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ABSTRACT:

A formulation to introduce acoustic waves from a control surface using volumetric source terms is proposed for
numerical simulations. A general expression of the source terms is derived from the non-linear Euler equations. The
method is validated through three academic configurations: the injection of oblique plane waves and the radiation of
a monopole source in two and three dimensions, in uniform flow. The governing equations are solved in a Cartesian
grid using a low-dispersion and low-dissipation high order finite-difference numerical scheme. However, the control
surface has an arbitrary shape, as demonstrated here with the use of a cylindrical surface. Numerical results show
good agreement with analytical solutions in both phase and amplitude. The method is then applied to an open-fan air-
craft engine configuration. The source terms are computed from a cylindrical control surface enclosing the rotor,
based on data extracted from a previous fluid mechanics simulation. The radiated acoustic field is compared with the
one obtained using the Ffowcs Williams—Hawkings integral formulation. The two solutions are again found in good
agreement for this more realistic configuration. © 2026 Acoustical Society of America.
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I. INTRODUCTION

Prescribing incoming pressure and velocity perturba-
tions without generating spurious waves is always a tricky
subject in computational aeroacoustics.' This is all the more
true when the time-dependent signal to be injected is
extracted from a separate numerical simulation in fluid
mechanics. The aim of the present study is to be able to
solve the full Euler equations to take account of possible
non-linear propagation effects in the presence of a mean
flow, by forcing the system with a solution of the averaged
Navier-Stokes equations around an open rotor.

Several strategies have been proposed in the literature
to address this coupling. One of the most widely adopted
approach is the Ffowcs Williams—Hawkings® integral
method. By enclosing the acoustic source within a porous
control surface, equivalent source terms are derived to
solve the wave equation in the farfield. While effective
for linear propagation in a homogeneous medium, this
method does not account for non-linear effects® or the
presence of physical obstacles within the extrapolation
domain.

An alternative strategy relies on the direct use of acous-
tic data on a control surface. Perturbations can be imposed
explicitly, as done by de Cacqueray e al.* to characterize
non-linear propagation effects of supersonic jet noise and
Emmanuelli er al.’ to prescribe the incoming non-linear
acoustic wave at the computational domain inlet. A formal
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two-way coupling between two solvers can also be used for
more complex computational domains, as investigated by
Langenais ef al.® for noise on a launch pad.

The method of characteristics, first developed by
Thompson’® and generalized by Poinsot and Lele” with the
Navier-Stokes characteristic boundary conditions method,
provides an alternative approach for enforcing boundary
conditions. The method was further improved by Daviller
et al.'® to prevent divergence of the mean inlet velocity
from the target value, enabling accurate introduction of both
turbulent and acoustic velocity components. The method of
characteristics was used by Daroukh ez al.,'" for instance, as
a computational fluids dynamics—Euler coupling strategy to
introduce acoustic waves. A mesh conforming to the surface
geometry is in general used. Moreover, the method of char-
acteristics is inherently one-dimensional and performs opti-
mally only when the acoustic wave vector is normal to the
injection surface.'*"?

A different approach based on volumetric source terms
distributed over a surface surrounding the acoustic source is
followed in the present work. Initial developments by
Maeda and Colonius'* proposed a framework to generate
one-way acoustic waves using a linear combination of
monopole and dipole sources on a surface. Their model,
however, is limited to quiescent media and based on a one-
dimensional formulation. The present work extends this
concept by formulating source terms for the non-linear
Euler equations, enabling the introduction of waves from
arbitrarily shaped surfaces in the presence of a mean flow
and taking into account non-linear effects.

© 2026 Acoustical Society of America 1151


https://orcid.org/0009-0002-1492-2236
https://orcid.org/0000-0002-7497-9130
https://orcid.org/0000-0001-8679-9033
https://orcid.org/0000-0001-9889-5954
https://doi.org/10.1121/10.0042388
mailto:giovanni.coco@ec-lyon.fr
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0042388&domain=pdf&date_stamp=2026-02-05

The text is organized as follows. Section II introduces
the methodological framework and details the derivation of
the source terms. Section III describes the numerical setup
used in the simulations. Section IV presents the results
across four representative academic configurations including
a realistic coupling for the last case. Final remarks and con-
clusions are drawn in Sec. V.

Il. FORMULATION

A spatial domain Q containing an acoustic source
region is considered, as shown in Fig. 1. An arbitrary sta-
tionary control volume V is defined such that the source
region lies within it. The outer boundary of this volume is a
permeable surface described by the zero level set of a scalar
function f(x) = 0, with f < 0 in V and f > 0 outside V. The
set of points describing the surface is denoted Xxg, with thus
f(xs) = 0. The surface equation is constructed so that its
gradient satisfies |Vf(xs)| = 1. In addition, we introduce
n = Vf(x,) the unit normal vector to the surface.

