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ABSTRACT:
A formulation to introduce acoustic waves from a control surface using volumetric source terms is proposed for

numerical simulations. A general expression of the source terms is derived from the non-linear Euler equations. The

method is validated through three academic configurations: the injection of oblique plane waves and the radiation of

a monopole source in two and three dimensions, in uniform flow. The governing equations are solved in a Cartesian

grid using a low-dispersion and low-dissipation high order finite-difference numerical scheme. However, the control

surface has an arbitrary shape, as demonstrated here with the use of a cylindrical surface. Numerical results show

good agreement with analytical solutions in both phase and amplitude. The method is then applied to an open-fan air-

craft engine configuration. The source terms are computed from a cylindrical control surface enclosing the rotor,

based on data extracted from a previous fluid mechanics simulation. The radiated acoustic field is compared with the

one obtained using the Ffowcs Williams–Hawkings integral formulation. The two solutions are again found in good

agreement for this more realistic configuration.VC 2026 Acoustical Society of America.
https://doi.org/10.1121/10.0042388
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I. INTRODUCTION

Prescribing incoming pressure and velocity perturba-

tions without generating spurious waves is always a tricky

subject in computational aeroacoustics.1 This is all the more

true when the time-dependent signal to be injected is

extracted from a separate numerical simulation in fluid

mechanics. The aim of the present study is to be able to

solve the full Euler equations to take account of possible

non-linear propagation effects in the presence of a mean

flow, by forcing the system with a solution of the averaged

Navier-Stokes equations around an open rotor.

Several strategies have been proposed in the literature

to address this coupling. One of the most widely adopted

approach is the Ffowcs Williams–Hawkings2 integral

method. By enclosing the acoustic source within a porous

control surface, equivalent source terms are derived to

solve the wave equation in the farfield. While effective

for linear propagation in a homogeneous medium, this

method does not account for non-linear effects3 or the

presence of physical obstacles within the extrapolation

domain.

An alternative strategy relies on the direct use of acous-

tic data on a control surface. Perturbations can be imposed

explicitly, as done by de Cacqueray et al.4 to characterize

non-linear propagation effects of supersonic jet noise and

Emmanuelli et al.5 to prescribe the incoming non-linear

acoustic wave at the computational domain inlet. A formal

two-way coupling between two solvers can also be used for

more complex computational domains, as investigated by

Langenais et al.6 for noise on a launch pad.

The method of characteristics, first developed by

Thompson7,8 and generalized by Poinsot and Lele9 with the

Navier-Stokes characteristic boundary conditions method,

provides an alternative approach for enforcing boundary

conditions. The method was further improved by Daviller

et al.10 to prevent divergence of the mean inlet velocity

from the target value, enabling accurate introduction of both

turbulent and acoustic velocity components. The method of

characteristics was used by Daroukh et al.,11 for instance, as
a computational fluids dynamics–Euler coupling strategy to

introduce acoustic waves. A mesh conforming to the surface

geometry is in general used. Moreover, the method of char-

acteristics is inherently one-dimensional and performs opti-

mally only when the acoustic wave vector is normal to the

injection surface.12,13

A different approach based on volumetric source terms

distributed over a surface surrounding the acoustic source is

followed in the present work. Initial developments by

Maeda and Colonius14 proposed a framework to generate

one-way acoustic waves using a linear combination of

monopole and dipole sources on a surface. Their model,

however, is limited to quiescent media and based on a one-

dimensional formulation. The present work extends this

concept by formulating source terms for the non-linear

Euler equations, enabling the introduction of waves from

arbitrarily shaped surfaces in the presence of a mean flow

and taking into account non-linear effects.a)Email: giovanni.coco@ec-lyon.fr
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The text is organized as follows. Section II introduces

the methodological framework and details the derivation of

the source terms. Section III describes the numerical setup

used in the simulations. Section IV presents the results

across four representative academic configurations including

a realistic coupling for the last case. Final remarks and con-

clusions are drawn in Sec. V.

II. FORMULATION

A spatial domain X containing an acoustic source

region is considered, as shown in Fig. 1. An arbitrary sta-

tionary control volume V is defined such that the source

region lies within it. The outer boundary of this volume is a

permeable surface described by the zero level set of a scalar

function f ðxÞ ¼ 0, with f < 0 in V and f > 0 outside V. The
set of points describing the surface is denoted xs, with thus

f ðxsÞ ¼ 0. The surface equation is constructed so that its

gradient satisfies jrf ðxsÞj ¼ 1. In addition, we introduce

n ¼ rf ðxsÞ the unit normal vector to the surface.

The non-linear Euler equations written in a perturbative

form are solved throughout the whole domain X;

@q
@t

þ @

@xi
qui � q0u0ið Þ ¼ 0; (1)

@

@t
quið Þþ @

@xj
quiuj�q0u0i u0jð Þþ

@

@xi
p� p0ð Þ ¼ 0; (2)

@

@t
qetð Þþ @

@xi
½ui qetþ pð Þ� u0i ðqetÞ0þ p0

� �� ¼ 0; (3)

where q is density, t is time, xi is the spatial coordinate

along the i-direction, ui is the component along the i-direc-
tion of the velocity vector u, and p is the pressure. Finally,

et is the total energy per mass unit, given by

qet ¼ p

c� 1
þ 1

2
qu2i (4)

for a perfect gas, with c the ratio of specific heats set to 1.4.

Equation (4) is then used to calculate p. The notation ð�Þ0
denotes the base flow quantities, assumed to be known as

the governing equations are formulated exclusively for

perturbations.

