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a b s t r a c t

A high-order finite-difference algorithm is proposed in the aim of performing LES calculations for CAA

applications. The subgrid scale dissipation is performed by the explicit high-order numerical filter used
for numerical stability purpose. A shock-capturing non-linear filter is also used to deal with compressible
discontinuous flows. In order to tackle complex geometries, an overset-grid approach is used. High-order
interpolations make possible the communication between overlapping domains. The whole algorithm is
first validated on canonical flow problems to illustrate both its properties for shock-capturing as well as
for accurate wave propagation. Then, the influence of the multi-domain approach on the high-order spa-
tial accuracy is assessed. Finally, a rod-airfoil configuration is studied to highlight the potential of the pro-
posed algorithm to deal with multi-scale aeroacoustic applications.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In a wide range of technical fields such as aircrafts, automotive
engineering, trains, turbomachinery, power plants, turbulent flows
generate noise and noise often interacts with flows through a feed-
back loop. Particularly in ducted configurations, strong acoustics
feedback mechanisms are involved. For example, a pure tone phe-
nomenon has been observed on nuclear power stations due to an
aeroacoustic coupling in an open gate valve [1]. In the same way,
strong interactions between shock oscillations, internal aerody-
namic noise and acoustic duct modes are often observed in con-
fined flows but are undesirable to prevent structural excitation
and fatigue [2]. It is well known that non-linear interactions be-
tween the turbulent flow and the acoustic field produce undesir-
able high pressure levels [3]. They are a source of noise pollution
which is a major environmental issue. To numerically predict
aeroacoustic coupling, the calculation of both the unsteady flow
and the associated sound must be performed in the same compu-
tation. This is referred as Direct Noise Computation (DNC) in the
literature of Computational AeroAcoustics (CAA) [4]. Using DNC

is a powerful way to identify the fluid mechanism contributing
to the sound production and therefore, a useful tool to reduce
the noise radiation.

The large disparity in the characteristic scales of the acoustic
and the flow fluctuations, and the need to accurately resolve high
ll rights reserved.

x: +33 1 47 65 36 92.
wavenumber fluctuations require the use of numerical methods
with minimal dissipation and dispersion errors [3]. Traditional sec-
ond-order accurate methods are known to be too dissipative for
linear propagation. A recent review of high-order methods can be
found in [5]. Three different families of high-order methods can
be encountered in the literature: Weighted Essentially Non Oscilla-
tory (WENO) [6], Discontinuous Galerkin (DG) [7] and finite-differ-
ence (FD) methods. Due to their simplicity, the high-order finite-
difference methods are considered in this paper. The implicit com-
pact [8] or the explicit DRP (Dispersion-Preserving-Relation) [9] or
optimized [10] finite-difference schemes in conjunction with
selective filter are an efficient and attractive way to provide low
dispersive and low dissipative methods. However, these proce-
dures, in most early works, were limited to academic cases with
single domain and Cartesian grids. With the use of general curvilin-
ear coordinates transformation [11,12], these methods can now be
applied on more complex geometries. In the same way, high-order
overset-grid approaches [13–15] are developed to handle realistic
configurations including multiple bodies. Another advantage of
the overset-grid strategy is the use of multi-block meshes which
can be used on massively parallel computing platforms [16]. In
addition, transonic compressible turbulent flows are characterized
by the presence of shock waves which interact with turbulence. A
shock-capturing scheme must also be implemented but implies the
introduction of numerical dissipation. The development of numer-
ical algorithms that capture discontinuities and also resolve both
the scales of turbulence and the generated acoustic waves in com-
pressible turbulent flows remains a significant challenge. In order
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to treat industrial configurations, a new numerical code called Co-
de_Safari (Simulation of Aeroacoustic Flows And Resonance and
Interaction) has been developed.

This paper is organized as follows. After having briefly presented
the governing equations in Section 2, the proposed algorithm based
on high-order finite-difference schemes in conjunction with opti-
mized high-order low-pass spatial filters is presented in Section
3. To highlight the spectral behavior of this algorithm, a linear anal-
ysis is performed on the global numerical method including both
spatial, temporal discretizations and selective filter. The shock-
capturing procedure is performed via a non-linear filter after the
time integration. A special attention is paid on the shock-detector
which is the key issue in the preservation of the algorithm spectral
behavior. In order to tackle complex geometries as multiple bodies,
the employed overset-grid strategy with high-order Lagrangian
interpolation is presented and a linear analysis of the interpolation
error is given. The ability of the present algorithm to capture dis-
continuities in canonical 1-D and 2-D problems without damaging
its initial propagation properties is discussed in Section 4. After-
wards, it is shown that the multi-domain strategy does not corrupt
the algorithm characteristics via numerical examples. Finally, a di-
rect computation of the aerodynamic sound is performed on the
realistic rod-airfoil case to highlight the potential of the present
solver.
2. Governing equations

2.1. Fluid dynamics

The three-dimensional Navier–Stokes equations are expressed
in Cartesian coordinates for a viscous compressible Newtonian
flow. After the application of a general curvilinear transformation
(x,y,z) ? (n,g,f) as in [17,18], these equations are written in the
following strong conservative form:

@t
bU þ @n Fn � Fm

n

� �
þ @g Fg � Fm

g

� �
þ @f Ff � Fm

f

� �
¼ 0: ð1Þ

bU ¼ U=J where U = (q,qu, qe)T is the vector of conservative vari-
ables, q is the density, u = (u,v,w)T the Cartesian velocity vector,
e is the total specific energy:

qe ¼ p
c� 1

þ 1
2
qkuk2

;

where p is the pressure, c the specific heat ratio and J the Jacobian of
the coordinate transformation (x,y,z) ? (n,g,f).

Fn, Fg and Ff are the inviscid flux-vectors which can be ex-
pressed as:

Fn ¼
1
J

qHn

quHn þ prn

ðqeþ pÞHn

0B@
1CA; Fg ¼

1
J

qHg

quHg þ prg
ðqeþ pÞHg

0B@
1CA;

Ff ¼
1
J

qHf

quHf þ prf

ðqeþ pÞHf

0B@
1CA:

The contra-variant velocity components Hn, Hg and Hf are defined
as:

Hn ¼ u � rn; Hg ¼ u � rg and Hf ¼ u � rf:

with rn = (nx,ny,nz)T. The quantities nx, ny, nz, gx, gy, gz, fx, fy and fz

designate the spatial metrics where the subscripts denote the par-
tial derivatives.

Fm
n ; Fm

g and Fm
f are the viscous flux-vectors which can be ex-

pressed as:
Fm
n ¼

1
J

0
Vn

u � Vn � q � rn

0B@
1CA; Fm

g ¼
1
J

0
Vg

u � Vg � q � rg

0B@
1CA;

Fm
f ¼

1
J

0
Vf

u � Vf � q � rf

0B@
1CA:

The vectors Vn; Vg and Vf are defined as: Vn ¼ D � rn; Vg ¼ D� rg
and Vf ¼ D � rf.

D is the viscous stress tensor and q the heat flux-vector which
are defined as:

D ¼ l ruþruT � 2
3
r � uð ÞId

� �
and q ¼ �krT

with l the dynamic shear viscosity given by the Sutherland’s law, k
the thermal conductivity given by the Fourier’s law, T = p/(qR) the
temperature and R the gas constant.

