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A B S T R A C T

The present work addresses the scattering of the tonal noise of a low-speed propeller by a rigid
cylinder, as a generic configuration representative of installed marine propellers. Both propeller
and cylinder axes are parallel to each other. The diameters of the propeller and of the cylinder
are much smaller than the acoustic wavelengths, as well as the propeller-cylinder distance.
This corresponds to a compact regime of diffraction. Only the hydrodynamic tonal noise of
the propeller at the first multiples of the blade-passing frequency is considered, assuming rigid
blades, in a two-dimensional formulation. The direct and scattered sound fields are expressed
in terms of spinning modes, with respect to the propeller and cylinder axes, respectively.
Use is made of the exact Green’s function of the cylinder for the Helmholtz equation. The
modes of orders ±1 are found the only efficient ones in the direct field, whereas higher-order
modes rapidly decay. Yet, in the presence of the cylinder, higher-order modes are scattered
into the contra-rotating mode of order 1 in the reference frame of the cylinder, with a strong
amplification. A simple experiment, performed in air but with Helmholtz numbers typical of
marine applications, confirms these results as key features of the asymptotic Green’s function
of the cylinder. The same modal behavior is reproduced as closed-form simple expressions from
a low-frequency approximation of the Green’s function. The results show that the installation
effect is crucial for the tonal noise of marine propellers at very low frequencies.

. Introduction

Sound generation and propagation from ships in water is a matter of concern for both the acoustic discretion of ships and the
rotection of aquatic wild life. It involves complex physical aspects, especially dealing with propeller-associated sound-generating
echanisms. Firstly, structure-borne noise is emitted because mechanical vibrations are transmitted to the hull through the driving

haft. Secondly, the propellers are known to generate hydrodynamic noise. The latter is generally a very significant contribution
o the total noise. This is why the design of modern marine propellers has to combine better hydrodynamic efficiency and reduced
mitted sound. For this, the involved mechanisms must be identified and dedicated prediction models that could be introduced at the
arly stages of optimization processes are needed. The most crucial aspects of marine propeller noise are the so-called installation
ffects, which are twofold. Firstly, the propellers are always mounted in the rear part of the ship hull, therefore they are partly
mbedded in a non-homogeneous and turbulent wake and/or interact with the turbulent boundary layer developing along the
hole length of the hull. Random and periodic fluctuations are induced on the blades, leading to increased, respectively broadband
nd tonal, acoustic signatures, when compared to what the isolated propeller would radiate. This is referred to as the hydrodynamic
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Nomenclature

Italic symbols

𝑎 Cylinder radius
𝐴𝑛 Modal amplitude in array processing
𝐵 Blade number
𝑐0 Sound speed
𝐷 Distance from cylinder axis to propeller axis
e𝑋 , e𝑌 , e𝑍 Unit vectors of main directions
𝐅 Point-dipole force
𝐅𝑠 Point-dipole force harmonic
𝐹𝐴,𝑇 ,𝑅
𝑠 Fourier coefficients of axial, tangential and radial forces

G Green’s function for the Helmholtz equation
G0 Free-field Green’s function
G0as Asymptotic free-field Green’s function
G1 2-D cylinder Green’s function
G1as Asymptotic cylinder Green’s function
𝐿 Distance from cylinder edge to propeller axis
J𝑚,H

(1)
𝑚 Bessel and Hankel functions of the first kind

k Acoustic wavenumber
𝑚 Summation index, mode order in array processing
𝑀 Tangential Mach number
𝑀𝑛 Phase tangential Mach number
𝑛 Spinning mode order (number of lobes)
𝑝0𝑎𝑠, 𝑝1𝑎𝑠 Free-field and scattered pressures in asymptotic regime
𝑝𝜇𝐵 Complex acoustic pressure at a BPF harmonic
𝑝𝑎𝑟 Free-field pressure expanded as spinning modes
𝑝𝑚 Sound-pressure modal amplitude
𝑟𝜙 Observer distance to a source-mode point
𝑟, 𝑅0 Circle radius
𝑅 Observer distance to origin
𝑠 Blade loading harmonic order
𝐱 = (𝑟𝑥, 𝜃𝑥) Observer position
𝐲 = (𝑟𝑦, 𝜃𝑦) Source position
(𝑥1, 𝑥2) Components of x in Cartesian coordinate system
(𝑦1, 𝑦2) Components of y in Cartesian coordinate system

Greek symbols

𝜆 Wavelength
𝜇 BPF harmonic order
𝛩 Observer angle from axis
𝜁 Rotor-blade force-inclination angle
𝜔 Angular frequency
𝛺 Rotational speed
𝜉 Observer angle in polar coordinates
𝛷 Polar observer angle
𝜙 Polar angle of source-mode point

installation effect. In particular, stationary azimuthal distortions, defined as deviations from pure axisymmetry of the mean flow
around the propeller axis, generate additional tonal noise.

Secondly, the mounting of propellers in close vicinity of the hull makes the sound radiated from the blades scattered, in such
way that the basic radiating properties of the sources are strongly modified. This is especially pronounced for the sources of the
2

onal noise, structured by interfering isolated-blade contributions: the vicinity of the hull introduces imbalance in the interference.
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Abbreviations

BLH Blade loading harmonic
BPF Blade passing frequency
PSD Power spectral densities
SPL Sound pressure level

As a result, the noise of an installed propeller can dramatically differ from what the free-field noise would be, even considering the
same sources. This second effect, addressed in the present work, is called the acoustic installation effect.

Both installation effects are usually investigated independently. The noise that would be radiated by a propeller in free field
ut with the real flow distortions, thus the true sources, can be predicted relying on Ffowcs Williams & Hawking’s formulation of
he acoustic analogy [1–3], initially developed for aeronautical applications. Indeed, the same formal background holds for air and
ater, basic differences being in the characteristic Mach and Reynolds numbers. The only specific features of marine propellers are

he cavitation, known as a dominant source of noise in many configurations, and the more crucial role of mechanical vibrations,
ecause of the added-mass effect of water. But cavitation noise and vibrations are discarded from the present analysis. In the analogy,
he rotating blades and their accompanying unsteady flows are formally replaced by equivalent sources that are assumed to radiate
n a uniform and stagnant unbounded medium. The associated wave equation is therefore usually solved with the standard free-field
reen’s function. Dimensional analysis indicates that, within this framework and at very low Mach numbers, the major source of
oise is the passage of the propeller blades through the distortions, which generates fluctuating forces on the blades acting as
quivalent acoustic dipoles [3]. This defines the so-called unsteady loading noise. The averaged force on the blades, which would
e the only remaining hydrodynamic force in absence of distortion, is responsible for the steady-loading noise. Rotating blades also
enerate thickness noise. The latter can be modeled again from equivalent dipoles, according to Isom’s formulation (see for instance
arassat [4]). Therefore, rotating dipoles are considered here as the only required generic background for the description of marine
ropeller noise. As long as the tonal noise at harmonics of the Blade-Passing Frequency (BPF) is considered, each tone is a sum of
lementary patterns called spinning radiation modes. This notion is reminded in the paper. A mode is a diverging pressure wave,
ombined with an azimuthally periodic pattern spinning at some phase speed, and forced by the dipole source strength.

In the presence of surrounding surfaces, a tailored Green’s function must be used or the wave equation of the analogy solved
umerically with additional boundary conditions imposed on the surfaces, depending on the geometry of the latter. This has been
he basis of hybrid methods developed in hydroacoustics to estimate the noise nearby the hull of a ship [5,6]. In the present work,
iffraction is addressed assuming a rigid cylinder instead of a true hull geometry (Fig. 1), in order to highlight key mechanisms
ith a simple mathematical background. The exact tailored Green’s function of the cylinder for the Helmholtz equation is used to

his end, the problem being stated in the frequency domain. Indeed, diffraction is a matter of compared source-to-obstacle distance
nd acoustic wavelength. The consequence is that the amount of scattering differs for all angular positions of a blade element seen
s source along its circular path. This causes imbalance in the partial cancellations which determine the radiation efficiency of a
pinning mode. In order to take this exactly into account in the study, each spinning mode is reproduced with an equivalent circular
istribution of stationary phased dipoles, referred to as a source-mode [7,8].

Installed marine propellers correspond to very compact configurations, in the sense that both the blade-tip radius and the distance
o the ship hull are much smaller than the emitted acoustic wavelengths. This is especially true in the very-low frequency range
orresponding to the first harmonics of the BPF (Blade-Passing Frequency, defined as the rotational frequency 𝛺∕(2𝜋) multiplied

by the number of blades 𝐵), investigated in the present work. Typically, for a BPF of 30 Hz and a sound speed of 1500 m/s, the
Helmholtz number built of some characteristic length 𝛬 remains below 0.1 for values of 𝛬 up to 8 m. This confirms that the propeller–
hull distance, and to some extent also the region including the blades and the hull cross-section, is acoustically compact. Therefore,
the source-modes must be assumed in the very vicinity of the cylinder to be representative of a marine application. A compact
approximation of the Green’s function is justified in such cases, in the sense introduced by Howe [9]. This particular regime is crucial
because it is known to produce a more or less pronounced amplification of the sound from sources of high equivalent polar orders.
The amplification has been reported in similar studies, based on asymptotic analyses performed on exact Green’s functions [10,11],
for sources approaching the edge of a rigid half-plane.

The aforementioned context motivated the authors in addressing specifically the compact regime of the scattering of a source-
mode by a rigid cylinder. The configuration is understood as a generic one, representative of a marine propeller installed close to a
ship hull. It is mainly addressed here with a two-dimensional model, in order to provide a first insight into the underlying physics
with minimum mathematical complexity. Three-dimensional aspects are also discussed shortly; they confirm the basic addressed
mechanisms, already highlighted with the two-dimensional analysis, only adding secondary refinements. In fact, the main scattering
features involve the directions normal to the cylinder surface, giving less importance to the contribution from axial blade forces.
In that sense, the three-dimensional problem statement is not essential. A dedicated experiment has also been carried out in air,
in an anechoic room, in order to validate the relevance of the two-dimensional model. The setup includes a small-size three-bladed
propeller operated close to a rigid cylinder, with ratios of wavelengths to dimensions representative of marine applications. The
study is aimed at pointing out that the diffraction is able to generate much higher sound than the direct source-mode radiation in
3

free field.
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Approximations, only relevant for the presently addressed aspects of marine propellers, are considered in this work. The effects
f fluid motion are neglected, when formulating sound propagation and scattering problems, assuming a uniform propagation
edium at rest. Local azimuthal flow distortions are indirectly accounted for by the associated induced blade forces, acting as

ources. More advanced formulations would be needed for aeronautical applications, corresponding to non-compact configurations
nd much higher Mach numbers. In particular, the refraction of sound by mean-flow gradients would need to be considered (see, for
nstance, the integral formulation proposed by Mancini et al. [?], for weakly non-uniform flows). Efficient formulations have also
een developed for surfaces in a moving fluid, such as the time-domain formulation described by Wang et al. [?]. Such approaches
re far beyond what the present work is aimed at. In the marine-propeller context, the characteristic Mach numbers are vanishing
nd the lengths scales of the mean-flow gradients are much smaller than the acoustic wavelengths. Refraction and sound convection
y flow are negligible phenomena, compared to the addressed sound scattering.

