceeds a critical threshold pn

th(R0,coal ), above which
a specific surface mode becomes unstable. Note that because
our experiments are conducted at a fixed driving frequency,
this threshold mainly depends on the static radius of the
bubble R0,coal and on the considered shape mode number n.
Examples of nonspherical oscillations triggered by bubble
coalescence are presented in Figs. 3(b)–3(d), where different
shape modes are obtained in the steady-state regime: (b)
n = 2, (c) n = 3, and (d) n = 4. The corresponding bubble
sizes and acoustic pressures are summarized in Table I. For
example, Fig. 3(c) shows oscillations of the third shape mode
obtained from two bubbles of respective radii R0,1 � 63 μm
and R0,2 � 26 μm coalescing into one single bubble of ra-
dius R0,coal � 68 μm. The amplitude of the acoustic field is
Pa = 10.4 kPa for this case, which is indeed larger than the
predicted pressure threshold p3

th � 6.6 kPa (theory based on
Ref. [1]) for parametric excitation of the third shape mode for
this given bubble radius. The entire set of these coalescence

(a)

(b)

(c)

(d)

t =−149.1 μs −74.6 μs 0 μs 14.9 μs 29.8 μs 700.8 μs 715.7 μs 730.6 μs 745.5 μs

film rupture transient regime steady-state regime

FIG. 3. Extracts of two coalescing bubbles that result in a single bubble with different modes: (a) spherical mode, (b) mode 2, (c) mode
3, and (d) mode 4. The reference time of 0 μs corresponds to the first image after the film rupture, indicated by the red box. The frames
presented here have a height and width of 220 μm. The bubble sizes are summarized in Table I. The corresponding videos can be found in the
Supplemental Material [30].
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FIG. 4. Pressure-radius diagram showing the different modes
of the coalesced bubbles in the established regime. ◦, spherical
mode; ×, mode 2; �, mode 3; �, mode 4. The background colors
correspond to the analytical solutions: white, spherical mode; blue,
mode 2; green, mode 3; red, mode 4.

recordings is summarized in a stability diagram shown in
Fig. 4. Good agreement is obtained between the experiments
(symbols) and the predicted stable zones of the shape modes
(background colors; theory based on Ref. [1]). Experimental
points are focused around the stability thresholds. Pressures
that are too low are without interest for the purpose of the
study (spherical oscillations only). In contrast, pressures that
are too large (compared to the stability threshold of a given
shape mode) lead to difficulties in observing the bubbles due
to the onset of positional instabilities.

Bubble coalescence is a rapid and reliable technique to
trigger surface oscillations of large amplitude. Indeed, shape-
oscillating microbubbles are usually investigated by gradually
increasing the acoustic amplitude until the parametric excita-
tion threshold is reached [18,31]. This generally leads to trans-
lational instabilities in the bubble motion when sufficiently
large driving amplitudes are reached [32]. Another approach
to investigate surface oscillations is by short ultrasound
bursts [20]; however, this does not allow for steady-state
observations. Through bubble coalescence, large-amplitude
nonspherical oscillations can be reached in a single step,
thus allowing straightforward investigations of their nonlinear
properties. This will be discussed in Sec. IV.

In addition, all existing theories that account for nonspher-
ical oscillations of bubbles assume shape axisymmetry, a hy-
pothesis that is usually considered as fulfilled experimentally
by considering that shape symmetry is defined by the direction
of the traveling ultrasound beam. The axisymmetry property
and its impact on the correct modal decomposition of the bub-
ble apparent contour was recently investigated in Ref. [33].
Importantly, the present study reveals that bubble coalescence
in a standing ultrasound beam leads to unambiguous definition
of the axis of symmetry of the nonspherical bubble by the
impact axis between the two initial bubbles. This is illustrated
in Fig. 3, where the impact axis of the two approaching
bubbles and the symmetry axis of the coalesced bubble are
represented by straight dashed lines. Far from being obvious

at first glance, this phenomenon allows control of the surface
mode orientation. By controlling the initial locations and ve-
locities of the bubbles in a way that their impact occurs along
an axis of the camera view plane, this allows bubble contour
extraction and relevant modal decomposition without bias.