2.2. Geometrical conservation

With the strong-conservation form in Eq. (1), the following rela-
tion must be satisfied numerically to ensure free-stream preserva-
tion when a finite-difference discretization is used [12]:

@n
1
J
rn

� 	
þ @g

1
J
rg

� 	
þ @f

1
J
rf

� 	
¼ 0 ð2Þ

This relation corresponds to the Surface Conservation Law (SCL)
[19]. Usually, the SCL is numerically violated since numerical spatial
operators are not commutative in contrast to their corresponding
analytical ones. To enforce the numerical metric error cancellation
and thus, to ensure the free-stream preservation, the spatial metrics
are expressed in the conservative form proposed by Thomas and
Lombard [20]:

1
J nx ¼ ðygzÞf � ðyfzÞg
1
J ny ¼ ðyfzÞn � ðynzÞf
1
J nz ¼ ðynzÞg � ðygzÞn

8>><>>: ð3Þ

Visbal and Gaitonde [12] have studied the influence of the metric
evaluation errors for high-order compact finite-difference schemes.
Using the conservative form proposed by Thomas and Lombard [20]
and computing the spatial derivatives with the same discretization
operator used for the flux derivatives, largely decrease this error.
This is done in what follows.

3. Numerical method

3.1. Spatial discretization

The temporal integration is split from the spatial discretization.
First derivatives at interior grid points are determined using N-
point high-order centered finite-difference schemes:

@nfi;j;k �
1
Dn

XN

m¼1

smðfiþm;j;k � fi�m;j;kÞ: ð4Þ

Two finite-difference schemes are available in Code_Safari. For
high-accurate computations, the optimized 11-point centered
finite-difference scheme proposed by Bogey and Bailly [10] is used.
This non-dissipative scheme is optimized in the wavenumber
space to reduce the dispersion error following the idea of Tam
and Webb [9]. In this case, the dispersion error is provided by
the difference between the effective wavenumber k⁄ of the scheme
and the exact one in the Fourier space. These two wavenumbers
are plotted in Fig. 1a. Only four points per wavelength are required



(a) (b) (c)

Fig. 1. (a) Effective wavenumber k⁄ of the spatial discretization versus exact wavenumber k: — spectral, ––– 11-point, � � � 7-point; (b) damping function of the selective filter
F versus exact wavenumber k: ––– 11-point, � � � 7-point; (c) dissipative characteristic of the RK4 scheme given by the modulus of the amplification factor jgj versus the
angular pulsation x.
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for the resolution of linear waves with the 11-point FD approxima-
tion. The same scheme has been applied successfully [21,22] for
the simulation of jet noise using LES. For computations around
complex geometries, due to cost and robustness constraints, a
smaller stencil is used. The standard 7-point centered finite-differ-
ence scheme is usually retained. The effective wavenumber of the
7-point FD scheme is also plotted in Fig. 1a showing the higher res-
olution of the 11-point method. Coefficients sm of these two
schemes are given in Appendix A.

3.2. Temporal integration

The spatial discretization step leads to a semi-discrete form as:

dbU i;j;k

dt
þ Ri;j;k ¼ 0 ð5Þ

with Ri,j,k the residual of the discretized inviscid and viscous terms.
In the present work, the equations are integrated in time with the
classical explicit four-stage Runge–Kutta scheme (RK4):

bU ðlÞi;j;k ¼ bU n
i;j;k � DtbðlÞRðl�1Þ

i;j;k 8l 2 f1; . . . ;4g ð6Þ

with bU ð0Þ ¼ bU n. The damping and stability properties of the RK4
scheme are given by the modulus of the amplification factor jgj of
the scheme which is shown in Fig. 1c. The coefficients b(l) are given
in Appendix A. The time step Dt is limited by explicit stability
requirement linked to the CFL value defined as CFL = max
(CFLn,CFLg,CFLf) with CFLn = maxi,j,k(jknji,j,kDt/Dn) with jknj = jHnj +
ckrnk and c ¼

ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
the speed of sound. Optimized Runge–Kutta

schemes can also be used [23].
RiðuÞ ¼ a
Dx

PN
m¼1

smðuiþm � ui�mÞ ðspatial discretizationÞ

uðlÞi ¼ un
i � DtbðlÞRiðuðl�1ÞÞ 8l 2 f1; . . . ;4g ðtime discretizationÞ

unþ1
i ¼ uð4Þi � rf d0uð4Þi þ

PN
m¼1

dm uð4Þiþm þ uð4Þi�m

� �� �
ðlow-pass filterÞ

8>>>>>><>>>>>>:
3.3. Low-pass filter

After the application of the Runge–Kutta scheme, the explicit N-
point spatial low-pass filter is used to remove spurious high-fre-
quency spatial oscillations:

W ð5Þ
i;j;k ¼W ð4Þ

i;j;k � rf Ln
N W ð4Þ

i;j;k

� �
þ Lg

N W ð4Þ
i;j;k

� �
þ Lf

N W ð4Þ
i;j;k

� �h i
ð7Þ
where

Ln
Nðfi;j;kÞ ¼ d0fi;j;k þ

XN

m¼1

dmðfiþm;j;k þ fi�m;j;kÞ

with 0 6 rf 6 1 the filtering strength; and W = (q,qu,p)T.
For high-accurate computations, the optimized 11-point filter

proposed by Bogey and Bailly [10] is retained. This filter is also
optimized in the wavenumber space. The dissipation property of
the spatial low-pass filter is given by its damping function F plotted
in Fig. 1b corresponding to the Fourier transform of the operator
Ln

N . The 11-point filter only damps the perturbations not accurately
resolved by the spatial scheme presented in Eq. (4). In the same
way as before, for computations around complex geometries, the
standard 7-point centered low-pass filter is used. The damping
function of the 7-point filter is also plotted in Fig. 1b showing
the lower dissipation of the 11-point filter. Coefficients dm of these
two filters are given in Appendix A.

3.4. Linear analysis of the discretization errors

The von Neumann method is used to analyze the damping and
dispersive properties of the algorithm presented previously. This
analysis is only applied on linear equations with periodic boundary
conditions. For non-linear equations, the results obtained with the
linear analysis are not sufficient. However, linear stability is a nec-
essary condition for non-linear problems [24].

The von Neumann method is applied to the global algorithm
(spatial, temporal discretizations and low-pass filter) for the fol-
lowing model linear equation @tu + a@xu = 0. The algorithm can be
decomposed into three steps as:
with uð0Þi ¼ un
i .

The von Neumann method is based on the Fourier transform. A
single harmonic un

i ¼ ûneIikDx is considered with ûn the amplitude,
kDx the phase angle corresponding to the wavenumber k and
I2 = �1. In order to evaluate the algorithm amplification factor de-
fined as g ¼ ûnþ1=ûn, the Fourier transform is applied to the three
stages of the computation:



bRðuÞ ¼ I a
Dx ûk�Dx with k�Dx ¼ 2

PN
m¼1

sm sinðmkDxÞðspatial discret:Þ

ûð4Þ ¼ 1þ
P4
l¼1

clð�DtI a
Dx k�DxÞl

� 	
ûn with cl ¼

Q4
q¼4�lþ1

bðqÞ ðtime discret:Þ

ûnþ1 ¼ ð1� rf
bDÞûð4Þ with bD ¼ d0 þ 2

PN
m¼1

dm cosðmkDxÞ ðlow-pass filterÞ

8>>>>>>>><>>>>>>>>:
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Finally, the amplification factor of the global algorithm can be writ-
ten as:

g ¼ ð1� rf
bDÞ 1þ

X4

l¼1

clð�ICak�DxÞl
 !