Some theoretical background of tonal rotating-blade noise for compact blades and the notion of associated source-modes are
eminded in Section 2. The analytical expressions of the scattered sound field based on the two-dimensional tailored Green’s function
f the rigid cylinder for the Helmholtz equation are derived in Section 3. The developments specific to the asymptotic regime for a
ar-field observer and arbitrary source-modes are detailed in Section 4. The aim is to highlight the amplification caused by cylinder
cattering at very low frequencies. The effects of the source-to-cylinder distance and of other key parameters are discussed. The
ccompanying experiment is described in Section 5, where the main results are discussed, confirming the amplification mechanism.
he effect of the hub of a propeller is shortly addressed in Section 6, as a complementary topic. Finally, three-dimensional
onsiderations are given in Section 7.

. Free-field tonal noise formulation

Before addressing the theoretical model of sound scattering by a rigid cylinder, elementary expressions for the acoustic pressure
adiated by a propeller in the far field are reviewed in this section. The fluid motion relative to the reference frame of the propeller
s neglected when describing sound propagation, in view of the negligibly small Mach numbers. In a second step, the rotating blades
re replaced by equivalent stationary sources. The far-field expressions are considered only as a reference for the analysis of the
odal properties of the radiated field.

.1. Rotating-blade noise formulation

Tonal rotor noise is usually formulated in the frequency domain in the far-field, relying on Ffowcs Williams & Hawkings’
ormulation of the acoustic analogy [1,2]. The mathematical solution is reminded in this section as a background for the present
evelopments, assuming a single, acoustically compact, blade element rotating at constant angular speed 𝛺 on the circle of radius 𝑟 in

a quiescent propagation medium. Details can also be found in Refs. [12,13]. With the conventional notation e−i𝜔𝑡 for monochromatic
waves of angular frequency 𝜔, the complex-valued amplitude of the far-field acoustic pressure at the multiple of order 𝜇 of the BPF,
𝜔 = 𝜇𝐵𝛺 reads

𝑝𝜇𝐵(𝐱) =
i 𝑘𝜇𝐵𝐵
4𝜋 𝑅

ei 𝑘𝜇𝐵𝑅
∞
∑

𝑠=−∞
ei (𝜇𝐵−𝑠)(𝛷−𝜋∕2) (1)

×

{

J𝜇𝐵−𝑠 (𝜇𝐵𝑀 sin𝛩)

[

𝐹𝐴
𝑠 cos𝛩 −

(𝜇𝐵 − 𝑠)𝐹 𝑇
𝑠

𝜇𝐵𝑀

]

+ i sin𝛩𝐹𝑅
𝑠 J′𝜇𝐵−𝑠 (𝜇𝐵𝑀 sin𝛩)

}

,

ith the notations defined in Fig. 1, where 𝑀 = 𝛺𝑟∕𝑐0 is the tangential Mach number of the element and 𝑘𝜇𝐵 = 𝜇𝐵𝛺∕𝑐0 is the
coustic wavenumber. The observer is defined by the spherical coordinates (𝑅,𝛩,𝛷) in the reference frame (𝐞𝑋 , 𝐞𝑌 , 𝐞𝑍 ). In the

general case, Eq. (1) is summed over all elements of a discretized blade. For very compact blades, all dimensions of which remain
much smaller than the acoustic wavelengths, a single element carrying the instantaneous integrated force is used, located at some
averaged radius 𝑟 = 𝑅0. This simplification, relevant for free-field assessment, can no longer be accepted for diffraction studies,
because sources of different radius are scattered differently, as confirmed later on in this work.

The complex-valued factors 𝐹𝐴,𝑇 ,𝑅
𝑠 are the Fourier coefficients of the axial, tangential and radial components of the hydrodynamic

orce 𝐅(𝑡) on the element, acting as a point dipole. The total Fourier coefficients 𝐹𝑠 are related to the algebraic value of the force
𝐹 (𝑡) by the definition

𝐹 (𝑡) =
∞
∑

𝑠=−∞
𝐹𝑠 e−i 𝑠𝛺𝑡 , 𝐹𝑠 = 𝛺

2𝜋 ∫

2𝜋∕𝛺

0
𝐹 (𝑡) ei 𝑠𝛺𝑡 d𝑡 . (2)

In the plane of the rotor disk considered later on for two-dimensional diffraction studies, 𝛩 = 𝜋∕2 and the formula reduces to

𝑝𝜇𝐵(𝐱) =
i 𝑘𝜇𝐵𝐵
4𝜋 𝑅

ei 𝑘𝜇𝐵𝑅
∞
∑

𝑠=−∞
ei 𝑛 (𝛷−𝜋∕2)

{

−𝑛𝐹 𝑇
𝑠

J𝑛 (𝜇𝐵𝑀)
𝜇𝐵𝑀

+ i𝐹𝑅
𝑠 J′𝑛 (𝜇𝐵𝑀)

}

, (3)

introducing 𝑛 = 𝜇𝐵 − 𝑠. Eq. (1) states that a tone involves a linear combination of radiation modes. Keeping in mind the time
ependence e−i𝜔𝑡, a single mode at the frequency 𝜔 = 𝜇𝐵𝛺 is defined as a pressure pattern with 𝑛 angular periods called lobes, the

phase of which spins at the angular velocity 𝜇𝐵𝛺∕𝑛 associated with a tangential phase Mach number 𝑀𝑛 = 𝜇𝐵𝛺 𝑟∕(𝑛 𝑐0), if 𝑟 stands
for the radius at which the sources of the mode are considered. The angular dependency would be the same in a two-dimensional
4
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Fig. 1. Propeller and cylinder reference frames, with spherical coordinates for the three-dimensional formulation of propeller noise. Discretized source-mode of
radius 𝑟 featured by the circular array of dots. Subsequent developments refer to the rotor-disk plane (𝐞𝑋 , 𝐞𝑌 ).

description, but the spherical spreading with which it combines would be replaced by cylindrical spreading. In the plane 𝛩 = 𝜋∕2,
the symmetric mode associated with the Bessel function J0 and with the BLH of order 𝑠 = 𝜇𝐵 can only be excited by the radial
force component. The truncation of the infinite sum in Eq. (1) needed for practical predictions is determined by the properties of
the Bessel functions: for a fixed value of the argument, the functions rapidly go to zero for absolute orders exceeding the argument.
The blades of a propeller operating in an arbitrary stationary distortion experience a range of BLH orders 𝑠. Only a limited interval
of them, say between 𝜇𝐵 − 𝑛𝑚𝑎𝑥 and 𝜇𝐵 + 𝑛𝑚𝑎𝑥 where 𝑛𝑚𝑎𝑥 is some integer, possibly give rise to efficient radiation at the frequency
𝜔 = 𝜇𝐵𝛺, because of the weighting by the Bessel function. The range is wider or narrower, depending on either the distortion is
concentrated or spread.

For marine propellers, the tangential Mach number 𝛺𝑟∕𝑐0 is very small, typically about 0.02 at 30 m/s, so that for moderate
blade numbers and BPF harmonic orders, the argument of the Bessel functions is also small. Furthermore, the tangential phase
Mach number 𝑀𝑛 is always smaller than 1 for any order 𝑛 ≠ 0 (the definition makes no sense for the symmetric mode 𝑛 = 0). Even
in non-compact cases, the condition 𝑀𝑛 ≪ 1 corresponds to a negligible radiation efficiency. This makes very poor sound expected
in free field from the modal structure of marine propellers, except if the symmetric mode is excited, with 𝑠 = 𝜇𝐵, for the axial
component of blade forces. Therefore, Taylor expansions can be performed to provide a relevant approximation. The limit forms of
Bessel functions for small arguments read [14]

J
|𝑛| (𝜇𝐵𝑀) ∼

(

𝜇𝐵𝑀
2

)

|𝑛|
, J0 (𝜇𝐵𝑀) ∼ 1,

J′
|𝑛| (𝜇𝐵𝑀) ∼ 1

2

(

𝜇𝐵𝑀
2

)

|𝑛|
, J′0 (𝜇𝐵𝑀) ∼ −

𝜇𝐵𝑀
2

.

The ratio
J
|𝑛| (𝜇𝐵𝑀)
𝜇𝐵𝑀

∼ 1
2|𝑛|

(𝜇𝐵𝑀)|𝑛|−1

becomes negligible for |𝑛| ≥ 2, whereas it is 1∕2 for |𝑛| = ±1. This makes the mode orders ±1 the only significantly contributing
ones. These special aspects of vanishing Mach numbers will be re-addressed in Section 4.3. Though typical of marine propellers,
they are also believed to hold, to a minor extent, for some small-size, very low-speed fans used in air, and for some small-size drone
propellers. In that sense, the present work has possible applications in both hydroacoustics and aeroacoustics.

2.2. Source-mode expansion

The sound field of a single mode of order 𝑛 in Eq. (1) can be exactly reproduced by continuously distributing phased stationary
sources of equal amplitude over the circle of radius 𝑟, provided that the phase is tuned to simulate the angular velocity 𝜇𝐵𝛺∕𝑛.
The amplitude is defined by the BLH 𝐹𝑠. Therefore, the phase at any angle 𝜙 on the circle is defined by the factor ei 𝑛𝜙. Such a
distribution is called a source-mode in the present work. Its main interest is that it provides a representation of the sound field valid
at every point in space and not only in the far field, as discussed in Refs. [7,11,15]. In particular, this allows to take into account
the near-field terms involved in the scattering by neighboring surfaces. The stationary point dipole of a source-mode at the angle 𝜙
in Fig. 2 has the same instantaneous strength 𝐹 (𝜙, 𝑡) as the dipole at angle 𝜙 = 0 but with a time delay 𝛥𝑡 = (𝜇𝐵 − 𝑠)𝜙∕𝜔:

∀𝜙 ∈ [0, 2𝜋], 𝐹 (𝜙, 𝑡) = 𝐹 0, 𝑡 − (𝜇𝐵 − 𝑠)𝜙∕𝜔 . (4)
5
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b

Fig. 2. Coordinates of a source mode close to a scattering cylinder for the asymptotic calculations. Note that 𝐷 = 𝐿 + 𝑎 (see Fig. 1).

This forces the wanted spinning pattern of angular phase speed 𝛺𝑠 with 𝑛 = 𝜇𝐵 − 𝑠. For the mode of order 𝑛 associated with the
lade-loading harmonic of order 𝑠, 𝐹 (𝜙, 𝑡) = 𝐹𝑠 e−i𝜇𝐵𝛺𝑡 with 𝐹𝑠 = 𝐴 ei 𝑛𝜙, 𝐴 being a constant.