The non-linear Euler equations written in a perturbative
form are solved throughout the whole domain Q,

dp 0
o oy (P Poti) =0, ()

o0 0
E(Pui) +8_xj (Puitt; — polio,; U, ) +6_x,~ (P—pro)=0, (2)

0 0
5 (Pen) + 3 luilpe+p) —uo ((per)o +p0)] =0, (3)

where p is density, ¢ is time, x; is the spatial coordinate
along the i-direction, u; is the component along the i-direc-
tion of the velocity vector u, and p is the pressure. Finally,
e; is the total energy per mass unit, given by

4 L,
- - " 4
pe; ) 1+2pul 4)

for a perfect gas, with y the ratio of specific heats set to 1.4.
Equation (4) is then used to calculate p. The notation (-),
denotes the base flow quantities, assumed to be known as
the governing equations are formulated exclusively for
perturbations.

Similarly to the strategy of the Ffowcs Williams &
Hawkings (FWH) analogy,2 Egs. (1), (2), and (3) are then

9 n

Y
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z
FIG. 1. Spatial domain Q containing a control volume V. The surface
enclosing V is denoted by f(xs) = 0, and n the unit normal vector.

f(CBS) =0
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multiplied by the Heaviside function applied to the surface
H(f), and the source terms are identified by isolating the
resulting right-hand side contributions.

For the mass conservation equation, this gives

dp

0
H(f) ot + o (pu; — pouo,)| =0, (©)

which can be rewritten as

%me%ﬂWf%%WW
OH(f)

= (pui = potto,) =5 = ©)
We have used the relation
OH(f) _ OH(f) of _

axl_ - af 87)(, - 5(f) nj, (7)

where J(f) is the Dirac delta function applied to f, and n;
is the normal vector component along the i-direction.
Introducing Eq. (7) into Eq. (6) leads to

2 PH) + 5 [(01 = pota H (] = A (®)

where the source term reads as
Ay = (pu — pouo) - m o(f). ©))

Note that the terms on the left-hand side of Eq. (8) corre-
spond to the field solved outside the control surface, that is
Eq. (1) written for the variable pH(f), while the remaining
terms are identified as source terms on the right-hand
side. The same methodology applied to the momentum and
energy conservation equations provides

gt lowiH (f)] + C% [(puint; — pouo,uo, H (f)]

+ 6% (P = Po)H()] = Apu, (10)
o lpedt ()] + 5 {lu(pes + p) o ((ped
+po)lH()} = Age, (11)
with the source terms
Apu=[p(u-m)u—py(ug-m)ug+(p—po) n] 6(f), (12)
Ape, = [(per + p)u— ((per)y +po)uo] -m 6(f).  (13)

The three newfound source terms at the right-hand side
in Egs. (8), (10), and (11), A,, Ay, and A,,,, are, respec-
tively, the sources terms for mass, momentum, and energy
conservation equations. These sources are continuously dis-
tributed along the entire control surface. They enable the
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signal generated by the source region within the volume V
to be injected into the computational domain in the outward
direction only. No propagation should be observed in the
volume V.

lll. NUMERICAL SETUP

The Euler equations are solved in their conservative
form written in Cartesian coordinates

U OE OF 9G_

ottt o ta =M

o " ox Ty (14)

with

U = (p, pu, pv, pw, pey),

E = (pu, Uz, pUv, pUW, u(pe; —|—p)),
F = (pov, puv, pv*, pvw, v(pe; + p)),
G = (pw, puw, pvw, pw?, w(pe; —i—p)),
A= (Apa Apua Apvv pr’» Aﬂez)’

where U is the vector of conservative variables, E, F, and G
are the fluxes vectors, A is the source term vector defined in
Egs. (9), (12), and (13) over f(x;) =0, x = (x,y,z), and
u = (u,v,w). As mentioned previously, Eq. (14) is solved
for perturbative variables with respect to a given based flow.
The variables are initialized with their ambient values, that
is U(x, 1= 0) = (pg, potto, Poto, PoWo, (per)y)-

The Euler equations are solved using a finite difference
approach in a uniformly spaced Cartesian grid, i.e., Ax = Ay
= Az, where Ax, Ay, Az are the grid sizes in the x-, y-, and
z-direction, respectively. Spatial derivatives are computed
with a low dispersion and low dissipation fourth-order,
11-point finite difference scheme.'> Temporal integration is
performed using a low-storage, fourth-order, six-stage Runge—
Kutta scheme. The source terms are introduced at the last sub-
step of each iteration of the temporal scheme. This choice was
made with the open-fan application presented in Sec. IVD in
mind, where the input signal is obtained from a RANS simula-
tion and is not analytically defined. A selective 11-point filter
is applied throughout the computational domain in order to
suppress grid-to-grid oscillations. Perfectly matched layers
(PML)'® are implemented near the domain boundaries to
absorb outgoing acoustic waves. All simulations are conducted
with a Courant—Friedrichs—Lewy (CFL) number set to 0.5.

The source terms involve a Dirac delta function that has
to be approximated for discretization. For that, we use a nor-
malized Gaussian-shaped spatial support defined by

~r0\2
] = o)

with b = b,,/+/Tog2, where b,, is the Gaussian half-width.
It can be remarked that J, tends to the Dirac function 0
when b tends to zero. In the following, b,,/Ax = 1 is chosen
to ensure that the sources remain compact. Choosing
b,,/Ax < 1 may lead to numerical instability and increased

15)
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error, whereas selecting a value that is too large spreads the
sources intensity over a wider region, also increasing numer-
ical error.