ð8Þ

with the Courant number Ca ¼ aDt
Dx ð¼ CFLÞ.

The amplification factor g which can be rewritten as g = jgjeI/ is
now compared with the exact factor: gex ¼ e�ICakDx. The algorithm
damping property is given by the norm jgj and the dispersive one
by the evolution of the relative phase error: ð/þ CakDxÞ=p. The re-
sults with CFL = 1 and rf = 0.2 are displayed in Fig. 2. With respect
to the damping character of the spatial scheme and the linear filter
presented in Fig. 1, by taking CFL = 1, the explicit time integration
damages the upper bound of the well-resolved wavenumber
range: kDx6p/2. To known quantitatively the accuracy domain of
the global algorithm, the ratio H ¼ g=gex between the numerical
amplification factor and the analytical one is compared to unity
using the following arbitrary criterion:

j1�HjLES5� 10�4 ð9Þ

The accuracy domain of the global algorithm is thus reduced to
0 6 kDx 6 0.65, or equivalently ka/Dx � 9.66 in term of number of
points per wavelength.

3.5. LES approach based on relaxation filtering

The present LES strategy is based on relaxation filtering (LES-

RF) detailed in [25]. No structural modeling for the subgrid scale
stress tensor is here considered. A functional modeling of the sub-
grid dissipation is provided by the use of the selective filter in Eq.
(7) also employed to remove grid-to-grid oscillations not resolved
by centered schemes. Applying directly the filtering operator on
the variables q, qu and p adds, in practice, terms into the flow
equations leading to a compressible formalism similar to the one
of Vreman [26]. LES-RF has already been investigated and per-
formed in multiple applications [21,22,27–30]. Recently, the influ-
ence of the filter shape has been investigated on compressible LES-

RF for a low-subsonic high-Reynolds number mixing layer [31]. It
has been shown that, on this test case, LES data are sensitive to the
(a) (

Fig. 2. Damping and dispersion errors as a function of the wavenumber kDx: (a) norm of
7-point.
effective LES cut-off wavenumber rather than to the filter shape.
Thus, with mesh sizes chosen to obtain the same effective LES

cut-off wavenumber, numerical results obtained with different
numerical filters are similar.

3.6. Shock-capturing procedure

3.6.1. Adaptive shock-capturing filter
A shock-capturing filter is applied on the conservative variables

after the use of the selective filter presented in Eq. (7). As proposed
by Yee et al. [32], the application of the dissipative part of the
shock-capturing procedure is applied after the time integration
process as a non-linear filter:

Unþ1
i;j;k ¼ U

ð5Þ
i;j;k þ Dn

i;j;k þ D
g
i;j;k þ Df

i;j;k

� �
; ð10Þ

where the dissipative part in the n-direction can be expressed as:

Dn
i;j;k ¼ bn

i;j;kðDiþ1=2 �Di�1=2Þ;

where Diþ1=2 is the dissipative numerical flux of the filtering oper-
ator. In Code_Safari two different non-linear filters are available
and described in the following.

3.6.2. Kim and Lee model
The first filter is based on the artificial dissipation model pro-

posed by Kim and Lee [33]. The same model has been recently used
in [34] for shocked nozzles and supersonic diffusers. However, in
the present work, only the low-order shock-capturing term of the
model of Kim and Lee is applied:

Diþ1=2 ¼
Djkjniþ1=2

Jiþ1=2
�ð2Þiþ1=2 U

ð5Þ
iþ1;j;k � U

ð5Þ
i;j;k

� �
and bn

i;j;k ¼ Ji;j;k
Dt
Dn

: ð11Þ

The stencil eigenvalue Djkjniþ1=2 is defined as:

Djkjniþ1=2 ¼max
3

m¼�2
ðjknjiþm;j;kÞ �min

3

m¼�2
ðjknjiþm;j;kÞ;

where the eigenvalue is expressed in the generalized coordinates:
jknj = jHnj + ckrnk with c ¼

ffiffiffiffi
cp
q

q
the sound speed.
b)

the amplification factor jgj; (b) relative phase error ð/þ CakDxÞ=p: ––– 11-point, � � �
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The midpoint value of the transformation Jacobian is estimated
by Ji+1/2 = (Ji + Ji+1)/2. Then, the non-linear dissipation function is
expressed:

�ð2Þiþ1=2 ¼ jmax
3

m¼�2
ðmn

iþm;j;kÞ with mn
i;j;k ¼

jpi�1;j;k � 2pi;j;k þ piþ1;j;kj
pi�1;j;k þ 2pi;j;k þ piþ1;j;k

In this expression mn is the pressure shock detector proposed by
Jameson et al. [35]. Finally, the definition of the adaptive control
constant j proposed by Kim and Lee [33] is preserved:

j ¼ 1
r1=a

aþ 1
a� 1

tanhða� 1Þ
� 	1þtanhðr�1Þ

with

a ¼ jk
njmax

jknjmin and r ¼ pmax

pmin

where fmax = max
i;j;k

fi,j,k and fmin = min
i;j;k

fi,j,k. The adaptive constant j

makes it possible to control the dissipation strength of the
procedure.

According to Garnier et al. [36], the classical high-order shock-
capturing schemes show excessive numerical dissipation in the
frame of freely decaying turbulence. Thus, a local application of
the shock-capturing scheme is necessary to reduce the numerical
dissipation, and the determination of the shock location is a crucial
problem to minimize this excessive damping. In the filter pre-
sented here, this determination is performed via the Jameson sen-
sor. However, in the frame of shock/turbulence interaction [37],
the Jameson sensor is not able to distinguish turbulent fluctuations
from strong gradients. Therefore, a modified Jameson sensor is pro-
posed in this paper. The Jameson sensor can be rewritten in the fol-
lowing form:

mn
i;j;k ¼

jLn
2ðpi;j;kÞj

pi;j;k � Ln
2ðpi;j;kÞ

where Ln
2 designates the classical linear second-order filter

operator:

Ln
2ðpi;j;kÞ ¼ �

1
4

pi�1;j;k þ
1
2

pi;j;k �
1
4

piþ1;j;k:

The modified sensor proposed in this paper is based on the use of
the N-point selective filter defined in Eq. (7):

/n
i;j;k ¼

jLn
N
ðpi;j;kÞj

pi;j;k�L
n
N
ðpi;j;kÞ

with Ln
Nðpi;j;kÞ ¼ d0pi;j;k þ

PN
m¼1

dmðpiþm;j;k þ pi�m;j;kÞ

8>><>>: ð12Þ

The damping feature of the two detectors is compared in 1-D,
using a linear analysis. To do that, a plane wave is considered
pi = e�IkiDx where kDx is the phase angle corresponding to the
wavenumber k and I2 = �1. In contrast with the Jameson sensor,
the modified sensor does not damage the low wavenumber range
Fig. 3. Damping errors of shock detectors: —- mn
i (classical Jameson sensor), ––– 11-

point /n
i , � � � 7-point /n

i (modified Jameson sensor).
(see Fig. 3). However, for the high frequencies, the two detectors
behave similarly which ensures the shock-capturing property of
the scheme. In addition, theses two detectors can be used without
modification in the scheme. Moreover, the computational effi-
ciency of the algorithm is not affected by the use of the modified
sensor because Ln

Nðpi;j;kÞ is computed in the selective filtering pro-
cess in Eq. (7).