3. Cylinder scattering

3.1. Two-dimensional cylinder Green’s function

An alternative to numerical implementations of the Green’s formula, when solving a problem of acoustics in the presence of
solid boundaries, is to consider a Green’s function tailored to the geometry. In the present generic configuration, the sources are
assumed close to a rigid cylinder of circular cross-section. The exact Green’s function, G(𝐱, 𝐲), solution of the homogeneous Helmholtz
equation, is determined by adding to the free-field Green’s function G0 a secondary Green’s function G1 accounting for the scattered
field. This scattered part G1 corresponds to equivalent sources distributed on the surface. Therefore, it is expressed in terms of
cylindrical harmonics. The term G0 must also be expanded on the same set of harmonics, in order to formulate the rigid-wall
boundary condition on the cylinder surface, that must be fulfilled by the complete Green’s function G = G0 + G1. The procedure is
detailed, for instance, in [16]. In polar coordinates with origin at the center of the cylinder cross-section, and for an observer radius
larger than the source radius (𝑟𝑥 ≥ 𝑟𝑦), the tailored Green’s function reads

G(𝐱, 𝐲) = −i
4

[

J0
(

𝑘𝑟𝑦
)

−
J′0 (𝑘𝑎)

H(1)′
0 (𝑘𝑎)

H(1)
0

(

𝑘𝑟𝑦
)

]

H(1)
0

(

𝑘𝑟𝑥
)

(5)

− i
4

∞
∑

𝑚=1
2 cos[𝑚(𝜃𝑦 − 𝜃𝑥)]

[

J𝑚
(

𝑘𝑟𝑦
)

−
J′𝑚 (𝑘𝑎)

H(1)′
𝑚 (𝑘𝑎)

H(1)
𝑚

(

𝑘𝑟𝑦
)

]

H(1)
𝑚

(

𝑘𝑟𝑥
)

if 𝑎 stands for the cylinder radius. 𝑥 and 𝑦 as indices stand for the observer and source coordinates, respectively. In the opposite
configuration (𝑟𝑥 < 𝑟𝑦), the products J𝑚

(

𝑘𝑟𝑦
)

H(1)
𝑚

(

𝑘𝑟𝑥
)

corresponding to the first terms in the squared brackets must be replaced by
H(1)
𝑚

(

𝑘𝑟𝑦
)

J𝑚
(

𝑘𝑟𝑥
)

. In fact, these terms stand for the free-field Green’s function G0(𝐱, 𝐲), expressed in the coordinate system of the
cylinder. The other terms involving ratios of derivatives account for the scattering by the cylinder. All exact calculations performed
in the present work, for arbitrary dipole source-modes, are performed by making the scalar product of the local dipole strength by
the first gradient of the Green’s function G with respect to the source coordinates. This provides the value of the radiated sound
field at any point of space as

𝑝 = 𝐅𝑠 ⋅ 𝛁(G0 + G1) ,

with 𝐅𝑠 = 𝐹𝑠 𝐧𝜙, where 𝐧𝜙 is the unit vector along the dipole axis of angular location 𝜙 along the source-mode circle and 𝐹𝑠 = 𝐹 ei 𝑛𝜙

is the dipole strength. The derivations of ∇(G0 + G1) are not detailed here for conciseness. They are similar to those provided by
Gloerfelt et al. [17], who investigated the radiation of quadrupoles in the presence of a cylinder. The scattering is calculated for
each point dipole of a source-mode and the total field is obtained through an integral over the circle. Practically, this integral is
discretized as a finite sum for implementation. A similar approach has been detailed by Roger & Moreau [11] in the investigation
of the scattering of fan/propeller noise in the air by the edge of a rigid half-plane.

3.2. Greens’ function formulation in the asymptotic regime

The asymptotic analysis leading to the compact regime of the Green’s function is mainly focused on the part G1, responsible for
amplification. However, special cases also require a comparison with the direct field. Let us note:
6



Journal of Sound and Vibration 546 (2023) 117450E. Cros et al.

l

t
o

w

F
a

J′0 (𝑘𝑎)

H(1)′
0 (𝑘𝑎)

=
J1 (𝑘𝑎)

H(1)
1 (𝑘𝑎)

= 𝛷0 ,
J′𝑚 (𝑘𝑎)

H(1)′
𝑚 (𝑘𝑎)

=
J𝑚−1 (𝑘𝑎) − J𝑚+1 (𝑘𝑎)

H(1)
𝑚−1 (𝑘𝑎) − H(1)

𝑚+1 (𝑘𝑎)
= 𝛷𝑚.

Consider an observer in the acoustic far field and distributed sources over a circle remaining close to the scattering cylinder, the
atter being acoustically compact, so that

𝑘𝑟𝑥 ≫ 1 , 𝑘𝑟𝑦 ≪ 1 , 𝑘𝑎 ≪ 1 ,

In the present application, source points are distributed over a circle of radius 𝑅0, the center of which is at some small distance 𝐷
from the center of the cylinder, in such a way that also 𝑘𝐷 ≪ 1 and 𝑘𝑅0 ≪ 1 (circular arrays of dots in Figs. 1 and 2). This refers
o the so-called compact Green’s function framework. In this case, asymptotic expansions can be used to derive a simplified form
f the Green’s function. For large arguments [14],

H(1)
𝑚

(

𝑘𝑟𝑥
)

∼

√

2
𝜋 𝑘𝑟𝑥

ei [𝑘𝑟𝑥−𝑚𝜋∕2−𝜋∕4],

whereas for small arguments

H(1)
𝑚

(

𝑘𝑟𝑦
)

∼ −i
𝜋

𝛤 (𝑚)
(

2
𝑘𝑟𝑦

)𝑚
and J𝑚

(

𝑘𝑟𝑦
)

∼ 1
𝛤 (𝑚 + 1)

(𝑘𝑟𝑦
2

)𝑚

, 𝑚 ≥ 1

H(1)
0

(

𝑘𝑟𝑦
)

∼ 2i
𝜋

ln
(𝑘𝑟𝑦

2

)

and J0
(

𝑘𝑟𝑦
)

∼ 1 −
(𝑘𝑟𝑦

2

)2

.

Introducing these developments in the definition of the factor 𝛷𝑚 for small values of 𝑘𝑎 yields

𝛷0 ∼ i𝜋
(𝑘𝑎

2

)2
, 𝛷𝑚 ∼ −i𝜋

𝛤 (𝑚)𝛤 (𝑚 + 1)

(𝑘𝑎
2

)2𝑚
.

For consistency, 𝑘𝑎 and 𝑘𝑟𝑦 must be assumed as small quantities of the same order of magnitude.
Once introducing the asymptotic developments in the expression of the exact Green’s function, the first step to the limit form of

the Green’s function G1 is obtained as

G1𝑎𝑠(𝐱, 𝐲) ∼ −i
4

𝑓 (𝑟𝑥)
(𝑘𝑎

2

)2
2 ln

(𝑘𝑟𝑦
2

)

(6)

− i
4
𝑓 (𝑟𝑥)

∞
∑

𝑚=1
2 cos[𝑚(𝜃𝑦 − 𝜃𝑥)]

e−i𝑚𝜋∕2
𝛤 (𝑚 + 1)

(𝑘𝑎
2

)𝑚 (

𝑎
𝑟𝑦

)𝑚

ith

𝑓 (𝑟𝑥) =

√

2
𝜋 𝑘𝑟𝑥

ei [𝑘𝑟𝑥−𝜋∕4].

Next assuming that 𝑎∕𝑟𝑦 is of order 1 leads to retain only the leading term 𝑚 = 1. Finally

G1𝑎𝑠(𝐱, 𝐲) ∼ −i
2

𝑓 (𝑟𝑥)
(𝑘𝑎

2

)2 [

ln
(𝑘𝑟𝑦

2

)

− i cos(𝜃𝑦 − 𝜃𝑥)
(

2
𝑘𝑟𝑦

)]

. (7)

Space derivatives of the Green’s function with respect to source coordinates are required when calculating the sound from dipoles.
In the radial derivative the logarithm can be neglected as negligible compared to the other term. The first gradient components are
finally obtained as

𝜕G1𝑎𝑠
𝜕𝑟𝑦

= 𝑓 (𝑟𝑥)
(𝑘𝑎

2

)2 cos(𝜃𝑦 − 𝜃𝑥)

𝑘𝑟2𝑦
, 1

𝑟𝑦

𝜕G1𝑎𝑠
𝜕𝜃𝑦

= 𝑓 (𝑟𝑥)
(𝑘𝑎

2

)2 sin(𝜃𝑦 − 𝜃𝑥)

𝑘𝑟2𝑦
. (8)

It is worth noting that the compact Green’s function and its derivatives no longer involve indices 𝑚 > 1.

3.3. Asymptotic free-field Green’s function

Subsequent needs also require the derivatives of the free-field Green’s function G0. In the compact regime, the latter reads

G0𝑎𝑠(𝐱, 𝐲) ∼ −i
4

𝑓 (𝑟𝑥)

[

1 −
(𝑘𝑟𝑦

2

)2

− 2 i cos[(𝜃𝑦 − 𝜃𝑥)]
(𝑘𝑟𝑦

2

)

]

. (9)

or the radial derivative, the term
(

𝑘𝑟𝑦∕2
)2 can be discarded as negligible compared to the other terms. Finally, the approximations

re obtained as:
𝜕G0𝑎𝑠 = −𝑘 𝑓 (𝑟𝑥) cos(𝜃𝑦 − 𝜃𝑥) ,

1 𝜕G0𝑎𝑠 = 𝑘 𝑓 (𝑟𝑥) sin(𝜃𝑦 − 𝜃𝑥) , (10)
7

𝜕𝑟𝑦 4 𝑟𝑦 𝜕𝜃𝑦 4
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with

𝑓 (𝑟𝑥) =

√

2
𝜋 𝑘𝑟𝑥

ei [𝑘𝑟𝑥−𝜋∕4].

4. Radiation of compact spinning source-modes

The expressions of the previous section are now used to calculate the far-field sound pressure radiated by a compact source
mode of arbitrary order. Derivations are first detailed for purely tangential dipoles; the case of radial dipoles is then summarized
for completeness.

4.1. Point-dipole formula

In the present section, for any point dipole of a source mode, the dipole axis is assumed tangent to the source-mode circle. This
restriction would be exact for a purely axial-flow propeller, with unswept blades. With the notations in Fig. 2, the point dipole of
angular coordinate 𝜙 along the source circle and of unit strength has the radial and angular components in the reference frame of
the scattering cylinder

𝐹𝑟 = −𝐷
𝑟𝑦

sin𝜙 ei 𝑛𝜙 , 𝐹𝜃 =
𝑅0 +𝐷 cos𝜙

𝑟𝑦
ei 𝑛𝜙 ,

for the spinning mode of order 𝑛, with

𝑟2𝑦 = 𝐷2 + 𝑅2
0 + 2𝐷𝑅0 cos𝜙 , tan 𝜃𝑦 =

sin𝜙
cos𝜙 +𝐷∕𝑅0

.