Similarly to the strategy of the Ffowcs Williams &

Hawkings (FWH) analogy,2 Eqs. (1), (2), and (3) are then

multiplied by the Heaviside function applied to the surface

Hðf Þ, and the source terms are identified by isolating the

resulting right-hand side contributions.

For the mass conservation equation, this gives

Hðf Þ @q
@t

þ @

@xi
qui � q0u0ið Þ

� �
¼ 0; (5)

which can be rewritten as

@

@t
½qHðf Þ� þ @

@xi

�
qui � q0u0ið ÞHðf Þ

�
¼ qui � q0u0ið Þ @Hðf Þ

@xi
: (6)

We have used the relation

@Hðf Þ
@xi

¼ @Hðf Þ
@f

@f

@xi
¼ dðf Þ ni; (7)

where dðf Þ is the Dirac delta function applied to f, and ni
is the normal vector component along the i-direction.
Introducing Eq. (7) into Eq. (6) leads to

@

@t
½qHðf Þ� þ @

@xi

�
qui � q0u0ið ÞHðf Þ

� ¼ Kq; (8)

where the source term reads as

Kq ¼ ðqu� q0u0Þ � n dðf Þ: (9)

Note that the terms on the left-hand side of Eq. (8) corre-

spond to the field solved outside the control surface, that is

Eq. (1) written for the variable qHðf Þ, while the remaining

terms are identified as source terms on the right-hand

side. The same methodology applied to the momentum and

energy conservation equations provides

@

@t
½quiHðf Þ� þ @

@xj

�
quiuj � q0u0i u0jð ÞHðf Þ

�
þ @

@xi

�
p� p0ð ÞHðf Þ

� ¼ Kqu; (10)

@

@t
½qetHðf Þ� þ @

@xi

�½ui qet þ pð Þ � u0i ðqetÞ0
�

þ p0Þ�Hðf Þ
	 ¼ Kqet (11)

with the source terms

Kqu¼ qðu �nÞu�q0ðu0 �nÞu0þðp�p0Þ n½ � dðf Þ; (12)

Kqet ¼ ðqet þ pÞu� ððqetÞ0 þ p0Þu0
� � � n dðf Þ: (13)

The three newfound source terms at the right-hand side

in Eqs. (8), (10), and (11), Kq, Kqu, and Kqet , are, respec-

tively, the sources terms for mass, momentum, and energy

conservation equations. These sources are continuously dis-

tributed along the entire control surface. They enable the
FIG. 1. Spatial domain X containing a control volume V. The surface

enclosing V is denoted by f ðxsÞ ¼ 0, and n the unit normal vector.

1152 J. Acoust. Soc. Am. 159 (2), February 2026 Coco et al.

https://doi.org/10.1121/10.0042388

https://doi.org/10.1121/10.0042388


signal generated by the source region within the volume V
to be injected into the computational domain in the outward

direction only. No propagation should be observed in the

volume V.

III. NUMERICAL SETUP

The Euler equations are solved in their conservative

form written in Cartesian coordinates

@U

@t
þ @E

@x
þ @F

@y
þ @G

@z
¼ K; (14)

with

U ¼ q; qu; qv; qw; qetð Þ;
E ¼ qu; qu2; quv; quw; u qet þ pð Þ

� �
;

F ¼ qv; quv; qv2; qvw; v qet þ pð Þ
� �

;

G ¼ qw; quw; qvw; qw2;w qet þ pð Þ
� �

;

K ¼ Kq;Kqu;Kqv;Kqw;Kqetð Þ;

where U is the vector of conservative variables, E;F, and G
are the fluxes vectors, K is the source term vector defined in

Eqs. (9), (12), and (13) over f ðxsÞ ¼ 0, x ¼ ðx; y; zÞ, and
u ¼ ðu; v;wÞ. As mentioned previously, Eq. (14) is solved

for perturbative variables with respect to a given based flow.

The variables are initialized with their ambient values, that

is Uðx; t ¼ 0Þ ¼ ðq0; q0u0; q0v0; q0w0; ðqetÞ0Þ.
The Euler equations are solved using a finite difference

approach in a uniformly spaced Cartesian grid, i.e., Dx ¼ Dy
¼ Dz, where Dx, Dy, Dz are the grid sizes in the x-, y-, and
z-direction, respectively. Spatial derivatives are computed

with a low dispersion and low dissipation fourth-order,

11-point finite difference scheme.15 Temporal integration is

performed using a low-storage, fourth-order, six-stage Runge–

Kutta scheme. The source terms are introduced at the last sub-

step of each iteration of the temporal scheme. This choice was

made with the open-fan application presented in Sec. IVD in

mind, where the input signal is obtained from a RANS simula-

tion and is not analytically defined. A selective 11-point filter

is applied throughout the computational domain in order to

suppress grid-to-grid oscillations. Perfectly matched layers

(PML)16 are implemented near the domain boundaries to

absorb outgoing acoustic waves. All simulations are conducted

with a Courant–Friedrichs–Lewy (CFL) number set to 0.5.

The source terms involve a Dirac delta function that has

to be approximated for discretization. For that, we use a nor-

malized Gaussian-shaped spatial support defined by

db f ðxÞ½ � ¼ 1ffiffiffi
p

p
b
exp � f ðxÞ2

b2

� �
(15)

with b ¼ bw=
ffiffiffiffiffiffiffiffiffiffiffi
log 2

p
, where bw is the Gaussian half-width.

