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Space-time correlation measurements in the roughly isotropic turbulence behind 
a regular grid spanning a uniform airstream give the simplest Eulerian time 
correlation if we choose for the upstream probe signal a time delay which just 
‘cancels’ the mean flow displacement. The correlation coefficient of turbulent 
velocities passed through matched narrow-band alters shows a strong dependence 
on nominal Nter frequency ( N wave-number at these small turbulence levels). 
With plausible scaling of the time separations, a scaling dependent on both wave- 
number and time, it is possible to effect a good collapse of the correlation functions 
corresponding to wave-numbers from 0.5 cm-l, the 1ocati.on of the peak in the 
three-dimensional spectrum, to  10 cm-l, a.bout half the Kolmogorov wave- 
number. The spectrally local time-scaling factor is a ‘parallel’ combination of 
the times characterizing (i) gross strain distortion by larger eddies, (ii) wrinkling 
distortion by smaller eddies, (iii) convection by larger eddies and (iv) gross 
rotation by larger eddies. 
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as space dependence : the Taylor approximation 

1. Introduction 
A modest approximation to isotropic turbulence is achieved downstream of 

a regular grid spanning uniform duct flow (Taylor 1935; Dryden, Schubauer, 
Mock & Skramstad 1937; Macphail 1940; for further bibliography, Comte- 
Belloti & Corrsin 1966). The simplicity of Taylor’s isotropic turbulence concept 
has permitted the raising of rather sophisticated theoretical questions. The 
transverse homogeneity and absence of mean shear in the grid-generated, 
nearly isotropic turbulence permit relatively complete statistical information 
to be provided by fewer measurements than will be required for the classical 
shear flows, such as boundary layer, wake, jet and channel. 

Isotropic turbulence is turbulence whose statistical properties are invariant 
under all axis rotations and reflexions. Since physically interesting properties 
include joint probabilities of field variables at  two or more space points, isotropy 
requires homogeneity as well. For simplicity the motion is restricted to be that 
of il constant density, Newtonian fluid with zero mean velocity everywhere, in 
an inertial frame. We visualize an infinite space of random, vortical motion, 
decaying with the passage of time because there is no production of turbulent 
kinetic energy (as there is in shear flows) to balance the viscous dissipation. 

No one appears yet to have developed a viable experiment in a ‘box’, which 
approximates the spatially homogeneous, temporally decaying turbulence de- 
scribed above. Simmons & Salter (1934) discovered that the streamwise evolution 
of the temporally stationary turbulence field set up by a regular grid spanning a 
steady, uniform duct flow resembles the time evolution of the mathematical 
ideal of isotropic turbulence. They and later investigators found that the 
turbulence is indeed nearly isotropic (for bibliographies see Batchelor 1953; 
Comte-Bellot & Corrsin 1966). The comparison between this class of experiments 
and isotropic turbulence theory is commonly made by interpreting streamwise 
distance Ax, in the experiment as time interval At in the true isotropic turbulence 
divided by the mean speed of the actual flow in the experimental duct: 
Axl +- UAt.  We imagine that an observer travelling at the mean speed of the 
duct flow will see something like true isotropic turbulence, evolving in time. 

Two-space-point, one-time, double velocity covariance functions have been 
regular features of research in isotropic turbulence since Taylor introduced the 
concept and the laboratory approximation in 1935. Frequency spectra were 
also first associated with turbulence by Taylor (1938), and the signals from single, 
fixed probes (usually hot-wire anemometers) have been so analyzed since that 
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time. With the low turbulence levels found in the flow region (behind a grid) in 
which satisfactory transverse homogeneity is found, these are virtually one- 
dimensional wave-number spectra; hence they are an approximate check on the 
measured two-point spatial covariances which are their Fourier transforms. 
Stewart & Townsend (1951) carried out the first systematic measurements of 
two-space-point, one-time, triple velocity covariance functions, related to the 
wave-number spectral transfer function, attacked somewhat earlier in theory 
by Obukhov (1941), Onsager (1945, 1949), Heisenberg (1948), Kovasznay (1948) 
and others. 

Another dimension was added to the experimental onslaughk in the late 1940’s 
and early 1950’s, when F a a e  (1948) and Favre, Gaviglio & Dumas (1950, 1952) 
made the first systematic measurements of double velocity correlation with 
separation in both space and time. This was done by recording on magnetic 
tape the signals from two hot-wires a t  different spatial positions in the flow, 
then playing them back with one head shifted along the tape to give a time shift. 

Of particular interest is the time shift which allows the mean velocity to give 
a flow displacement exactly equal to the probe spatial separation. The corre- 
sponding correlation function in time is precisely that which would be measured 
as autocorrelation by a probe travelling steadily at the mean velocity. It is 
conceptually the simplest Eulerian correlation function in time; its Fourier 
transform is the simplest Eulerian frequency spectrum. Hopefully, it corresponds 
approximately to the fixed point velocity correlation function in a true isotropic 
(decaying) ‘box’ turbulence. 

The following were the objectives of the study reported here: 
(i) To extend the experiments of Favre, Gaviglio & Dumas to longer (dimen- 

sionless) times for this ‘simple ’ Eulerian correlation function following the 
mean flow. 

(ii) To measure the corresponding correlation functions for very narrow-band, 
filtered velocity signals, roughly a study of the coherence in time of spatial 
‘Fourier elements’. The correlation in time of a Fourier element was introduced 
to turbulence theory by Heisenberg (1948), and has been extensively studied by 
Kraichnan (1959, etc.) and others.? 

(iii) To devise a rescaling of the (full-band) Eulerian velocity time-correlation 
which would compensate for the inhomogeneity associated with the inevitable 
downstream decay of the ‘isotropic ’ turbulence. This would provide theoreticians 
with a semi-experimental estimate of a basic property of stationary isotropic 
turbulence. Such a flow is impossible in practice, but convenient for theoretical 
analysis. In turbulent shear flow, which can be stationary, there are two things 
destroying the autocorrelation following the mean flow: the ‘self-scrambling ’, 
which is the entire story in isotropic turbulence, and the straining and rotation 
associated with the mean velocity gradient (and higher derivatives). In  the 
present experiment, as in isotropic turbulence, only the former exists. 

t Favre, Gaviglio & Dumas (1954) made some measurements of space-time correlation 
with a low-pass broad-band filter and with a high-pass broad-band filter. More recently, 
Favre, Gaviglio & Fohr (1964) have reported narrow-band measurements in a boundary 
layer. 

18-2 
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(iv) To discover a detailed time or frequency spectral rescaling of the three- 
dimensional, narrow-band correlation functions, such that time-correlation 
curves for signals of different wave-numbers can all be collapsed into a single 
curve. 

The first theoretical estimate of a simple velocity correlation function in time 
was by Inoue (1951) for the Lagrangian case.t Assuming quasi-stationarity, 
and restricting discussion to a locally isotropic inertial subrange in the spirit 
of Kolmogorov (1941), he showed that the hypothesis of dependence on solely the 
energy flux through this part of the frequency space (equal to the total rate of 
viscous dissipation) gives a linear region in the autocorrelation function: 

The corresponding form of inertial spectral range as a function of frequency is 

LE N Cw-’. (2) 

e is the rate of dissipation of kinetic energy per unit mass. C is a constant. is 
the mean-square value of a turbulent velocity component. Corrsin (1963~) re- 
marked that the same approach, if applied to the Eulerian functions, must yield 
the same subrange forms. 

Burgers (1951) appears to suggest that under some circumstances the Eulerian 
function may be nearly equal to the Lagrangian one, because of the possible 
negligibility of the non-linear (convective) terms in the Eulerian frame expression 
for acceleration: 

The subscript denotes the variable held constant. X, is the Lagrangian material 
co-ordinate, such as particle position at a reference time. If a similar conject,ure 
is valid for higher time derivatives, which enter the two power series for velocity 
correlations in the two frames, then we could infer approximate equality of the 
functions themselves. This suggestion has been confirmed to a certain extent by 
some ‘ correlation discard ’ computations of Deissler (1961) in isotropic turbulence. 
Although neither he nor Burgers offered a theoretical argument for (3b ) ,  other 
than the fact that the neglected terms are of higher power in turbulent velocity, 
a ‘small’ quantity, a rationale is easy to find. Since velocity is dimensional, and 
since the basic Eulerien frame is one in which the mean speed is zero, smallness 
of turbulent velocity is not a directly defined concept; we must investigate 
further. The ratio of the order of magnitude of the (neglected) convective term 
to that of the left side of (3a), the acceleration (Uberoi & Corrsin 1953), decreases 
with decreasing turbulence Reynolds number. Deissler’s calculation is a small 
Reynolds number calculation, and the agreement with experiment improves 
with decreasing R,. 

t Obukhov’s (1941) derivation of the relative disporsion rate of two fluid material points 
was also a Lagrangian venture. 
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Burgers’ suggestion seems to work roughly for large Reynolds numbers as 
well (Baldwin & Walsh 1961; Baldwin & Mickelsen 1962; Corrsin 19623), but 
this must be for entirely different reasons (Corrsin 1963a). 

Bass (1954) has explored some of the properties, primarily kinematic, of the 
space-time Eulerian velocity correlation function. This path has been followed 
further by Meecham (1958), with emphasis on symmetries. Batchelor & Towns- 
end (1948) had generalized the Kkmgn-Howarth ‘ final period’ correlation 
(vanishingly small Reynolds number) solution to include time as well as space 
separation. Their results include e.g. the small At asymptotic form, 

where At = t - t o ,  for correlation between two velocity components directed 
along the line connecting the observation points. This analysis, the first step in 
the ‘correlation discard’ sequence, was extended by Deissler (1961) to the next 
step. 

Fame ( 1965) has suggested that the Eulerian space-time correlation function 
can be estimated from the Eulerian space correlation, and the Lagrangian prob- 
ability density function of material point displacement. Although his formula is 
in fair agreement with an experiment, this may be fortuitous: it appears that the 
actual expression tested is implicitly restricted to vanishingly small time separa- 
tions (such that the Lagrangian autocorrelation is 1.0)’ but the comparison with 
experiment is made well outside of that asymptotic limit. 

The autocorrelation function in time of a spatial Fourier element a(k ,  t )  can 
be identified by following Heisenberg and Kraichnan in expressing the Eulerian 
turbulent velocity field as a Fourier series: 

u(x ,  t )  = a(k ,  t )  eik*=. ( 5 )  
k 

Here k is a wave-number, and it is understood that the physically interesting 
limit will be a ‘box’ so large tha t  wave-number spectra such as the spectral 
energy density, 

can be treated as smooth functions, or can be replaced by them in the sense 
of Wiener (Wiener 1930; Kampt5 de F6riet 1939, 1953). The presubscript B de- 
notes a property of an isotropic ‘box’ turbulence. The overbar denotes average. 
It is most simply ensemble average in theoretical analysis, usually time average 
in experiments. Ergodicity is expected in these flows because the integral scales 
are less than infinity (see e.g. Liepmann 1951). The asterisk denotes complex 
conjugate. 

The time covariance tensor of a is 

We can avoid concern over the limiting process by starting with the velocity 
covariance tensor, ui(x0, to) uj(x, t ) .  
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If we restrict to homogeneity, this function depends on r = x - xo, instead of 

(8) 

(9) 

the two positions. Then, introducing the symbol 

we can replace (7) by 
Bpij(r; to, t )  = ui(xo, to) uj(xo + r, t ) ,  

BE& t 0 , t )  = (&)yy -W Bpij(r; to, t )  e-ikdr dV(r). 
The inverse of (9) is 

The traces, Bprj = Bp(r;  to, t )  and BEii = &(k; to, t ) ,  are simple yet important. 
The simplicity lies in their spherical symmetry for isotropic turbulence. Their 
importance lies in their close connexion to the turbulent kinetic energy per unit 
mass: 

Bp(0; t ,  t )  = u ~ ( x ,  t )  u ~ ( x ,  t )  = 4n BE(k; t, t )  k2dk .  SOm 
The two-time generalizations of the commonly studied ‘ one-dimensional 

spectrum function’ (e.g. Batchelor 1953, p. 50) are the projections onto Cartesian 
k-axes of &(k; to, t ) ,  the generalization of the spectral tensor. These functions 
are important because they are experimentally accessible. The projection onto 
k,  is e.g. proportional to 

B&i;)(kl; to, t )  = 2 BEij(k; to, t )  dk2dk3. (12) 

Bp4j(rl ,  0,O; to, t )  = 

ssrr, 
We see from (10) that 

B&$)(kl; to, t )  eiklrl dk,, (13) 

with inverse Fourier transform 

These covariance functions are easily normalized into correlation coefficient 
functions (to be called ‘correlation functions’ here) : 

The bracketed subscripts are not summed. The B€{&,)(kl; t ,  t )  are ordinary 
‘one-dimensional ’ energy spectra, henceforth written as BE{&n)(kl, t ) .  With 
space separation r, we have 

(16) &.(r; to, t )  3 
Bpi& to,  t )  

{-’ 
where Bp(n)(n)(O; t ,  t )  is simply 3 (subscript not summed). With (14) and (16) we 
can put (15) into the form 

B q ( k 1 ;  t o ,  t )  lorn B ~ i j ( r l ,  0, 0; to, t )  e--ik1?drl 
- - 

)”‘ (~omBB~i>o(rh 070; to ,  to> cos (kr,) dr, B 4 j H j h  020; t ,  t )  cos (k1r1) dr, 

(17) The BR(n)(n) are even in r. 
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Favre, Gaviglio & Dumas ( 1 9 5 2 )  measured functions like BBij in the (in- 
homogeneous, nearly isotropic) turbulence behind a periodic grid, and pointed 
out (1954) that the (wave-number) spectrally local time correlation function 
,R$?) can be computed from it. Goal (a) above was to measure BIi&) directly. 

BRij can in turn be computed from BRk:), but in that case the simple spectra 
must also be given: starting with (13)  instead of (14) and using ( 1 5 ) ,  we can show 
e.g. that 

JOm BR$)(kl; to, t )  [BE[:))(i)(kI, to) BE[i))(f)(kl, t)]' e-ik171 dk 1 

BRZj(% 030; to, t )  = 
@(to) .j"(t,}i 

( 1 8 )  
The 

For theoretical exploration of isotropic turbulence, the so-called 'three- 
dimensional spectrum ' ,E(k, t )  is a popular goal. BE(k, t )  dk is the energy con- 
tent of a differentially thick spherical shell in wave-number space, so 

are, of course, just the integrals of the BE[&n, over El. 

BE(/%, t )  = 2nk2B6?ii(k; t ,  t ) .  ( 1 9 )  

BEig(k; t ,  t )  is twice the (spherically symmetric) kinetic energy density in k-space. 
Its integral over all of k-space is u,u,, while BE is dehed  to have its integral 
over k, hence over all of k-space, equal to $u,ua. 