The scattered sound pressure of the point dipole in the asymptotic regime reads

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) = 𝐹𝑟
𝜕G1𝑎𝑠
𝜕𝑟𝑦

+
𝐹𝜃
𝑟𝑦

𝜕G1𝑎𝑠
𝜕𝜃𝑦

,

After rearranging terms:

𝑘 𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥)
𝑓 (𝑟𝑥) (𝑘𝑎∕2)2

= cos 𝜃𝑥 (𝑅2
0 −𝐷2)

sin𝜙 ei 𝑛𝜙

𝑟4𝑦
− sin 𝜃𝑥

[

(𝑅2
0 +𝐷2)

cos𝜙 ei 𝑛𝜙

𝑟4𝑦
+ 2𝑅0𝐷

ei 𝑛𝜙

𝑟4𝑦

]

(11)

According to the same principles as for the diffracted field, the direct sound pressure radiated by the point dipole in the
symptotic regime is :

𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥) = 𝐹𝑟
𝜕G0𝑎𝑠
𝜕𝑟𝑦

+
𝐹𝜃
𝑟𝑦

𝜕G0𝑎𝑠
𝜕𝜃𝑦

After developing terms, it is expressed as

𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥)
𝑓 (𝑟𝑥) (𝑘∕4)

= cos 𝜃𝑥

[

(𝑅2
0 +𝐷2)

sin𝜙 ei 𝑛𝜙

𝑟2𝑦
+ 2𝑅0𝐷

cos𝜙 sin𝜙 ei 𝑛𝜙

𝑟2𝑦

]

(12)

− sin 𝜃𝑥

[

(𝑅2
0 +𝐷2)

cos𝜙 ei 𝑛𝜙

𝑟2𝑦
+ 𝑅0𝐷

ei 𝑛𝜙

𝑟2𝑦
+ 𝑅0𝐷

cos 2𝜙 ei 𝑛𝜙

𝑟2𝑦

]

The total sound of the source mode is obtained by performing the integration on the circle for Eq. (11) and Eq. (12), from 𝜙 = −𝜋
to 𝜙 = +𝜋. The resulting closed-form expressions are developed in the next section.

4.2. Case of higher-order modes

From the previous section, three integrals involving the quantities cos𝜙, sin𝜙 and ei 𝑛𝜙 and the factor 𝑟4𝑦 in the denominator must
be calculated. These integrals are detailed in Appendix. Regrouping all terms in the developed expression of the acoustic pressure
leads to the final result

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ −i𝜋 𝑘
4

𝑛
( 𝑎
𝐷

)2
(

−𝑅0
𝐷

)𝑛−1
e−i 𝜃𝑥

√

2
𝜋 𝑘𝑟𝑥

ei (𝑘𝑟𝑥−𝜋∕4) . (13)

The most important feature is that, whatever the positive order 𝑛 of the source mode is, the asymptotic scattering by the compact
reen’s function of the cylinder generates the mode 𝑚 = −1, thus with a single lobe and spinning in the opposite direction. The

actor 𝑛 (−𝑅0∕𝐷)𝑛−1 is involved in the amplification of the direct mode. Of course, the mode 𝑚 = +1 is similarly produced for any
negative order 𝑛.

In order to assess the asymptotic formulation, the decrease of the scattered sound with observer distance 𝑟𝑥 is plotted in Fig. 3,
or a source-mode located at the dimensionless distance 𝑘𝐿 = 0.1 from the cylinder edge and various mode orders 𝑛 > 1. The global
ompactness is ensured for all configurations. The sound pressure level is averaged over a full circle 𝜃𝑥 ∈ [0, 2𝜋]. The dashed
nd solid lines stand for the exact analytical solution, Eq. (5), and for the asymptotic formulation, Eq. (13), respectively. The
8
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Fig. 3. Sound pressure level decrease of a source-mode located nearby a rigid cylinder for higher-order modes, 𝑛 > 1. 𝑘𝑅0 = 0.034, 𝑅0∕𝐷 = 0.25, 𝑘𝐿 = 0.10.
xact (- - -) and asymptotic (—) solutions.

esults are twofold. Firstly, both solutions nearly coincide beyond 𝑘𝑟𝑥 = 3, where the far-field decay 1∕
√

𝑟𝑥 is reached. Secondly,
the amplitude of the scattered pressure decreases as the mode order increases, for the same dipole source strength, as expected
from the factor 𝑛(𝑅0∕𝐷)𝑛−1. More precisely, overall level differences of about 8.6 dB, 9.6 dB, 10.2 dB are predicted from the term
20 log10[𝑛(𝑅0∕𝐷)𝑛−1] between the scattered sounds of the pairs of mode orders (𝑛 = 2, 𝑛 = 3), (𝑛 = 3, 𝑛 = 4) and (𝑛 = 4, 𝑛 = 5),
respectively . The same test for special cases is also reported in Fig. 4 in the next section.

The amplification itself is better recognized if now the free field of the same arbitrary mode 𝑛 > 1 is calculated, also referring
to the same asymptotic developments, from Eqs. (12). The integrals involved in the formulation are developed in Appendix.
Reproducing similar derivations as for the function G1𝑎𝑠 with the same source mode now leads to an exactly zero pressure field.
This means that, at the leading order of the asymptotic regime, the free field contribution is negligible compared to the scattered
field, confirming the amplification mechanism.

4.3. Special cases

Eq. (13) of the previous section holds for 𝑛 ≥ 2. Special developments are required for the mode 𝑛 = 1, leading to consider the
new integrals in Appendix. When this is applied to derive the radiation of the source-mode 𝑛 = 1, the expression follows as

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ −i 𝜋 𝑘
4

( 𝑎
𝐷

)2
e−i 𝜃𝑥

√

2
𝜋 𝑘𝑟𝑥

ei( 𝑘𝑟𝑥−𝜋∕4) . (14)

Again the mode −1 is found in the scattered field (the expression is in fact Eq. (13) with 𝑛 = 1) but now the direct field derived
following the same principles is expressed as :

𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ i 𝜋 𝑘
4

ei 𝜃𝑥
√

2
𝜋 𝑘𝑟𝑥

ei ( 𝑘𝑟𝑥−𝜋∕4) , (15)

which corresponds to significant radiation, of similar efficiency as for the scattered field. The asymptotic scattering causes no
amplification in this case, unlike for higher-order modes, since the factor 𝑎∕𝐷 is smaller than 1. Eq. (14) is a minor perturbation
of the direct field, Eq. (15). This is confirmed by the test reported in Fig. 4. The exact and asymptotic solutions of the direct and
scattered parts for the special case 𝑛 = 1, averaged over all observation angles, are plotted as a function of the observer distance.
The level difference of about 5dB between the scattered and direct sounds is well predicted by the far-field estimate 20 log10 (𝑎∕𝐷)2

from Eqs. (14) and (15). Then, as seen previously for higher-order modes, both solutions perfectly match above 𝑘𝑟𝑥 = 3, which
defines the validity limit of the asymptotic formulation.

The special behavior of the mode 𝑛 = 1 can be explained by simple physical considerations. For this mode, two diametrically
opposite dipoles are in phase opposition, which means that they point in the same direction. They double each other in amplitude
because the diameter is acoustically compact. The total source mode is equivalent to a spinning point dipole.

A similar discussion can be made about the symmetric source mode 𝑛 = 0, for which diametrically opposite dipoles now point
in opposite directions because they are in phase. They cancel each other, so that the expected radiation of the mode is zero in the
compact limit. This can be verified easily by repeating the previous analysis in the case 𝑛 = 0 : both the asymptotic free field and the
symptotic scattered field are zero. Important consequences follow when transposing these results to installed marine propellers.
he symmetric mode is known to be only generated by interaction of the propeller with the distortion harmonic of order 𝑠 = 𝜇𝐵 at
ny BPF order 𝜇. It should not be a major issue, unlike in the case of aircraft propellers, because it cannot experience amplification
9

y hull scattering. In contrast, the analysis reveals that the modes 𝑛 = ±1 are expectedly the most efficient ones, both in free field
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Fig. 4. Sound pressure level decrease of a source-mode located nearby a rigid cylinder for the mode 𝑛 = 1. 𝑘𝑅0 = 0.034, 𝑅0∕𝐷 = 0.25, 𝑘𝐿 = 0.10. Exact (- - -)
nd compact approximations (—) of the direct and scattered parts of the Green’s function.

nd in the presence of a hull. These modes are likely to be excited at the lowest frequencies for installed propellers with quite small
lade numbers.

It is worth noting that the selective amplification associated with asymptotic scattering leads to the possible need to reconsider
he assumption of a single equivalent dipole on each blade, even if the blade is compact. Indeed, source points close to blade tip
nd close to hub experience different amounts of scattering. Such a ’de-compacification’ is beyond the scope of the present study.

.4. Case of a radial force

The complementary case of a radial force component in the sense of the propeller or of the modal circle is considered in this
ection for completeness. Indeed, such a dipole is part of the loading noise of a twisted swept blade, even if not dominant in an
xial-flow architecture. Furthermore, formulations of the thickness noise detailed, for instance, in Refs. [1,3], involve a radial dipole
ssociated with the centripetal acceleration. In the reference frame of the cylinder in Fig. 2, the radial and tangential components
f a point dipole of angle 𝜙 become

𝐹𝑟 =
𝑅0 +𝐷 cos𝜙

𝑟𝑦
ei 𝑛𝜙 , 𝐹𝜃 = 𝐷

𝑟𝑦
sin𝜙 ei 𝑛𝜙 ,

nd the far-field scattered pressure is deduced as

𝑘 𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥)
𝑓 (𝑟𝑥) (𝑘𝑎∕2)2

≃ sin 𝜃𝑥 (𝑅2
0 −𝐷2)

sin𝜙 ei 𝑛𝜙

𝑟4𝑦
+ cos 𝜃𝑥

[

(𝑅2
0 +𝐷2)

cos𝜙 ei 𝑛𝜙

𝑟4𝑦
+ 2𝑅0𝐷

ei 𝑛𝜙

𝑟4𝑦

]

. (16)

The derivations can be repeated, using the same integrals as for the tangential dipoles. They lead to the very similar result for the
case of higher modes, 𝑛 ≥ 2:

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ 𝜋 𝑘
4

𝑛
( 𝑎
𝐷

)2
(

−𝑅0
𝐷

)𝑛−1
e−i 𝜃𝑥

√

2
𝜋 𝑘𝑟𝑥

ei (𝑘𝑟𝑥−𝜋∕4) , (17)

𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ 0, (18)

which differs from Eq. (13) only by a phase quadrature. This difference is also found in the special case 𝑛 = 1, where the scattered
and the direct field read:

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ −i 𝜋 𝑘
4

( 𝑎
𝐷

)2
e−i 𝜃𝑥

√

2
𝜋 𝑘𝑟𝑥

ei [𝑘𝑟𝑥+𝜋∕2−𝜋∕4] , (19)

𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥) ∼ i 𝜋 𝑘
4

ei 𝜃𝑥
√

2
𝜋 𝑘𝑟𝑥

ei [𝑘𝑟𝑥+𝜋∕2−𝜋∕4] . (20)

For the mode 𝑛 = 1, the result is due to the fact that diametrically opposite radial dipoles are again aligned and double each other
in the compact limit. The resulting equivalent point dipole is just spinning with an angular phase shift of 𝜋∕2 with respect to the
point dipole of the tangential-force mode because they are perpendicular to each other.
10
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Fig. 5. (a): picture of the small-scale propeller-cylinder mockup installed in the anechoic room of Ecole Centrale de Lyon. (b): sketch of the setup for measurements
in the propeller-disk plane (featured by red circles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

The amplification inherent to the compact scattering of source-modes, described in this section, is specific to the rigid cylinder.
It must be distinguished from previously reported amplification effects by bodies of other shapes. Typically, a source-mode is also
amplified as its circle approaches the edge of a rigid half-plane, but the spinning-mode character is lost and replaced by a cardioid
radiation pattern, as reported in [15]. It has also been verified that a single point dipole in the close vicinity of the cylinder is
scattered without amplification; the latter is only found with circular arrays of dipoles of zero instantaneous dipole strength. In
contrast, the point dipole would be amplified if approached to the edge of the half-plane [11].