It can be remarked that db tends to the Dirac function d
when b tends to zero. In the following, bw=Dx ¼ 1 is chosen

to ensure that the sources remain compact. Choosing

bw=Dx < 1 may lead to numerical instability and increased

error, whereas selecting a value that is too large spreads the

sources intensity over a wider region, also increasing numer-

ical error.

It should also be noted that approximating the Dirac

delta function transforms the source terms from a surface

distribution to a volumetric one, spread over the surface.

The imposed acoustic fields have also to be extended from

the control surface to the volumetric source. For that, we

keep the same values along the direction normal to the sur-

face. In other words, the width size of the source is assumed

to be small with respect to a typical acoustic wavelength.

IV. RESULTS

Four configurations are presented to assess the meth-

odology. The first case involves the injection of an oblique

plane wave. The second and third cases consider the injec-

tion of cylindrical and spherical waves generated by a

monopole in a uniform mean flow. The fourth applies to

an open-fan configuration representative of a more realis-

tic scenario. In the present methodology, acoustic waves

are introduced by imposing the acoustic field on a prede-

fined injection surface. For the first three academic cases,

this field is specified analytically; in the fourth, it is

obtained from a previous computational fluid dynamics

simulation.

A perfect gas is considered, and p0, q0, and c0 denote

the pressure, density, and speed of sound of the medium at

rest. For the first three academic cases, all the variables are

made dimensionless with the speed of sound c0 as velocity

scale, q0=c as density scale, q0c
2
0 as pressure scale, an arbi-

trary length L, and a time scale L=c0. The reported results

are, however, plotted with dimensional primitive variables

for the time and spatial coordinates. For the last case D, all

variables carry physical dimensions.

Also, to clearly separate the quantities in the Euler

equations from those imposed in the source terms, the latter

are indicated in the following with a tilde ð~Þ.

A. Oblique plane waves

The objective of the first problem is to introduce an obli-

que plane wave propagating at an angle h with respect to the

horizontal x axis in a medium at rest. The injection domain is

defined by f ðx; yÞ ¼ x [corresponding to xs ¼ ð0; yÞ], that

is along a vertical line as illustrated in Fig. 2. The acoustic

pressure ~p0 and acoustic velocity ~u0 for an oblique plane

wave read

~p0ðx; y; tÞ ¼ A cos x t� x

c0
cos h� y

c0
sin h

� �� �
; (16)

~u0ðx;y; tÞ¼ A

q0c0
cos x t� x

c0
cosh� y

c0
sinh

� �� �
m; (17)

where A denotes the wave amplitude and is set to 10�4 to be

in the linear regime, x is the angular frequency set to p, and
m ¼ ðcos h; sin hÞ is the unit wave vector.
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For this first case, small amplitude waves are considered

to derive an analytical solution. The expressions of the

source terms to be placed on the vertical line at x ¼ 0 are

determined by using Eqs. (9), (12), and (13). They are thus

linearized in neglecting second order terms. By noting that

the unit vector normal to the injection line is n ¼ ð1; 0Þ, this
gives

Kqðx; tÞ ¼ q0~u
0 xs; tð Þ dbðf Þ; (18)

Kquðx; tÞ ¼ ~p0 xs; tð Þ dbðf Þ; (19)

Kqvðx; tÞ ¼ 0; (20)

Kqetðx; tÞ ¼
c

c� 1
p0~u

0 xs; tð Þ dbðf Þ: (21)

It can be shown analytically that the source terms given in

Eqs. (18)–(21) generate an oblique plane wave whose prop-

erties match those in Eq. (16). To demonstrate this, the

Euler equations are manipulated by following Maeda and

Colonius14 to recast them into the form of a wave equation

1

c20

@2p0

@t2
�r2p0 ¼ S; (22)

where the right-hand side reads

S ¼ @Kq

@t
�r � Kqu: (23)

The pressure field is then calculated by carrying out the con-

volution between the source term S and the free-space

Green function g0ðx; y; z; tÞ,
p0 x; y; tð Þ ¼ ðg0 � SÞ; (24)

which leads for jxj � b to

p0 ¼ AbHðxÞ cos x t� x

c0
cos h� y

c0
sin h

� �� �
(25)

with

Ab ¼ A exp � k20b
2 cos h2

4

� �
(26)

and k0 ¼ x=c0. Providing that k0b is sufficiently small, the

acoustic pressure field corresponds to that for the propaga-

tion of the oblique plane wave in Eq. (16) for x > 0. In addi-

tion, it is found that the acoustic pressure field is null for

x < 0. Details on the calculation of the convolution are

given in Appendix A.

For numerical simulations, the grid spacing is set

to Dx ¼ 0:05, providing 44 points per wavelength. The

computational domain consists of 401� 201 points in

the x and y directions, respectively. The length of the

computational domain is selected to match the y-wise
periodicity described in Eqs. (16) and (17). As shown in

Fig. 2, PML are applied at the left and right boundaries,

while periodic boundary conditions are imposed on the

top and bottom edges. The solution is computed up to

t ¼ 50.

A snapshot of the acoustic pressure field is shown in

Fig. 3. As expected, wave propagation is confined to the

direction of increasing x, while the signal in the opposite

direction remains at least three orders of magnitude lower.

The time evolution of the acoustic pressure field is shown

in Mm. 1.

Mm. 1. Evolution of the pressure field for an oblique wave

train injected along a vertical line.

A comparison between the analytical and numerical sol-

utions at the final time step, evaluated along the horizontal

line y ¼ 3, is plotted in Fig. 4. An excellent agreement is

observed in both phase and amplitude. Beyond x ¼ 17, the

PML applied at the right boundary progressively attenuates

the numerical solution to zero.