IV. TEMPORAL DYNAMICS OF THE SURFACE MODES

From the moment of film rupture (Fig. 3), the subsequent
oscillations of the coalesced bubble clearly originate from an
initial highly deformed shape. Therefore, bubble coalescence
naturally appears to be an efficient technique to simultane-
ously excite a large spectrum of shape modes, thus allowing
the temporal dynamics of nonspherical bubble oscillations to
be studied over a wide range of initial conditions. The modal
coefficients an(t ) obtained from the four bubbles summarized
in Fig. 3 and Table I are plotted in Figs. 5 to 8 (blue lines).
For the sake of readibility, we limit our analysis to the fourth
shape mode, as higher modal amplitudes were negligible
in comparison to the predominant nonspherical contribution.
Every acquisition covers 15 ms of signal (corresponding to
∼500 acoustic periods), from the first image following the
film rupture (t = 0) to the established steady-state regime.
Note that a frame rate of 67.065 kHz and a driving frequency
of 31.25 kHz correspond to a sampling of 2.15 frames per
acoustic period. Figures 5(a) to 8(a) present a zoom on the
first 1.5 ms. The seemingly periodic effect that is visible on
the spherical oscillations R(t ) in Figs. 5(a) to 8(a) is due to
this low sampling and does not have any physical meaning.
In order to alleviate the ambiguity on the sampling limitation,
a reassigned spectrogram has been performed over the total
acquisition length. This spectrogram ensures that the modal
amplitudes converge to a steady-state regime. Figures 5(b)
to 8(b) present phase-averaged plots of the experimental data
during the steady-state regime (typically in the range of 10 ms
to 15 ms). These phase-averaged plots also provide direct
visualization of the frequency of the nonspherical oscillations.
For the selected cases here, this corresponds to the first
parametric resonance fac/2 for the second and third shape
modes (a2 in Fig. 6, and a3 in Fig. 7, respectively) and to
the second parametric resonance 2fac/2 = fac for the fourth
shape mode (a4 in Fig. 8).

A bubble shows spherical oscillations after coalescence if
the driving pressure is below the absolute instability threshold
(relative to any shape mode). As shown in Fig. 5, all of the
shape mode coefficients (notably dominated by a2) rapidly
decay during the transient regime, following classical damped
oscillatory behavior, and only the spherical mode R(t ) persists
in the steady-state regime. As soon as the driving pressure
exceeds the instability threshold of a specific shape mode, the
corresponding modal coefficient is amplified and persists in
the steady-state regime (see Figs. 6 to 8). In all of these cases,
the other modal coefficients that correspond to nonresonant
shape modes are naturally excited by the large initial deforma-
tion (film rupture), but they are rapidly damped until complete
disappearance (this is particularly visible in Figs. 7 and 8).

An important feature that is highlighted by the recorded
temporal dynamics is the finite-amplitude behavior of the non-
spherical oscillations inherent to the possibility of reaching a
steady-state regime. As these arise from an unstable mech-
anism, finite-amplitude nonspherical oscillations necessarily
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FIG. 5. Temporal evolution of the radius R(t ) and the surface
mode coefficients a1(t ) to a4(t ) extracted from the modal decom-
position. For this bubble (for parameters, see Table I, row a) only
spherical oscillations remain in the steady-state regime, once the
surface modes have decayed. Yellow line, simulation; blue line or
points, experimental data. (a) The first 1.5 ms of the experiment,
starting at the moment of film rupture t = 0 ms. (b) During the
steady-state regime (in the range 10 ms to 15 ms), with 200 ex-
perimental points presented with respect to two acoustic periods
2T = 2/f = 0.064 ms.

imply some kind of saturating processes to counteract the
natural exponential growth of the instability. In Figs. 5 to 8,
the experimental results are also compared to a model (yellow
lines in figures), which allows saturation through nonlinear
terms in the dynamical equations [8]. A previous implementa-
tion of this model already provided satisfactory comparisons
with experimental data [18]. The model is based on a set of dy-
namic equations that govern the spherical R(t ), translational
a1(t ), and shape modes an(t ), for n � 2. The complete set of
equations is given in the Appendix, but it can be summarized
as follows:

RR̈ + 3

2
Ṙ2 = 1

ρ

(
p∞ + 2σ

R0

)(
R0

R

)3γ

− p∞ + p(t )

ρ
− 2σ

ρR

− 4ν
Ṙ

R
+ H0

(
ẋ2, a2

i , ȧ
2
i , ai ȧi , ai äi

)
, (3)

Rä1 + 3Ṙȧ1 + 18ν
ȧ1

R
= H1(aiaj , ai ȧj , ȧi ȧj ), (4)

än + Bnȧn − Anan = Hn(a2
i , ȧ

2
i , ai ȧi , aiaj , ai ȧj ), (5)
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FIG. 6. As for Fig. 5. This bubble (for parameters, see Table I,
row b) shows mode 2 oscillations in the steady-state regime.

where ρ and ν are the liquid density and kinematic viscosity,
respectively, σ is the surface tension, γ is the gas polytropic
index, R0 is the bubble static radius, and p∞ and p(t ) are
the static parts and the acoustic part of the liquid pressure,
respectively. An and Bn are well-established time-varying co-
efficients, the expressions for which are given in Refs. [1,18].
In these terms, we added viscosity in a ad hoc manner as
proposed by Ref. [1]. The functions Hi that appear in Eqs. (4)–
(5) gather nonlinear quadratic terms that originate from a
perturbative development of the fully nonlinear dynamical
equations. Their analytical expressions are lengthy, so the
reader is referred to Ref. [8] for complete details. As men-
tioned above, it is necessary to account for these additional
terms to reproduce the saturation and the steady state of the
shape oscillations. If these are discarded, Eq. (5) reduces
to the well-known parametric equations [1], which admit
only either stable (damped) or unstable (exponential growth)
solutions.