- 
__ 

The generalization of ,E(k, t )  is thus 

&(k; to, t )  = 2n1CzBEii(k; to, t ) ,  (20) 

whose connexion with B ~ $ )  is identical to that between the spectra.? For 
example, 

We can define a 'three-dimensional ' correlation function, 

With ( 1 5 )  and ( 2 1 ) ,  gR can be expressed partly in terms of one-dimensional 
correlation functions (in time) and spatial spectra : 

t )  is of course computable from Bb$i)(kl; t ,  t )  = BEli'(k1, t )  via ( 2 1 ) .  
Experimental determination of the wind tunnel turbulence function corre- 

sponding to BR(k; to, t )  is one of the major goals of the present work.$ All of 

t See e.g. equation (3.14.8) in Batchelor (1953). The transformation here differs by a 
factor of 2 because of different normalization of the one-dimensional ~pectra (cf. equation 
(13)). 

$ For the special case of stationary isotropic turbulence, 
&!(k;t,,t) Rk(tO,t-tO) G r (k , t - t o ) ,  

in the notations of Hekenberg (1948) and Kraichnan (1969), respectively. 
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the foregoing discussion is relevant to isotropic ‘box turbulence’, i.e. isotropic 
(hence homogeneous) turbulence viewed in an Eulerian frame in which there 
is no average velocity. The experiment, however, is carried out in the stationary, 
inhomogeneous, nearly isotropic turbulence behind a grid normal to a uniform, 
steady flow. There is clearly a question of how to establish an approximate 
correspondence between these two somewhat different flows (Corrsin 1963 b) .  

Basically, we follow Taylor (1935) in identifying (xl - xol)/u in the wind tunnel 
flow with t - to in the box turbulence. Thus, the spatial inhomogeneity of mean 
properties, (such as kinetic energy $u,ui(x,/U)), is identified with the temporal 
decay of the same properties (e.g. &u,u,(t)) in the box turbulence. Of course, 
the quasi-box-turbulence observed in the frame travelling with mean flow 
speed is still inhomogeneous. x1 is the downwind ( g )  Cartesian co-ordinate in 
the wind tunnel (figure 1) .  

r Grid (mesh M )  

I 

- . . . . . , . . . . . . . . . . . . . . . 
uI(x01 f’) Ax, +””‘ 

% Zi*(X, t‘) 

I- 18 M-l 6 A x l  --+, 

I--+ XI 

FIGUEE 1. Qualitative sketch of upstream end of wind-tunnel test section. 

Among the quantities actually measured in the wind tunnel was the two-point, 
space-time velocity correlation function, 

In laboratory co-ordinates the mean-square values depend on downstream dis- 
tance only. A major hope is that when the time interval is chosen exactly equal 
to the mean flow convection time between probes, i.e. 

(24) will approximate the one-space-point velocity autocorrelation in time which 
would occur in a decaying, isotropic, box turbulence: 
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The arguments on the two sides of (26) as written are different. The corre- 
spondence is between xol in the wind tunnel and to in the box turbulence. xol is 
the downstream distance from the grid to the upstream probe. to is the beginning 
of the time interval in the box turbulence time correlation. We also use to as 
the beginning of the time intervals for the space-time correlations in the wind 
tunnel. When the wind tunnel turbulence is viewed in a frame moving with the 
mean flow speed, 

Of course, is constant in the entire experimental volume, downstream of the 
duct contraction. In this moving frame we shall denote the experimental function 

Wind tunnel turbulence Box turbulence 

Rij(Azi9 Az, ,  Az3; t ,  0) ~Rij(A.21,  AS,, Ax3; t ,  t ) .  
Two-space-point, one-time, double velocity 
correlation function (( 16) and (8 ) ,  with 
to = t ) .  

B R ~ ~ ( O ;  to, to+ At) .  
Two-time, one-space-point, double velocity 
correlation function. Shortly called ‘ full- 
band Eulerian velocity time-correlation ’ 
((16) and (8 ) ,  with r = 0 )  

One-dimensional narrow-band Eulerian 
velocity time-correlation ((15), (12), ( 7 ) ,  

1 R,,( UAt ,  0,O; to, At) 

or R,, A z l , O , O ; t O , d  A3J ( 
Ryi(kl;  OAt,  0,O; to,  At)  B R ~ ~ ( k l ; t o , t o + A t ) .  

and ( 5 ) )  
R ( k ;  UAt,  0,O; to, At) ~ R ( k ; t , , t , + A t ) .  

Three-dimensional narrow-band Eulerian 
velocity time-correlation (( 22), (20), ( 7 ) ,  
and (5)) 

E?l)(kl, t )  BE\Y(~I, A). - 
One-dimensional spectrum of u: 

Three-dimensional energy spectrum 
E(k, t )  BE(k t )  

TABLE 1. Notation for correlation and spectrum functions 

on the left side of (26) by Rll[Azl, 0,O; to, (Azl/u)]. Table 1 presents the correla- 
tion and spectrum symbols to be used, together with their ‘analogues ’ in the 
box turbulence problem. 

This R,, function is roughly the envelope of the more general space-time 
correlation functions, and was first measured by Favre, Gaviglio & Dumas ( 1952). 

To get a spatial Fourier decomposition of R,, (analogous to &!:)), measurements 
were made of the same kind of space-time correlation with the two velocity signals 
passed through very narrow-band frequency Jilters. To the extent that 
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for the turbulent velocity field viewed in laboratory co-ordinates (an approxima- 
tion suggested by Taylor 1938), the frequency spectral decomposition of the 
hot-wire signal is a wave-number spectral decomposition of the turbulence 
itself. This is discussed in appendix D. The correspondence indicated by (27) 
is simply 

w = Bk,.  (28) 

w is the centre frequency of the matched narrow-band filters. With this 
equivalence, we expect that for the special time delay At = Ax,/u,  the spectrally 
local version of (26) will also apply 

Rii) is written for convenience with k, instead of 01c as first argument, although 
the filter is in frequency. This is an application of the 'Taylor approximation'. 

Since the grid-generated turbulence is approximately isotropic, we can com- 
pute a 'three-dimensional' R from R# and the (simpler) spectrum functions, by 
an equation whose form is precisely that of (23). 

For stationary turbulence and 'small ' time interval, presumably identified 
by the condition, 

1 -&k, At) < 1, (30)t 

Heisenberg (1948) suggested that the characteristic time should be (u'k)-l. This 
is the time required for the large, energy-bearing structure of the turbulence 
to convect smaller structure of wave-number k a distance equal to (27r)-l times 
the wavelength of the smaller structure. ZL' is the root-mean-square value of a 
component of the isotropic turbulent velocity. In  this small-time range his 
estimate (whose basis is not explained) is given as 

At 

where rH E (u'k)-'. For At -+ 0, 

$(k, At) -+ 1 - *(At/TH)2, (32) 

ktk = 6*(2t'k)-I. 1331 

which gives an estimate of the simplest Eulerian, narrow-band, time microscale: 

Heisenberg's estimate of Bfi(k, At) for 'large ' At requires a trial-and-error 
solution of an integro-differential equation, and he presents a figure of the 
result. His analysis includes replacing a fourth moment in terms of second 
moments as though the narrow-band velocity components are jointly normal. 
It has since been discovered that ' cumulant discard' hypotheses in turbulence 
analysis can lead to negative energy spectra when applied to ' full-band' variables 
in the physical space (O'Brien & Francis 1962; Ogura 1963). On the other hand, 
it was shown analytically by Rice (1944, 1945) that a particular non-normal 

t &k, At) z B R ( ~ ,  to, to + At) in stationary turbulence. 
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random function passed through a band-pass filter approaches normality as the 
band width is reduced. Presumably this applies to other non-normal signals. 
Recent remarks on this question as related to turbulence dynamics have been 
made by Lumley (1970). 

A h a 1  remark here aboub Heisenberg’s discussion: he suggests that for ‘large’ 
time intervals the characteristic spectral time scale should be T~ t (u‘k&kj)-l, 
a time introduced by von Weizsacker (1948) for the inertial subrange, where the 
Kolmogorov spectrum ( M &kf) pertains. As we shall see in $12, this is a special 
case of the Onsager (1945, 1949) time T~ = (k3E)4.  E(k) is the three-dimensional 
spectrum function (equation (19)), kE is the wave-number characterizing the 
principal energy-bearing part of the spectrum, roughly the inverse integral 
length scale and the location of the E(k)  peak. E is the rate of dissipation of 
kinetic energy per unit mass. 

Kraichnan (1959) has followed Heisenberg in pursuing =&(k,At) in his tur- 
bulence theories. A linearized estimate in the inertial range of k-space yielded 

&k, At) FZ Srn --m exp (ikAta)pUl(a)da, (34) 

where pul is the probability density function of any velocity component. Em- 
pirically, pul is normal (‘ Gaussian ’) in < isotropic ’ grid-generated turbulence 
(Simmons & Salter 1938; Townsend 1947), so 

(35) 

By his Eulerian ‘direct interaction approximation’, Kraichnan (1959) 

&k, At) x exp [ - &dzk2(At)2]. 

estimated ,$ in a wave-number range where 

vk2 < u’k. 
The estimate is 

J1( 2 d k  At) 
d k  At ’ B.&k,At) w (37) 

and is in good agreement with (35), apart from its oscillatory character. According 
to Kraichnan (1964a), (37) is not unique. The condition (equation (36)) is that 
the viscous decay time of the local spectrum, T~ = (vk2)-l, be much larger than 
the time, T~ = (u‘k)-l, required for the energetic large structure (near kE)  to 
convect the k-structure an appreciable fraction of a k-wavelength. For large 
Reynolds number turbulence, such a sub-range exists in the inertial range. 

Although these first applications of the direct interaction approximation had 
some shortcomings (see e.g. Kraichnan 1964b, 1966), detailed numerical solu- 
tions for +he full k-range gave remarkably good agreement with measured one- 
time functions (19644.  Kraichnan’s application of the approximation to a 
mixed Eulerian-Lagrangian formulation of the equations of motion has been 
even more successful in estimating turbulent energy spectra (Kraichnan 1966), 
yet the success of the method is still mysterious from a theoretical point of view, 
because it is not a perturbation method of proved convergence (Wyld 1961; 
Kraichnan 1967). 
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2. Fluid mechanical apparatus 
The closed circuit wind tunnel used in this experiment is described in Comte- 

Bellot & Corrsin (1966). The test section is about 10 m long, with a cross-section 
1.0 x 1.3m. A special feature is a slight secondary contraction located down- 
stream of the grid to equalize the energies of streamwise and transverse turbulent 
velocity components (figure 1). 

The earlier paper presents turbulent energy data for several grids and tunnel 
speeds. Virtually all data reported here were taken in the turbulence generated 
by a biplane, square rod, polished dural grid with mesh size of 5-08 cm and solidity 
of 0.34. A few correlation values were measured far behind a similar grid of 
2.54 cm mesh, to permit reaching larger dimensionless distances and times in the 
decaying turbulence. 

All measurements were carried out with air speed U, approaching the grid 
at  10 m sec-1, hence a grid mesh Reynolds number Uo M / v  of 34 000 for 5.08 cm 
grid. The slight (1.27: 1) contraction was located 18 mesh lengths downstream of 
the grid. The streamwise (2) and transverse (u;, ui) components' turbulent 
energies remained nearly equal to each other as they decayed along the length 

_ -  

of the test section: 

Here, t is elapsed time in travelling at  the mean flow velocity from the grid, 

t = s,"'$$. (39) 

If 0 were exactly constant, t would be just proportional to downstream distance. 
The integral velocity scale history in this particular decaying turbulence 

(reported, along with the energy data, in Comte-Bellot RS Corrsin 1966) was 
approximately 

where 

in principle. 

-f It may seem paradoxical that experimenters often report finite integral scale values 
' measured' from signals which cannot in principle have a value different from 2010. The 
integral scale is proportional to the zero-intercept of the power spectrum function, but all 
experhents me non-infinite in space and in time, so the power spectra must all approach 
zero at  zero frequency or wave-number. Furthermore, many of these data are taken with 
ax.-coupled circuits, which cannot respond to  frequencies approaching zero. 

Tho explanation, crudely stated, is that we try to collect information down to wave- 
numbers and/or frequencies low enough that the behaviour of the (purely hypothetical) 
infinite or stationary system would be asymptotic. From there we extrapolate to  zero 
frequency or wave-number, and thus infer the properties of an hypothetical system which 
would be consistent with the (non-asymptotic) observations of the real system. Appendix E 
discusses the problem. 
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3. Measuring equipment 
cm dia., platinum-10 %-rhodium, from 0-03 

to 0.05cm long, operated at  overheat ratios between 0.3 and 0.4), and basic 
anemometry equipment, were the same as those described in Comte-Bellot & 
Corrsin (1966). As usual, the wire sensitivities were determined empirically. 
Additional electronic devices included a multiplier, variable band-pass filters, 
magnetic tape recorder and electro-chemical integrator. 

The spectral response of the Shapiro/Edwards constant-current hot-wire unit, 
with nominal cut-off frequencies of 1 Hz (lower) and 20000 HZ (upper), is shown 
in figure 2 .  

The hot-wire sensors (2.5 x 

I Squared voltage ('energy') 

I I I I I 
0' 1 1 10 1 0 2  1 0% 104 105 

Frequency: cycles per second (Hz) 

180 

90 

t 
I I I I I I I 

0.1 1 10 102 1 0 3  104 105 

Frequency: cycles per second (Hz) 

FIGURE 2. Frequency response of the basic hot-wire anemometer circuit as 
used. 0, series no. 98-120; x , series no. 98-122. 

The multiplier, used for cross-correlation functions, was a G.P.S. model MU- 
500-E-M, operating on the ' quarter-square ' principle, with squaring achieved 
by two shaping networks made of 20 diodes each. Tested with sine waves, it 
showed an accuracy of & 2 % over a frequency range of d.c. to 10 kHz and an 
amplitude ratio of about 8. 

The simple power spectra were measured with a Hewlett-Packard model 302A 
(constant band width) wave analyzer. The calibration of band shape at  a nominal 
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frequency (No) of 80Hz is given in figure 3(a) .  Extension to frequencies below 
the analyzer's lower limit of 20 Hz was achieved by recording a signal on magnetic 
tape, then playing it back a t  higher tape speed. 