B. 2D Monopole with uniform mean flow

This second case aims at injecting cylindrical waves

generated by a monopole immersed in a two-dimensional

uniform base flow along the y axis, with a Mach number

My ¼ v0=c0 ¼ 0:8.

FIG. 2. Two-dimensional domain used to simulate oblique waves intro-

duced along the vertical line x ¼ xs, with wave vector m inclined at an angle

h relative to the horizontal x axis. Blue regions at the left and right bound-

aries represent the PML, while periodic boundary conditions are applied

along the top and bottom edges.

FIG. 3. Snapshot of the pressure field at t ¼ 50 generated by the source

terms located at x ¼ 0. The wave propagates in the positive x-direction,
while only a negligible amplitude is observed in the opposite direction.
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As shown in Fig. 5, the control surface is a circle centered

at the origin of the domain and with a radius Rs ¼ 5. Its sur-

face equation is f ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� Rs, corresponding to

xs ¼ ðRs cos h;Rs sin hÞ with h between 0 and 2p. The mono-

pole position ðxm; ymÞ does not coincide with the center of the

control surface. The normal vector to the control surface is

defined as

n ¼ nx
ny

� �
¼ cos h

sin h

� �
; (27)

where nx and ny denote the components of the normal vector

in the x- and y-directions, respectively, and h is the angle

formed with the horizontal x axis.
In complex notation, the acoustic pressure field gener-

ated by a monopole immersed in a uniform flow reads

~p0ðx; y; tÞ ¼ �q0
@

@t
þ v0

@

@y

� �
/ðx; y; tÞ; (28)

where /ðx; y; tÞ is the velocity potential defined as

/ x; y; tð Þ ¼ � iA

4b
H

ð1Þ
0

k0
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xmÞ2 þ ðy� ymÞ2

b2

s0
@

1
A

� exp � ik0My

b2
ðy� ymÞ

� �
exp �ixtð Þ:

In the above equation, H
ð1Þ
0 is the Hankel function of the first

kind, b ¼ ð1�M2
yÞ1=2 is the Prandtl–Glauert factor and A is

the source amplitude. The acoustic density is simply given

by ~q0ðx; tÞ ¼ ~p0ðx; tÞ=c20 and the acoustic velocity field is

~u0 ¼ r/.
Equations (9), (12), and (13) are again used to derive

the source terms,

Kq x; tð Þ ¼ q0~u
0
n þ ~q0v0 sin h

� �
dbðf Þ; (29)

Kqu x; tð Þ ¼ q0v0~u
0 sin hþ ~p0 cos h

� �
dbðf Þ; (30)

Kqv x; tð Þ ¼ q0v0~u
0
n þ q0v0~v

0 sin hþ ~q0v20 sin h
�
þ ~p0 sin hÞ dbðf Þ; (31)

Kqet x; tð Þ ¼ cp0
c� 1

þ 1

2
q0v

2
0

� �
~u0n þ

c
c� 1

v0~p
0 sin h

�

þ q0v
2
0~v

0 sin hþ 1

2
v30~q

0 sin h
�
dbðf Þ; (32)

where ~u0n denotes the velocity component normal to the sur-

face f, namely, ~u0n ¼ ~u0 � n ¼ ~u0 cos hþ ~v0 sin h. All the

acoustic quantities are obtained by taking the real part of

the analytical field evaluated at ðRs cos h;Rs sin h; tÞ. As a

reminder, the values of the imposed acoustic quantities

along the direction normal to the control surface are set

equal to those on the surface. For this case, this implies that

~p0, ~u0, ~v0, and ~q0 are constant for a given value of h.
The source amplitude A is set to 10�3 and the angular fre-

quency x ¼ 0:1. The grid spacing is set to Dx ¼ 0:1, provid-
ing 150 points per wavelength in the upstream-propagating

wave region. The computational domain consists of 1001

�1001 points in the x and y directions, respectively. The solu-
tion is computed up to t ¼ 300.

A snapshot of the pressure field is shown in Fig. 6 and

the time evolution of the pressure fluctuation field can be

observed in Mm. 2.

Mm. 2. Evolution of the pressure field for a two-

dimensional monopole enclosed in a circular surface.

The circular control surface is centered at the origin of

the computational domain, while the monopole, marked by

a red cross, is located at ðxm; ymÞ ¼ ð3; 3Þ. The resulting

acoustic wavefronts are clearly visible and exhibit asymme-

try due to the convective effects of the mean flow. A quanti-

tative comparison between the numerical and analytical

solutions along six distinct lines is provided in Fig. 7, dem-

onstrating excellent agreement in both amplitude and phase.

For the lines y ¼ 0 and x ¼ 0, shown in Figs. 7(b) and 7(c),

FIG. 4. Comparison between the analytical solution (dashed red line) and

the numerical solution (solid black line) along the horizontal line y ¼ 3.

FIG. 5. Two-dimensional computational domain X, featuring a circular

control surface S 2 X centered at the origin with radius Rs. The acoustic

monopole (in red) is located at ðxm; ymÞ within the control surface. The blue

region denotes the PML used for wave absorption.
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respectively, a discontinuity appears for x; y 2 ð�5; 5Þ, cor-
responding to the region enclosed by the control surface.

Within this region, no acoustic wave is introduced, a prop-

erty of the present formulation.