3.6.3. Bogey et al. model
The methodology proposed by Bogey et al. [38] leads to the fol-

lowing dissipative numerical flux:

Diþ1=2 ¼ rsc
iþ1=2

X2

m¼1

cmðUiþm;j;k � Ui�mþ1;j;kÞ and bn
i;j;k ¼ 1 ð13Þ

the coefficients cm are computed via an optimization in the Fourier
space. They are given in Appendix A. The adaptive filtering magni-
tude rsc

iþ1=2 is expressed as:

rsc
iþ1=2 ¼

1
2

rsc
i þ rsc

iþ1

� �
with rsc

i ¼
1
2

1� rth

ri
þ 1� rth

ri

���� ����� 	
rth is a threshold parameter user, as in Visbal and Gaitonde [39] for
instance, to specify the regions where the dissipation model is ap-
plied. The authors suggest the threshold value rth = 10�4. The ri

function is a shock sensor expressed as:

ri ¼
Cn

i;j;k

p2
i;j;k

þ � with Cn
i;j;k

¼ 1
2
Ln

2ðpi;j;kÞ � Ln
2ðpiþ1;j;kÞ

� �2 þ Ln
2ðpi;j;kÞ � Ln

2ðpi�1;j;kÞ
� �2

h i
and the factor � = 10�16 is used to avoid numerical divergence in the
computation of rsc

i . The authors propose also a shock detection
based on dilatation which has been introduced by Ducros et al.
[37] for shock/turbulence interaction.

The two dissipation models proposed by Kim and Lee and Bogey
et al. are only applied in regions where strong pressure gradients
are encountered via their own shock detection. The approach of
Kim and Lee is based on the second-order numerical dissipation
of the shock-capturing scheme of Jameson et al. [35]. In contrast,
the dissipation model of Bogey et al. is based on a second-order
numerical filter. These two models are compared in Section 4.

3.6.4. Conservative properties of the algorithm
In order to deal with shock waves, the conservative properties

of the spatial scheme are studied in details. As show in Appendix
B, N-point FD schemes as the one presented in Eq. (4) can be recast-
ed in a finite-volume framework which ensures conservative prop-
erties. In addition, the adaptive non-linear filter in Eq. (10) is
conservative due to its finite-volume definition. In Section 4, the
shock-capturing ability of the present method is assessed.

3.7. Extension to complex geometries

The high-order finite-difference algorithm satisfying conserva-
tion laws in generalized coordinates are limited to curvilinear
geometries. In order to go past this limit, overset-grid techniques
are used with high-order interpolation procedure to preserve the
high-order spatial accuracy [13,15,14]. This is addressed in the
following.

3.7.1. Overset-grid strategy
In order to handle complex configurations as those including

multiple bodies, the high-order algorithm presented in the previ-
ous sections is extended to general overset-grid topologies. In
practice, the Code_Safari is interfaced with the freely available



Fig. 4. Example of a 2-D interpolation stencil: 2-D communication between a circular and a Cartesian component grids.
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Fig. 5. Example of a 1-D interpolation stencil.
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Overture library developed by the Lawrence Livermore National
Laboratory [40]. The mesh including different component grids
are given by Overture. In addition, the interpolation data such as
overlapping zones, interpolation stencils and offsets are generated
with Overture.

3.7.2. High-order interpolation
In the overset-grid approach, points of the different overlapping

regions are non coincident. Therefore, the communication between
overlapping component grids is performed with high-order inter-
polation. Sherer and Scott [15] have studied several high accuracy
interpolation methods and found that a high-order, explicit
Lagrangian method is more accurate and robust. Thus, even DRP
interpolation formula have been proposed [41], no DRP properties
are involved in the interpolation procedure used here. The interpo-
lation process is performed in the computational domain (n,g,f) as
in Fig. 4. In 2-D, the evaluation of the variable / at the point P is
performed via the interpolation of / at P as:

/P �
XMn�1

i¼0

XMg�1

j¼0

Ln
i Lg

j /IQþi;JQþj: ð14Þ

where Mn and Mg are the interpolation stencil length in the n- and
g-direction respectively. Q is the first donor point of the interpola-
tion stencil (in green1 in Fig. 4) and its coordinates are ðIQ ; JQ Þ: Ln

i

and Lg
j are the Lagrangian coefficients in the two directions defined

as:

Ln
i ¼

YMn�1

m¼0;m–i

dn �m
i�m

and Lg
j ¼

YMg�1

m¼0;m–j

dg �m
j�m

where dn and dg called the offsets are the coordinates of P, the recei-
ver point, with respect to Q in the computational domain. For sim-
plicity and isotropic reason, in the following, we have chosen
Mn = Mg = Norder which is also the Lagrangian polynomial order in
the computational domain.

In addition, the Code_Safari code is parallelized by domain
decomposition on each component grid for application to mas-
sively-parallel platforms. The communication between each do-
main is performed via the MPI library.

3.7.3. Linear analysis of the interpolation errors
In 1-D (cf. Fig. 5), the Lagrangian interpolation procedure in Eq.

(14) can be rewritten as follows:

/ðxPÞ �
XNorder�1

i¼0

Li/ðxQ þ iDxÞ with Li ¼
YNorder�1

m¼0;m–i

d�m
i�m

ð15Þ
1 For interpretation of color in Figs. 4, 5, 11, 15, 19, 20, 22, and 23, the reader is
referred to the web version of this article.
with xP = xQ + dDx. The interpolation error is now quantified using a
one-dimensional Fourier error analysis following Sherer and Scott
[15]. Thus, a single harmonic is considered: /(x) = eIkx as previously
with the wavenumber k and I2 = �1. The interpolation error factor
can be defined as:

Hitp ¼
XNorder�1

i¼0

LieIikDx=eIdkDx

For a centered Lagrangian interpolation, we have d � (Norder � 1)/2.
The local error is displayed in Fig. 6. The Lagrangian interpolation
procedure with Norder = 2 or Norder = 4 implies numerical errors in
the wavenumber range not damped by the present algorithm
according to the results displayed in Fig. 2. This can lead to the gen-
eration of spurious waves. In contrast, Lagrangian interpolation
with Norder = 6 or Norder = 8 seems to be suitable with the present
numerical algorithm. To compare quantitatively the different poly-
nomial interpolation, the limit accuracy limit in Eq. (9) is still used:
j1�Hitpj 6 5� 10�4. The accuracy domains are given in Table 1.
The range of wavenumber well resolved by the present algorithm
is thus incorporated in the one of the Lagrangian polynomial inter-
polation with Norder = 6 and Norder = 8.
3.8. Boundary conditions

3.8.1. Wall boundaries
In order to preserve low-dissipation and low-dispersion proper-

ties near the wall boundaries, non-centered finite-difference
schemes in conjunction with explicit non-centered low-pass filter
are used. For example, when the 11-point algorithm is used, the fi-
nite-difference schemes and the linear filters proposed by Berland
et al. [42] are retained. These two spatial operators are optimized
in the wavenumber space to recover the bandwidth properties of
the centered ones presented in Eqs. (4) and (7). However, the
non-centered schemes suffer from numerical stability. Therefore,
in the case of strong flow gradients near wall boundaries, explicit
centered filtering of lower order can be used optionally to ensure
the numerical stability.

In the following a wall boundary denoted C at g = cst is
considered.