5. Small-scale in-air experiment

5.1. Setup

For validation purposes, a small-scale experiment has been performed, aimed at confirming the asymptotic amplification
associated with the compact Green’s function. The experiment is made in air for simplicity. A three-bladed propeller of 63 mm
blade-tip diameter is mounted at one end of a cylindrical hub of diameter 27 mm and length 170 mm, as shown in Fig. 5-a. It is
powered by a Maxon DC-motor (type 2 322.980–52) of 21 mm diameter inserted in the hub at two regimes, referred to as the low
speed (11800 rpm) and high speed (14800 rpm), corresponding to blade-tip Mach numbers of about 0.1 and 0.14, respectively. The
scattering cylinder has a diameter of 60 mm and a length of 1 m. The propeller plane is at mid-length of the cylinder. The hub
is placed parallel to the cylinder at varying distance 𝐷, by means of diametrically sliding rods of 5 mm diameter. The latter are
believed to have a negligible effect on the relative variations of the sound resulting from changes in 𝐷.

The mock-up is installed vertically in an anechoic room, according to the sketch in Fig. 5-b. Twelve 1/4’’ microphones (GRAS
type 46BE) are placed at azimuths 𝑗 2𝜋∕12 (0 ≤ 𝑗 ≤ 11) in the plane of the propeller disk, at a measuring distance 𝑟𝑥 of 1.2 m from
the cylinder axis. The condition of acoustic far-field at the first BPF is already ensured at this distance. The origin of coordinates is
taken on the cylinder axis because the asymptotic scattering involves secondary sources distributed on the cylinder, which are much
more efficient than the primary sources on the blades. The microphones are inserted horizontally into L-shaped vertical supports of
8 mm diameter, pointing toward the cylinder axis. This instrumentation is believed to cause negligible spurious scattering.

The two rotational speeds correspond to BPF of 590 Hz and 740 Hz. They are tested for various values of the axis-to-axis distance
𝐷. The shortest distance of 65 mm only leaves a minimum gap of about 2 mm between the blade tip passages and the cylinder. The
largest one is of 168 mm. The corresponding dimensionless parameters are summarized in Table 1.

The experiment is mainly aimed at highlighting the characteristic amplification, with the generation of the mode -1. The precise
blade design and a complete inspection of the propeller aerodynamics are beyond the scope of the study. This would have typically
required advanced optical flow-measurement techniques at the very small scale of the experiment, in order to avoid intrusiveness.
11
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Table 1
20 Hz-bandwidth peak levels and Helmholtz numbers at the BPF as a function of 𝐷 (mm), for both tested rotational speeds.

𝐷 = 65 𝐷 = 70 𝐷 = 85 𝐷 = 95 𝐷 = 168

low speed (dB) 48.3 49.1 42.55 38.2 35.3
(𝑘𝑎 = 0.35) 𝑘𝐷 0.71 0.76 0.92 1.04 1.83

𝑘(𝐷 − [𝑅0 + 𝑎]) 0.030 0.084 0.25 0.35 1.15

high speed (dB) 55.1 52.7 48 46 45.7
(𝑘𝑎 = 0.44) 𝑘𝐷 0.88 0.96 1.16 1.30 2.30

𝑘(𝐷 − [𝑅0 + 𝑎]) 0.037 0.11 0.31 0.45 1.45

5.2. Sound-pressure spectra

Typical spectra (PSD, power spectral densities) of the measured sound pressure, averaged on all microphones of the array, are
hown in Fig. 6. The averaging provides a relevant global characterization of the radiated sound field, as long as the angular
ariations along the array remain small. This is the case for the direct field at the first two BPF tones, as well as for the total field
n the presence of the cylinder in the compact configuration of minimum separation 𝐷, at least for the BPF, as shown in Fig. 7.

The significant angular variations for the installed configuration at twice the BPF, in Fig. 7-b, are not believed to question the final
conclusions. The resolution in Fig. 6 is of 1 Hz and the acquisition time of 30 s ensures convergence. Two spectra are superimposed
on each plot, one for the shortest value of 𝐷 (65 mm) and the other one for 𝐷 = 85 mm (in Fig. 6-a & c) and 𝐷 = 140 mm (in
ig. 6-b & d). This enables to identify the amplification of the first two BPF tones, marked by the double arrows. The associated
alues of the tonal-noise level differences are also reported on the plots, after integration of the PSD in 20-Hz bandwidths centered
n the peak values. This eliminates the possible time variations of the rotational speed. These differences are slightly larger than
he peak-to-peak differences illustrated by the double arrows.

A significant increase of the third tone can also be noticed at the higher rotational speed (Fig. 6-c & d). The key result is
hat the levels at the first two BPF tones dramatically increase as the propeller approaches the cylinder, to the shortest distance.
he increase at the BPF is of 11.1 dB for the low speed and of about 12.6 dB for the high speed, going from 𝐷 = 140 mm to
= 65 mm. It is worth noting that the sound spectrum also includes other tones not directly related to aerodynamic propeller

oise. The shaft rotational frequency and some of its harmonics are attributed to mechanical imbalance. They are not amplified
y cylinder scattering, because they do not have the required modal structure for this. Indeed, the amplification operates only on
ource-modes, in other words equivalent circular distributions of plus and minus dipole sources which globally behave like sources
f higher polar orders. The amplification is a specificity of the BPF tones, expressed by Eq. (1) and investigated in the next section.
he multiple tonal, haystack-like signature at higher frequencies, beyond 2BPF, is probably produced by the electric motor. It is
lso ignored in this study.

Additional results discussed for completing the argumentation are shown in Fig. 8. Fig. 8-a compares the averaged sound spectrum
easured for the minimum distance 𝐷 = 65 mm to averaged free-field spectra measured after removing the cylinder. Two positions

f the propeller axis, namely at the center of the microphone array and shifted by 𝐷 = 168 mm, are considered, providing nearly
he same BPF tone levels, highlighted by small ellipses. The figure illustrates the maximum amount of scattering by the cylinder.

The increase of propeller tonal noise associated with the presence of the cylinder could result from any of two mechanisms. The
irst one is the amplification inherent to the asymptotic regime of the Green’s function, expected from the theoretical analysis
f Section 4. The second one is the possible generation of stronger blade-loading harmonics, as an effect of higher stationary
low distortions. Indeed, the flow the propeller would have in free field, especially around the blade tips, can be modified as the
lades get close to the cylinder because of some flow blockage. Investigating such aerodynamic changes would require a specific
nstrumentation, well beyond the scope of the present study. Therefore, simple indirect considerations only based on far-field acoustic
easurements are used to state about that point. The first step is a complementary measurement performed after replacing the

ylinder by a large rigid plate mounted vertically and approached at the same distance to the blade tips as in the configuration
= 65 mm. The plate is 1.2 m high and 0.6 m wide, the propeller being placed close to its center point. It is believed to have

erodynamic effects similar to those of the cylinder at the scale of the blade tip-flow details, which makes qualitatively the same
rder of magnitude of the blade-loading harmonics expected, if any. However, unlike the cylinder, the plate causes pure reflection
f the direct sound from the propeller. For plate dimensions much larger than the wavelength, the image principle would hold.
pplying this principle to a simple point source at vanishing distance, a doubling of the measured sound-pressure amplitude, thus
maximum sound increase of 6 dB, would be found for measuring locations facing the plate, instead of the amplification. The

ase of the propeller is less simple. The result of the test is reported in Fig. 8-b. But because the averaging procedure leading to
ig. 6 would make no sense in the presence of the plate, the spectra have been averaged only on the two microphones located
round ±15◦ from the direction normal to the plate. The BPF tone levels in free-field condition and with the plate installed, with
0-Hz bandwidth integration, are 42.5 dB and 46.3 dB, respectively, whereas the level reaches 58.6 dB with the cylinder in the
onfiguration 𝐷 = 65 mm. The increase of 46.3 − 42.5 = 3.8 dB remains compatible with a sound-reflection effect, and suggests
hat the regeneration of blade-loading harmonics is either moderate or negligible. The much higher sound increase of 58.6 − 42.5 =
6.1 dB is logically attributable to the aforementioned amplification mechanism.

Approaching a side-plate to a rotor disk has also been found to increase the tonal noise in previous studies, because of both the
eflection effect and the aerodynamic interaction. The latter is presumably more noticeable at high speeds, when an axial flow and
12
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Fig. 6. Compared sound-pressure spectra for axis-to-axis distances 𝐷 = 65 mm (red) and 𝐷 = 85 mm (black) in the left column ((a) & (c)), and for 𝐷 = 65 mm
(red) and 𝐷 = 140 mm (black) in the right column ((b) & (b)). (a) & (b): low rotational speed; (c) & (d): high rotational speed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the associated boundary layer develop over the plate. Whatmore & Lowson reported various tonal noise increases of up to 8–10 dB
in such a configuration, for a typical tip Mach number around 0.22 and a blade-tip radius of 33 cm [18]. Such a strong effect is
not expected in the present study because of the lower Mach numbers of 0.1 and 0.14, at the two tested speeds. Yet the 8–10 dB
increase can be considered as a maximum expectable effect, which remains much lower than the actual increase observed in the
presence of the cylinder.

Apart from the variations in tone levels, all spectra in Figs. 6 and 8 exhibit similar broadband noise levels below 1.7 kHz, and
small differences at higher frequencies. The latter are not interpreted in the present study. Indeed, the broadband noise is much
lower than the tonal noise of interest, and always limited by a threshold of about 7 dB corresponding to the electronic background
noise.

The main outcome of this section is that reducing the gap between the blade tips and a reflecting plate causes tonal noise
increases which remain much lower than those with the same gap and the cylinder. It is concluded that the large noise increase
observed with the cylinder is rather a sound-scattering effect than an aerodynamic effect. This is confirmed in the next section by
performing an expansion of the sound field in the rotor-disk plane into azimuthal modes of radiation.

5.3. Modal content of the radiated field

Free-field formulations of tonal propeller noise, reminded in Section 2.1, indicate that the sound field of any harmonic of the
BPF is a sum of spinning modes of radiation, as viewed from the propeller reference frame (𝐞𝑋 , 𝐞𝑌 , 𝐞𝑍 ) (Fig. 1). The scattering of
this direct field by the cylinder generates a secondary field also made of modes, as viewed from the cylinder reference frame.
13
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Fig. 7. Directivity diagrams in the (𝑥, 𝑦) plane at the BPF (a) and twice the BPF (b), with linear interpolation between measuring positions (symbols ⋄). (—):
Free-field measurements for the centered propeller (𝐷 = 0). (- - -): installed propeller at 𝐷 = 65mm. Different dB scales in the two sub-plots.

Fig. 8. (a): free-field sound spectra of the propeller, at the center of the microphone array (blue) and shifted by 𝐷 = 168 mm (black), compared to the spectrum
measured with the cylinder installed at 𝐷 = 65 mm (red); average over the complete array. (b): sound-pressure spectra of the propeller, in free field (black),
close to a reflecting plate (red, blade-tip to wall gap 2 mm) and close to the cylinder (blue, 𝐷 = 65 mm); two-microphone average. High speed case, BPF =
740 Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the installed configuration, the propeller axis is displaced by an amount 𝐷 off the origin of the center of the microphone
array. This makes the modal signature of the direct sound radiated by the propeller hard to recognize in the modal expansion of
the total sound field. Indeed, the latter is performed taking the cylinder axis as origin, whereas the former makes sense with origin
on the propeller axis. Except for vanishing ratio 𝐷∕𝜆, a direct propeller mode of order 𝑛 is interpreted by the array processing as a
range of modes, in the reference frame of the cylinder. This effect is assessed in the present section for an easier interpretation of
results.