A convergence study is carried out by varying the mesh

spacing Dx while keeping all other simulation parameters

constant. The time-dependent pressure signal is recorded at

each iteration at the point ðx; yÞ ¼ ð0:4;�14Þ. For each sim-

ulation, the L2-norm error between the analytical and the

numerical solutions is computed as follows:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

Re ~p0½ � � p0ð Þ2dtðT
0

Re ~p0½ �2dt

vuuuuuut :

The results for the evolution of e are plotted in Fig. 8.

The mesh spacing Dx ranges from 0.1 to 1.6, corresponding

to 150 and 10 points per wavelength, respectively. For spa-

tial steps between 0.8 and 1.6, the error decreases with a

third-order slope. As the mesh is further refined, the conver-

gence rate reduces to between first and second order. This

behavior arises because the source terms are introduced only

during the final sub-step of the Runge–Kutta cycle, rather

than at every sub-step, thereby reducing the scheme’s order

of convergence.

C. 3D Monopole with uniform mean flow

This third configuration extends the two-dimensional

case to three dimensions. Introduction of spherical waves

generated by a monopolar source in a uniform flow is

investigated. The monopole is located at xm ¼ ðxm; ym; zmÞ
and is immersed in a uniform flow at Mx ¼ 0:8 along the x
axis. As illustrated in Fig. 9, the control surface is a cylin-

der centered at the origin, aligned with the x-direction, and
enclosing the source, with radius Rs ¼ 10 and length

L ¼ 30.

FIG. 7. Comparison between the analytical solution (dashed red line) and the numerical solution (solid black line) for a 2D monopole immersed in uniform

flow at (a) y ¼ �30, (b) y ¼ 0, (c) y ¼ 30, (d) x ¼ �30, (e) x ¼ 0, (f) x ¼ 30. The black vertical dashed lines denote the boundaries of the surface.

FIG. 6. Acoustic pressure field at t ¼ 300 generated by a two-dimensional

monopole immersed in a uniform flow with Mach number My ¼ 0:8. The
monopole, indicated by the red cross, is located at ðxm; ymÞ ¼ ð3; 3Þ within
a circular control surface centered at the origin with radius Rs ¼ 5.
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The lateral surface has for equation f ðx; y; zÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
� Rs for �L=2 < x < L=2. The unit normal

vector to the lateral surface of the cylinder nl is defined as

nl ¼ 0; sin h; cos hð Þ; (33)

where h ¼ arctanðy=zÞ denotes the angle formed with the

positive z-axis in a generic yz plane. The two bases have for

equations f ðx; y; zÞ ¼ 6x� L=2 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
< Rs. The

unit vectors normal to the two bases of the cylinder are

defined respectively as n6 ¼ ð61; 0; 0Þ.
The injection of the acoustic waves generated by a

monopole source in a uniform flow relies on the correspond-

ing analytical solution. From the velocity potential given by

/ðx; tÞ ¼ A

4pR1

exp �ix t� R2

c0

� �� �
(34)

with

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xmð Þ2 þ b2½ y� ymð Þ2 þ z� zmð Þ2�

q
; (35)

R2 ¼
R1 �Mx x� xmð Þ

b2
; (36)

and b2 ¼ 1�M2
x , the acoustic pressure ~p0 and velocity

~u0 ¼ ð~u0;~v0; ~w0Þ can be determined as follows:

~p0ðx; tÞ ¼ �q0
@

@t
þ u0

@

@x

� �
/ðx; tÞ; (37)

~u0ðx; tÞ ¼ r/ x; tð Þ; (38)

with u0 ¼ Mxc0.
The source terms can then be formulated using Eqs. (9),

(12), and (13). For the lateral surface of the cylinder (�L=2
< x < L=2), the source terms are expressed as

Kq x; tð Þ ¼ q0~u
0
n dbðf Þ; (39)

Kqu x; tð Þ ¼ q0u0~u
0
n dbðf Þ; (40)

Kqv x; tð Þ ¼ ~p0 sin h dbðf Þ; (41)

Kqw x; tð Þ ¼ ~p0 cos h dbðf Þ; (42)

Kqet x; tð Þ ¼ c
c� 1

p0 þ 1

2
q0u

2
0

� �
~u0n dbðf Þ; (43)

where ~u0n ¼ ~v0 sin hþ ~w0 cos h denotes the velocity compo-

nent in the direction normal to the lateral surface. The

acoustic quantities in the source terms are those from the

analytical solution on the control surface evaluated at

ðx;Rs sin h;Rs cos h; tÞ by taking the real part.

For the bases of the cylinders with normal vectors n6,
the source terms are given by

Kq x; tð Þ ¼ 6 q0~u
0 þ ~q0u0

� �
dbðf Þ; (44)

Kqu x; tð Þ ¼ 6 2q0u0~u
0 þ ~q0u20 þ ~p0

� �
db fð Þ; (45)

Kqv x; tð Þ ¼ 6q0u0~v
0 db fð Þ; (46)

Kqw x; tð Þ ¼ 6q0u0 ~w
0 db fð Þ; (47)

Kqet x; tð Þ ¼ 6
c

c� 1
~p0u0 þ p0~u

0ð Þ þ 3

2
q0u

2
0~u

0
�

þ 1

2
~q0u30

�
dbðf Þ: (48)

Once again, the imposed acoustic quantities on the control

surfaces are evaluated at ðx ¼ 6L=2; y; z; tÞ.
The monopole amplitude A is set to 10�3 and the angular

frequency x ¼ 0:314. The grid spacing is set to Dx ¼ 0:25,
providing 24 points per wavelength in the upstream-

propagating wave region. The computational domain consists

of 401� 281� 461 points in the x, y, and z directions,

respectively. The solution is computed up to t ¼ 200. The

computational cost of the simulation is 6 h of wall-clock time

on a single compute node utilizing 32 OpenMP threads.