" 
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

Frequency ratio N/N,  [No = 80 Hz] 

(4 

- 40 I I 

0.3 0.5 1 .o 2.0 3.0 

Frequency ratio NIN, 

( b )  

FIGURE 3. (a )  Comparison between the band-pass filter shapes of the Dytronics 720 and the 
Hewlett-Packard 302 A. (b)TheDytronics 720 band shapesfor the three settings. No = lkHz, 
V, = 2V r.m.s. (input). 

The narrow-band correlations between two different signale (or cross-spectra) 
were measured with two Model 720 Dytronics Co. filters used on 'medium' 
bandwidth setting for frequencies below 2 kHz and 'narrow' bandwidth for 
higher frequencies. This unit has a bandwidth proportional to nominal frequency. 
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Figures 3(a) and ( b )  give the filter shape calibrations. Some indication of the 
effect of bandwidth on the measured correlations is given in appendix B. The 
two Dytronics units proved to be matched within the precision of our measuring 
procedures. 

The magnetic tape recorder was a modified Sangamo model 482RB with 
controllable delay for playback, which permitted measurement of correlation 
functions with time delays. Recording was frequency modulated with a central 
frequency of 108 kHz. The useful frequency response for correlation measure- 
ments was up to roughly 5 kHz limited by tape jitter (about & l0psec maxi- 
mum). Some details are given in appendix C. The tape used was Minnesota 
MiningandManufacturing Company ‘Scotch’, 1.5 x 10-3in. thick, 1 in. wide. The 
need for segments running up to 5min with no ‘drop-out’ meant that the new 
tapes had to be tested and selected; not all new tapes met the requirement. 
2500-foot reels of tape were used. 

The particular type of machine used records and plays back at  two separated 
stations with a loose section of the tape hanging between the two record/playback 
heads. The tape length between the two heads is kept fixed (at LR) during the 
record phase, and then is seC at a series of constant lengths L, during the play- 
back phase. The time delay is therefore V-l(L, - LR), where ?‘ is tape speed. 
Ordinarily the system was operated with V = 60in. sec-l. The zero delay con- 
dition, L, = L,, was determined by recording the same random signal on two 
tracks, then, finding the position at which the autocorrelation function was 
closest to unity. 

For the experiment, the signals from two different hot-wire anemometers, 
located at different positions in the turbulence, were recorded on two different 
‘tracks ’ on the tape, and through the two different heads. A third track was used 
with a timing signal of 100kHz to measure the time shift during playback. The 
counts of this signal were observed with a reversible counter, Wang Laboratories 
Model R 5720. 

When broad-band random signals are passed through very narrow filters, the 
filter outputs usually fluctuate wildly, and are thus difficult to read on ordinary 
pointer or digital meters. We measured these outputs by integration over time 
intervals long enough to bring the scatter within reason. Integration was done 
with an electrochemical instrument (The Texas Research and Electronic Co. 
SI-100 integrator) whose output is a d.c. voltage. This was read with a digital 
voltmeter, Cubic Corp. Model V46-P. 

The complete schematic diagram for the electrical measuring system is shown 
in figure 4. 

4. Experimental and computational procedures 
For all of the two-point space-time correlations reported here, the upstream 

hot-wire probe was located at  U,t,/M = 42 & 2.r downstream of the grid, and 

f This station was identified by the time symbol to. The (small) range of values was simply 
a matter of chance and convenience with different probes, and corresponds to the adjust- 
ability of the upstream probe holder. Axl = U(t- t , ) /M was properly determined in each 
case. 
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approximately on the centreline of the wind tunnel test section. For Uo t/M > 40, 
there was no detectable difference between a position behind a grid rod and a 
position behind a grid hole. This upstream probe was mounted on a movable 
support whose position was read on a dial gauge which was marked to a least 
scale division of lO-3in. The accuracy of the probe separation values is estimated 
at  about & 0*05mm, about a quarter of the hot-wire lengths. Probe separations 
up to 4M were set by moving the front probe. The associated changes in to had 
negligible effect on the measured functions of (t - to) which were the main goal 
of the study. 

The upstream hot-wire probe had its needles (jeweller’s broaches) spaced 
1.2 cm apart to reduce the wake close behind the wire. The central 0.4mm of wire 
spanning the needle tips was etched to be the sensor, the balance retaining its 
lO-3in. dia. silver casing. 

The downstream probe was mounted on a sliding carriage for large streamwise 
motions, with built-in lead screws for large vertical and horizontal motions. 
For lateral displacements up to l in.  a small sliding carriage was driven by a 
micrometer head with least divisions of 10-3in. Here, too, the accuracy of wire 
positioning was estimated at f 0-05 mm. The zero-separation readings were 
estimated by viewing closely spaced wires through a telescope with a scale. 

The following quantities were measured behind the 5-08 em grid: 
(a) u2,, u E ,  ui over the length of the test section (see Comte-Bellot & Corrsin 

(b )  The one-probe autocorrelation function, B,,(O, 0,O; t ,  At) at Uot/N = 42. 
(c)  Bll(Axl, 0,O; t ,  0 )  at Uot/M = 42, 98, 171. 
( d )  Rl1(O,Ax2,O;t, 0 )  at Uot/M = 42, 98, 171. 
( e )  R,,(O, Ax2, 0;  t ,  0)  at U,t/M = 42. 
(f) Rll(Axl, 0,O; to, At), with special emphasis on the class At = Ax,/B .? The 

upstream probe was at  Uot/M = Uoto/M A 42. 
(9)  Energy specbrum of single wire probe signal, E$i)(kl, t ) ,  the Fourier trans- 

form of R,,(O, 0,O; t ,At), at Uot/M = 42, 98, 171. 
(h) B#(kl; Az,, 0,O; to, At), the correlation between narrow-band-filtered u1 

signals from two probes, with the upstream probe at Uot/M = 42. The principal 
case was with At = A x J e .  k, = w / u .  
(a) ,  (f) and (9)  were also measured behind the 2.54 cm grid. 

Next we list sources of systematic error in these measurements, with brief 
remarks on what, if anything, was done to correct the data for each. 

(i) Background (‘free stream ’) velocity and temperature disturbances in the $ow, 
plus electronic noise and pickup. Readings were taken of each function with the 
turbulence generating grid removed. Where these were appreciable, they were 
subtracted from the grid-in readings in an appropriate way (e.g. for turbulence 
level readings, the mean square of the error signal was subtracted from the mean 
square of the total signal). This method is correct for the extraneous electronic 
signals, somewhat rational for the temperature fluctuations and the fluid 
velocities due to sound, but less rational for the ‘free stream turbulence’, which 

= 12.7 msec-I. Recall that 
U,, = lOmsec-l, followed by a 1-27: 1 contraction. 

- - -  

1966). 

t In  the part of the test section where all data were taken, 

19 F L M  48 
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may be changed by interaction with the grid-generated turbulence. Fortunately, 
the errors were virtually negligible except at the high frequency end of the 
spectra. 

(ii) Mechanical vibration of hot-wire or its supports. This was visually undetect- 
able, and no spectral spikes in the appropriate frequency ranges were found. 

(iii) Pinite hot-wire length. Since the wires lengths were about equal to or smaller 
than the Kolmogorov microscales, errors due to  the associated spatial resolution 
deficiencies were also negligible except at very high wave-numbers. No corrections 
were made. 

(iv) Pinite bandwidths of wave analyzers. For power spectrum measurement with 
narrow-band pass filters, in principle one solves an integral equation (appendix B). 
When the filter is narrow enough its transfer function can be approximated by 
a ‘Dirac function’, and no equation solving or data correcting is required. This 
was the case for the Hewlett-Packard analyzer and the spectra encountered 
here. The Dytronics filter band sha.pe is more pointed at the narrowest setting, 
but has slower decrease at the ‘tails’. We conhmed the negligibility of imperfect 
frequency resolution for most of the measurements by recording some correla- 
tions with three different filter bandwidths. 

(v) Contamination of turbulence by the wake of the upstream probe. This effect 
was bypassed by recording data for several positions laterally outside of the wake 
and extrapolating to the desired position (appendix A). 

(vi) Tape jitter. This effect was measured, and found to be negligible in the 
frequency range of data reported here (appendix C). 

(vii) Integrator drift and non-linearity. Calibration showed a slight dependence 
of sensitivity on total charge ( -  output voltage), an effect reported by the 
manufacturer in the literature accompanying the device. To minimize this effect, 
the integrator was operated in the middle half of its range, where the effect could 
actually be made negligible. The integrator also had a measurable drift with 
zero input, the rate depending on the scale position. Appropriate correction was 
applied to the recorded readings. 

(viii) Limitations of the Taylor approximation for interchangeability of frequency 
and wave-number. Taylor (1938) pointed out that in flows where the mean speed 
i7 is much larger than the r.m.s. turbulent velocity the time record of a fixed 
probe is virtually the same as a spatial record at an instant of time, i.e. the 
turbulence structure is nearly ‘frozen’ during the time required for passage of a 
blob large enough to contain all the significant structure. Limitations of this for 
the full turbulent velocity have been inspected theoretically by Lin (1953) and 
by Uberoi & Corrsin (1953). A detailed experimental test in terms of correlation 
functions, repeated in this paper, was made by Favre, Gaviglio & Dumas (1952). 
Lumley (1965) presented a detailed theoretical analysis. In  the absence of mean 
shear, we are concerned with (a )  changes in turbulence structure which occur 
during the mean convective transit past the probe (such fluctuations would 
preclude the exact interpretation of fixed-probe frequency spectra as wave- 
number spectra), and (b )  fluctuations in convective transit of small structure 
due to superposed convective effect of the large structure. By estimates explained 
in appendix D, it was concluded that these effects were small enough that the 
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Taylor approximation could be used. Consequently, all spectra measured as 
frequency spectra of signals in time are presented here as wave-number spectra, 
representing spatial Fourier decomposition. The transformation is simply 

kl = WID. (42) 
(ix) Lack of d.c. coupling in hot-wire circuitry. As remarked in 9 2, the fact that 

our electronic system is a.c. coupled (figure 2) precludes measurement of the 
spectrum down to zero frequency (or wave-number), and in principle makes 
‘directly’ measured integral scales equal to zero (appendix E). The measured 
spectra could have been corrected for the electronic system response spectrum 
to yield better accuracy at the smaller frequencies, but, since the measured 
spectra hadlevelled off at the low end (figures 8 (a) ,  (b)) ,  and couldnot be corrected 
all the way to zero frequency anyway, no effort was made to apply this correction. 
A corresponding error must of course exist in the data for the autocorrelation 
function from a single probe record at large time differences (figure 31). No 
correction was applied, but it can be worked out from the given circuit response. 

Some years after most of the data were processed, it was found that the coupling 
circuit at the tape recorder input had been appreciably ‘loaded’ by an input 
impedence of 10 kQ, to give a low frequency cut-off of about 5 Hz instead of the 
desired 1Hz characteristic of the hot-wire system. Figure 31 in appendix E 
shows the direct effect of this low frequency cut-off on the measured time auto- 
correlation. For o A t / M  > 8, full band, space-time correlation values are also 
affected. Therefore, these functions were remeasured with the 1 Hz low cut-off. 
The remeasurements were made with a Princeton Applied Research Company 
Model 101 Correlator. 

There is no appreciable effect on the narrow-band space-time correlation 
functions presented, because these all correspond to filter frequencies w = k, 
much larger than 5 Hz. 

5. Experimental results for one-time or one-probe functions 
Comte-Bellot & Corrsin (1966) presented the mean kinetic energy of the 

component turbulent velocities. The empirical curves (which fitted the ex- 
perimental points about as well as those of Comte-Bellot & Corrsin 1966, figure 12) 
are given (from Comte-Bellot & Corrsin 1966, table 3) as (38) here. 

Figure 5 (a) gives the transverse? correlation coefficient functions measured 
with x,-separation of u1 velocities at  three distances from the grid, 

R,,(O, Ax29 0; t ,  0). 

Figure 5(b) gives thelongitudinalcorrelation coefficientfunctionsR,,(Ax,, 0,O; t ,  0). 
For small Axl, the values were inferred by extrapolating to Ax, = 0 some measured 
values of Rll(Az1, Axz, 0; t ,  0 )  (see appendix A). 

7 The terms ‘ transverse’ and ‘ longitudinal’, used to identify correlation functions, here 
refer to the relative directions of velocity components and point separation vector, not to 
directions relative to the mean wind. Thus, R,,(O, Ax,, 0; t ,  0) and B,,(Azl, 0,O; t ,  0) are 
‘ transverse’ (corresponding to KAmAn-Howarth ‘ g functions’), while R,,(Az,, 0 , O ;  t ,  0) and 
R,,(O, Az,, 0; t ,  0) are ‘ longitudinal’ (corresponding to Ktirmtin-Howarth ‘f fimctions’). 

19-2 



2 92 G .  Comte-Bellot and 8. Corrsin 

Comte-Bellot & Corrsin (1966) reported that this turbulence field is possibly 
isotropic insofar as the component turbulent energies are nearly equal (which is 
indicated here by (38)). With the spatial correlation functions we can make more 
detailed tests. The most direct is a simple comparison of two transverse (or two 
longitudinal) correlation functions which are in different directions; e.g. is 

R,,(O,r,O;t,O) = &3(O,r,O;t,O)? (43) 

1.0 

0.8 

0.6 

0.4 

- 0.2 
2 

0 
a 

a;" 

u" 

0 
.I 

f0.1 

0 

s 
5 0.2 - 

e o  I I 
$ 0  0.5 1 .o 

0 

AXllM 

(b)  

FIGURE 5. Downstream evolution of ( a )  a 'transverse', and ( b )  a 'longitudinal' spatial 
comelation function. u,t/M: 0, 42; n, 98; A, a, 172. 
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Here Ax, = r .  These are both g-type. Similarly, is 

Here Ax, and Ax, are in turn called r to give both sides of the equation the same 
symbolic argument. These aref-type. Figures 6 (a ) ,  ( b )  show tests of (43) and (44). 

Bll(r, 0,O; t ,  0) = R,,(O, r ,  0; t ,  O ) ?  (44) 

0 0.5 1 .o 
.I 

-0.1 ' 
a;" I I I I 

1 2 3 4 5 

TIM 
(4 

- 0  I 1 

0 0  0.5 1 .o 
u- 

1 2 3 .4 5 6 

T I M  
(b) 

FIGURE 6. A test of isotropy by comparison of two different (a)  transverse, and (a) longi- 
tudinal correlation functions. U,,t/M = 42. (a) 0, R,,(O, r, 0; t ,  0 ) ;  x , R,,(O, r ,  0 ;  t ,  0). 
( a )  A, R,,(O,r,O;t,O); 0, R d r ,  0, 0 ;  t ,  0). 