(a) (b)

Fig. 6. Local error of the interpolation process with — Norder = 2, ––– Norder = 4, � � � Norder = 6 and – �– �– Norder = 8: (a) dissipation and (b) dispersion errors.

Table 1
Accuracy limit of the Lagrangian interpolations with Norder = 2,4,6 and 8.

Norder 2 4 6 8

kaDx 0.04 0.34 0.65 0.90
ka/Dx 169.81 18.48 9.59 6.94
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Inviscid flow. For an inviscid flow, the wall conditions are:

Hg ¼ 0; @nHg ¼ 0; @fHg ¼ 0 and
d
dt

Hg ¼ 0 on C ð16Þ

Thus on the wall C:

FgjC ¼
1
J

0
prg

0

0B@
1CA and @tHgjC ¼ 0

To obtain the wall pressure pjC, the momentum equation is
considered:

@t
1
J
qu

� 	
þ @n

1
J
½quHn þ prn�

� 	
þ @g

1
J
½quHg þ prg�

� 	
þ @f

1
J
½quHf þ prf�

� 	
¼ 0

with the use of the continuity equation and Eq. (2):

1
J
q @tuþHn@nuþHg@guþHf@fu
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

Jq
du
dt

þ @n
1
J

prn

� 	
þ @g

1
J

prg
� 	

þ @f
1
J

prf

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼1
J ðrn@npþrg@gpþrf@fpÞ

¼ 0

The projection following the vector rg on the wall C leads to:

�qu � drg
dt
þ ðrn@npþrg@gpþrf@fpÞ � rg ¼ 0

As the mesh is fixed (@trg = 0) and HgjC = 0, it can be written as
follows:

� qu � ðHn@nrgþHf@frgÞ þ @npðrn � rgÞ þ @gpkrgk2

þ @fpðrf � rgÞ ¼ 0

Using Eq. (16) the projection of the momentum equation is:

qrg � ðHn@nuþHf@fuÞ þ @npðrn � rgÞ þ @gpkrgk2 þ @fpðrf � rgÞ
¼ 0

Finally, the derivative of the pressure is given by:
@gpjC ¼ �
1

krgk2 @npðrn � rgÞ þ @fpðrf � rgÞ½

þqrg � ðHn@nuþHf@fuÞ� ð17Þ

Viscous flow. For a viscous flow, the adiabatic wall conditions are:

u ¼ 0; @nu ¼ 0; @fu ¼ 0;
d
dt

u ¼ 0 and q � rg ¼ 0 on C

ð18Þ

Thus on the wall C, the inviscid fluxes are:

FnjC ¼
1
J

0
prn

0

0B@
1CA; FgjC ¼

1
J

0
prg

0

0B@
1CA; FfjC ¼

1
J

0
prf

0

0B@
1CA:

and the viscous fluxes

Fm
n jC ¼

1
J

0
Vn

�q � rn

0B@
1CA; Fm

gjC ¼
1
J

0
Vg

0

0B@
1CA; Fm

f jC ¼
1
J

0
Vf

�q � rf

0B@
1CA:

In the same way as for the inviscid flow, the momentum equa-
tion is projected following the vector rg on the wall C. With
neglecting viscous terms in this equation, this leads to the follow-
ing derivative of the pressure:

@gpjC ¼ �
1

krgk2 ½@npðrn � rgÞ þ @fpðrf � rgÞ� ð19Þ

The value of the wall pressure is approximated as follows:

pi;0;k ¼ pi;1;k þ @gpjCDg

with the spatial derivative given by Eq. (17) or (19).

3.8.2. Non-reflective boundary conditions
Inlet and outlet boundary conditions are based on the Thomp-

son’s characteristic boundary conditions [43]. The conditions are
supposed to be locally one dimensional and inviscid. Then, the con-
vective terms in the boundary-normal direction are split into sev-
eral waves with different characteristic velocities. Finally, the
unknown incoming waves are expressed in function of known out-
going waves. The 3-D far-field radiation boundary conditions gen-
eralized by Bogey and Bailly [44] are applied on the boundaries
where only acoustic perturbations are present.

4. Numerical examples

In this section, several canonical problems are reported. These
cases involve classical problems encountered in Computational
AeroAcoustics (CAA) as well as in computational fluid dynamics
(CFD).

The conservative and shock-capturing properties of the pro-
posed algorithm are evaluated on classical 1-D shock tube and
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2-D inviscid flow with discontinuities. The interaction shock/vor-
tex is also retained to check that the non-linear shock-capturing
procedure does not damage the bandwidth properties of the spa-
tial discretization.

In addition, the use of overlapping regions can generate spuri-
ous acoustic waves as it has been observed by Desquesnes et al.
[14]. In the present paper, the influence of the polynomial order
on the accuracy of the finite-difference scheme and on the genera-
tion of spurious acoustic waves is characterized. Two numerical
test cases are retained: the convection of an inviscid vortex
through overset regions and the diffraction of a monopolar acous-
tic source by a cylinder. Finally, the realistic rod-airfoil configura-
tion including multiple solid bodies and characterized by
multiple physical scales is studied via LES.

Table 2 sums up the different properties of the proposed algo-
rithm validated by the present test cases.
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Fig. 7. Comparison between analytical and numerical solutions for the Sod’s shock tube w
exact solution, — Kim and Lee model, � � � Bogey et al. model.

Table 2
Review of the different numerical properties of the present algorithm and the test
cases associated.

Test cases Propagation Shock-capturing Overset Wall Steady

1: Sod mono � �
2: M3 step � � �
3: SVI � �
4: Vortex � �
5: Sod multi � � �
6: Diffraction � � �
7: Rod-airfoil � � �
In this section, all test cases are carried out with the 11-point FD
scheme unless it is mentioned that the 7-point FD scheme is used.

4.1. Sod’s shock tube problem

First, the classical 1-D Sod’s shock tube is considered. It is solved
using the 1-D Euler equations and the initial conditions are
(q,u,p) = (1,0,0) for x < 0 and (q,u,p) = (0.125,0,0.1) otherwise. Re-
sults are displayed in Fig. 7 with CFL = 0.5 and rf = 0.2. Only 100
cells (Dx = 1/100) are used for the computational domain
[�0.5;0.5] as in Jiang and Shu [6]. The numerical solutions ob-
tained with the Kim and Lee and the Bogey et al. dissipation model
are compared with the exact solution. The 3-shock wave is very
well represented with a minimum of diffusion. The 2-contact dis-
continuity is well located by the algorithm with a diffusive charac-
ter. Only the end of the 1-rarefaction wave is not well located. On
the pressure variable, some classical Gibbs oscillations are ob-
served upstream the position of the shock wave. The dissipation
model proposed by Bogey et al. seems to be a little more dissipa-
tive than the one of Kim and Lee. This is visible in the shock profile
and in the damping of the Gibbs oscillations. Thus, in the following,
only the dissipative flux of Kim and Lee are used for the shock-cap-
turing abilities.