It should also be noted that approximating the Dirac
delta function transforms the source terms from a surface
distribution to a volumetric one, spread over the surface.
The imposed acoustic fields have also to be extended from
the control surface to the volumetric source. For that, we
keep the same values along the direction normal to the sur-
face. In other words, the width size of the source is assumed
to be small with respect to a typical acoustic wavelength.

IV. RESULTS

Four configurations are presented to assess the meth-
odology. The first case involves the injection of an oblique
plane wave. The second and third cases consider the injec-
tion of cylindrical and spherical waves generated by a
monopole in a uniform mean flow. The fourth applies to
an open-fan configuration representative of a more realis-
tic scenario. In the present methodology, acoustic waves
are introduced by imposing the acoustic field on a prede-
fined injection surface. For the first three academic cases,
this field is specified analytically; in the fourth, it is
obtained from a previous computational fluid dynamics
simulation.

A perfect gas is considered, and pg, py, and ¢y denote
the pressure, density, and speed of sound of the medium at
rest. For the first three academic cases, all the variables are
made dimensionless with the speed of sound ¢y as velocity
scale, p,/y as density scale, poc(z) as pressure scale, an arbi-
trary length L, and a time scale L/cy. The reported results
are, however, plotted with dimensional primitive variables
for the time and spatial coordinates. For the last case D, all
variables carry physical dimensions.

Also, to clearly separate the quantities in the Euler
equations from those imposed in the source terms, the latter
are indicated in the following with a tilde ().

A. Oblique plane waves

The objective of the first problem is to introduce an obli-
que plane wave propagating at an angle 0 with respect to the
horizontal x axis in a medium at rest. The injection domain is
defined by f(x,y) = x [corresponding to x; = (0,y)], that
is along a vertical line as illustrated in Fig. 2. The acoustic
pressure p’ and acoustic velocity #’ for an oblique plane
wave read

ﬁ’(x,y,t):Acos[w(t—icosﬂ—lsinf))], (16)

€o Co

' (x,y,t) :icos {w (t—icose—)lsin9>} v, (7

PoCo Co Co

where A denotes the wave amplitude and is set to 10~ to be
in the linear regime, o is the angular frequency set to n, and
v = (cos 0, sin 0) is the unit wave vector.
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Periodicity BC

T =Is Periodicity BC

FIG. 2. Two-dimensional domain used to simulate oblique waves intro-
duced along the vertical line x = x;, with wave vector v inclined at an angle
0 relative to the horizontal x axis. Blue regions at the left and right bound-
aries represent the PML, while periodic boundary conditions are applied
along the top and bottom edges.

For this first case, small amplitude waves are considered
to derive an analytical solution. The expressions of the
source terms to be placed on the vertical line at x = 0 are
determined by using Eqgs. (9), (12), and (13). They are thus
linearized in neglecting second order terms. By noting that
the unit vector normal to the injection line is n = (1, 0), this
gives

Aﬂ(xa t) = pOIZ,(xM t) 5b(f)7 (18)
Apu(x7t> :ﬁ,(xﬁt) 5b(f)> (19)
Aﬂv<x7 t) = 07 (20)
Ape(6,1) = = poil (x3,1) 4(F). D

It can be shown analytically that the source terms given in
Egs. (18)—(21) generate an oblique plane wave whose prop-
erties match those in Eq. (16). To demonstrate this, the
Euler equations are manipulated by following Maeda and
Colonius'* to recast them into the form of a wave equation

1 82])/
e S v 23V 22
208 P =5, (22)
where the right-hand side reads
OA
S:a—[”—v-/\,,u. (23)

The pressure field is then calculated by carrying out the con-
volution between the source term S and the free-space
Green function go(x, y, z, ),

Pl(x.y:1) = (80 % S), (24)
which leads for |x| > b to
;) X y .
p' = ApH(x) cos {w (t— —cos ) — =sin 0)} (25)
Co Co
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with
212 2

Ap = Aexp (— kob” cos 07 ZOSH ) 26)
and kg = w/co. Providing that kb is sufficiently small, the
acoustic pressure field corresponds to that for the propaga-
tion of the oblique plane wave in Eq. (16) for x > 0. In addi-
tion, it is found that the acoustic pressure field is null for
x < 0. Details on the calculation of the convolution are
given in Appendix A.

For numerical simulations, the grid spacing is set
to Ax = 0.05, providing 44 points per wavelength. The
computational domain consists of 401 x 201 points in
the x and y directions, respectively. The length of the
computational domain is selected to match the y-wise
periodicity described in Eqgs. (16) and (17). As shown in
Fig. 2, PML are applied at the left and right boundaries,
while periodic boundary conditions are imposed on the
top and bottom edges. The solution is computed up to
t =50.

A snapshot of the acoustic pressure field is shown in
Fig. 3. As expected, wave propagation is confined to the
direction of increasing x, while the signal in the opposite
direction remains at least three orders of magnitude lower.
The time evolution of the acoustic pressure field is shown
in Mm. 1.

Mm. 1. Evolution of the pressure field for an oblique wave
train injected along a vertical line.