The degree of isotropy does not appear to be uniformly good. The disagreement 
between Rll(r, 0,O; t ,  0) and R,,(O, r ,  0; t ,  0) at large r is perhaps t o  be expected, 
(a) because of actual inhomogeneity in the x, direction due to turbulence decay, 
and (b)  because the turbulent large structure has a large time constant, and can 
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be expected to maintain the obvious anisotropy of the grid-generation procedure 
for the lifetime of the turbulence (Batchelor & Stewart 1950). On the other hand, 
the disagreement between R,,(O, r ,  0; t ,  0 )  and R,,(O, r,  0;  t ,  0) a t  moderate r is 
a more disappointing deficiency in the field. 

A second check on the degree of isotropy is by use of the Kkmh-Howarth 
(1938) kinematic relation between transverse and longitudinal correlations, first 
used by MacPhail(1940), who found that his grid turbulence showed good agree- 
ment with this isotropic relation. Stewart & Townsend (1951) also found good 
agreement. The isotropy test is 

(45) 
r a ?  

g(r, t )  = f(r, 6) + 2 &’ 

-0.1 I I I I I 
1 2 3 4 5 
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FIGURE 7. A test of isotropy by use of continuity equation in the manner of von KArm6n & 
Howarth (1938). U,,t/M: (a )  42, ( b )  98, (c) 172. 0, directly measured; -, computed from 
Rll(r, 0.0; t ,  0). 

(4 

k, cm-1 k, cm-1 

(4 (b)  
FIGURE 8. Downstream evolution of one-dimensional energy spectrum. ?Yo = 10msec-l. (a )  
5*08cmgrid,Uot/lM: 0 ,42;  A, 98; iJ, 171; (5) 2.54cm grid, 0 , 4 6 ;  A, 120; CJ, 240;0,385. 

where 9 is any transverse, spatial correlation coefficient function and f is any 
longitudinal one. Figures 7 (a)-(c) show tests a t  three different distances from the 
grid. In various curves, r may represent Axl, Axz and Ax,, depending on the 
velocity component directions. These indicate rather good agreement with the 
isotropic relation. Since the greatest discrepancy is at the intermediate distance, 
it may be a result of an unidentified systematic error. 
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k ,  cm-l 

0.05 
0.10 
0.15 
0.20 
0-25 
0-30 
0.40 
0.50 
0.75 
1.00 
1.50 
2.00 
2.50 
3.00 
4.00 
6.00 
8.00 

10.00 
12.50 
15.00 
17.50 
20.00 
22-50 

(a) 2 in. grid 

E:i)(k,, t) om3 sea-2 
I 

A 

tuo -. = 42 
M 

5.70 x lo2 
6.93 x lo2 2.97 x lo2 1.81 x 10' 
6.83 x lo2 2.81 x lo2 1.48 x lo2 
6.18 x lo2 2.31 x lo2 1.18 x 102 
5.45 x 102 1-90 x 102 9.40 x lo1 
4.70 x lo2 1.60 x lo2 7.83 x lo1 
3.52 x lo2 1.15 x lo2 5.46 x lo1 
2.67 x lo2 8.50 x lo1 3.94 x 101 
1.63 x lo2 5.04 x 10, 2.25 x lo1 
1.14 x lo2 3.30 x lo1 1.39 x lo1 
6.68 x lo1 1-74 x lo1 7.15 x 10" 
4.20 x lo1 1.12 x 101 4.02 x 10" 
3.01 x lo1 7.52 x loo 2.33 x 10" 
2.13 x lo1 5.05 x loo 1.32 x 100 
1.14 x lo1 2.31 x 10" 5.45 x 10-1 
3.95 x 10" 6.62 x 10-l 1.12 x 10-1 
1.63 x 10" 1.74 x 10-1 2.69 x 

3.06 x 10-1 1-82 x loe2 1.69 x lows 
7.43 x 10-1 5.95 x 10-2 6.75 x 10-3 

1.53 x 10-1 6.12 x 10-3 4.62 x 10-4 
6.93 x 2.23 x 10-3 1.36 x 10-4 
3.71 x 7.93 x 10-4 5.46 x 10-5 

2.98 x 10-4 2.17 x 10-5 

(b) 1 in. grid 

t )  cm3sec-2 
h 

0.10 
0-15 
0.20 
0.25 
0.35 
0.50 
0.75 
1.00 
1.50 
2.50 
3.50 
5.00 
7.50 

10.00 
15.00 
20.00 
25.00 
35.00 

2.86 x lo2 
2.74 x lo2 
2.38 x lo2 - 
2.31 x lo2 
1.93 x lo2 
1.70 x lo2 
1.51 x lo2 
1.25 x lo2 
1.06 x lo2 
4.40 x lo1 
2.42 x lo1 
1.47 x lo1 
4.12 x loo 
1.94 x 10" 
3-32 x 10-1 

1.26 x lo2 
1-16 x lo2 

1.05 x lo2 
9-45 x 101 
7.00 x lo1 
4.40 x lo1 
3.30 x lo1 
1.71 x lo1 
8.50 x 10" 
3.93 x 10" 
1-46 x 10" 
3.54 x 10-1 
1.00 x 10-1 
1.02 x 10-2 

1.14 x 10-1 
2.64 x loW2 
2.81 x 10-3 

1-60 x 10-3 
2.40 x 10-4 
6-15 x 10-5 

6.30 x lo1 
5.75 x 101 
5.56 x 10' 
5.35 x 101 
4.50 x lo1 
3.30 x 10' 
1.96 x lo1 
1.20 x 101 
5.22 x 10" 
2.10 x 100 
8.93 x 10-1 
2.53 x lo-' 

1.56 x 
- 

1.13 x 10-3 
6.60 x 10-5 

5.70 x 10-7 
7.75 x 10-6 

3.60 x lo1 
3.64 x lo1 
3.41 x 10' 
3.18 x 10' 
2.70 x lo1 
1.91 x 101 
1.08 x 101 
6.90 x 10" 
2.60 x loo 
8.20 x 10-1 
2.40 x lo-' 
7.20 x 
1.19 x 10-2 
1.97 x 10-3 
9.55 x 10-5 

8.56 x 10-7 
4.52 x 

- 

TABLE 2. Numerical data for one-dimensional spectra behind grids 
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The u,-energy spectra measured from single probe signals at Uot/M = 42, 98, 
171 are presented in figure 8(a )  and table 2. These are measured as frequency 
spectra, but, since the relevant Taylor approximation is well satisfied, they are 
interpreted as ‘ one-dimensional ’ wave-number speotra E$(kl, t ) .  

As mentioned in $4, these data are corrected for electronic noise and empty- 
tunnel disturbances. The spatial resolution limitations due to non-zero hot-wire 
length were within the experimental scatter. 

Since a few space-time correlation measurements ( 3  7) were taken behind the 
2.54 cm mesh, square rod grid, in order to be able to reach larger Uot/M, four 
spectra behind that grid are given in figure 8 (b) and table 2 (Uot/M = 45,120,240, 
385). This case was also run at U, = 10 m sec-l, so the grid mesh Reynolds number 
was 17 000. The turbulent energy decay in this case is included in Comte-Belloti & 
Corrsin (1966, table 3). 

Figure 9 and table 3 contain ‘three-dimensional’ turbulent energy spectra 
E(k,  t )  computed from the data of figure 8 (a )  under bhe assumption of isotropy: 

This expression differs by a factor of two from that in Batchelor (1953), because 
here the ‘ one-dimensional ’ spectrum Ei%)(kl) is. scaled over the semi-inhite Ic, 
axis instead of the infinite axis. Equation (46) was carried out by graphica 
differentiation of faired curves. The viscous dissipation spectra 2vlc2E(k, t )  are 
plotted on the same Cartesian figure to give an impression of the degree of separ- 
ation between the zones which contribute most to the integrals of the curves: 

6 = 2~ k2Edk.  (48) 

k,= 7-1 = (€/V3)$, (49) 

/Om 

The Kolmogorov wave-numbers, 

associated with the dissipative eddies, are 34, 21 and 15cm-l for stations 
Uot/M = 42, 98 and 171, respectively. We observe tha t  most of the dissipation 
occurs in scales a bit larger than 7. 

For convenience we have tabulated the streamwise r.m.s. velocity, the dis- 
sipation rate, Kolmogorov microscale, Taylor microscale and turbulence 
Reynolds number for the three principal downstream stations behind the 
5-08cm and 2.54cm grids (table 4). The dissipation rate is obtained most 
accurately from the actual energy decay rate, as is the Taylor microscale: 
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FIGURE 9. Downstream evolution of three-dimensional energy and dissipation spectra. 
5.08 cm grid. Dissipation is 2vk2E = 0.28k2E em 
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0.15 
0.20 
0.25 
0.30 
0.40 
0-50 
0.70 
1.00 
1.50 
2.00 
2-50 
3.00 
4.00 
6.00 
8.00 

10.00 
12.50 
15.00 
17.50 
20.00 

tU0 - = 42 
M 
- 

1.29 x lo2 
2-30 x lo2 
3.22 x lo2 
4.35 x 102 
4.57 x 102 
3.80 x lo2 
2.70 x lo2 
1.68 x loa 
1.20 x 102 
8-90 x 101 
7-03 x 10' 
4.70 x lo1 
2-47 x 10' 
1.26 x lo1 
7.42 x loo 
3.96 x loo 
2.33 x loo 
1.34 x loo 
8.00 x 10-1 

tU0 - = 98 
M 
- 

1.06 x 10' 
1.96 x 10' 
1.95 x lo2 
2.02 x 102 
1.68 x lo2 
1.27 x lo2 
7-92 x 10' 
4-78 x lo1 
3.46 x 10' 
2-86 x 10' 
2.31 x lo1 
1.43 x 10' 
5.95 x 100 
2.23 x loo 
9.00 x 10-1 
3-63 x lo-' 
1.62 x 10-l 
6.60 x 
3.30 x 

3 = 171 
M 

4.97 x 101 
9.20 x 10' 
1.20 x 102 
1.25 x 10' 
9.80 x 101 
8.15 x lo1 
6.02 x 10' 
3-94 x 10' 
2.41 x lo1 
1.65 x 10' 
1-25 x 10' 
9.12 x loo 
5.62 x loo 
1-69 x loo 
5.20 x lo-' 
1.61 x 10-1 
5-20 x 
1.41 x 
- 
- 

TABLE 3. Numerical data for three-dimensional spectra behind 2in. grid, 
computed from one-dimensional spectra 
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As a check on the measurements, h was computed also from the measured spectra, 
giving values within about 5 yo. 

The hypothetical longitudinal integral scales L, obtained by extrapolating 
the one-dimensional spectra to k, = 0 (see $ 6  and appendix E) are included, 
along with hypothetical transverse integral scales L (which could be designated 
LJ, estimated by integrating R,,(O, r,  0; t ,  0 )  from 0 to a bite r (about 5M to 
6 M ) ,  where the curves have approximately returned to the abcissa from below. 

8 
Dissipa- 

tion 
JG rate 

M 9 (cm (cma 
(cm) M sec-1) s ~ c - ~ )  

5.08 42 22.2 4740 
98 12.8 633 

171 8.95 174 

2.54 45 20.5 7540 
120 10-6 731 
240 6.75 145 
385 5-03 48.5 

7 
K o ~ o -  
gorov 
micro- 
scale 
(em) 
0.029 
0.048 
0.066 

0.026 
0.046 
0.069 
0.091 

h 
Taylor 
trans- 
verse 

micro- 
scale 

0.484 
0.764 
1.02 

0.355 
0.581 
0.845 
1.09 

(cm) 

L Lf 
trans- longi- 
verse tudinal 

integral integral 
scale scale 
(cm) (cm) 
1-27 2.40 
1.88 3-45 
2-28 4.90 

0.60 - 
0.90 - 
1.07 - 
1.20 - 

71.6 27.3 
65.3 26.5 
60.7 27.1 

48.6 28.7 
41.1 26.5 
38.1 30.0 
36.6 33.2 

TABLE 4. Gross properties of turbulence at various stations behind 2 in. and 1 in. grids 

Presumably an accurately measured R,,(O, r,  0; t ,  0) would also have zero integral 
over the full axis, because of the a.c. coupling of the measuring circuit and the 
non-infiniteness of the experiment. It is encouraging that these hypothetical L’s 
and Lf’s, although computed by different methods and from independent, data, 
agree with each other in the sense that they approximate the isotropic require- 
ment, 

(53) 

Also tabulated is the possible constant (h/L) R,, proposed by von K&rm&n & 
Howarth (1938). A recent rough theoretical estimate is 17 (Corrsin 1964). 
Batchelor (1953) remarked on the empirical constancy of (L, U/(u;)%) d q / d x ,  
during decay of grid-generated ‘isotropic ’ turbulence. Simple algebra shows that 

L, = 2L. 

_ -  

The data in figure 6.1 of Batchelor (1953) suggest a range 

for the configurations tested. With (54), this indicates 

h 
L 25 -RA 2 15, 

a range much like table 4 and the rough theoretical estimate cited. 
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6. The Taylor approximation and a.c. coupling 
As remarked in $4 (viii), Taylor (1938) suggested the very useful approximation 

that, in some cases, the time sample of turbulent velocity at a fixed space point 
is very nearly equal to what one would observe by a spatial record (along 
Ax, = gat) at a fixed time. A particular direct test is given by comparison of 
.It,,(Ax,, 0,O; to, 0) with R,,(O, 0,O; to, Axl/U), figure 27. This kind of check, first 
made by Favre, Gaviglio & Dumas (1952), shows that in this unsheared tur- 
bulence, with AG @ u, the Taylor approximation is good over the time and 
space ranges for which correlation can be measured with viable accuracy. For 
large separations in space and/or time (where the correlation magnitudes may 
be measured with accuracies poorer than perhaps -t 15 %), we might expect the 
Taylor approximation to deteriorate, because these correlations are associated 
with the ‘big eddies’, which take a long time to be convected past the probe. 
A rough estimate (appendix D) indicates, however, that e.g. for the vastly 
simplified two-segment spectrum model outlined Comte-Bellot & Corrsin ( I  966) 
(E N L4f for 0 < k < kL; E - k-* for LL < k < k,; E = 0 for L > kK), the 
approximation remains good even for the very large eddies. 

As mentioned earlier, the very low frequency data are distorted by the de- 
ficiency in response of the electronic circuitry below about 1 Hz (figure 2). Since 
in turbulent motion the large eddies are associated with the low frequencies 
(even in a frame convected with the mean flow), this deficiency also must intro- 
duce errors into the one-time correlation data for large separation (Axl or Ax2) 
of the two probes. We make no attempt to devise and apply corrections in this 
paper, but they may be required in some future investigation. Some discussion 
is offered in appendix E. 