4.2. Two-dimensional Mach 3 wind tunnel with a step

The second well-known test case is the Mach 3 wind tunnel
with a step studied by Woodward and Colella [45]. The problem
is initialized with a 2-D inviscid Mach 3 flow in the wind tunnel.
(b)
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ith 100 cells: (a) density; (b) zoom density variable ; (c) pressure; (d) velocity: –––
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Reflective boundary conditions are applied along the walls,
whereas the inflow and outflow conditions are applied via the
characteristics. No specific treatment is used for the singularity
at the corner of the step. The grid resolution is the same as the
one used by Woodward and Colella [45] and by Jiang and Shu
[6]: Nn � Ng = 241 � 81 grid points. Density contours with
CFL = 0.2 and rf = 0.2 are represented in Fig. 8 and compared to
the numerical solution obtained by Jiang and Shu [6] with a
fifth-order WENO scheme. The flow exhibits multiple shock reflec-
tions and interactions between different types of discontinuity. The
positions of shocks are accurately represented. Kelvin–Helmholtz
oscillations generated at the triple point are clearly visible. The res-
olution of the 7-point FD scheme with the Kim and Lee model is
similar to the one of the WENO-5 scheme. The higher resolution
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Fig. 8. Inviscid 2-D Mach 3 flow past a step: density contour at t = 4: 30 contours from
scheme with Kim and Lee model; (c) numerical solution obtained with WENO-5 schem
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Fig. 9. Inviscid vortex/shock interaction, pressure iso-contours. Top pictures: 30 contou
t = 0.60. (a) 11-point FD scheme with Kim and Lee model; (b) 7-point FD scheme with K
obtained with the 11-point scheme is shown by the presence of
small classical Gibbs oscillations.

4.3. Two-dimensional shock/vortex interaction

This test case describes the interaction between a stationary
shock and an inviscid vortex [6]. The computational domain is ta-
ken to be [�1,1] � [�0.5,0.5]. A stationary Mach 1.1 shock normal
to the x-axis is located at xs = �0.5. Its left side is ðq;u;v ; pÞL ¼
ð1;1:1 ffiffifficp ;0;1Þ and its right side is obtained with the Rankine-
Hugoniot relations. A vortex is superposed to the flow and centers
at (xc,yc) = (�0.75,0). According to [6], the vortex is described as a
perturbation of the velocity (u,v), the entropy S = ln(p/qc) and the
temperature T = p/q of the base flow:
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rs from 1.02 to 1.4 at t = 0.35. Bottom pictures: 90 contours from 1.19 to 1.37 at
im and Lee model; (c) WENO-5 scheme [6].
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du ¼ �aeað1�a2Þðy� ycÞ=r

dv ¼ �aeað1�a2Þðxc � xÞ=r

dS ¼ 0
dT ¼ ð1� cÞ�2e2að1�a2Þ=4ac

8>>>><>>>>: with

a ¼ r=rc

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

rc ¼ 0:05
� ¼ 0:3
a ¼ 0:204

8>>>>>>><>>>>>>>:

The computation is performed with an uniform grid of

251 � 101 points as used by Jiang and Shu [6] and with CFL = 0.9
and rf = 0.2. The upper and lower boundaries are set to be reflec-
tive. The results plotted in Figs. 9 and 10 are in good agreement
with the ones obtained by Jiang and Shu [6] with a fifth-order
WENO scheme. In particular, the phenomenon of the curved shock
at t = 0.35, an accurate vortex/shock resolution at t = 0.60 and the
reflections near the borders at t = 0.8 are retrieved. Some Gibbs
oscillations are still visible in the FD solutions especially with the
11-point FD method showing its high resolution.

4.4. Two-dimensional advection of a vortex through interpolation
zones

The vortex is defined by the initial conditions:
q ¼ 1

u ¼ M1 þ y� exp � logð2Þ
a2 ðx2 þ y2Þ

� �
v ¼ x� exp � logð2Þ

a2 ðx2 þ y2Þ
� �

p ¼ 1
c

8>>>>>><>>>>>>:

(a) (

−1 −0.5 0 0.5 1
−0.5

0

0.5

x

y

(c)

Fig. 10. Inviscid vortex/shock interaction, pressure iso-contours. Thirty contours from 1.0
scheme with Kim and Lee model; (c) WENO-5 scheme [6].

Fig. 11. Overlapping grid: (a) general view; (b) detailed
with M1 = 0.5 the freestream Mach number, � = 0.01 the vortex
strength and a = 3Dx the Gaussian half width. The computational
domain composed by three uniform component grids connected
by two overlapping regions, is displayed in Fig. 11a. The left and
the right grids contain Nn � Ng = 51 � 51 points. The center grid
consists of Nn � Ng = 51 � 52 points and is shifted by half a grid size
length in x-direction such as displayed in Fig. 11b. This avoids inter-
polation points to coincide with grid points in the zone of the pas-
sage of the vortex travel. The radiation boundary conditions are
applied to all boundaries. Five simulations are done with varying
interpolation order ranging from 2 to 10 with CFL = 0.25 to avoid
temporal errors. The simulations are carried out for 800 iterations,
the time required to translate the vortex 100Dx and to ensure the
transit through the two overlapping regions.

Fig. 12 displays a sequence of the instantaneous pressure field
when the vortex meets the first overlap region using Lagrangian
polynomials of order Norder = 2,6 and 10. The acoustic wave just
leaving the computational domain at the first and second instant
is due to an adaptation of the pressure field to the velocity field
at the beginning of the simulation. Using the second-order interpo-
lation, strong acoustic disturbances are generated and contaminate
the solution. Those parasite waves are significantly reduced when
using sixth-order Lagrangian polynomials and disappear with a
tenth-order interpolation. This non-linear numerical example sup-
ports the previous linear analysis.

To quantify the generation of spurious acoustic perturbations,
the time evolution of the L2 norm of the residual pressure in the
left grid is studied:
b)
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2 to 1.4 at t = 0.80. (a) 11-Point FD scheme with Kim and Lee model; (b) 7-point FD

view of the center of an overlapping region (y = 0).
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Fig. 12. Iso-contours of the instantaneous pressure field computed in the left grid during the passage of the vortex through the overlapping region using Lagrangian
polynomials of order: (a) Norder = 2; (b) Norder = 6 and (c) Norder = 10.
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Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NnNg

XNn ;Ng

i;j
p02i;j

s
:

This residual obtained with the overset-grid approach is com-
pared to the reference single-block computation in Fig. 13. The
peak observed during the first 200 iterations for all setups is
associated to the transitional pressure pulse. The decrease of the
residual pressure, indicates that this pressure pulse leaves the
computational domain without any spurious reflections. When
the vortex hits the overlapping zone (Nit = 200), the residual pres-
sure obtained with second-order polynomials shows a significant
increase and confirms the generation of acoustic waves observed
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Fig. 13. (a) Time evolution of the residual pressure Rp in the left grid. (b) Detailed view o
solution obtained with overset grids using different interpolation orders + Norder = 2, � N
in Fig. 12a. Using fourth-order polynomials the reflections are only
visible in a zoom on the last 600 iterations given in Fig. 13b. For or-
ders higher than 6 the residual pressure evolves like in the single
block computation and the reflections are negligible.

Finally, to quantify the error on the aerodynamic field, the L2

norm of the difference between the exact and the computational
swirl velocity when the vortex has reached its final position at
x = 100 Dx is considered. The error is computed along the x-axis
at y = 0 such as:

Lv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nn

XNn

i
v ij2y¼0

s
:
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n the residual pressure; — Rp of the single-block computation (reference solution);
order = 4, h Norder = 6, 4 Norder = 8, 5 Norder = 10.
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Fig. 14. L2 norm of the error of the swirl velocity normalized by the L2 norm
obtained for the computation on a single block.
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The Lv values normalized by the single-block result are plotted
in Fig. 14. It reveals that for polynomial orders higher than 6 the
accuracy of the numerical algorithm is only governed by the spatial
and temporal errors: the interpolation error becomes negligible. In
order to reduce the effort in CPU and storage, the order of interpo-
lation polynomials is limited to eighth-order for 2-D problems and
to sixth-order for 3-D problems in the present work. When using
the 7-point scheme for complex geometries, the fourth-order inter-
polation is chosen in the aim of reducing CPU costs and taking into
account an accuracy balance between the numerical schemes and
the interpolation procedure.