A comparison between the analytical and numerical sol-
utions at the final time step, evaluated along the horizontal
line y = 3, is plotted in Fig. 4. An excellent agreement is
observed in both phase and amplitude. Beyond x = 17, the
PML applied at the right boundary progressively attenuates
the numerical solution to zero.

B. 2D Monopole with uniform mean flow

This second case aims at injecting cylindrical waves
generated by a monopole immersed in a two-dimensional
uniform base flow along the y axis, with a Mach number
My = Uo/C() = 0.8.

10

2
1
> 5 0
-1
0 -2
5 0 5 10 15 20

T
FIG. 3. Snapshot of the pressure field at = 50 generated by the source
terms located at x = 0. The wave propagates in the positive x-direction,

while only a negligible amplitude is observed in the opposite direction.
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T

FIG. 4. Comparison between the analytical solution (dashed red line) and
the numerical solution (solid black line) along the horizontal line y = 3.

As shown in Fig. 5, the control surface is a circle centered
at the origin of the domain and with a radius Ry, = 5. Its sur-
face equation is f(x,y) = \/x2 + y* — Ry, corresponding to
x5 = (Rscos 0, R, sin 0) with 0 between 0 and 2 7. The mono-
pole position (x,,, y,») does not coincide with the center of the
control surface. The normal vector to the control surface is
defined as

( ny > ( cos 0 )
n= = . ,
ny sin 0
where n, and n, denote the components of the normal vector
in the x- and y-directions, respectively, and 0 is the angle
formed with the horizontal x axis.

In complex notation, the acoustic pressure field gener-
ated by a monopole immersed in a uniform flow reads

27)

" 0 0
p (X,y7f) = —Po (E"’ an_y) ¢(X7y7f)7 (28)

where ¢(x,y, 1) is the velocity potential defined as

FIG. 5. Two-dimensional computational domain Q, featuring a circular
control surface S € Q centered at the origin with radius R;. The acoustic
monopole (in red) is located at (x,,, y,,) within the control surface. The blue
region denotes the PML used for wave absorption.
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i k — JVm :
b=~ (80 o 02

X exp (— ik;];/ly (y — ym)> exp(—iwt).

In the above equation, Hél) is the Hankel function of the first

kind, f = (1 — M}z,)l/ ? is the Prandtl-Glauert factor and A is
the source amplitude. The acoustic density is simply given
by p'(x,7) =p'(x,7)/c} and the acoustic velocity field is
u =V

Equations (9), (12), and (13) are again used to derive
the source terms,

Ay(x,1) = (poitl, + p'vo sin 0) S,(f), (29)
Apu(x,1) = (povoit’ sin 0+ p’ cos 0) 5,(f), (30)
Apo(x,1) = (povoitl, + povod’ sin 0 4 p'vd sin 0

+ p’sin0) ,(f), (31)

) I vop’ sin 0

A 1 B
Ape,(x,1) = [(yfzol +2p00(2)> i, +

1
+ pougd’ sin9+§v(3)ﬁ’ sin 0} S(f), (32

where i), denotes the velocity component normal to the sur-
face f, namely, 4, =u'-n=1u'cos0+v'sin0. All the
acoustic quantities are obtained by taking the real part of
the analytical field evaluated at (R;cos6,R;sinf,r). As a
reminder, the values of the imposed acoustic quantities
along the direction normal to the control surface are set
equal to those on the surface. For this case, this implies that
p’,i', v, and p’ are constant for a given value of 0.

The source amplitude A is set to 10~ and the angular fre-
quency o = 0.1. The grid spacing is set to Ax = 0.1, provid-
ing 150 points per wavelength in the upstream-propagating
wave region. The computational domain consists of 1001
%1001 points in the x and y directions, respectively. The solu-
tion is computed up to ¢ = 300.

A snapshot of the pressure field is shown in Fig. 6 and
the time evolution of the pressure fluctuation field can be
observed in Mm. 2.

Mm. 2. Evolution of the pressure field for a two-
dimensional monopole enclosed in a circular surface.

The circular control surface is centered at the origin of
the computational domain, while the monopole, marked by
a red cross, is located at (x,,y,) = (3,3). The resulting
acoustic wavefronts are clearly visible and exhibit asymme-
try due to the convective effects of the mean flow. A quanti-
tative comparison between the numerical and analytical
solutions along six distinct lines is provided in Fig. 7, dem-
onstrating excellent agreement in both amplitude and phase.
For the lines y = 0 and x = 0, shown in Figs. 7(b) and 7(c),
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50 , o
- NN
e ——
S —————
=0 e ————— N
-50 0 50

x

FIG. 6. Acoustic pressure field at = 300 generated by a two-dimensional
monopole immersed in a uniform flow with Mach number M, = 0.8. The
monopole, indicated by the red cross, is located at (X, yn,) = (3,3) within
a circular control surface centered at the origin with radius Ry = 5.

respectively, a discontinuity appears for x,y € (—5,5), cor-
responding to the region enclosed by the control surface.
Within this region, no acoustic wave is introduced, a prop-
erty of the present formulation.