The free-field sound pressure at any point of the array circle of radius 𝑟𝑥 centered on the cylinder axis, thus in absence of the
latter, and for the mode 𝑛 of amplitude 𝐴𝑛, is expressed as an integral over the source circle, as

𝑝𝑎𝑟(𝑟𝑥, 𝜃𝑥) = i 𝑘 𝐴𝑛

2𝜋
ei 𝑛𝜙

H(1)
1 (𝑘𝑟𝜙) [

𝑅0 cos 𝜁 − 𝑅 cos(𝜙 + 𝜁 − 𝜉)
]

d𝜙 , (21)
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Fig. 9. Coordinates of a point on the circle of the microphone array and relative to the off-axis source circle.

Fig. 10. Measured modal structure of the free-field sound of the propeller at the BPF. High-speed case. (a): propeller at the center of the microphone array;
(b): off-centered propeller. Measured values as gray bars and indicative prediction as empty red bars. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

with

𝑟𝜙 =
√

𝑅2
0 + 𝑅2 − 2𝑅𝑅0 cos(𝜉 − 𝜙) ,

if (𝜉, 𝑅) denote the polar coordinates of the observer with respect to the center of the source circle (see Fig. 9). The transposition
in the cylinder reference frame is ensured by the relations

𝑅 =
√

𝑟2𝑥 +𝐷2 − 2𝐷𝑟𝑥 cos 𝜃𝑥 , tan 𝜉 =
𝑟𝑥 sin 𝜃𝑥

𝑟𝑥 cos 𝜃𝑥 −𝐷
.

For the considered mode 𝑛, the post-processing leads to the complex-valued modal amplitudes

𝑝𝑚 = 1
2𝜋 ∫

2𝜋

0
𝑝𝑎𝑟(𝑟𝑥, 𝜃𝑥) e−i𝑚𝜃𝑥 d𝜃𝑥 . (22)

The free-field noise of the model propeller has been also measured in the experiment, after removing the cylinder, for two
positions of the propeller axis: one at the center of the array, and the other one at the location corresponding to the maximum
separation 𝐷 = 0.168 of the installed configuration (see spectra in Fig. 8). For this test, the propeller-and-hub element shown in
Fig. 5-a has been mounted alone, at the tip of a vertical bar, in order to avoid azimuthal flow distortions. The modal spectra, as
15
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Table 2
Expected BLH orders 𝑠 and associated Bessel-function weighting factors and spinning-mode orders 𝑛 at the BPF. Effective values
of the factor and expected significant 𝑠 orders bold-faced.
𝑠 -1 0 1 2 3 4 5 6
𝐵 J𝐵−𝑠(𝐵𝑀) neg. 4.6 10−3 0.065 0.62 2.87 −0.62 −0.065 −4.6 10−3

𝑛 4 3 2 1 0 −1 −2 −3

Fig. 11. Measured modal structure of the total field of the installed propeller at the BPF. High-speed case, short distances 𝐷.

produced by the microphone-array processing, are plotted as gray bars in Fig. 10. Subplots (a) and (b) refer to a propeller center-
point coinciding with the center of the array and displaced by 𝐷 = 0.168m from that center, respectively. In the first case, the
mode 𝑚 = 𝑛 = 𝐵 = 3 dominates the radiated field, with only a negligible contribution of other modes. This rotor-locked mode is the
signature of the combined steady-loading noise and thickness noise. The result confirms that residual distortions are negligible, as
expected for an axisymmetric configuration. As the propeller is moved away from the array center, the same processing generates
a range of modes, amongst which the modes of orders (1,2,4,5), corresponding to 3 ± 1 and, less prominently, 3 ± 2, dominate,
whereas the mode 3 is strongly reduced. Bar-graph predictions of this modal-scattering effect produced by Eqs. (21) and (22) with
an arbitrary amplitude are also plotted for indicative comparison. They confirm the redistribution of the mode orders. In view of the
overall qualitative agreement, the procedure can be used to identify the free-field signature of the propeller in the modal expansions
performed in the presence of the scattering cylinder. Similar results, not shown, have been observed at the lower rotational speed.
More generally, the trend has been verified that, for the largest values of 𝐷, the propeller mode 𝑛 is mainly seen as the modes
𝑚 = 𝑛 − 1 and 𝑚 = 𝑛 + 1.

The radiation efficiency of steady-loading noise is a matter of blade number and tangential Mach number 𝑀 . In the propeller-disk
plane and in the far field, at the 𝜇𝑡ℎ harmonic of the BPF, it is determined from the value 𝜇𝐵 J𝜇𝐵(𝜇𝐵𝑀) where 𝐵 is the blade number.
This value is about 4.6 10−3 in the present case at the BPF (𝜇 = 1) and about 4.46 10−5 at twice the BPF (𝜇 = 2). Despite its low
but not vanishing value, the factor explains why the mode 𝑛 = 𝐵 = 3 can be detected in the free-field modal expansion at the BPF.

Results of the modal analysis for the installed configuration including the propeller and the cylinder, at the higher rotational
speed, are reported in Figs. 11–13, for the smallest, intermediate and largest axis-to-axis distances 𝐷, respectively. In each figure, the
same scale is used for the three plots. For small values of 𝐷 (Figs. 11-a to c), a strong emergence of the mode 𝑚 = −1 is observed, the
amplitude decreasing with increasing distance. This still holds for intermediate distances, as seen for instance in Fig. 12-a. Modes
of orders between −3 and 0 are also found, though with much lower amplitudes. These negative orders are out of the range of
expected BLH, as shortly discussed below at the light of the values in Table 2. They are attributed to cylinder scattering.

In fact, the modal analysis of the total field for varying axis-to-axis distance 𝐷 is limited by the lack of information about actual
values of the BLH. The origin of the latter lies in any distortion of the mean flow through the propeller disk (deviation from pure
axisymmetry). Their amplitudes a priori vary with 𝐷 because the distortion is a matter of aerodynamic blockage by the cylinder.
The propeller also ingests a residual wake from the sliding rods shown in Fig. 5; this contributes to the BLH. Furthermore, the
amount of scattering differs for different source-mode radii. Now the radial (spanwise) distribution of the forces is unknown, which
prevents from producing a quantitative analysis. Yet qualitative arguments are enough to confirm the amplification mechanism
investigated in this work. Firstly, the distortions due to the vicinity of the cylinder are expected to generate low-order BLH, say
typically corresponding to 𝑠 between −2 and +2 (bold-faced values in Table 2). Secondly, as shown by Eq. (1), the weighting factor
𝐵 J𝐵−𝑠(𝐵𝑀) involved at the BPF is significant only for small values of |𝐵 − 𝑠|, which leads to only retain the range of values also
reported bold-faced in the second line of Table 2. Only the overlapping bold-faced ranges in the table are likely to produce a
significant contribution. This suggests that, irrespective of their unknown amplitudes, the BLH of orders 𝑠 = 1, 2 dominate in the
16
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Fig. 12. Measured modal structure of the total field of the installed propeller at the BPF. High-speed case, intermediate distances 𝐷.

Fig. 13. Measured modal structure of the total field of the installed propeller at the BPF. High-speed case, large distances 𝐷.

direct field of the installed propeller, in addition to the steady-loading noise. The main effect of the off-origin positioning is to
generate the modes 𝑚 = 0 and 2 for 𝑠 = 1 and the modes 𝑚 = 1 and 3 for 𝑠 = 2 in the modal expansion computed from the
microphone array.

The results for the largest axis-to-axis distances, Fig. 13, seem contradictory. Indeed, the mode amplitudes increase significantly
with increasing distance 𝐷, with a dominant mode −1. The observed modes of orders 0,1,2, with moderate amplitudes, are those
expected from an azimuthal distortion. They are highlighted by the red boxes in Figs. 13-b and c. It is worth noting that the modes
3,4,5 grouped in the blue box in Fig. 13-c have the same amplitudes as in the free-field configuration reported in Fig. 10. This
suggests that the rotor-locked mode 𝑛 = 3 in the reference frame of the propeller is still recognizable in the modal expansion. But it
is of secondary importance in the total sound field. It is conjectured that the ’free-field’ modes 1 and 2 in Fig. 10-b are overwhelmed
by the same modes as generated by the additional distortion in the presence of the cylinder and sliding bars, in Fig. 13-c. Such a
distortion could only be detected by advanced and non-intrusive optical techniques, well beyond the scope of the present study.

5.4. Tonal-noise amplification

The amplification rate of the BPF harmonics by the asymptotic behavior of the Green’s function is finally addressed in this
section. The observed variations of the tonal noise with the separation 𝐷 are also compared with theoretical predictions.

Fig. 14 displays the BPF tone level, integrated in a 20-Hz bandwidth, as a function of the separation 𝐷, for the low and high
rotational speeds. A log-scale is used for 𝐷. Despite unexplained irregularities in the low-speed case for small separations (diamond
symbols, (⋄)), the same overall trend is found. The BPF tone levels decrease at the same rate for both speeds, for small and
17
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Fig. 14. BPF tone level as a function of separation 𝐷, with 20-Hz bandwidth integration, for the high-speed (◦) and low-speed (⋄) cases. 𝐷−4-law featured by
the dashed line. (∗): relative levels of the mode 𝑚 = −1 from Figs. 11 and 12, shifted for comparison.

Fig. 15. Predicted instantaneous pressure maps of a circular array of phased dipoles in the presence of a scattering cylinder, for the counterclockwise rotor-
locked mode 𝑛 = 3. Cases of weak scattering, 𝐷 = 168 mm (a) and compact regime, 𝐷 = 65 mm (b), featuring the formation of the mode 𝑚 = −1. Parameters
representative of the experiment. Source mode featured as dashed circle, same arbitrary color scale on both plots. The arrows indicate the directions of rotation
of the direct mode 𝑛 = 3 in subplot (a) and of the scattered mode 𝑚 = −1 in subplot (b).

moderate separations 𝐷. The global difference of about 6 dB between low-speed and high-speed data is expected from the scaling
law of dipole sources with the sixth power of flow speed in aeroacoustics [3]. Indeed, using the rotational speed as reference,
60 log10(14800∕11800) = 5.9. Then the sound slightly increases for larger separations. The amplitudes of the mode 𝑚 = −1 in relative
decibels, as deduced from Figs. 11 and 12, are also plotted as star symbols (∗), for the high-speed case. The values are shifted
vertically to fit the measured tone levels (symbols ◦) at the shortest separations. Both negative slopes are close to each other,
confirming that the tone level and its decrease are mostly determined by the mode 𝑚 = −1.