Here we simplyrepeat the well-known (though rarely mentioned, and occasion- 
ally forgotten) facb that a.c. coupled circuitry can give only correlation functions 
with zero integral. If the experimental accuracy were good enough, both curves 
in figure 27 would show zero integral scale. The non-zero values presented in 
table 4 of Comte-Bellot & Corrsin (1966) and table 4 here, are scales charac- 
teristic of hypothetical turbulence which is presumed consistent with the 
actual turbulence for all but the largest eddies. 

A final remark about the best possible validity of the Taylor approximation: 
like may other turbulent flows, this one is inhomogeneous in the mean velocity 
direction. Therefore, an instantaneous spatial sample of u1 over z1 is a realization 
of a non-stationary random variable. Yet a temporal sample of u1 a t  fixed x is 
a realization of a stationary random variable. No matter how small the turbulence 
level, we cannot expect the statistical properties to be identical. 

t We should note Saffman’s (1967) improvement by correction and generalization of the 
Loitsianskii (1939) attempt to identify anintegralinvariant in decaying isotropic turbulence. 
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7. Results for full-band, two-time correlation function moving with the 
mean motion 

A principal experiment result of this report is the extension of previous measure- 
ments of the double velocity correlation function effectively translating with the 
mean velocity 0 of the fluid, 

R,,(Ax,, 0,O; to, A x l / u )  = R,,(eAt, 0,O; to, At). 

Here we follow Favre, Gaviglio & Dumas in using two hot-wire probes displaced 
in the mean velocity direction (Ax,), with a magnetic tape recorder to delay the 

At msec 

FIGURE 10. Some measured space-time correlation functions. The envelope is essentially 
time correlation in a frame translating with the mean speed 0. U,,t,/M = 42. 

upstream signal for just the time At = Ax,/D. It is this correlation function, 
which may be the closest wind tunnel approximation to the theoretical two-time 
correlation function at  a fixed point in isotropic turbulence with zero mean 
velocity (‘box turbulence’), BR1l(O, 0,O; t,,_ll,+At). 

Some data were taken with At =I= Ax,/U, particularly to find out whether 
R,,(Ax,, 0,O; to, At) attained a maximum at At = Ax,/o. The answer is essentially 
‘yes’, although there are very small systematic departures due to (a)  the random 
self-convection of the turbulence, and (b )  the downstream evolution (inhomo- 
geneity) of turbulence properties such as energy and scales. These two effects 
are discussed in Q 9. 

Figure 10 is a typical set of experimental space-time correlation curves with 
one wire behind the other. The upstream hot-wire was a t  Uot/N = 42, the other 
wire at Ax,/M = 4 , 8 , 1 8  farther downstream. All of the curves are given without 
data points. The curve at Ax,/M = 4 is an extrapolation to Ax, = 0 of a family 
of R,,(Az,, Ax,, 0; to, At). This extrapolation was necessitated by the extraneous 
presence around Axz = 0 of the wake of the upstream wire (appendix A). The 
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wake effect became negligible for Axl greater than about 8M. The curves for 841 
and 18M were obtained with the P.A.R. correlator. 

Figure 11, and table 5, give the Eulerian correlation function following the 
mean motion, R,,(uAt, 0,O; to, At). The data from earlier studies are included for 

h 0.6 
.1 

0 

I 

1 .o 10 100 
g(At ) /M 

FIGURE 11. Time correlation in a frame translating with the mean speed 0. Prior experi- 
ments: a, V, Favre et al.; 0, Klebanoff I% Frenkiel. New data: , 5.08; 0, 2.54 cm grid. 
Uoto/M = 42. 

M = 5.08cm M = 2.54cm 
-7 - 
UAt UAt 
M Rll( Oat, 0 , O ;  to, At’ M Bll( UAt, 0,O; to, At) 
0.375 0.94 8 0.545 
0.75 0.89 18 0.39 
1.3 0.83 125 0.107 
2.5 0,765 225 0.0685 
4.0 0.72 340 0.0095 
6.0 0.58 
8-0 0.535 - - 

12 0.46 - 
18 0.40 - - 
27 0-30 - - 
36 0.255 - - 
48 0.21 - - 
90 0.125 - - 

125 0.10 - - 
172 0.07 - - 

- ~ 

- - 

- 

Upstream probe at: Upstream probe at: 
toUo/M = 45 toUo/M = 42 

TABLE 5. Numerical data for full-band two-time correlation functions 
following the mean flow 
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comparison. Possibly the new values of R,, are larger because we avoided the 
wake of the upstream wire and extrapolated to Ax, = 0; other authors do not 
mention this precaution. This wake contains an appreciable amount of new 
small-scale turbulent energy created by the locally intense shear zone near the 
wire (Kellogg 1965). This new (short-lived) constituent evidently reduces the 
total correlation for small and moderate probe separation. 

We note that this correlation function has not become negative within the 
range of this experiment. Presumably it becomes negative eventually, because 
the integral scale must be zero (appendix E). Limitations of wind tunnel length 
and desired Reynolds numbers precluded larger values of AxJM = uAt /M.  In  
fact, the correlation following the mean flow is so persistent that the turbulent 
energy behind the 2.54cm grid has decreased by a factor of 17.3 between the 
upstream probe (Uot/M = 45) and the last downstream position (Uot/2M = 385). 
At this last position, the turbulence Reynolds number has dropped to R, M 35. 

As in the case of the spatial correlation functions, we can, nevertheless, infer 
a hypothetical integral time scale by extrapolating and integrating what we have. 
With no physical grounds for supposing that ,R,,(O, 0,O; t ,  t +At) must become 
negative in true isotropic ‘box turbulence ’y we simply extrapolate monotonically 
to zero. The resulting integral time scale is T w 180msec. This method of com- 
putational inference is somewhat like extrapolating the corresponding frequency 
spectrum to a h i t e  zero-frequency intercept. 

The Taylor type of microscale, the abcissa-intercept of the vertex-osculating 
parabola, 

is found to be 6.2 msec. 

1 a2 
t A + -  2 a(At), At=O (57) 

8. Approximate rescaling for downstream homogeneity (stationarity in 
convected frame) 

As a matter of basic interest, and because some turbulent shear flows are 
spatially homogeneous along the flow direction (notably fully developed pipe 
flows), we shall re-examine Rl1(BAt, 0,O; to, At) in a At co-ordinate rescaled to 
compensate for the downstream inhomogeneity. The ‘amplitude ’ of the random 
variable ul(zl + DAt, z2, z3, to + At) is already normalized by the use of the correla- 
tion coefficient function R,, rather than the covariance function. Therefore , we 
need consider only the rescaling of At = t - to. 

We use the simplest possible method (Townsend 1954; see also Batchelor & 
Townsend 1956), with a ‘local’ characteristic time made up of an Eulerian 
integral length scale and a root-mean-square component turbulent velocity: 

where t = to + Ax,/u. The successful rescaling of narrow-band space-time correla- 
tion functions (3  12) could yield a more sophisticated approach, buQ that has not 
yet been followed. 
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Figure 12 (a) is an approximation to &(gO, 0,O; 0), the form we mighb expect 
if we could keep the turbulence field stationary in co-ordinates translating with 
the mean flow. Figure 12(b) is pll(!2), its Fourier transform. 

loo 

lo-’ 

.--. 
10-2 

g- 

0.2 t- 

- (b) 

- 

- 
“ 0  0.5 1 .o 

0 sz 
FIGURE 12. (a )  Time correlation, and ( b )  frequency spectrum in a frame translating with the 
mean speed 51, roughly ‘ compensated’ for the evolution of turbulence. (b )  is the Fourier 
transform of (a) .  

Some theoretical estimates exist for these functions. 
Using Kolmogorov’s approach, Inoue arrived at a linear law for the ‘inertial 

subrange’ in the Lagrangian one-particle velocity correlation function (Inoue 
1950,1951; Corrsin 1962a). Corrsin (1963a) remarked that this should be equally 
applicable to the simplest Eulerian ‘one point ’ function in the absence of mean 
velocity. In  the present context this suggests a region in which 

(59) 1 -&(UAt, 0, 0, At) = CeAt.  

Figure 12(a) shows no significant confkmation of (59), but there is also no reason 
t o  expect an inertial subrange to exist in turbulence at  these modest Reynolds 
numbers (see 0.g. Corrsin 1958). 

The frequency spectrum at a spatial point travelling with the mean flow is 
just the Fourier transform of this correlation. Kolmorogav theory gives an 
inertial subrange form 

P,,(w) = K E W - ~ .  (60) 

Figure 12 (b) shows no perceptible o r 2  range. This is consistent with the absence 
of identifiable wave-number spectral regions proportional to k,S or kb. Pre- 
sumably this, too, reflects the smallness of the turbulence Reynolds number. 

The resealed experimental simple Eulerian time correlation function has also 
been extrapolated monotonically to zero and integrated to get an integral time 
scale estimate of m 84msec. The ‘microscale’ .fA is essentially the same as t,, 
the unscaled value, 6.2 msec. 
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These numbers provide a chance to check a rough theoretical estimate 

(Corrsin 1962a) that (fA/5?)dRA M 3. (61) 
The rescaled experimental value is 0.6. 

9. Time delay for maximum correlation with two probes 
For the simplest Eulerian statistics in tims we want data like those which 

might be recorded at rest in a (decaying) ‘box turbulence’. Therefore, the time 
delay (At), = AxJv, which just cancels the wind tunnel speed, is of clear interest. 

It is also interesting to ask whether this particular delay time between the 
signals of two probes spaced Ax, apart happens to  give the maximum correlation 
for the Ax,. Experimentally (figure 10) the answer is ‘yes’, approximately. The 
experiments showed (A~)~/(At),  = 1-00 k 0.004. In principle, however, the time 
delay for maximum correlation, (At)m, is slightly smaller than (At),. To display 
this inequality crudely, we consider the hypothetical case of non-decaying, 
homogeneous, unsheared turbulence. Figure 13 is a qualitative sketch of the 
(Ax,,At)-plane in ‘correlation space’ travelling with the mean flow. The iso- 
correlation contours must be symmetric; assume for simplicity they are convex. 
Then we seethat for asingle probe in this box turbulence the maximum correlation 
will be observed at any prescribed At if the probe remains at rest. This is illustrated 
by the fact that a vertical (constant At) line on the sketch always meets its 
isocorrelation contour o f  largest correlation value just at Ax, = 0. 

To consider the more general observations, imagine two u,-probes a fixed 
distance a, apart in a box turbulence. They translate a t  speed 0 in the x, (and a,) 
direction. We record the two signals and play them back with any relative time 
delay At. The relative position of the two played back signals in space-time is a 
diagonal line through correlation space (figure 13). The maximum Sll encountered 
for given a, and v is at the point where the straight line trajectory is tangent to 
an isocorrelation curve, At = (At),. 

For fixed probe spacing a, and larger mean speed U, the sampling trajectory 
would be a steeper line passing through the same a,. For fixed and smaller a,, 
the sampling trajectory would be a line parallel to the one sketched. The latter 
is analogous to the data of figure 10. If there were no downstream decay of the 
wind tunnel turbulence, the functions would be identical. 

To emphasize the difference between (At), and (At), = a,/v, consider the 
qualitative sketch in figure 13. We see that 

in this non-decaying turbulence. In an important sense, Eulerian space-time 
correlations measured with At = (At)c,  analogous to B&j(O, 0,  0 ,  At), are the 
simplest Eulerian time correlations. (At), is also the envelope tangent point for 
a member of the family of curves in figure 10. 

For a rough analytical estimate of the ratio of (At), to (At),, we arbitrarily 
pick a Gauasian correlation function, 

( W m  < (At), (62) 

Bl?ll(Azl, 0,  0, At) = exp 

20 F L M  48 
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The 'measured' correlation functions are those with Ax, = a , - g A t .  We put 
(a/a(At))  B&l(al - g a t ,  0,  0 ,  At) = 0 to get the At value for maximum $,, along 
this diagonal line in (Ax,, At) space: - .-- 

From the turbulence data behind the 5.08cm grid transformed to rough 
sbationarity ( 9  8), we find 

L,o z To&&. (65) 

(Ax,. 0, O;Ar)=const. 

I I  

(At), (At), At 

FIGURE 13. Qualitative sketch of space-time isocorrelation contours in (hypothetical) non- 
decaying 'box' turbulence. The correlation function below is that measured by a probe 
moving along the oblique trajectory above. 

Furthermore, a,/a = (At)e, and it is interesting to rewrite (64) as 

Equation (64) or (66) says that the time delay (At),, which allows the second 
probe to arrive at the original position of the first probe in stationary box tur- 
bulence, is not the delay which gives maximum correlation. Further, it says that 
the maximum arrives sooner, i.e. 

From figure 13 we see that this must be true for any family of convex isocorrelation 
contours. 

(At) ,  < (At),.  (67) 
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At first glance (67) may seem paradoxical, because the autocorrelation of a 
fixed probe certainly is an upper bound for the magnitude (avoiding zeros in 
oscillatory correlations) of any two-probe cross-correlations. Figure 13 shows the 
resolution of the (paradox’. (At) ,  -= (At)e,  because the fixed point autocorrelation 
drops off more during the time (At),  - (At) ,  than the spatial correlation drops off 
over the remaining distance O [ ( A t ) e -  ( A t ) J .  

In  the present experiments a;/?J2 < 10-3, which is just beyond the accuracy of 
Che At measurements. 

The ‘box turbulence’ defined by travelling downstream in the wind tunnel 
at  the mean flow speed is both non-stationary and inhomogeneous. Since each of 
the two probes in that frame moves in such a way that the length and time scales 
in its neighbourhood remain independent of time, the (At) ,  expression looks 
like (64), with constant ‘effective ’ values of L, and T. For a rough approximation, 
these might be chosen as the averages of the values a t  the two probes (LQ, 
Lg, Tg, TQ). Then the generalization of (66) would be 

- _  

where 

The turbulence levels in this flow are so small that, for all practical purposes, 
(At) ,  = (At),. 

10. Narrow-band, two-time velocity correlation function following the 

The principal experimental result in this report is the set of space-time correla- 
tions of k,-spectrally (local’ velocity signals in a frame travelling with the mean 
motion. These are listed as (h) in $ 4, and may be regarded as the spatial Fourier 
decomposition of the (full-band’ function reported in $7 .  The corresponding 
‘box turbulence’ function is &)(k1; to, t ) ,  defined in (15). Of course, Bii) is not 
very local in k-space; it includes contributions at wave-number magnitudes 
spanning the entire range k, < k < 00. The genuinely local function is the spectral 
density field itself (in box turbulence, gBpii(k, t ,  t ) ) .  The ‘next most local’ function 
in common use is the ‘three-dimensional spectrum’, E(k, t ) ,  the integral of the 
spectral density over a spherical shell. It is used in dimensional arguments, below 
and later. 