FIG. 8. L2-norm error between the numerical solution of the two-

dimensional monopole case and the analytical solution, evaluated for vary-

ing mesh resolutions Dx.

FIG. 9. Three-dimensional scheme of a cylindrical control volume V with

radius Rc, enclosing an acoustic monopole located at xm ¼ ðxm; ym; zmÞ. The
configuration is immersed in a uniform flow of Mach number Mx directed

along the x axis.
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The acoustic pressure signal at the final time step is shown

in Figs. 10(a) and 10(b) on the yz and xz planes, respectively.
The control surface boundaries are clearly identifiable. The time

evolution of the pressure fluctuation field can be seen in Mm. 3.

Mm. 3. Evolution of the pressure field for a three-

dimensional monopole with a uniform flow Mx ¼ 0:8
along the x axis enclosed in a cylindrical surface.

A comparison between the analytical and numerical sol-

utions is provided in Fig. 11, evaluated on the xz-plane at

y ¼ 0 in Figs. 11(a)–11(c), on the yz-plane at x ¼ 0 in

Figs. 11(d)–11(f) and on the xy-plane at z ¼ 0 in Figs.

11(g)–11(i). The numerical results closely match the analyti-

cal solution in both phase and amplitude.

D. Open fan

An application to a R&T Rotor/Stator open-fan configu-

ration is finally considered. This architecture is of interest

for its potential to reduce fuel consumption, compared to

ultra-high bypass ratio engines. However, the absence of a

nacelle necessitates an evaluation of the shock-wave propa-

gation generated at the rotor blade tips. Several studies have

addressed open-rotor applications. Dayd�e-Thomas et al.17

proposed a tonal noise model based on the FWH analogy

using Goldstein’s formulation. A tonal noise study was car-

ried out by Lewis et al.18 using a hybrid approach that cou-

ples a Reynolds-averaged Navier-Stokes (RANS) simulation

with the FWH integral formulation. An open test case for an

open-fan engine was proposed by Greco et al.,19 providing a

cross-comparison of RANS results obtained with different

CFD solvers. To the authors’ knowledge, no previous stud-

ies have investigated non-linear effects in the propagation of

shock-waves for open-fan configurations.

In the present study, the conservative variables field

introduced into the computational domain is extracted from

FIG. 10. Pressure field generated by a three-dimensional monopole

immersed in a uniform flow with Mach number Mx ¼ 0:8 at t ¼ 200 on (a)

the yz-plane at x ¼ 0 and (b) the xz-plane at y ¼ 0. The monopole, indicated

by the red cross, is located at ðxm; ym; zmÞ ¼ ð0; 5; 5Þ within a cylindrical

control surface centered at the origin with radius Rs ¼ 10.

FIG. 11. Comparison between the analytical solution (dashed red line) and the numerical solution (solid black line) in the xz-plane at y ¼ 0 for (a) z ¼ 0, (b)

z ¼ 20, (c) z ¼ 40, in the yz-plane at x ¼ 0 for (d) y ¼ �20, (e) y ¼ 0, (f) y ¼ 20, and in the xy-plane at z ¼ 0 for (g) y ¼ �20, (h) y ¼ 0, (i) y ¼ 20. The

black vertical dashed lines denotes the boundaries of the surface.
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a RANS simulation, performed in a configuration where

only the rotor is present. The CFD simulation is carried out

using the elsA CFD solver.20 The calculation is performed

on a single blade-passage rotor-alone configuration, which

is then reconstructed over 360� by applying periodicity in

the azimuthal direction. The resulting signal is interpolated

onto a cylindrical control surface of radius Rs ¼ 1:3R, where
R denotes the rotor radius. The rotor plane lies in the plane

x ¼ 0. The perturbation field ðq0; ðquiÞ0; ðqetÞ0; p0Þ at each

point on the cylindrical surface is computed by subtracting

the azimuthal mean from the conservative variables

extracted from the RANS simulation. The source terms are

computed using the same formulation described in

Sec. IVC. The reference frame coincides with that shown in

Fig. 9, and the simulation is conducted under cruise condi-

tions, with a uniform flow Mx aligned along the x axis and

no incidence.

The cylindrical surface is shown in Fig. 12. Since the

RANS simulation is performed on a single blade sector, the

resulting signal is periodic. This signal is then rotated

around the x axis of the cylindrical surface according to the

rotor’s angular velocity, defined as X ¼ Dh=Dt, where Dh is

the angular displacement per time step Dt. Two complete

rotations are performed in the simulation. The computa-

tional domain consists of 241� 255� 334 points in the x, y,
and z directions, respectively, with 24 points per wavelength

in the upstream-propagating wave region. The computa-

tional cost of the simulation is 4 h of wall-clock time on a

single compute node utilizing 32 OpenMP threads.