If it is assumed that blade-loading harmonics are only generated at a negligible level as the propeller is moved very close to
the cylinder, the modal structure of the direct sound field of the propeller is dominated by the mode 𝑛 = 3. The amplitude of the
associated scattered field is determined by the cylinder mode 𝑚 = −1, according to Eq. (13). A sound-pressure amplitude proportional
to 𝐷−4 is expected. This asymptotic law is reported as the dashed line in Fig. 14. The actual rate of decrease is slightly slower,
suggesting that modes of orders 𝑛 ≠ 3 are also generated.
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Fig. 16. Total-field SPL maps of individual source-modes in arbitrary decibel scale, as a function of the distance 𝐿 between cylinder edge and source-mode
center and of the ratio 𝑎∕𝑅0. 𝑘𝑅0 = 0.44; modes 𝑛 = 1 (a) and 𝑛 = 3 (b). Parameters representative of the experiment.

The main outcomes of the experiment are twofold. Firstly, the tonal noise at the BPF combines the rotor-locked mode 𝑛 = 3 and
a couple of adjacent modes. Secondly, these modes are dominantly scattered as the mode 𝑛 = −1 as the propeller-cylinder distance
decreases, with a strong amplification. This is expected from the present theoretical developments. Finally, typical instantaneous
pressure maps computed with the exact analytical formulation are shown in Fig. 15, in order to illustrate the features of the combined
direct and scattered fields. These test cases reproduce configurations of the experiment, with the rotor-locked source-mode 𝑛 = 3
as primary sound. The characteristic attenuation distance, over which the direct field of this mode decreases down to very low
values, has the same order of magnitude as the mode radius, as suggested by the size of the six spots on the maps, one per half
lobe. The separation of 𝐷 = 168 mm, Fig. 15-a, largely exceeds the attenuation distance of the mode. Therefore, the scattered field
from the cylinder is relatively weak, because of the same amplitude as the local direct field at the location of the cylinder surface.
In contrast, the small separation of 𝐷 = 65 mm, Fig. 15-b, is substantially smaller than the attenuation distance. In this case, the
scattered field is of the same order of magnitude as the direct field close to its source. But because the generated mode 𝑚 = −1 is now
radiating instead of evanescent, the scattered field is much larger than the direct field at large distances. This example illustrates
the amplification mechanism.

The three parameters involved in the diffraction mechanism are the distance 𝐿 between the cylinder surface and the source-mode
center, and the two radii 𝑎 and 𝑅0. The analytical model based on the exact Green’s function, Eq. (5) allows to investigate extended
anges of these parameters, in order to identify critical areas of amplification. Such a parametric study, covering configurations
epresentative of the experiment, is illustrated for the source-modes 𝑛 = 1 and 𝑛 = 3 in Figs. 16-a and 16-b, respectively, with
PL maps. On each map, an arbitrary decibel scale is used, so that only the variations make sense. Indeed, the source strengths
re unknown and the information of interest is the effect of the cylinder on the radiating properties of a mode. Because the mode
= 1 already radiates efficiently in free field, cylinder scattering only induces moderate modifications on it. As a result, the map in
ig. 16-a exhibits variations of about 1 dB.

In contrast, the mode 𝑛 = 3 is evanescent in free field and experiences strong amplification by asymptotic cylinder scattering.
he map in Fig. 16-b now exhibits large variations. The SPL increases as the source-mode to cylinder distance 𝐿 is reduced. Two
ther important conclusions can be drawn. Firstly, the SPL drops for 𝑎 ≪ 𝑅0, which means that the amplification no longer operates
or vanishing cylinder size. Secondly, a maximum amplification regime is found for 𝑎∕𝑅0 ≃ 1. These important features could be
he basis for the definition of guidelines when designing a global architecture.

. Application to hub scattering

The scattering effect of the hub or the center body of a propeller on the emitted tonal noise has been pointed out in air by
arious authors [19–22]. The question also arises for the hub of marine propellers, in connection with the possible amplification
ffect inherent to the compact regime. It is answered in this section, with a straightforward application of the exact analytical model
f Sections 3 and 4, in the special case of coaxial cylinder and source-mode, as depicted in Fig. 17. The generic configuration of
ig. 1 is simply reconsidered by setting 𝐷 = 0, so that the source-mode component of propeller tonal noise is centered at the origin
f the cylinder coordinates (𝑟𝑥, 𝜃𝑥), with the condition 𝑅0 > 𝑎. The same compactness conditions 𝑘𝑅0 ≪ 1 and 𝑘𝑎 ≪ 1 are again
ssumed. The same exact analytical computations and source-mode discretization procedure are applied.

The effect of center-body scattering on the amplitude of the radiated field is assessed by averaging the far-field sound pressure
or all observation angles, and by comparing it to the free-field radiation. The result is reported for various mode orders in Fig. 18,
here the Sound Pressure Level difference 𝛥𝑆𝑃𝐿 is plotted as a function of the ratio 𝑎∕𝑅0, for a fixed value of 𝑘𝑎. The radiated

ound is found to increase as the sources get closer to the cylinder surface, for the same assumed dipole strength. For any mode
rder, the sound increase reaches +6dB as the source-mode radius approaches the hub radius, 𝑎∕𝑅0 ∼ 1. This result is intuitively
xpected by similarity with the image principle, according to which sources approaching a rigid plane have their radiated sound
ressure doubled. It is also recovered by an asymptotic analysis of the Green’s function, considering 𝐷 = 0 with the following set

of conditions:

𝑘𝑟𝑥 ≫ 1, 𝑘𝑎 ≪ 1, 𝑘𝑅0 ≪ 1, 𝑎 ∼ 1 .
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Fig. 17. Coordinates and main notations for coaxial source-mode and scattering cylinder. (a): three-dimensional propeller-and-hub configuration, (b):
two-dimensional reduction, featuring the source-mode as dotted-line circle. Note that 𝐷 = 0 with respect to Fig. 2.

Fig. 18. Averaged far-field Sound Pressure Level radiated by various source-mode orders 𝑛 in the presence of a hub, as a function of 𝑎∕𝑅0. 𝑘𝑎 = 0.10.

Following the same procedure as in Section 4, the asymptotic derivations, not further detailed, are made substantially simpler
because the sources are centered, leading to 𝑟𝑦 = 𝑅0 and 𝜃𝑦 = 𝜙. The point dipole of angular coordinate 𝜙 along the source circle
is the same for radial and tangential forces, and it is expressed as 𝐹𝑅

𝑠 , 𝐹 𝑇
𝑠 ∝ ei 𝑛𝜙. Finally, the leading order of the total field is

obtained as

𝑝1𝑎𝑠(𝑟𝑥, 𝜃𝑥) = 2 𝑝0𝑎𝑠(𝑟𝑥, 𝜃𝑥) , (23)

which is consistent with the exact analytical model. This maximum amount of sound-pressure increase remains well below the
amplification evidenced in previous sections for off-axis source-modes. In that sense, hub scattering is free of true amplification,
which can be interpreted as follows. The amplification by compact Green’s function behavior is typical of higher-order source-
modes. Because the latter are compact distributions of dipoles with zero instantaneous balance, they have at most a quadrupole-like
efficiency in free field, by virtue of partial cancellation. Any off-centered scattering body in compact vicinity of a source-mode
generates very different elementary scattered fields for the constitutive point dipoles. This imbalance makes the resulting partial
cancellation much less pronounced, thus the radiation much more effective: in fact, the mode radiates with the basic dipole-like
efficiency. The situation is different for an axisymmetric center body because the amount of scattering is the same for all constitutive
elements of a source-mode, leading to zero imbalance. As a result, the at-most quadrupole-like behavior is preserved, and the
total-reflection increase of 6 dB is the maximum expected effect.
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7. Three-dimensional considerations

A three-dimensional complement of the analysis is given in this section for completeness, to confirm the sufficiency of the
wo-dimensional approach. For this, an infinite cylinder is considered, and an axial force component is compared to a tangential
omponent of same strength. The three-dimensional Green’s function for the infinite rigid cylinder can be obtained from the two-
imensional one by Fourier transform with respect to the axial coordinate. Indeed the obtained mathematical problem for the
ransformed axial wavenumber component 𝑘3 is the two-dimensional one for the modified wavenumber 𝛾 =

√

𝑘2 − 𝑘23. The sought
olution is obtained by applying the inverse Fourier transform on the two-dimensional solution for 𝑘3. Similar developments have

been reported by Kingan & Self [20] with an additional mean-flow effect, for application to aeronautical propellers. Accounting for
the fact that the imaginary part of the factor ei 𝑘3(𝑥3−𝑦3) gives a zero contribution to the inverse transform, the Green’s function reads

G(𝐱, 𝐲) = i
4𝜋 ∫

∞

0

∞
∑

𝑚=0
𝑎𝑚 cos[𝑚(𝜃𝑥 − 𝜃𝑦)] cos[𝑘3(𝑥3 − 𝑦3)] (24)

×
[

H(1)
𝑚 (𝛾 𝑟𝑥)

(

J𝑚(𝛾 𝑟𝑦) − 𝛽𝑚(𝛾 𝑎) H(1)
𝑚 (𝛾 𝑟𝑦)

)]

d𝑘3,

with

𝛾 =
√

𝑘2 − 𝑘23 , 𝛽𝑚(𝛾 𝑎) =
J𝑚−1(𝛾 𝑎) − J𝑚+1(𝛾 𝑎)

H(1)
𝑚−1(𝛾 𝑎) − H(1)

𝑚+1(𝛾 𝑎)
.

In the implementation, the integral is discretized and truncated as a finite sum. The tests reported in this section considered 40 dipole
sources for the discretization of a source-mode, and an upper limit of the integral of 3.5 𝑘 with a discretization step of 0.0027 𝑘,
ensuring convergence of the results. Figs. 19 and 20, plotted for the axial and tangential force components of the mode 𝑛 = 1,
respectively, show instantaneous sound-pressure maps on an observation sphere of radius 1 m, with an arbitrary color scale, and
an illustration of three-dimensional directivity diagrams. The parameters are representative of the experiment. In both cases, the
free-field radiation is compared to the radiation in presence of the scattering cylinder. With the same assumed source strength,
the maximum sound pressure amplitude with the tangential force was found 5 times higher than with the axial force, with a
different directivity. This force radiates no sound in the plane of the source-mode. Furthermore, as already pointed out with the
two-dimensional model, no amplification is found, the mode 𝑛 = 1 being already efficient in free field. Computations, not detailed
here for conciseness, were repeated in the same conditions with the mode 𝑛 = 3. The same strong amplification for the tangential
force component has been observed as in the two-dimensional calculations, as expected. The radiation from the axial force was also
found amplified by the same amount, with more significant sound regeneration on axis, because of the imbalance introduced in
nearly-cancelling sources. However, the maximum of free-field sound pressure amplitude was now about 20 times higher for the
tangential force, corresponding to a difference of 26 dB inherent to the different orientation of the forces. For both components,
the amplification involves the formation of the contrarotating mode -1. The main conclusion is that for largely amplified modes,
thus modes of higher order 𝑛 in the compact regime, the axial force component has a much weaker intrinsic efficiency. For the
mode 𝑛 = 1, the difference of efficiency between both components, though again in favor of the tangential one, is reduced; but this
mode is not amplified. Finally, the amplification of propeller tonal noise caused by the lateral vicinity of a body is a general feature,
much more pronounced for the force components in the rotation plane. Radiating features predicted by the three-dimensional model
only confirm the key findings of previous sections, based on the two-dimensional formulation, with structuration of the mode -1.
The two-dimensional predictions also compared very well with the trends measured in the experiment. This justifies a posteriori
that the detailed analysis is developed in a two-dimensional context. The three-dimensional extension, including the axial force
component, would become essential for applications to a real propeller, provided that a propeller design is made available, and to
arbitrary observation angles. The blade surface would be discretized, the scattering problem solved for each blade element of the
discretization, and the total sound field reconstructed by linear superposition. The basic features highlighted with the present model
would be directly transposable, obviously giving more importance to sources distributed at the blade tips, because they would be
more amplified by virtue of their shorter distance to the scattering cylinder. The extension itself is beyond the scope of the present
work, rather focused on the basic amplification mechanism. The extension also implies considering a cylinder of finite length, for
physical consistency, in which case the aforementioned Green’s function is no longer valid. Such a configuration, and a fortiori that
of a realistic hull geometry, would require a numerical solving of the Helmholtz equation. This has not been considered in the
present study, dedicated to what a pure mathematical approach can produce. Some remarks can be made about this choice. Firstly,
the inspection of the scattering by an infinite cylinder, and by extention also by a finite-length, elongated body, has its major interest
in directions normal to the cylinder axis, because the equivalent sources of the scattered field are dipoles normal to the surface.
This is a first argument for a two-dimensional reduction, keeping in mind that the three-dimensional approach is not essential to
understand the amplification by compact scattering. Secondly, comparing the infinite-cylinder model calculations with numerical
simulations by a boundary-element method, for validation purpose, would imply truncation of the meshed surface of the cylinder.
This would make the comparison questionable. It can be conjectured that a finite-length body would also cause amplification by
compact scattering of a source-mode, provided that the latter is placed close enough to the body end, and off-centered. Indeed,
imbalance would similarly be induced between the elementary sources of the source-mode.