The filtered space-time correlation function with matched narrow-band filters 
set at frequency 6.1 ( = uk,) can be written as R#(k,; Ax,, Ax2, Ax,; to, At).  Figure 14 
presents the cases of initial interest, Bti)(k,; U AtJ 0,O; to, At) .  The full-band func- 
tion is included for contrast. As with the full-band function, the time delay 
re E (Ax,) /O approximated the delay for maximum correlation within the 
accuracy of the measurement. No negative values were encountered in this 
function, although narrow-band space-time correlations with independent delay 
At do oscillate. 

mean flow 

20-2 
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Also, as with both Bll(Azl, 0,O; to, 0 )  and Rll(BAt, 0 , O ;  to, At), the small Axl 
ranges could not be measured directly, but had to  be inferred by extrapolating 
to Ax, = 0 some measurements of B$;)(k,; DAt, Axz, 0; to, At). Especially for the 
high wave-numbers, this extrapolation process was very uncertain (appendix A). 

0.1 1 .o 10 
UAtIM 

100 

FIGURE 14. Narrow-band space-time correlation functions in a frame travelling with the 
mean speed u. U,t,/n/r = 42. ----, R,, total signal (full-band case, figure 11). 

0 0.10 @ 0.76 @ 2.28 b 5.05 
0 0.25 V 1.01 
a 0.50 0 1.52 

3.03 8 7.60 1. (k,cm-l) 
4.04 m10.10J 

Each curve in figure 14 is in principle the envelope of an array of space-time 
correlations with identically filtered signals (centre frequency w = Uk,). Lack 
of time prevented us from collecting data for this wide range of At for each k, 
and Ax,. Figure 15 is a schematic sketch to identify a single typical curve of 
which figure 14 shows the envelope. 

As might be expected, the velocity field structure of lower wave-number 
(hence larger scale) tends to retain its correlation over a longer time interval. 
This behaviour is not, however, inevitable. Construct dimensionally the simplest 
kinematic time for ‘eddies’ of wave-number magnitude k, 

where L, is a length characterizing them and vk a velocity. Tk will be a monotonic- 
ally decreasing function of k only if L, and vk have appropriate relative forms. 
The simplest choices are 

L, = k-I and v, N [kE(k,t)]+, (70) 
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where E is the ‘three-dimensional spectrum’. To be more specific, consider a 
spectral region in which E ( k ,  t )  can be approximated by a power law, E w k-”, 
for any t . 

and Tk decreases with increasing k only if n < 3. We conclude that Tk is probably 
a monotonically decreasing function of k over most of the spectral range covered 
in this study. Only at  the high-wave-number (viscous) end of the spectrum might 
we look for departures. 

Tk k&-3), (71) 

+1 

\ I  I! \ 

----IT------- * 
Ax, = b 

At - 

- 1  

FIGURE 15. Qualitative sketch of three narrow-band space-time correlation functions. Each 
curve of figure 14is essentially the envelope of a set of such curves. U,, to/M = 42. k is constant. 
a, b:  constants, a < b. 

The foregoing analytical discussion is conducted in terms of wave-number 
magnitude k and three-dimensional spectrum E ( k ,  t ) ,  because, in terms of 
dynamic properties, the thin spherical shell in wave-number space is a relatively 
local region (see e.g. figures 2 , 4  and 5 in Corrsin 1959). Like the one-dimensional 
spectrum I@(k,, t ) ,  Rli)(kl; V A t ,  0,O; to, At) is not very local in wave-number 
space. Thus, the assignment of e.g. a characteristic time appropriate for these 
functions at any k, value would be a risky business. We should instead focus on 
the corresponding three-dimensional spectrum and its generalization, the three- 
dimensional, narrow-band, space-time correlation function. 

Just as we can calculate E(k, t )  from E$;)(k,, t )  in isotropic turbulence (Heisen- 
berg 1948; see e.g. Batchelor 1953), SO we can calculate a three-dimensional, 
space-time correlation following the mean motion by operating on R# with a 
transformation identical in form to (23). 

The faired curve8 of figure 14 were multiplied by faired spectral curves, re- 
plotted on a Cartesian scale, and differentiated graphically as required by (23). 
The three-dimensional spectra in the denominator had been computed similarly 
from the one-dimensional spectra. The R ( k ;  UAt, 0,O; to, At) points in figure 16 
show scatter because of the inaccuracies of the graphical differentiation process. 
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In  both figures 14 and 16, the dotted line extrapolations at the small time intervals 
were actually carried out on Cartesian scales, where the vertex intercept be- 
haviour is clear: all curves must go through the value 1.0 as a maximum. 

0.9 

0.8 

.Lo 0.6 
.L 

0 < 0.5 

Ib 0.4 
2 

0.2 

0.1 

n " 
0.1 1 .o 10 

UAtjM 
100 

FIGTJBE 16. Three-dimensional space-time correlation functions in a frame travelling with 
the mean speed U ,  computed from data of figures 9(a) and 14. Kolmogorov wave-number: 
34-15 cm-1; spectral peak: 0.5-0-3 cm-I. U,to/M = 43. ---, R,, total signal (full-band, 
three-dimensional, space-time correlation). 

A 0.50 0 1.52 (Tj 4.04 10.10 
0 0.25 V 1.01 3.03 0 7.60 

@ 0.76 @ 2.28 h 5.05 

UAt 
M 

~ 

0.75 
2.5 
4 
8 

18 
36 
48 
90 

172 

R,, measured 

0.89 
0.765 
0.72 
0.535 
0.39 
0.255 
0.21 
0.125 
0.07 

R,, computed from 
RiY and El? 

0.91 
0.77 
0.685 
0-545 
0.365 
0.23 
0.19 
0.11 
0.05 

TABLE 8. Consistency checks 

R,, computed from 
R and E 

0.93 
0.79 
0.695 
0.53 
0.345 
0.22 
0.175 

The full-band (total signal) correlation coefficient function R,,(vAt, 0,O; to, At) 
is also drawn in figure 16 for contrast. In co-ordinates travelling with the mean 
flow it can be seen at once that there is no such thing as a 'three-dimensional 
full-band correlation function' to be computed from Rll. +R,j may come to mind, 
but in isotropic turbulence this is equal to  Rll. 
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A consistency check among the (independent) measurements of R,,, Rii) and 
Ei;) can be obtained by using the equality, 

Bl1(DAt, 0 , O ;  to, At)  = R$$)(k,; BAt ,  0,O; to, At) 

(72) 

which is essentially (18) with rl = 0. Table 8 indicates satisfactory agreement. 
A supplementary consistency check on the several graphical differentiation 

operations required to calculate the three-dimensional functions from the 
measured one-dimensional ones can be obtained from the similar equality 

E(k,  t o )  E (k ,  to  + At) 4 dk. (73) 1 Rll(DAt,  0,O; to, At) = R(k;  DAt,  0,O; t o ,  At) - [ u z ( t o ) ~ ( t o  + At) 

This too shows satisfactory agreement in table 8. 

11. Computation of narrow-band correlations with mean convective 
delay from full-band correlations with all delays 

Fame et al. (1954) pointed out that narrow-band space-time correlation func- 
tions like R$;)(k,; UAt ,  0,O; to, At) can be inferred in principle from data on the 
general full-band space-time correlation functions like R,,(Ax,, 0,O; to, At).  
Equation (17) is the appropriate procedure in the case of box turbulence. 

To test the viability of this method of determining R&), we compare a directly 
measured case (cross-plotted from figure 14) with one computed from a measured 
R l l ( A ~ , ,  0,O; to ,  At) .  In  laboratory co-ordinates, and in terms of correlation co- 
efficient functions and spectra, (17) takes on the operational form, 

1; R,,(uAt,  0,O; to ,  At + T) cos (WT)  d7 

E l l ( w / ~ ,  to)  J % ( w / ~ ,  to + At) 4 

_ -  
R$;)(w/U; UAt,  0,O; to, At) = 4 * (74) 

[ %(to) q ( t o  + At) I 
Since no Rll(Axl,  0,O; to, At) curve was measured over the full range of At, 

the most extensive case, a t  Ax,/M = UAt /M = 8, has been completed with a 
plausible extrapolation (figure 17). The extrapolation was governed by three 
conditions: (i) to make the integral scale equal to zero, a requirement of the ax.  
coupling, (ii) to have a single negative region (an arbitrary decision), (iii) to 
avoid negative correlation values of magnitudes greater than 0.02 (because larger 
negative values are almost never observed for full-band turbulence signals). 

The R$;) comparison is figure 18. The agreement is very good for k, < 2 cm-1, 
indicating experimental consistency and reasonable extrapolation. Other extra- 
polations were tried, but these changed only the low frequency end of the Fourier 
transform. For larger wave-numbers, the limited computational accuracy for 
the Fourier transform precludes the use of (74). In this range, direct measure- 
ments of R$:) are clearly preferable. 
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-0.04 I I I I I 

20 70 120 170 220 
At1 (msec) 

FIGURE 17. The space-time correlation curve for Ax, = 8M in figure 11. 
_ _ -  , arbitrary extrapolation. 

1.0 r 1.0 - 
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i o . 2 1  I I I lll\Gei,,;o 

0 
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FIGURE 18. Narrow-band space-time correlation function for fixed probe separation 
( Axl = 8M)  as 8 function of wave-number. 0 ,  directly measured (from figure 14); -, com- 
puted from Ell( SM, 0,O; to, 8 M / o +  At) (from figure 17 by the method of Favre et d). 
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12. Similarity rescaling of the spectrally local correlation functions 
Some new insight into turbulent structure may result if we can devise a 

similarity basis which can collapse all of the spectrally local correlation functions 
of figure 16 into a single curve. Since these cover a large spectral range, extending 
from the spectral peak to the Kolmogorov wave-number, it is unlikely that simple 
dimensional arguments alone will suffice; we shall have to consider pbysical 
mechanisms. The functions to be resealed are correlation coefficient functions, 
hence already dimensionless and normalized. Therefore, we direct our efforts 
to rescaling the time interval. In a stationary isotropic turbulence with zero mean 
speed we would be seeking a characteristic time spectrum r (k)  such that 

fi(k; 0, 0 ,  0, At)  

is a universal function af At / r (k ) ,  independent of k. But, since our turbulence is 
non-stationary in the convected frame, we have the more difficult task of finding 
a characteristic time spectrum ~ ( k ,  t )  such that R ( k ;  UAt ,  0 , O ;  to, At) is a universal 
function of 

We write r(k, t )  instead of ~ ( k ,  zJ, because we shall be in the frame travelling 
with the mean flow. 

Among possible spectrally local characteristic times are those suggested by 
Onsager (1945, 1949), 

rO(k)  = [ k 3 ~ ( k ) ] - $ ,  (76) 

von Weizsacker (1948), ~ ~ ( k )  = [2~7ckkg]-~, (77) 

and Heisenberg ( 1948), T H ( k )  [U'k]-'. (78) 

Each of these has been tried in (75) as a rescaling basis. The first two give only 
a partial collapse of the R(k; UAt ,  0 , O ;  to, At) curves, but T H  is successful in some 
spectral regions. We consider possible physical meanings of these three times. 
Then we shall devise a more detailed phenomenological spectral coherence time 
rg which proves quite successful over most of the experimental range. 

rO(k)  could be regarded as merely the simplest local 'inertial' time obtainable 
by dimensional analysis. But it has phenomenological meaning as well. Consider 
spectrally local velocity and length to be 

flk (ICE)*, lk E-'. (79) 

W k  = sk f lk l lk  = (k3E)-$ = 70.  (80) 

The spectrally local vorticity and strain rate are then 

Alternatively, ro is the time required for velocity vk to carry material a distance lk. 
rw(k ) ,  suggested by von WeizsBcker for the intertial subrange, turns out to 

be rO(k)  in the special case of a Kolmogorov inertial subrange spectrum, 

E M sfk-8. (81) 

6 M uP3kE. (82) 

To see this we also use the inertial expression for energy dissipation rate, 
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r H ( k )  is essentially the time required for the energetic part of the turbulence 
(whose wave-number is of order kE, representing large scale) to convect small 
structure at k a distance 1,. There seem to be at least three conditions necessary 
for rH to be physically meaningful. First, the ‘eddies’ at wave-number k must 
be much smaller than those doing the principal convecting: 

so that many wavelengths are contained in a length Ail. 

a distance &, a kind of local turbulent Taylor approximation, e.g. 
Secondly, the fine structure must be a ‘frozen pattern’ while it is convected 

Tdk) B T H ( k ) .  (84) 

vk < Uf  O r  [kE]* < U f .  (85)  

In  terms of wave-number and spectrum, this is 

For a spectrum decreasing rapidly enough at k, this is consistent with (83). 

which it convects the h e  structure a distance l k :  
Thirdly, the large structure itself must remain unchanged during the time in 

rO(kE) % T H ( k ) *  (86) 

With E estimated by the Kolmogorov spectrum, (85) is stronger than (83). 
In  order to devise a more general time spectrum for rescaling the collection 

of spectrally local correlation functions, we should consider various physical 
mechanisms in the turbulence that act to destroy the coherence of an individual 
Fourier element. Generally, the mechanisms can be described as random transla- 
tion, random rotation and random distortion. 

Structure at wave-number k undergoes ‘pure ’ translation and rotation only 
in convection by fluctuations whose wave-numbers are much smaller. It suffers 
distortion through both the ‘homogeneous’ straining action of structure at smaller 
wave-numbers and the inhomogeneous convection by structure at larger wave- 
numbers. Of course, the ‘self-destruction’ by structure at the same wave- 
number is important (in a sense, dominant); but it can be included by representing 
each mechanism as acting over a spectral range extending to k itself. 

The four coherence-destroying mechanisms may have characteristic times as 
follows : 

(i) Convection by larger eddies: 

zk/v<k- 

(ii) Rotation by larger eddies: 

TR(k)  1 / W < k .  

(iii) Straining distortion by larger eddies: 

rS(k)  ‘/$<k* (89) 

7 D W  - WLC. (90) 

(iv) Phase-surface wrinkling by smaller eddies, a quasi-diffusive effect: 
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6, is a characteristic scale of eddies of wave-number k, v,k is a velocity charac- 
teristic of all structure at wave-numbers less than k, “<k is vorticity charac- 
teristic of all structureat wave-numbersless thank, s,,isstrain-rate characteristic 
of all structure at wave-numbers less than k, D,, is a ‘turbulent viscosity’, 
characteristic of all structure at wave-numbers greater than k. 