A convergence study is carried out by varying the mesh
spacing Ax while keeping all other simulation parameters
constant. The time-dependent pressure signal is recorded at
each iteration at the point (x,y) = (0.4, —14). For each sim-
ulation, the L2-norm error between the analytical and the
numerical solutions is computed as follows:

https://doi.org/10.1121/10.0042388

|| (Rep s
JZ Re[p2dr

The results for the evolution of ¢ are plotted in Fig. 8.
The mesh spacing Ax ranges from 0.1 to 1.6, corresponding
to 150 and 10 points per wavelength, respectively. For spa-
tial steps between 0.8 and 1.6, the error decreases with a
third-order slope. As the mesh is further refined, the conver-
gence rate reduces to between first and second order. This
behavior arises because the source terms are introduced only
during the final sub-step of the Runge—Kutta cycle, rather
than at every sub-step, thereby reducing the scheme’s order
of convergence.

C. 3D Monopole with uniform mean flow

This third configuration extends the two-dimensional
case to three dimensions. Introduction of spherical waves
generated by a monopolar source in a uniform flow is
investigated. The monopole is located at x,, = (X, Yin, Zim)
and is immersed in a uniform flow at M, = 0.8 along the x
axis. As illustrated in Fig. 9, the control surface is a cylin-
der centered at the origin, aligned with the x-direction, and
enclosing the source, with radius R; =10 and length
L = 30.

(a) 5 (b) 5 (c) 5
9 x10 15 x10 - 1 x10
[
[
' e 0.5
0 10
0
_, -2 5
1 -0.5 ¢
-4 0
Lo -1
[
[
-6 -5 bl -1.5
-50 0 50 -50 0 50 -50 0 50
T ' T
(d) -5 (e) —4 () -5
6 x10 15 x10 6 x10
4 4
n
1
24 2 \
1
= 0 0
-2 -2
4 -4 U
-6 -6
-50 0 50 -50 0 50
Y Y

FIG. 7. Comparison between the analytical solution (dashed red line) and the numerical solution (solid black line) for a 2D monopole immersed in uniform
flow at (a) y = —30, (b) y =0, (c) y = 30, (d) x = =30, (e) x = 0, (f) x = 30. The black vertical dashed lines denote the boundaries of the surface.
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. 15 order
’
L7 27 order
L’ = = =3" order
1074 .
107t 100

Ax

FIG. 8. L2-norm error between the numerical solution of the two-
dimensional monopole case and the analytical solution, evaluated for vary-
ing mesh resolutions Ax.

The lateral surface has for equation f(x,y,z)

=+/y*+22 =R, for —L/2 <x <L/2. The unit normal
vector to the lateral surface of the cylinder n; is defined as

n; = (0, sin0, cos 0), (33)
where 0 = arctan(y/z) denotes the angle formed with the
positive z-axis in a generic yz plane. The two bases have for
equations f(x,y,z) = £x—L/2 for \/y*+z2 < R;. The
unit vectors normal to the two bases of the cylinder are
defined respectively as n+~ = (=1,0,0).

The injection of the acoustic waves generated by a
monopole source in a uniform flow relies on the correspond-
ing analytical solution. From the velocity potential given by

(34)

FIG. 9. Three-dimensional scheme of a cylindrical control volume V with
radius R,, enclosing an acoustic monopole located at x,, = (X, Y, Zm ). The
configuration is immersed in a uniform flow of Mach number M, directed
along the x axis.
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B Ry — Mx(x — Xm)

R ﬁz

: (36)

and ﬂ2 =1- M)%, the acoustic pressure p’ and velocity
u' = (i',v',w") can be determined as follows:

” 0 0
P (X7 t) = —Po <5+M0$)¢(X, t)7 (37)

u'(x,t) = Vo(x,1), (38)
with ug = M,.cp.

The source terms can then be formulated using Egs. (9),
(12), and (13). For the lateral surface of the cylinder (—L/2
< x < L/2), the source terms are expressed as

Ap(x,1) = poit, O5(f), (39
Apu(X, 1) = pouoitl, Sp(f), (40
Aps(x,1) = p'sin0 d,(f), (41)
Apw(x,1) = p'cos 0 ,(f), 42)
Aotx) = (Lot o0k )i ). @

where #), = 7' sin 0 + W' cos 0 denotes the velocity compo-
nent in the direction normal to the lateral surface. The
acoustic quantities in the source terms are those from the
analytical solution on the control surface evaluated at
(x, Ry sin 0, R, cos 6, 1) by taking the real part.

For the bases of the cylinders with normal vectors n-,
the source terms are given by

Ap(x,1) = *(poit" + p'ug) 35 (f), (44)
Apu(%,1) = £ (2pguoii’ + p'ug +p') 65(f), 45)
Apo(X, 1) = +pouol’ on(f), (46)
A (X, 1) = = pouo’ 35 (f), (47)
Ape,(X,1) = * {V_Ll (p'uo + pot’) + %pouéﬁ’

+ %ﬁ’ué} S (f)- 48)

Once again, the imposed acoustic quantities on the control
surfaces are evaluated at (x = =L/2,y,z,1).