Another aspect is that the axial force component on the blades may be a dominant source of noise for marine propellers, if
related to vibrations, as pointed out, for instance, by Zhou et al. [?]. This is a complementary topic, not addressed here. Yet the
amplification mechanism addressed in the present work could partly operate on vibration noise. The condition for this is that a
structural mode of vibration of the whole propeller has the same structure of spinning mode, with circular distributions of phased
dipoles of zero instantaneous balance. Investigating this could be the matter for future work.
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Fig. 19. Radiation properties of the spinning mode 𝑛 = 1 for an axial force component. (a,b): instantaneous sound-pressure patterns on a far-field observation
sphere, for the free-field and installed configurations, respectively. (c): compared directivity diagrams. 𝑓 = 700Hz, 𝑎 = 30mm, 𝑅0 = 30mm, 𝐷 = 65mm. Cylinder
shown, not-to-scale, on subplot (b).

Fig. 20. Radiation properties of the spinning mode 𝑛 = 1 for a tangential force component. (a,b): instantaneous sound-pressure patterns on a far-field observation
sphere, for the free-field and installed configurations, respectively. (c): compared directivity diagrams. 𝑓 = 700Hz, 𝑎 = 30mm, 𝑅0 = 30mm, 𝐷 = 65mm. Cylinder
shown, not-to-scale, on subplot (b).

8. Conclusion

A simple, two-dimensional analytical formulation has been implemented to highlight fundamental aspects, that are expected
to dominate the tonal noise radiated by a marine propeller installed close to a scattering hull. For mathematical tractability, a
rigid cylinder has been selected as generic hull geometry. The formulation is based on the Green’s function of the cylinder for
the Helmholtz equation, on the one hand, and on the notion of source-modes, on the other hand. The source-modes are circular
distributions of phased sources, reproducing the free-field, or direct, radiation modes of rotor tonal noise. They are defined in the
reference frame of the propeller by their integer orders, equal to their numbers of angular periods. In a real configuration, the direct
modes are a consequence of the operation of the propeller in the mean-flow distortion around the hull. The scattered field can also
be described in term of modes, defined in the reference frame of the cylinder. In view of the extremely low Mach numbers in marine
applications, the mean relative axial fluid motion is neglected, in both the free-field and installed radiation models. The effect of the
flow distortion is concentrated in the definition of the sources and the associated direct modes. Furthermore, because of the very
low Helmholtz numbers based on the size of a domain encompassing the source-modes and the scattering cylinder cross-section, an
asymptotic regime of diffraction is encountered. This is why an asymptotic formulation has been compared to the exact calculations
to interpret the results. The analytical approach provides a detailed insight into the physics of sound scattering, mode by mode.
Quite generally, direct modes of higher orders (larger than 1) are found to only generate evanescent waves in free field, whereas
they experience a very strong amplification in close vicinity of the cylinder. This amplification results from the interaction of the
near field of the sources with the cylinder. The most spectacular result is that it generates the scattered radiating mode or order 1,
whatever the direct mode order is, with inversion of the phase rotation. In contrast, the direct mode of order 1 is already very efficient
in free field, because of its compactness, and only experiences a moderate amount of diffraction. The symmetric mode of order 0
radiates negligible sound, both in free-field and in the presence of the cylinder, according to the two-dimensional model. These
compact-scattering properties of the cylinder differ from what obstacles of other geometry would produce on similar source-modes,
for instance in a case of propeller blade tips operating close to wing edges.

A small-scale experiment has also been carried out in air, only based on acoustic measurements, with Helmholtz numbers
representative of marine applications. For this, a three-bladed model propeller and a rigid cylinder of characteristic diameters of
about 60 mm were selected, the blade passing frequency being around 750 Hz. The tests were performed in an anechoic chamber with
22
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variable relative positions, resorting to a circular array of far-field microphones to get access to the direct and scattered angular
modes. The experiment clearly confirmed the amplification mechanism and the emergence of the contra-rotating mode of order
1, which validates the mathematical developments. Tests with the three-dimensional cylinder Green’s function confirmed the key
results of the two-dimensional approach. The sound from the axial component of the blade forces is also amplified by the same
mechanism, but it has a much weaker free-field efficiency, compared to other components.

The main outcomes suggest that the short distance of marine propellers to the hull of a ship could result in a dramatic acoustic
nstallation effect, that cannot be neglected and should be taken into account at the early stage of a global design approach. The
eatures and amplitude of the scattered field are found very sensitive to all involved parameters, such as direct mode orders, relative
ropeller-cylinder distance and so on. Up to that point, the simple tools proposed in this work are well suited to investigate primary
ffects in a very fast way. The theoretical study will be extended to more realistic configurations in a future work, by resorting to
numerical determination of the Green’s function tailored to arbitrary hull geometry.
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ppendix. Derivation of integrals

The analytical formulation of the asymptotic regime leads to integrals that can be obtained in closed-form expressions, making
se of tables by Gradshteyn & Ryszik [23] and noting that the odd-function parts can be discarded from the integrands. They are
isted in this appendix. For 𝑛 > 1, the individual integrals involved in the scattered-field formulation are found as:

∫

𝜋

−𝜋

cos𝜙 ei 𝑛𝜙

𝑟4𝑦
d𝜙 = 𝜋

𝐷4

(−𝑅0∕𝐷)𝑛−1

[1 − (𝑅0∕𝐷)2]3

{

4
(

𝑅0
𝐷

)2
+ 𝑛

[

1 −
(

𝑅0
𝐷

)4
]}

, (A.1)

∫

𝜋

−𝜋

sin𝜙 ei 𝑛𝜙

𝑟4𝑦
d𝜙 = 𝑛 i𝜋

𝐷4

(−𝑅0∕𝐷)𝑛−1

[1 − (𝑅0∕𝐷)2]
, (A.2)

∫

𝜋

−𝜋

ei 𝑛𝜙

𝑟4𝑦
d𝜙 = 2𝜋

𝐷4

(−𝑅0∕𝐷)𝑛

[1 − (𝑅0∕𝐷)2]3

[

𝑛 + 1 − (𝑛 − 1)
(

𝑅0
𝐷

)2
]

. (A.3)

and those involved in the free field formulation as:

∫

𝜋

−𝜋

cos𝜙 ei 𝑛𝜙

𝑟2𝑦
d𝜙 =

𝜋 (−𝑅0∕𝐷)𝑛−1

𝐷2 [1 − (𝑅0∕𝐷)2]
[1 + (𝑅0∕𝐷)2] , (A.4)

∫

𝜋

−𝜋

cos 2𝜙 ei 𝑛𝜙

𝑟2𝑦
d𝜙 =

𝜋 (−𝑅0∕𝐷)𝑛−2

𝐷2 [1 − (𝑅0∕𝐷)2]
[1 + (𝑅0∕𝐷)4] , (A.5)

∫

𝜋

−𝜋

sin𝜙 ei 𝑛𝜙

𝑟2𝑦
d𝜙 = i𝜋

𝐷2
(−𝑅0∕𝐷)𝑛−1 , (A.6)

∫

𝜋

−𝜋

sin𝜙 cos𝜙 ei 𝑛𝜙

𝑟2𝑦
d𝜙 = i𝜋

2𝐷2
(−𝑅0∕𝐷)𝑛−2 [1 + (𝑅0∕𝐷)2] , (A.7)

∫

𝜋 ei 𝑛𝜙
2

d𝜙 = 2𝜋
2

(−𝑅0∕𝐷)𝑛
2

. (A.8)
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Special developments are required for the mode 𝑛 = 1. The corresponding integrals read, for the scattered-field formulation:

∫

𝜋

−𝜋

sin𝜙 ei𝜙

𝑟4𝑦
d𝜙 = i𝜋

𝐷4 [1 − (𝑅0∕𝐷)2]
, (A.9)

∫

𝜋

−𝜋

cos𝜙 ei𝜙

𝑟4𝑦
d𝜙 = 𝜋

𝐷4 [1 − (𝑅0∕𝐷)2]3

[

1 + 4
(

𝑅0
𝐷

)2
−
(

𝑅0
𝐷

)4
]

, (A.10)

∫

𝜋

−𝜋

ei𝜙

𝑟4𝑦
d𝜙 = 4𝜋

𝐷4

(−𝑅0∕𝐷)
[1 − (𝑅0∕𝐷)2]3

(A.11)

and for the free-field formulation:

∫

𝜋

−𝜋

cos𝜙 ei𝜙

𝑟2𝑦
d𝜙 = 𝜋

1 + (𝑅0∕𝐷)2

𝐷2[1 − (𝑅0∕𝐷)2]
, (A.12)

∫

𝜋

−𝜋

cos 2𝜙 ei𝜙

𝑟2𝑦
d𝜙 = 𝜋

1 + (𝑅0∕𝐷)2

𝐷2[1 − (𝑅0∕𝐷)2]
(−𝑅0∕𝐷) , (A.13)

∫

𝜋

−𝜋

sin𝜙 ei𝜙

𝑟2𝑦
d𝜙 = i𝜋

𝐷2
, (A.14)

∫

𝜋

−𝜋

sin𝜙 cos𝜙 ei𝜙

𝑟2𝑦
d𝜙 = i𝜋

2𝐷2
(−𝑅0∕𝐷) , (A.15)

∫

𝜋

−𝜋

ei𝜙

𝑟2𝑦
d𝜙 = 2𝜋

(−𝑅0∕𝐷)
𝐷2[1 − (𝑅0∕𝐷)2]

. (A.16)
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