4.5. One-dimensional shock tube with two-dimensional overlapping
grids

As the interpolation procedure does not ensure the conservative
property of the global algorithm, it is necessary to evaluate the
damage caused by this process on the computation by revisiting
for instance the Sod’s shock tube computed previously on a single
block. Consider now the 2-D computational domain: [�0.5;0.5] �
[�0.25;0.25], composed by two Cartesian component grids plotted
in Fig. 15. One of the two grids is completely embedded in the
other one. The grid size Dx = Dy = 1/100 is the same for the two
grids and corresponds to the one used in the single-block compu-
tation. As in the previous Section, the center grid is shifted by half a
grid size in the two directions. In addition, to assess the influence
of the interpolation procedure, Lagrangian polynomials of order
Norder = 2,4,6,8 and 10 are used. The numerical solutions are seen
at y = �0.15 in the lower overlapping zone and are compared to
the numerical results obtained with only one Cartesian domain.
Multi-block solutions with Norder = 2 and Norder = 8 are compared
to the single-block solution in Fig. 16. The interpolation procedure
slightly modifies the waves speed and generates spurious oscilla-
Fig. 15. Computation of the Sod’s shock-tube with overlapping grids: (a) general view of
region.
tions. Increasing the order of Lagrangian polynomials damps the
magnitude of these oscillations.

4.6. Diffraction of monopolar acoustic source by a cylinder

This test case is issued from the second CAA workshop [46] and
serves to check if sixth-order Lagrangian polynomials are sufficient
to recover the accuracy of the high-order finite-difference scheme
when only acoustic perturbations are involved. The numerical set-
up is represented in Fig. 17. The 2-D Euler equations are solved in
non-dimensional form. A Gaussian shaped source is placed at
(xs,ys) = (4,0):

S ¼ � sinðxtÞ exp lnð2Þ ðx� xsÞ2 þ ðy� ysÞ
2

b2

" #
;

where the angular frequency is given by x = 8p and the Gaussian
half-width by b = 0.2. Originally the test case proposes to solve
the linearized Euler equations. For the non-linear Euler equations,
a sufficiently small source strength � (� = 1 � 10�6 in the present
work) has to be introduced, in order to avoid non-linear effects.
For initial conditions air at rest at the pressure p0 = 1/c and with
the density q0 = 1 is taken. The wave length associated to the source
is k = c0/4 = 0.25. Note that the source is non compact since the
wave length is of the same order as the source size.

A first simulation is done using a single cylindrical grid which
contains Nr � Nh = 781 � 751 = 5.9 � 105 grid points spaced uni-
formly in r- and h-direction. The number of points in the azimuthal
direction Nh is chosen to ensure a wave to be resolved by seven
points at r/d = 7.5. The number of points in radial direction Nr is ta-
ken to respect a ratio Dr/Dh = 1.5 at the cylinder wall. The directiv-
ity given by:

Dðh; rÞ ¼ r
1
T

Z T

p0ðh; rÞ2 dt

is computed on a arc with r/d = 7.5 and p/2 6 h 6 p and is compared
to the analytical solution of the problem. The computed and analyt-
ical curves compare well in Fig. 18 showing a good agreement.

Fig. 19a shows the simulated fluctuating pressure field. The
acoustic waves coming from the non-compact source generate a
diffraction field. A silent zone behind the cylinder can be observed.

In a second simulation the same test case will be done using the
overset-grid approach. The overset grid is composed of two grids:
one cylindrical grid and one uniform grid. The uniform one is gen-
erated to resolve acoustic wave with seven points per wave length
Dx = Dy = k/7 = 1/28 and is extended �10 6 x, y 6 10. The cylindri-
cal grid is spaced uniformly in azimuthal and radial direction and is
limited by the outer radius ra/d = 1.5. In the radial direction the grid
length is chosen to be k/13 and the number of grid points in
azimuthal direction is taken to ensure that the aspect ratio of the
the computational domain with the two grids; (b) detailed view of the overlapping
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Fig. 16. Computation of the Sod’s shock-tube with overlapping grids: (a) density; (b) pressure; (c) velocity; (d) zoom velocity variable: ––– single-block computation, —
multi-block computation with Norder = 8, � � � multi-block computation with Norder = 2.

Fig. 17. Configuration for the diffraction test case: the time harmonic monopolar
source is placed at point S. The directivity D(h) will be measured on a arc at r/d = 7.5,
p/2 6h 6 p.
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Fig. 18. Directivity D(h) = rhp02i at r/d = 7.5: — computed solution; ––– analytical
solution.
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radial and azimuthal grid spacing is D r/Dh � 1.1. The overset grid
contains 3.2 � 105 grid points, 45% less grid points than used for
the single-block computation.

Fig. 19b shows the fluctuating pressure field for the overset grid
using sixth-order interpolation polynomials. Even in the near cyl-
inder region, the diffracted field is very similar to the reference sin-
gle-block computation. The acoustic waves propagate through the
overlapping region without generating spurious reflections. In
Fig. 20, the quantity D(h,r) along a line defined by h = p/2 and
0.5 6 r/d 6 10 is compared with the analytical solution for the
interpolation order of 2 and 6. Using second-order polynomials
leads to large discrepancies in the near cylinder region. For higher
orders than six, the error made by the interpolation procedure
tends to zero.

In this Section, the overset-grid approach has been successfully
applied and the results compare very well with the analytical solu-
tion. The test case reveals that sixth-order Lagrangian polynomials
are sufficient when acoustic perturbations are involved in order to
maintain the global accuracy of the optimized 11-point finite-dif-
ference scheme.
4.7. Sound radiated by a rod-airfoil configuration

Rod-airfoil configurations are believed to be a benchmark well-
suited for numerical modeling of sound generation processes in
turbomachines [47]. As shown in Fig. 21, the impingement of the
vortical structures in the wake of the cylinder on the leading edge
of the airfoil generates sound sources. Several attempts have al-
ready been made to investigate rod-airfoil flow configurations by



Fig. 19. Diffraction of a non-compact source by a cylinder: pressure fluctuations field (color scales 610�10 Pa): (a) obtained by the single-block computation; (b) obtained
using overset-grid approach and sixth-order interpolation polynomials. The solid line presents the boundary of the cylindrical grid.
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Fig. 20. Directivity D(h,r) at 0.5 6 r/d 6 10 and h = p/2 for different order of interpolation: (a) second-order (b) sixth-order; computed solution; + analytical solution.
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means of numerical simulations via hybrid approaches [48,49]. The
direct noise calculation of this phenomena via LES is investigated
in the present section.