The monopole amplitude A is set to 107> and the angular
frequency @ = 0.314. The grid spacing is set to Ax = 0.25,
providing 24 points per wavelength in the upstream-
propagating wave region. The computational domain consists
of 401 x 281 x 461 points in the x, y, and z directions,
respectively. The solution is computed up to ¢ = 200. The
computational cost of the simulation is 6 h of wall-clock time
on a single compute node utilizing 32 OpenMP threads.
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FIG. 10. Pressure field generated by a three-dimensional monopole
immersed in a uniform flow with Mach number M, = 0.8 at t = 200 on (a)
the yz-plane at x = 0 and (b) the xz-plane at y = 0. The monopole, indicated
by the red cross, is located at (X, Ym,zn) = (0,5,5) within a cylindrical
control surface centered at the origin with radius R, = 10.

The acoustic pressure signal at the final time step is shown
in Figs. 10(a) and 10(b) on the yz and xz planes, respectively.
The control surface boundaries are clearly identifiable. The time
evolution of the pressure fluctuation field can be seen in Mm. 3.

Mm. 3. Evolution of the pressure field for a three-
dimensional monopole with a uniform flow M, = 0.8
along the x axis enclosed in a cylindrical surface.

A comparison between the analytical and numerical sol-
utions is provided in Fig. 11, evaluated on the xz-plane at
y=0 in Figs. 11(a)-11(c), on the yz-plane at x =0 in
Figs. 11(d)-11(f) and on the xy-plane at z =0 in Figs.
11(g)-11(). The numerical results closely match the analyti-
cal solution in both phase and amplitude.

D. Open fan

An application to a R&T Rotor/Stator open-fan configu-
ration is finally considered. This architecture is of interest
for its potential to reduce fuel consumption, compared to
ultra-high bypass ratio engines. However, the absence of a
nacelle necessitates an evaluation of the shock-wave propa-
gation generated at the rotor blade tips. Several studies have
addressed open-rotor applications. Daydé-Thomas et al.'’
proposed a tonal noise model based on the FWH analogy
using Goldstein’s formulation. A tonal noise study was car-
ried out by Lewis ez al.'® using a hybrid approach that cou-
ples a Reynolds-averaged Navier-Stokes (RANS) simulation
with the FWH integral formulation. An open test case for an
open-fan engine was proposed by Greco et al.,'® providing a
cross-comparison of RANS results obtained with different
CFD solvers. To the authors’ knowledge, no previous stud-
ies have investigated non-linear effects in the propagation of
shock-waves for open-fan configurations.

In the present study, the conservative variables field
introduced into the computational domain is extracted from

(a) x107° (b)

(¢)

MAMA A S——

%1075

-20 0 20 -20

0 20 -20 0 20

FIG. 11. Comparison between the analytical solution (dashed red line) and the numerical solution (solid black line) in the xz-plane at y = 0 for (a) z = 0, (b)
z =20, (c) z =40, in the yz-plane at x = 0 for (d) y = —20, (e) y =0, (f) y = 20, and in the xy-plane at z = 0 for (g) y = —20, (h) y =0, (i) y = 20. The
black vertical dashed lines denotes the boundaries of the surface.
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a RANS simulation, performed in a configuration where
only the rotor is present. The CFD simulation is carried out
using the elsA CFD solver.?’ The calculation is performed
on a single blade-passage rotor-alone configuration, which
is then reconstructed over 360° by applying periodicity in
the azimuthal direction. The resulting signal is interpolated
onto a cylindrical control surface of radius Ry = 1.3R, where
R denotes the rotor radius. The rotor plane lies in the plane
x = 0. The perturbation field (o', (pw;)’, (pe;)’,p') at each
point on the cylindrical surface is computed by subtracting
the azimuthal mean from the conservative variables
extracted from the RANS simulation. The source terms are
computed using the same formulation described in
Sec. IV C. The reference frame coincides with that shown in
Fig. 9, and the simulation is conducted under cruise condi-
tions, with a uniform flow M, aligned along the x axis and
no incidence.

The cylindrical surface is shown in Fig. 12. Since the
RANS simulation is performed on a single blade sector, the
resulting signal is periodic. This signal is then rotated
around the x axis of the cylindrical surface according to the
rotor’s angular velocity, defined as Q = A0/At, where A0 is
the angular displacement per time step At. Two complete
rotations are performed in the simulation. The computa-
tional domain consists of 241 x 255 x 334 points in the x, y,
and z directions, respectively, with 24 points per wavelength
in the upstream-propagating wave region. The computa-
tional cost of the simulation is 4 h of wall-clock time on a
single compute node utilizing 32 OpenMP threads.

The resulting acoustic pressure field generated by the
source terms distributed along the cylindrical surface is
shown in Fig. 13. The signal primarily propagates outward
from the cylindrical surface and is subsequently absorbed by
the PML at the domain boundaries. Due to the presence of a
uniform flow M,, the acoustic waves undergo upstream
propagation against the flow direction and experience a
wavelength increase in the downstream direction. However,
a small portion of the signal penetrates into the surface. This
effect is likely attributable to the fact that the source signal
is extracted directly from a RANS simulation, rather than
being analytically defined as in the previous more academic

A

FIG. 12. Isometric view of the pressure oscillations field generated by an
open fan rotor on a cylindrical control surface.
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FIG. 13. Pressure field generated by an open fan rotor in (a) the yz-plane
and (b) the xz-plane.

cases. Nevertheless, this does not compromise the validity
of the results, as demonstrated by the comparison with the
FWH method for sound pressure level (SPL) computation
on the xz-plane, presented in Fig. 14. The highest SPL is
observed in the vicinity of the rotor plane at x/R; = 0 and
gradually decreases upstream and downstream, as well as
along z.