Mechanisms (iii) and (iv) are obviously important in energy spectral transfer 
as well. Howells (1960) suggested a passive-scalar mixing theory based on these 
two; he pointed out that this way of thinking about the phenomena may be more 
nearly valid for mixing of scalars than for turbulence dynamics. 

Roughly speaking, we can choose 

1, = k-l ,  

Omitting consideration of factors of order 1 (or n-), we define a ‘convection 

the time it would take for a steady rectilinear motion, whose speed equals the 
root-mean-square of the turbulent velocities at wave-numbers below k, to 
travel a distance k-l. We also define a ‘rotation time’, 

the time it would take a rigidly rotating motion, whose vorticity equals the 
root-mean-square of the turbulent vorticity at wave-numbers below k, to rotate 
through a half radian. 

Further, we characterize the quasi-homogeneous strain effect by the same 
expression, the ‘strain time’, 

(98) 

the time in which a fluid line would grow by a factor of e-k in a homogeneous, 
constant strain-rate field whose value is equal to the root-mean-square strain- 
rate at  wave-numbers below k, aligned with the fluid line. 

Finally, we characterize the phase-plane wrinkling mechanism as a diffusion 
phenomenon, with coherence-destroying ‘diffusion time ’ , 
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the time in which the amplitude of a sinusoidal scalar field (or rectilinear velocity 
field) of wave-number k would decrease by a factor e due to diffusivity (or 
viscosity) D,k. 

For the lack of any mor0 sophisticated analysis at present, we neglect the 
interactions among these four mechanisms, so that they act simply in parallel. 
Then the net characteristic time r*(k) due to all four is given by 

1 

r* rC rR ‘S ‘D 

where the constants may be of order unity. 
- r 

0 

m 
b 

0.010 = - - - - - - 

0.001 I I l t l l M  I 1 1 1 ’ 1 1 ’  I I ? l l t ’ tu  
0.1 1 .o 10 100 

k cm-l k cm-1 

FIGURE 19. Assorted characteristic times as functions of wave-number, computed for 
U,t/M = 42. 

The oversimplicity of the discussion means that there is little point in attempt- 
ing analytical assignment of mutually consistent values of the C’s, so we simply 
estimate them all as unity, giving the final time-scale spectrum, 

which is, of course, a function of time. 

viscous decay time, 

are plotted in figures 19 and 20 for three different distances behind the grid. 
Figure 21 displays the success achieved in resealing the narrow-band correla- 

tion coefficient functions R(k; vat, 0,O; to, At),  presented in figure 16. Evidently 
the oversimplifications of mechanism independence and unit dimensionless 
constants are either viable, or lead to compensating errors. 

In  figure 21 the extreme wave-number cases lie outside the general collapse 
region, but we note that k = 0.25 em-l is near the spectral peak, near the region 

Empirical curves of these five time spectra, along with ro, rw, rB and the 

rv = (k2v)-l, (102) 
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where the turbulence may still remember details of its grid-generation, so we 
expect no universal form (Batchelor & Stewart 1950). The k = 7.60 case is far 
into the viscous dissipation region, and we have neglected the likely influence 
of viscous effects on e.g. rD, so it is not surprising that the k = 7-60 and 10.1 

0.001 
0.1 1 .o 10 100 

k cm-1 

FIGURE 20. The downstream evolution of the combined characteristic 
time spectrum 7*. Uot/M = 171, 98, 42. 

cases do not scale as well as the others. For wave-numbers from 0.50 to 5 cm-l, 
the collapse due to rescaling the time interval by 

is within the experimental scatter. Equation (103) is a specific case of (75). 
A byproduct of the present analysis should be a more proper ‘renormalization’ 

of the complete decaying turbulence, i.e. a more appropriate time rescaling than 
that in 8 8. A shortage of time has postponed work on this problem. 
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FIGURE 21. The collapse effected by rescaling the narrow-band space-time correlation 
functions of figure 16, in terms of the combined characteristic time 7*. 
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Appendix A. Minimization of error due to wake effect of upstream probe 
A familiar difficulty in measurement with one probe downstream of the other 

is the extraneous disturbance at the downstream probe caused by the upstream 
probe wake. A common practice for reducing consequent measurement error 
is to place the downstream probe just outside of the wake, and to assume that 
the (perhaps 2* to 5’) misalignment with the mean flow direction gives a negligible 
change in e.g. correlation, compared with the desired aligned case. Some authors 
neglect to mention a procedure for reducing this wake error. 

I ts  importance can be seen from the comparisons of typical correlation measure- 
ments in table 9, one set made with the downstream wire directly behind the 
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upstream wire (Ax, = O),  and the other set obtained by extrapolating to  Ax, = 0 
the correlation values obtained for a series of Ax, positions outside the wake. 

The wake error can be large, even for full-band or small-wave-number correla- 
tions. Therefore, the technique used in all cases with possible interference was 
to measure the desired function for several lateral distances Ax, outside the wake, 
then to extrapolate these values of R,,(gAt, Ax,, 0; to, At) to the Ax, = 0 limit. 
Symmetry in Ax, dictated zero slope at  Ax, = 0. 

Ril:(kl; f la t ,  0,O; to, At) Ryi(kl; f lat ,  0 , O ;  to, At) 
k l  measured directly by extrapolation 

Full band 0.775 0.89 
0.60 0.83 0.94 
2.28 0.63 0.83 
5.05 0.45 0.72 
10.1 0.19 0.55 

TABLE 9. UAtjM = 0.75 

R,, l,lnX by extrapolation to hx2=0 

f i  

I I I I I I I 
14 15 16 17 18 19 20 

At (msec) 

FIGURE 22. Typical space-time correlation functions with downstream probe outside the 
wake of the upstream probe. AzJM = 4. Az2 /M:  0, 0.05; 0, 0.125; 0, 0.226; A, 0.4. 

Figure 22 shows typical full-band space-time correlation curves at a series of 
Ax, for a single stream-wise spacing, VAt = 4M. Here the detectable half-width 
of the wake is about 0.15M, so the Ax, = 0.05M data are presumably slightly 
reduced by the wake. The 'experimental value' of Rl,-(4M, 0,O; At) is obtained 
by cross-plotting the peak values against Ax, and extrapolating to Ax, = 0. 
This corresponds to the dashed curve in figure 23 (c). 

Figure 23 shows an assortment of analogous extrapolations to Ax, = 0 for 
some narrow-band space-time correlation functions. The Ax, = 0 intercepts 
(obviously quite inaccurate for small gAtlM and large k,) give the data points 
in figure 14. 
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The special cases for Axl = 0 and At = 0 were measured much more extensively 
in order to help guide the extrapolations, and are given in figure 24. The full-band 
curve is just the KArmAn-Howarth g function (figure 5 (a) ) .  

1 4 1 .o I .o 
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0 0 0 - 
-_ (2 = 1.20) (2 = 1.04) t,: - 1.40 

0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0.3 0.4 
I . - a  I I I I I -1.0 

(4 (b) (4 
AXdM 

FIGURE 23, Typical extrapolations used to avoid error due to wake of upstream 
probe. gAt /M:  (a) 0.375, (6) 0.75, (c) 4. 

Appendix B. Effect of finite widths of narrow-band filters 

one solves an integral equation: 
For power spectrum measurement with narrow-band-pass filters, inlprinciple 

where 4 is the filter function, w is radian frequency. When the filter shape 
# ( w ’ , w )  is narrow enough compared with the spectrum to be measured, e.g. 
when 

where A(@) is an effective bandwidth, then # can often be treated as a Dirac 
function in (B 1)’ giving 

Smeasured(W) * S(w). (B 3) 

It seems likely that condition (B 2) is irrelevant when the filter function is 
symmetric about a centre frequency. Then an inequalit,y involving the second 
derivative of X is appropriate. 

21 F L M  48 
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A(@) = $gixJom $(or, w )  dw’. 

A possible choice for A(@) might be 

But in testing the bandwidth effect we used a simpler choice (in cyclic frequency) : 
AN in figure 31 is the difference between the frequencies at which the mean 
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FIQURE 24. The limiting case ( A q  = 0) of the curves in figure 23. ---, R,, total signal (full- 
band transverse correlation function). 
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square response was 15db down from the peak. Condition (B 2) held for the 
Hewlett-Packard analyzer (figure 3 (a))  and the spectra encountered here. The 
Dytronics filter band shape (figure 3 ( b ) )  is more pointed at the narrowest setting 
(‘high selectivity’), but has a slower decrease at the ‘tails’. In fact, the decrease 
is so slow that it is imprudent to rely on (B 2 )  and (B 4) as a sufficient condition. 
Instead, we determined some values of R\i) with all three bandwidth settings of 
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the Dytronics filters: figure 25. The change in measured R@ at fixed nominal 
k, = p/(2nfo), with varying Af, is the effect of bandwidth. 

For measurements in the frequency range f < 200Hz it was decided to use 
the low selectivity (wide) setting, for 200 < f < 600Hz the medium selectivity, 

1 .o 
kl=O.10 cm-' N=20  Hz 
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h 2.25 450 
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2 t  
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Filter selectivity ANIN, 

FIGURE 25. Typical extrapolations used to correct for effect of finite band width in measure- 
ment of narrow-band space-time correlations. UAtlM = 0.75; AxJM = 0.05. 

for ,f > 600Hz the high selectivity. It is convenient to use as wide a band as 
permissible at each frequency, because in practice the signal from a wider band 
fluctuates less wildly, and is therefore easier to measure. This is presumably a 
reflection of the Fourier form of the Heisenberg 'uncertainty principle ', which 
says in this application that the response time of a filter is inversely proportional 
to its bandwidth. A quantitative example is given by Lumley & Panofsky (1964) 
for the special case of a Gaussian input signal with simple exponential auto- 
correlation function. For a relative r.m.s. error of E in spectrum measurement 
using a rectangular bandpass filter of width Aw, the required averaging time is 

The highest selectivity seemed still inadequate for the 4 kHz region, and the 
extrapolation to Af seemed very uncertain, so these data are omitted from the 
report. 

21-2 
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When the filter function has the form, 

#(w‘ ,  w )  = $(w‘- w ) ,  (B 6) 

as in the Hewlett-Packard Wave Analyzer, (B 1) can be easily solved for S(o), 
and the filter need not approximate a Dirac function. 

On the other hand, when the filter function h s  the form, 

$NU’? w )  = P(w’/w),  (B 7) 

as in the Dytronics filters, the inversion of (B 1) is difficult. 

Appendix C. Tape recorder deficiencies 
Although magnetic tape recorders are useful devices for storing information 

and especially for thus permitting correlation measurements with time delay, 
they introduce errors into the measurement process. Some sources are the 

(i) resolution limitations and noise in the magnetization and pickup operations, 
following : 

(ii) inaccuracies in the signal modulation 
modulation is used, 

and demodulation processes , when 

Correct value 

0 
0 

0 

0 0 
0 

8 

I I I 1 I 
0 2 4 6 8 10 

Sine wave frequency N kHz 

FIGURE 26. Correlation function performance of Sangamo tape recorder: maximum correla- 
tion coefficient attainable in playback of a recorded sine wave of frequency N kHz. 

(iii) ‘drop-outs7 (i.e. lost counts in the timing signal caused usually by dirt on 
the tape), 

(iv) extraneous signals due to imperfect mechanical translation of the tape in 
both record and playback steps (‘jitter ’, ‘flutter ’, etc.). 
Ordinarily? it was possible to  avoid drop-out errors by careful selection and 
handling of the tape. The magnetization, detection, modulation, and demodula- 
tion are done with sufficient accuracy in these units that no special correction 
needed to be developed. Most of the record-playback error seems to be due to 
imperfect motion of the tape. 
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Rather than try to isolate individual sources, however, we simply recorded 
sinusoidal signals at various frequencies and measured their autocorrelation 
function maxima (which should be 1.00) in playback. The results (figure 26) 
are a bit scattered, but they seem to show accuracy to about 1 yo from d.c. to 
perhaps 3 kHz. No narrow-band correlation data are presented in this report for 
frequenoies above 2 kHz, but meaningful data could probably be obtained at 
higher frequencies by using corrections based on figure 26. 

Appendix D. The interpretation of time dependence at a point in the 
tunnel as space dependence : the Taylor approximation 

Taylor (1938) suggested that, when the turbulence level is low enough (i.e. 
(=)* 4 g ) ,  the evolution in spatial pattern of a lump of fluid during its transit 
past a fixed probe may be so slight that the pattern is effectively ‘frozen’ during 
passage. Then probe-signal changes with time are due only to spatial non- 
uniformities being convected past the probe at speed g . This idea is often referred 
to as ‘Taylor’s hypothesis’; the term ‘Taylor’s approximation’ may be better. 
A theoretical estimate of its range of validity in flow carrying isotropic turbulence 
was made by Lin (1953), who also introduced the important notion of shear- 
caused failure of the approximation. Uberoi & Corrsin (1953) offered a somewhat 
different estimate for the isotropic case. Both indicated that the ‘frozen pattern’ 
requirement for Taylor’s approximation is well satisfied in the nearly isotropic 
turbulence far behind periodic grids spanning wind tunnel test sections. 

It should be noted that, if the pattern were indeed ‘frozen’, then the space- 
time correlation coefficient with time delay equal to mean transit time between 
probes (At = Axl/g) would always equal unity. In  other words, 

R,,(Ax,, 0’0; to, Ax,/U) = 1.00 

for all Axl. The very fact that this drops below 1.00 (see e.g. figure 14) shows that 
the Taylor approximation is not exact. 

The first actual (experimental) confirmation of the approximation was by 
Favre et al. (1952) in grid turbulence, for small and moderate probe separations; 
Frenkiel & Klebanoff (1966) also found good agreement. Favre et al. (1964) 
found that, in a boundary layer, Lin’s concern about the effect of shear is 
appropriate. Heskestad (1965) suggested a rough ‘correction’ for estimating 
spatial structure from temporal data when the Taylor approximation is nearly 
applicable. Fisher & Davies ( 1964) pursued the approximation into spectrally 
local detail; and Lumley (1965) presented +he most extensive analysis. 

In  spectral space the Taylor approximation consists in replacing measured 
frequency w by k ,u ,  so that e.g. a frequency spectrum S ( w ) ,  measured with a 
single u1 probe, is taken to be equal to the wave-number spectrum E&(w/U).  
In  correlation space, the corresponding expression, Atmeasured tf Ax,lU, connects 
a measured autocorrelation function of time with a spatial autocorrelation: 

- 
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In  the present experiments this type of correspondence is used for correlations 
of pairs of narrow-band signals as well. The two-probe ‘space-time correlation ’ 
Rii)(kl; Axl, Ax2, Ax3; to, At) is actually measured as 

in laboratory co-ordinates. el is the voltage fluctuationof a u,-probe. Theargument 
w denotes narrow band-pass filtration centred at frequency w .  