The resulting acoustic pressure field generated by the

source terms distributed along the cylindrical surface is

shown in Fig. 13. The signal primarily propagates outward

from the cylindrical surface and is subsequently absorbed by

the PML at the domain boundaries. Due to the presence of a

uniform flow Mx, the acoustic waves undergo upstream

propagation against the flow direction and experience a

wavelength increase in the downstream direction. However,

a small portion of the signal penetrates into the surface. This

effect is likely attributable to the fact that the source signal

is extracted directly from a RANS simulation, rather than

being analytically defined as in the previous more academic

cases. Nevertheless, this does not compromise the validity

of the results, as demonstrated by the comparison with the

FWH method for sound pressure level (SPL) computation

on the xz-plane, presented in Fig. 14. The highest SPL is

observed in the vicinity of the rotor plane at x=Rs ¼ 0 and

gradually decreases upstream and downstream, as well as

along z.
A more quantitative comparison between the two

approaches is presented in Fig. 15. The SPL is plotted along

three lines on the xz-plane at y ¼ 0, corresponding to nor-

malized vertical positions z=Rs ¼ 1:03, 1.41, and 1.72 in

Figs. 15(a), 15(b), and 15(c), respectively. Three additional

simulations are performed by introducing a scaling factor a
multiplying the amplitude of the source terms to assess the

influence of non-linear effects. The values a ¼ 0:5; 0:1; and

FIG. 12. Isometric view of the pressure oscillations field generated by an

open fan rotor on a cylindrical control surface.

FIG. 13. Pressure field generated by an open fan rotor in (a) the yz-plane
and (b) the xz-plane.

FIG. 14. SPL in the xz-plane at y ¼ 0 for (a) the Ffowcs Williams-

Hawkings integral formulation and (b) the present method.
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0.01 are selected to progressively suppress non-linear propa-

gation effects. The baseline simulation uses unmodified

source terms and therefore corresponds to a ¼ 1. For each

simulation, the SPL is computed and normalized using the

corresponding value of a, enabling a direct comparison

across all cases. Downstream of the rotor, for x > 0, the

results are identical for all simulations, with complete over-

lap between the Euler and the FWH curves. Upstream of the

rotor, for x < 0, the Euler solution progressively approaches

the FWH prediction as a decreases. Convergence is

achieved for a ¼ 0:1, below which non-linear attenuation of

the SPL is no longer observed. Non-linear effects are there-

fore confined to the region x=Rs < 0:2, upstream of the

engine. This behavior can be explained by the shock forma-

tion distance x in the presence of a uniform flow,21,22

defined as the distance required for a sinusoidal plane wave

to first present a vertical tangent. Relative to a quiescent

medium, this distance decreases for waves propagating

against the flow and increases for waves propagating with

the flow. For the configuration considered here, the theoreti-

cal shock formation distance is x=Rs ¼ 0:18 for waves prop-

agating against the flow, whereas it reaches x=Rs ¼ 11 for

waves propagating in the direction of the flow.

V. CONCLUSION

The method proposed in this study enables the injection

of acoustic waves through volumetric source terms distrib-

uted along an arbitrary control surface. This non-linear for-

mulation is rigorously derived from fluid mechanics

equations to keep them very general. Validation has been

carried out for oblique plane waves on a Cartesian grid and

for a monopole source in both two and three dimensions

under uniform flow and with a cylindrical volume control

on a Cartesian mesh. In all cases, the results showed excel-

lent agreement by comparison with corresponding analytical

solutions.

The source terms are immersed in the computational

mesh, avoiding the need to conform the mesh to the control

surface geometry. Mesh refinement near the control surface

may be required to properly take into account its shape. The

authors recommend the use of compact sources by selecting

a Gaussian half-width equal to the mesh spacing. Future

work could investigate the numerical error obtained using a

uniform Cartesian mesh compared with that from a mesh

conforming to the geometry of the control surface.

Finally, the method was also applied to an open fan con-

figuration. The comparison of the radiated pressure field with

the Ffowcs Williams–Hawkings integral formulation is again

in very good agreement. Unlike the FWH approach, the pre-

sent method allows the inclusion of non-linear effects, as it is

based on solving the non-linear Euler equations.

Building on these findings, the proposed method offers

several notable advantages. It can be directly applied on a

uniform Cartesian mesh, regardless of the chosen control

surface, which greatly simplifies implementation in finite-

difference solvers. Because the control surface is fully

immersed within the computational domain, no boundary

conditions need to be imposed and no mesh adaptation to

the surface geometry is required. Unlike characteristic-

based wave-injection techniques, the present approach does

not require the evaluation of additional terms: only volumet-

ric source terms are added within the Runge–Kutta loop,

leaving the computational cost essentially unchanged. Care

must be taken to ensure an adequate level of source com-

pactness relative to the mesh resolution, but this requirement

is straightforward to satisfy. Overall, the method provides a

robust and efficient alternative for CFD/CAA coupling,

being also capable of capturing non-linear propagation

effects.
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APPENDIX A: CONVOLUTION

The calculation of the convolution in Eq. (25) is

detailed below. Complex notation is used to simplify the

calculations. The convolution writes explicitly as

p0 x; y; tð Þ ¼
ð ð ð ðþ1

�1
g0ðx� x0; y� y0; z� z0; t� t0Þ

� Sðx0; y0; t0Þ dx0dy0dz0dt0; (A1)

where g0 is the Green function in free field

g0ðx; y; z; tÞ ¼ 1

4pR
d t� R=c0ð Þ (A2)

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The term S is given by S

¼ S1 þ S2 with

S1 :¼ @Kq

@t
¼ �ikxA exp �ixtþ ikyyð Þ dbðxÞ; (A3)

S2 :¼ �r � Kqu ¼ �A exp �ixtþ ikyyð Þ d0bðxÞ (A4)

with kx ¼ k0 cos h and ky ¼ k0 sin h. dbðxÞ is the normalized

Gaussian distribution defined by Eq. (15) and d0bðxÞ is its

derivative. For the sake of clarity, the integral is calculated

by separating the two addends.