All of the simulations presented in Figs. 5 to 8 are per-
formed with the following initial conditions. A preliminary
simulation of the spherical mode alone (using the experimen-
tally obtained static value R0 and the acoustic pressure pac)
provides physically reasonable initial conditions for R(t = 0)
and its derivative Ṙ(t = 0). a1(t = 0) is always assumed to be
zero, and a2(t = 0), a3(t = 0), and a4(t = 0) are taken from
the experimental decomposition at the moment of film rup-
ture. The shape modes are accounted for up to the fourth mode
(n = 4) in the simulations. Fairly good agreement between
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FIG. 7. As for Fig. 5. This bubble (for parameters, see Table I,
row c) shows mode 3 oscillations in the steady-state regime.

experiments and theory can be observed in Figs. 5 to 8,
including transient regimes with damped oscillations, and
steady-state regimes with finite-amplitude shape oscillations.
Note that in addition to enabling the establishment of a steady
state, the model also predicts amplitudes similar to those
observed in the experiments. A discordance can be noted,
however, for the bubble that shows a predominant fourth
shape mode (Fig. 8), especially looking at the spherical mode
coefficient R. This difference can be explained in terms that
in addition to lying in the second parametric resonance area
of the fourth shape mode, the bubble also comes closer to
the second harmonic resonance of the spherical mode. The
considered radii and driving pressures lead us to infer that
stronger nonlinearities in the bubble dynamics probably make
the asymptotic character of the model reach its limits in this
particular case. To obtain a stable numerical solution in this
particular case, the acoustic pressure of the model has been
adjusted to 8.0 kPa, instead of the experimentally obtained
24.1 kPa.

Temporal dynamics of nonspherical oscillations have
been investigated in relatively few experimental studies. By
modulation of the radiation force, Trinh et al. [34] recorded
the driven and free-decaying oscillations of trapped bubbles
up to a6 and observed mode coupling. Using short ultrasound
pulses, Versluis et al. [20] studied the transient dynamics of
shape oscillations and reported qualitative agreement with
the basic volume-to-surface parametric coupling [1]. Similar
studies were conducted later on encapsulated bubbles [15,16],
although no comparisons with theory have been made. Using
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FIG. 8. As for Fig. 5. This bubble (for parameters, see Table I,
row d) shows mode 4 oscillations in the steady-state regime.

low-frequency modulated acoustic driving, Guédra et al. [18]
showed the periodic on-off of nonspherical oscillations and
highlighted mode coupling by providing direct comparisons
with the extended theory mentioned above. All of these
studies focused on the transient dynamics of the nonspherical
oscillations, in contrast to the present data, which allow the
establishment of a steady-state regime to be clearly identified.
Moreover, because this enables shape modes to be excited
over a wide range of initial conditions, the triggering of
nonspherical oscillations by bubble coalescence stands out
from previous studies that have dealt with initially spherical
bubbles or those that were already pulsating upon a given
shape mode.

V. CONCLUSIONS

A bubble coalescence technique is used to trigger and sus-
tain nonspherical oscillations of gas bubbles. The originality
of this method lies in (1) simultaneous excitation of a large
number of shape modes at the moment of impact, (2) control
of the bubble orientation and its axis of symmetry defined by
the direction of impact, and (3) capture of both the transient
and steady-state regimes of bubble dynamics. The first four
surface modes are observed experimentally and are consistent
with theoretical onset predictions. Finally, the experimental
temporal dynamics are compared to numerical simulations,
taking into account nonlinear coupling between shape modes.
Good agreement was achieved in terms of the transient and
steady-state regimes of different shaped modes.
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APPENDIX: NUMERICAL MODEL

The numerical model we use to compare to our experi-
mental data is based on Ref. [8]. However, we reduce those
equations to second order, and we furthermore add viscosity
to the first-order terms as specified in Refs. [1,35]. This
gives for radial oscillations and translation and surface modes,
respectively,
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+ Ṙ2a2

n

2R2
+ 2Ṙanȧn
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ȧ1an−1 + 3(n + 1)Ṙ
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where Gdijn
, Manij

, Mbnij
, Mcnij

, Mdnij
and Ianij

are defined in the appendix of Ref. [8]. As before, R is the radius, a1 corresponds
to translation, and an for n � 2 corresponds to the respective surface mode n. σ is the surface tension between the gas contained
in the bubble and the surrounding liquid, ρ the density of the liquid, ν the kinematic viscosity in the liquid, and δ = √

ν/ω the
thickness of the boundary layer, not to be confused with the Kronecker delta δij . p is the acoustically induced pressure, which is
time-dependent, and pb = (p0 + 2σ/R0) × (R0/R)3γ is the pressure of the bubble at its rest radius R0 and atmospheric pressure
p0, and we suppose γ = 1.4.
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