A more quantitative comparison between the two
approaches is presented in Fig. 15. The SPL is plotted along
three lines on the xz-plane at y = 0, corresponding to nor-
malized vertical positions z/R; = 1.03, 1.41, and 1.72 in
Figs. 15(a), 15(b), and 15(c), respectively. Three additional
simulations are performed by introducing a scaling factor o
multiplying the amplitude of the source terms to assess the
influence of non-linear effects. The values oo = 0.5, 0.1, and

(a) (b)
0.6 A
0.4
0.2
0.2
0.4
\
0.6
12 14 16 1.2 14 16

z/ R

z/Rs
(=)
30 dB

<%

z/ R
FIG. 14. SPL in the xz-plane at y =0 for (a) the Ffowcs Williams-

Hawkings integral formulation and (b) the present method.
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FIG. 15. Normalized comparison of the Sound Pressure Level between the Ffowcs Williams-Hawkings integral formulation in dashed line, and the present

method at z/R; =1.03 (a), 1.41 (b), and 1.72 (c) for different values of o.

0.01 are selected to progressively suppress non-linear propa-
gation effects. The baseline simulation uses unmodified
source terms and therefore corresponds to o = 1. For each
simulation, the SPL is computed and normalized using the
corresponding value of o, enabling a direct comparison
across all cases. Downstream of the rotor, for x > 0, the
results are identical for all simulations, with complete over-
lap between the Euler and the FWH curves. Upstream of the
rotor, for x < 0, the Euler solution progressively approaches
the FWH prediction as o decreases. Convergence is
achieved for « = 0.1, below which non-linear attenuation of
the SPL is no longer observed. Non-linear effects are there-
fore confined to the region x/R; < 0.2, upstream of the
engine. This behavior can be explained by the shock forma-
tion distance ¥ in the presence of a uniform ﬂow,zl’22
defined as the distance required for a sinusoidal plane wave
to first present a vertical tangent. Relative to a quiescent
medium, this distance decreases for waves propagating
against the flow and increases for waves propagating with
the flow. For the configuration considered here, the theoreti-
cal shock formation distance is X/R; = 0.18 for waves prop-
agating against the flow, whereas it reaches X/R; = 11 for
waves propagating in the direction of the flow.

V. CONCLUSION

The method proposed in this study enables the injection
of acoustic waves through volumetric source terms distrib-
uted along an arbitrary control surface. This non-linear for-
mulation is rigorously derived from fluid mechanics
equations to keep them very general. Validation has been
carried out for oblique plane waves on a Cartesian grid and
for a monopole source in both two and three dimensions
under uniform flow and with a cylindrical volume control
on a Cartesian mesh. In all cases, the results showed excel-
lent agreement by comparison with corresponding analytical
solutions.

The source terms are immersed in the computational
mesh, avoiding the need to conform the mesh to the control
surface geometry. Mesh refinement near the control surface
may be required to properly take into account its shape. The
authors recommend the use of compact sources by selecting
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a Gaussian half-width equal to the mesh spacing. Future
work could investigate the numerical error obtained using a
uniform Cartesian mesh compared with that from a mesh
conforming to the geometry of the control surface.

Finally, the method was also applied to an open fan con-
figuration. The comparison of the radiated pressure field with
the Ffowcs Williams—Hawkings integral formulation is again
in very good agreement. Unlike the FWH approach, the pre-
sent method allows the inclusion of non-linear effects, as it is
based on solving the non-linear Euler equations.

Building on these findings, the proposed method offers
several notable advantages. It can be directly applied on a
uniform Cartesian mesh, regardless of the chosen control
surface, which greatly simplifies implementation in finite-
difference solvers. Because the control surface is fully
immersed within the computational domain, no boundary
conditions need to be imposed and no mesh adaptation to
the surface geometry is required. Unlike characteristic-
based wave-injection techniques, the present approach does
not require the evaluation of additional terms: only volumet-
ric source terms are added within the Runge—Kutta loop,
leaving the computational cost essentially unchanged. Care
must be taken to ensure an adequate level of source com-
pactness relative to the mesh resolution, but this requirement
is straightforward to satisfy. Overall, the method provides a
robust and efficient alternative for CFD/CAA coupling,
being also capable of capturing non-linear propagation
effects.
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APPENDIX A: CONVOLUTION

The calculation of the convolution in Eq. (25) is
detailed below. Complex notation is used to simplify the
calculations. The convolution writes explicitly as

+00
p/(x7y7t):JJJJ go(,X—.X/,y—yl7Z—Z/7[—t,)

—00
x S(X, ', f)dxX'dy'dZdr (A1)
where g is the Green function in free field
(69, 2,1) = —— (1 — Rcy) (A2)
8o\, y,2,1) = 4R 0

with R =/x2+y>+2z2. The term S is given by §
=51 + S, with
_ oA,

Sy == —F+ = —ikAexp(—imwt + ikyy) 0p(x),

o (A3)

Sy ==V - Apu = —Aexp(—iwt + ikyy) 5,(x)  (A4)
with k, = ko cos 0 and k, = ko sin 0. 6, (x) is the normalized
Gaussian distribution defined by Eq. (15) and ) (x) is its
derivative. For the sake of clarity, the integral is calculated
by separating the two addends.