In  this appendix we exploit our new spectral coherence time 7*(k)  to state in 
the sense of Fisher & Davies a spectrally local condition necessary for use of the 
Taylor approximation in unsheared, laterally homogeneous turbulence. We also 
introduce a new condition, one which bounds the permissible downstream 
inhomogeneity . We find experimentally that the Taylor approximation (used 
in this work to infer the turbulent energy spectra in wave-number) is well 
confirmed, except perhaps at very small wave-numbers, where the homogeneity 
is not good. 

For the hypothetical wse of fully isotropic (hence homogeneous) turbulence 
convected past a ‘fixed’ probe at velocity u,  Taylor’s original notion of a 
‘frozen pattern’ might be given the spectrally local requirement that 

7 * ( 4  % ll(W’ (D 3) 

i.e. that the turbulent structure of size k-l have a coherence time much larger 
than its convective passage time. 

Actually, the convective passage time depends directly on wave-number 
oomponents k, in the 0 -direction rather than on k. For any Fourier element whose 
constant phase surfaces have a normal at angle a to the 0-direction, the operable 
wavelength scale is A, = (2n)/(kcosa). For an isotropic field, the appropriate 
analysis gives a directional average wavelength A, = 27~/k ,  a result which includes 
the fact that the relative rate at which a probe encounters ‘zero-surfaces’ of 
any Fourier element is COB a. 

We might therefore want to replace (D 3) by something like 

7*(k)  > 6 / g k ,  (D 4) 

which is not significantly different. 
The difference between (D 3) and earlier criteria for the same case is in the 

choice of coherence time. To(#%) = [k3E(lc)]-* has been a customary choice in the 
past. The success of 7*(k )  in scaling spectrally local autocorrelation functions in 
time (see figure 21) suggests that it is the appropriate time. Since 7*(k )  < 7 0 ( k ) ,  
the condition 70(k )  9 (Ok)-l instead of (D 3) would be non-conservative. 

The small structure is convected by turbulent large structure as well as by 0. 
Can this subvert the Taylor approximation even where (D 3) is satisfied? The 
main effect of having convecting speed 0 + u,, with ul ( < ) taking on random 
values (though fixed during the passage time [(u + u,) kl-l), is to spread the 
contribution of single wave-number component k, over a band in w .  This 
phenomenon was mentioned by Fisher & Davies, and it was estimated by 
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Lumley; it is negligible in the present experiment. Heskestad (1965) estimated 
the full-band error due to this self-convection of the turbulence. The effect is 
obviously small for small turbulence level. In  the present experiment this, too, 
is negligible. 

No matter how well condition (D 3) is satisfied, the Taylor approximation can 
never bs entirely valid in decaying grid-turbulence, because the probe signal 
el(t‘) is &atistically stationary in t’ while the ‘corresponding’ velocity component 
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FIGURE 27. Test of Taylor approximation for equivalence of streamwise spatial correlation 
and time autocorrelation of the signal from a single probe. 

+ , R d  Ax,, 0 , O ;  to, 0); 0, RdO, 0,O;  to, Axl/U:). 

spatial distribution ul(xl) is statistically non-stationary in xl. A relevant strong 
inequality necessary for t h e  Taylor approximation may be -+y, 1 1, 

E(k;x , )  ax, Ic 
or we may want to look directly at the inhomogeneity of the one-dimensional 
spectrum, and require 

Before putting numbers into the necessary conditions (D 3) and (D 5) or 
(D 6) for the present experiment, we can make a direct empirical check. Where 
the Taylor approximation is good, we should find that equation (D 1) is satisfied. 
Consistent with the full-band data of F a n e  et al., figure 27 shows that this is 
indeed satisfied (in the sense that the difference is much smaller than the local 
value) out to the fist zero. Beyond there, the accuracy of both sets of data is too 
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low to permit a conclusion. There is no precise local correspondence between a 
Ax, value and a wave-number value (see remarks in appendix A), but, in the 
loosest sense, we conclude that the approximation may be good at least for 
wave-numbers above the inverse of the Ax, at which this R,, has its fist zero. 

Next, we use the experimental results to inspect the two necessary conditions, 
(D 3) and (D 6). 

The (frozen pattern’ condition, (D 3),  turns out empirically to be well satisfied 
for both ends of the wave-number range. Figure 28 shows this for our ‘worst’ 
case, U,t/lM = 42. Analytically, the trend can be seen by computing ~ * ( k )  for a 
simplified Kolmogorov model : 

E(k)  M d k i y k 4  for 0 < k 6 kE, 

E(k)  M &k-* for kE < k < kK, 

E(k)  = 0 for k > k,. 

k, characterizes the peak of E(k)  and k, is the inverse of the Kolmogorov 
microscale. The resulting statements of condition (D 3) are the following: for 
0 < k < kE, 

1.2 p) (?) 
(D 7) 

k u; 
DkT*(k)  M > 1. 

1.4 (2)’. [ 1 -A (g]’ 

To confirm that these are consistent at k = k, when R, is large enough, we need 
only use a rough theoretical estimate for the ratio of Kolmogorov wave-number 
k ,  to ‘energetic’ wave-number k, (e.g. Corrsin 1959, 1964): 

7 ~ p - l l ~ E  M R!/~o. (D 9) 

Evidently (D 7),  hence (D 3), is increasingly well satisfied as E + 0. For R, 
large enough that k, B kE, we find a typical in-between estimate at k = k,: 
V k , ~ , ( k , )  M O.S(U/u;), which is much larger than unity in this flow. 

Turning next to the quasi-homogeneity requirement for the Taylor approxima- 
tion, (D 5 ) ,  we see, from the empirical results in figure 29, that it is well satisfied 
over the full spectral range. The data for figure 29 are for U,t/M = 42, the 
(worst ’ case. It is interesting to note from figure 29, however, that the analogous 
strong inequality condition on the one-dimensional spectrum, (D 6), is not fulfilled 
for the very largest eddies. We can take the crudest sort of analytical look at 
homogeneity conditions (D 5) and (D 6) by using the grossest sorts of measures 
in the energetic spectral range and in the dissipative spectral range. 



Space-time correlation measurements in isotropic turbulence 329 

For the energetic part of the spectrum, these are roughly equivalent to 
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a condition not too well met in grid turbulence of this type for U,t/M < 100 
(Corrsin 1963b). 

For the dissipative part of the spectrum, we c m  put k = k, into (D 5), and, 
for simplicity, assume the Kolmogorov isotropic inertial subrange spectrum as 
E(k)  E sfk-5, Then (D 5 )  becomes 
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FIGURE 29. Tests of (D 5 )  and (D 6), two spectrally local homogeneity conditions necessary 
for the Taylor approximation. -, l/Eyj\aEy@xll l/kl; ---, l/E\aE/&,I l j k .  
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Inserting the empirical results for E (e.g. as computed from the energy decay, 
(38)), we find (D 11) well satisfied. The largest value of the left side in the experi- 
mental region is 2 x 10-4, at U,t/M = 42. 

Our conclusion, based on both the empirical and the theoretical estimates of 
(D 3) and (D 6), is that the Taylor approximation is usable in flows of this type 
except, possibly at extremely low wave-numbers (large separation distances in 
correlation space), where the ‘frozen pattern’ condition holds, but the homo- 
geneity condition may not. This casts doubt on the usefulness of comparing 
theoretical ‘box turbulence ’ correlation functions for large space and/or time 
separations with the corresponding functions measured in wind tunnel flows. 

Appendix E. Estimation of integral scale values 
(i) The non-existence of integral scales in real experiments 

Among the statistical properties of physical interest in random fields like 
turbulence are the ‘integral soales’. The ‘integral scale’ of a stationary random 
funotion (a concept probably introduced by Taylor 1921) is ordinarily defined 
to be the integral of the autocorrelation coefficient function: 

where y ( t )  is a stationary random function with zero mean value. The Fourier 
transform connexion between autocovariance and spectrum gives the familiar 
proportionality between I,, and the spectrum value at zero frequency: 

~ ~ ( 7 )  cos (WT)  d7. 

n E,,(O) 
Therefore, with w = 0, 

I =--. 
y 2 y 2  

If t is time, Iy has the dimensions of time, and may sometimes be thought of as 
a characteristic fluctuation time. This interpretation is fully appealing only if 
~ ~ ( 7 )  > 0 (figure 30). For the purposes of this discussion we shall assume that the 
integral scale is of interest. 

A real experiment, however, lasts only a finite time, so it is clear that 
EJO) = 0 = Iy for any real signal. Real experiments are also non-infinite in size, 
so we conclude analogously that spatial integral scales are also zero in principle. 

How shall we interpret the non-zero ‘measured’ integral scales presented by 
so many experimenters through the years? Evidently, these must be the integral 
scales of hypotheticalinfinite fields which do not actually exist, but are consistent 
with the real fields and are much easier to analyze theoretically because they may 
be stationary in time and/or space. 

(ii) The non-measurability of integral scales with real instruments 

Suppose we actually have a phenomenon of infinite duration. Can we measure 
its integral scale? The answer is, of course, ‘no’ in principle. 
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(a)  Finite observation time. The most obvious reason is that we can’t observe] 
record the signal over an infinite interval, so we can’t reach w = 0 even if our 
instrument is ‘d.c.-coupled’ (i.e. responds faithfully down to zero frequency). 
This limitation applies to recorded signals processed by digital computer, as 
well as to analog-circuit processing. 

(4 
FIGURE 30. Contrasting types of correlation functions, sketched with their ‘ integral scales’ 
L, may not be a plausible measure of‘ average duration ’ if p, has an appreciable negative 
region. 

(b) Instrument response time as w + 0. Another reason is that the response time 
of our device, presumably a variable band-pass filter to determine E,(w), becomes 
infinite as the band-width Aw approaches zero. To measure E,(w) as w 3 0, 
we must have Aw -+ 0 as well. 

(c) Limitations of ax.-coupled systems. For a variety of reasons, it is often con- 
venient to use ‘a.c.-coupling’, as we have in the present investigation. If the low 
end cut-off frequency wI, is smaller than t&., the inverse of the duration of the 
experiment, no information is lost. In  practice, w, is, however, considerably 
larger than t;;;t.  For example, many of the measurements reported here were 
made with wL/(27r) s lHz,  whereas the signals were averaged over perhaps 
60 sec, so t;Q, = & see-l, and some information is lost. The lost information may 
not, however, be significant to the research. At a convecting speed of 10m sec-1, 
1 Hz corresponds to a length of 10m. But the wind tunnel is only 1 m wide, so 
some of the signal fluctuations at frequencies below lOHz are due to eddies 
larger than the duct width; hence, they are not relevant to the study of ‘un- 
bounded ’ turbulence. 

The foregoing remarks utilize the Taylor approximation, and are not con- 
cerned with the basic frequencies of the turbulent motion in a frame convected 
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with the mean flow. Our rough estimate of the fundamental integral time scale 
in that frame gave T M 0.18sec, which suggests that interesting events in the 
turbulence may be occurring at frequencies well below 5 Hz. Unfortunately 
tihese events (which, are appropriate to nearly isotropic turbulence, because 
u'T z 4 ern = O(L)) must be mixed up in the recorded signal with the convected 
fluctuations characteristic of eddies as large as the duct. 

A demonstration of the influence of wL, the low cut-off, on temporal auto- 
correlation can be computed easily by assuming an exponentially correlated 
input function and a 'measuring circuit ' wikh a resistance-capacitance high-pass 
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FIGURE 31. Demonstration of the effect of low-frequency cut-off (Hz) on measured 
time autocorrelation function. U,t/M = 42. -, 1; ---, 5;  -.-.-, 10. 

filter (6db/octave cut-off), as in e.g. Anderson (1966).f Direct measurements 
using a single-probe signal at &t/M = 42, at a mean speed of u= 12-7msec-l, 
are shown in figure 31. The nominal (' 3 db ') values of lower cut-off frequency are 
wL/(2n) = lHz,  5Hz and 10Hz. As we might expect, the effect is greatest at  
larger 7, but it is important to note that it extends well below w i l .  

The effects of wL on measurements of 2-probe spatial correlation functions 
cannot be computed without a correct theory of turbulent motion, but we expect 
the lowest frequencies to be associated with the biggest eddies. For the convected 
spatial inhomogeneities this is obvious. For the turbulence self-convection (the 
only time dependence in the -convected frame), the association arises in our 
concepts of spectrally local characteristic times such as T~ or even T*. Figure 32 
is an experimental demonstration of the effect. For the same wL, the one-probe 
correlation has a larger negative region than does the two-probe correlation. 

Similar effects were observed in space-time correlation data for different oL. 
t The presentations of Nayar, Siddon & Chu (1969), and by Lumley (1970) are also useful. 
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FIGURE 32. Effect of low-frequency cut-off (Hz) on measured spatial correlation 
function. U,,t/M = 42. 0, 1; +, 10; A, 1000. 
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FIG- 33. Qualitative sketch of a method for determining an integral scale of a hypo- 
thetical isotropic turbulence consistent with actual nearly isotropic turbulence in a duct 
of characteristic size W .  The (parabolic) small-k, form of the hypothetical field is known on 
mathematical grounds. 
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(iii) Actual procedures for integral scale ‘measurement ’ 
The commonest techniques for ‘measuring’ integral scales, e.g. in time, are 
based on extrapolation of a partially measured p, , (~ )  function (to be able to apply 
(E I)) and/or extrapolation of a partially measured EJw) function (to be able 
to apply (E 3)). For reasons given earlier, we can determine ~ J T )  only in some 
finite range 0 < T < T ~ ~ ~ ,  and E,,(w) only for w > wmin. 

The forms of the extrapolations may depend primarily on artistic taste, or 
they may be based on some theoretical concepts of asymptotic behaviour. The 
crucial point is that physically correct extrapolations must give I,,= 0. So we 
don’t make correct extrapolations. Instead, we make what might be called 
‘simple extrapolations’, hoping that they correspond to a mathematically 
possible flow field which is identical to the real field at moderate and large 
frequencies and wave-numbers. This hypothetical field must have infinite dura- 
tion in time if we give it a non-zero integral time scale (and extend it to infinity 
in whatever spatial direction we give it an integral length scale). The real 
spectrum and the hypothetical spectrum merge at the frequency (or wave- 
number) which characterizes the low cut-off (or inverse size) of the experiment 
or of the measuring system, whichever is larger. 

Figure 33 is a qualitative sketch of how we might extrapolate to zero the data 
for E,,(k,) in nearly isotropic turbulence. Mathematically we know that 
[Ell(kl)]isotropic must begin at  k, = 0 as a downward parabola, so we try to fit 
the ‘best parabola’. 
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