Calculation for S1. The convolution between the

Green’s function g0 and S1 reads

p1ðx; y; tÞ ¼
ð ð ð ðþ1

�1

1

4pR
d t� t0 � R

c0

� �

� S1ðx0; y0; z0; t0Þ dx0 dy0 dz0 dt0:

The property of the Dirac distribution is used for integration

over time by evaluating S1 at t
0 ¼ t� R=c0

p1¼�A
ikxffiffiffi
p

p
b

ðþ1

�1
exp �x02

b2

� �

�
ððþ1

�1

exp �ixtþ ik0Rþ ikyy
0� �

4pR
dy0dz0dx0: (A5)

The resolution of the double integral is given in detail in

Appendix B. Equation (B3) is used and the integral reads

p1 ¼ B

2
ffiffiffi
p

p
b

ðþ1

�1
exp � x02

b2

� �
exp ikx jx� x0j� �

dx0 (A6)

with B ¼ A expð�ixtþ ikyyÞ.
The assumption is made to be in the far field, i.e.,

jxj � b. At the first order, one obtains

jx� x0j 	 jxj 1� x0

x

� �
¼ jxj � x0 signðxÞ: (A7)

Equation (A6) is then written as

p1 ¼ B

2
ffiffiffi
p

p
b
exp ikxjxjð Þ

ðþ1

�1
exp � x02

b2

� �
� exp½�ikxx

0 signðxÞ� dx0: (A8)

The integral in the above equation corresponds to the

Fourier transform of the Gaussian function, that is given by23

ðþ1

�1
exp ð�q2x2Þ exp ipxð Þdx ¼

ffiffiffi
p

p
q

exp � p2

4q2

 !
(A9)

for p and q real numbers. Equation (A9) is used in Eq. (A8)

leading to

p1 ¼ B

2
ffiffiffi
p

p
b
exp ikxjxjð Þ ffiffiffi

p
p

b exp � k2xb
2

4

� �

¼ Ab

2
exp �ixtþ ikxjxj þ ikyy
� �

(A10)

with

Ab ¼ A exp � k2xb
2

4

� �
: (A11)

Calculation for S2. The convolution between the

Green’s function g0 and S2 reads

p2ðx; y; tÞ ¼ 2A exp �ixtð Þffiffiffi
p

p
b3

ðþ1

�1
x0 exp � x02

b2

� �

�
ð ðþ1

�1

exp ik0Rþ ikyy
0� �

4pR
dx0 dy0 dz0;

where the Dirac distribution property is used for the integra-

tion in time.

Once again, Eq. (B3) is used to solve the double

integral

p2 ¼ C

ðþ1

�1
x0 exp ikxjx� x0j � x02

b2

� �
dx0

with C ¼ iA expð�ixtþ ikyyÞ= kx
ffiffiffi
p

p
b3

� �
. The same first

order approximation as in Eq. (A7) is made:
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p2 ¼ C exp ikxjxjð Þ
ðþ1

�1
x0 exp � x02

b2

� �
� exp �ikxx

0sign xð Þ� �
dx0: (A12)

The integral above corresponds to the Fourier transform of

the derivative of the Gaussian function. It can be written asðþ1

�1
x expð�q2x2Þ expðipxÞ dx ¼ ip

2q2

ffiffiffi
p

p
q

exp � p2

4q2

 !

for p and q real numbers. After appropriate simplifications,

the pressure field generated by the source term S2 is finally

obtained

p2 ¼ Ab

2
sign xð Þ exp �ixtþ ikxjxj þ ikyy

� �
: (A13)

Total acoustic pressure field. The acoustic pressure field
generated by S1 and S2 is calculated by the sum of

Eqs. (A10) and (A13), i.e., p0 ¼ p1 þ p2, yielding

p0ðx; y; tÞ ¼ AbHðxÞ expð�ixtþ ikxxþ ikyyÞ: (A14)

Taking the real part of the equation above leads to Eq. (25).

APPENDIX B: INTEGRAL CALCULATION

In this appendix, we detail the calculation of the integral

Iðx; x0; yÞ ¼
ð ðþ1

�1

exp ik0Rþ ikyy
0� �

4pR
dy0dz0 (B1)

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z02

p
and q2 ¼ ðx� x0Þ2 þ ðy� y0Þ2.

We first use the relationðþ1

�1

exp ik0Rð Þ
4pR

dz0 ¼ i

4
H

ð1Þ
0 k0qð Þ;

where H
ð1Þ
0 is the Hankel function of the first kind, which can

be derived from Eqs. (3.714.2) and (3.714.3) in Gradshteyn

and Ryzhik.23 With this relation, Eq. (B1) becomes

I ¼ D

ðþ1

�1
H

ð1Þ
0 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ y002

p
 �
exp �ikyy

00� �
dy00

with D ¼ i expðikyyÞ=4, v ¼ x� x0, and y00 ¼ y� y0. By split-
ting the integral into ð�1; 0� and ½0;þ1Þ, it can be written as

I ¼ 2D

ðþ1

0

H
ð1Þ
0 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ y002

p
 �
cosðkyy00Þ dy00: (B2)

Using Eqs. (6.677.3) and (6.677.4) in Gradshteyn and

Ryzhik,23 it can be shown that

ðþ1

0

H
ð1Þ
0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ z2

p
 �
cosðbxÞdx¼

exp ijzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
for 0 < b < a and for z a real number. Using the above

equation in Eq. (B2) allows us to obtain

Iðx; x0; yÞ ¼ i

2kx
exp ikx jx� x0j þ ikyy
� �

: (B3)
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