Calculation for S;. The convolution between the
Green'’s function gy and S reads

oo R
t) = — Olt—1——
ey =[]z o(-7-%)
x Sy(,y, 2 7)) d dy' dZ df.

The property of the Dirac distribution is used for integration
over time by evaluating Sy at#/ =t — R/cg

k. +00 |: x/2:|

— A2 T

Az | e |
y JJ*“ exp (—iwr+ikoR +ikyy')

4nR

dy'dZdx. (A5)

—00

The resolution of the double integral is given in detail in
Appendix B. Equation (B3) is used and the integral reads
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B +00 X/z
P =575 J exp {—ﬁ} exp(ik, [x —x'|) d¥' (A6)
—00

with B = A exp(—iwt + ikyy).
The assumption is made to be in the far field, i.e.,
|x| > b. At the first order, one obtains

/

= | ~ || (1 _é) = |x| — ¥ sign(x). (A7)
Equation (A6) is then written as
B —+00 72
P =5y ePliki ) LO exp (- %)
X exp[—ikx' sign(x)] dx’. (A8)

The integral in the above equation corresponds to the
Fourier transform of the Gaussian function, that is given by*

+00 2
J exp (—¢*x*) exp(ipx)dx = \{fexp ( p) (A9)

—00

for p and g real numbers. Equation (A9) is used in Eq. (A8)
leading to

B 2
D1 2\/Ebexp(ikxx)\/Ebexp( y4 )
A;, . ' .
— > eXP(*lwl + lkx|x| + lkyy) AL0)
with
— K2b?
Ab Aexp(_ "4 ) (A11)

Calculation for S,. The convolution between the
Green'’s function gy and S, reads

2A exp(—iwt) (T, x?
pZ(xvyat) = X exp\ —

N b2
T exp(ikoR + ikyy'
% JJ p( 0 yy)dxl dy’ dZ/,
o 47R

where the Dirac distribution property is used for the integra-
tion in time.

Once again, Eq. (B3) is used to solve the double
integral

—+00 , ) , le ,
pZ:Cmeexp 1kx|xfx|fﬁ dx

with C = iAexp(—iwt + ikyy)/ (key/7b*). The same first
order approximation as in Eq. (A7) is made:
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+00 le
p2 = Cexp(iky|x]) J X exp < ﬁ)

—00

x exp(—ik,¥sign(x)) dx'. (A12)

The integral above corresponds to the Fourier transform of
the derivative of the Gaussian function. It can be written as

+00 1 2
2.2 . 1p \/ﬁ 14

- dx = —— -
J, xexp(—¢°x°) exp(ipx) 20 exp 5

for p and ¢ real numbers. After appropriate simplifications,
the pressure field generated by the source term S, is finally
obtained

A
P2 = Thsign(x) exp(—iwt + iky|x| + ikyy). (A13)

Total acoustic pressure field. The acoustic pressure field
generated by S; and S, is calculated by the sum of
Egs. (A10) and (A13), i.e., p’ = p1 + p2, yielding

P (x,y,1) = ApH (x) exp(—iwt + ikux + ikyy). (Al4)
Taking the real part of the equation above leads to Eq. (295).

APPENDIX B: INTEGRAL CALCULATION

In this appendix, we detail the calculation of the integral

o0 exp (ikoR + ikyy')
/ _ Y 13/
I(x,x,y)—JJ AR dy'dz

(B1)
withR = \/p? + 2% and p? = (x — X')* + (y — )"
We first use the relation

oo exp(ikoR) i (1)
SO 4 =~ (k
J 47R Z 4 0 ( Op)a

—00

where H(()1> is the Hankel function of the first kind, which can
be derived from Egs. (3.714.2) and (3.714.3) in Gradshteyn
and Ryzhik.23 With this relation, Eq. (B1) becomes

+00
I = DJ H (ko\/xz +y”2) exp(—ikyy") dy”

with D = iexp(ik,y)/4, y = x — ', and y" =y — y'. By split-
ting the integral into (—oo, 0] and [0, +00), it can be written as
+00

I= ZDJ H (ko NI y"Z) cos(ky”) dy”.  (B2)
0

Using Egs. (6.677.3) and (6.677.4) in Gradshteyn and
Ryzhik,”* it can be shown that

J:OC H(()l) (ocx/x2 + 22) cos(Bx)dx = o ng ﬂz)

for 0 < f < o and for z a real number. Using the above
equation in Eq. (B2) allows us to obtain
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T (B3)

I(x,x',y) = =——exp(ik, |x — x| +ikyy).
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