The calculation aims at reproducing the features of the aerody-
namic and acoustic measurements performed by Jacob et al. [47].
The flow configuration is a symmetric NACA0012 airfoil located
one chord downstream a rod, whose wake contains both tonal
and broadband fluctuations. The airfoil chord is equal to
ch = 0.1 m and the rod diameter d is taken to be a tenth of the chord
length. The free-stream Mach number M1 is 0.2 so that the
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Fig. 21. Sketch of the sound generated by an airfoil interacting with the wake of a
rod, placed in an uniform flow with a free-stream Mach number M1.
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Reynolds numbers based on the chord length and the rod diameter
are respectively given by Rech

¼ 5� 105 and Red = 5 � 104. A partial
view of the overset grids used for this calculation is given in Fig. 22.

As an illustration, an instantaneous snapshot of the magnitude
of the velocity field, taken in the central plane of the computational
domain, is presented in Fig. 23. It is seen that turbulence ignition is
achieved by the rod. In particular, large scale organized structures
are observed in its wake and correspond to periodic vortex shed-
ding. Smaller turbulent scales are furthermore visible. An overview
of the radiated acoustic field is in addition proposed in Fig. 23,
where a snapshot of the pressure fluctuations in the central plane
is plotted. A tonal noise component, associated with the periodic
Fig. 22. 3-D view of the overset grids for the rod-airfoil configuration
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Fig. 23. (a) Snapshot of the unsteady spanwise velocity field in the central plane of the c
represent solid bodies. (b) Snapshot of the pressure fluctuations obtained in the far-fiel
to + 50 Pa (red). The dashed area represents the flow region represented on the left.
impingement of the rod wake on the airfoil, is clearly visible on
either side of the rod-airfoil setup.

Numerical results are now compared to the experience of Jacob
et al. [47] to assess the present LES. First, it should be noted that
the authors pointed out that during their experiments the rod
and the airfoil were not perfectly aligned. Thus, discrepancies can
be expected between numerics and experience. Nonetheless, the
measurements of Jacob et al. [47] are considered as references.
Comparison concern both aerodynamic and aeroacoustic data.

The mean streamwise velocity �u=U1 and the turbulent intensityffiffiffiffiffiffiffiffi
u0u0
p

=U1 are represented in Fig. 25 as a function of the transverse
coordinate y/ch. Three streamwise locations, as shown in Fig. 24,
referred to as section [A] (x/ch = �0.255), section [B] (x/ch = 0.25)
and section [C] (x/ch = 1.1) are plotted. Downstream the rod (sec-
tion [A]), a good collapse between the computed mean flow value
and its experimental reference is obtained. The computation over-
estimates the turbulent activity in the center of the wake but the
overall agreement is good and few discrepancies can be seen. Fur-
ther downstream, above the profile (section [B]), there is a fair
agreement between the numerical and the experimental data.
The calculation turns out to overestimate the streamwise mean
flow and the turbulent intensity but the overall amplitude is none-
theless well predicted. Finally, the mean streamwise velocity and
turbulence activity in the wake of the airfoil (section [C]), are also
consistent with the experiments. Discrepancies are rather large for
y/ch > 0 but a very good collapse is visible for y/ch < 0. Remind that
. Only component grids of the aerodynamic region are displayed.
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omputational domain. Colorscale from �0.2U1 (blue) to +0.2U1 (red). Gray surfaces
d, in the central plane of the computational domain. Colorscale from �50 Pa (blue)



Fig. 24. Sketch of the locations for the measurements of pressure and velocities.
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Fig. 26. Power spectral density of the pressure perturbations measured in the far-
field for an observer normal to the flow at a distance R = 18.5ch from the airfoil
leading edge. The present LES results (black plot) are compared to the data provided
by the experiments of Jacob et al. [47] (gray plot). The dotted line indicates the
expected Strouhal number St = 0.19 of the vortex-shedding frequency behind the
cylinder. The dashed line represents the mesh cut-off Strouhal number St = 1.39 in
the far-field grid.
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the experimental setup is not symmetric so that the hot-wire mea-
surements are consequently not symmetric too.

The power spectral density (PSD) of the far-field pressure fluc-
tuations at the location (x/ch,y/ch) = (0,18.5) is provided in
Fig. 25. (a–c) Mean streamwise velocity �u=U1 as a function of the transverse position y
transverse position y/ch, for various streamwise locations. —, present LES; � � ��� � �, experi
Fig. 26 as a function of the Strouhal number St = fd/U1 based on
the cylinder diameter. A good collapse between numerical and
experimental results is observed even though the half-width of
the peak is overestimated. This trend is likely to be due to the
/ch, and (d–f), mean streamwise turbulent intensity
ffiffiffiffiffiffiffiffi
u0u0
p

=U1 as a function of the
mental data [47].



Table A.3
Coefficients of the FD schemes and of the low-pass filters: (a) 11-point coefficients
proposed by Bogey and Bailly [10]; (b) standard 7-point coefficients.

(a)
s0 0.0 d0 0.2150448841109084
s1 0.872756993962667 d1 �0.1877728835894673
s2 �0.286511173973333 d2 0.1237559487873421
s3 0.090320001280000 d3 �0.0592275755757438
s4 �0.020779405824000 d4 0.0187216091572037
s5 0.002484594688000 d5 �0.0029995408347887

(b)
s0 0.0 d0 5/16
s1 3/4 d1 �15/64
s2 �3/20 d2 3/32
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discrepancies between the length of the signals of the simulation
and of the experiments. Numerical calculation indeed provide rel-
atively short time-resolved data. Nonetheless, as expected, the cal-
culated spectrum exhibit a strong tonal component at the vortex
shedding frequency and the predicted Strouhal number shows a
very good agreement with the reference data. In addition the pres-
sure level radiated by the harmonic peak is well reproduced. The
gap between the simulation and the experiments remains small,
about 4 dB.

More details can be found in [50]. In addition, a detailed analy-
sis of the influence of the distance between the rod and the airfoil
on the flow and the acoustic field can be found in [51].
s3 1/60 d3 �1/64

Table A.4
(a) Standard RK4 coefficients; (b) coefficients
of the optimized second-order filter proposed
by Bogey et al. [38].

(a)
a1 1/4
a2 1/3
a3 1/2
a4 1

(b)
c1 �0.210383
c2 0.039617
5. Conclusion and future plans

A numerical method has been described for performing com-
pressible LES in CAA applications. The algorithm is based on a
high-order explicit finite-difference scheme in conjunction with a
spatial low-pass filter. Non-linear filters are used to capture dis-
continuities in compressible flows. In order to address complex
geometrical configurations, overlapping grids are used and the
communications between domains are performed via high-order
Lagrangian interpolation. The validation procedure has illustrated
the ability of the algorithm to capture discontinuities without
damaging its spectral behavior. The high-order overset-grid tech-
nique has preserved the algorithm accuracy on both classical
CFD and CAA applications. Moreover, comprehensive studies can
be performed, as shown by the rod-airfoil configuration, which
can help understanding the flow physics of sound generation pro-
cesses in turbulent flows. The present numerical approach appears
to provide a robust and accurate tool for performing LES of realistic
compressible flows for CAA applications.

A detailed validation procedure is in progress to check the accu-
racy of the present algorithm for moving grids. To address fluid/
structure interaction, the coupling between flow patterns and
structure dynamics will be studied with the aim of preserving
the high-order accuracy of the present solver. The choice of the
time integration method is also to be considered. In an explicit
method as used in this work, the time step is imposed by stability
constraints. However, the time step needed to respect the physical
time scales of the turbulent flow may be larger. This is the case for
turbulent wall-bounded flows, for example. The use of implicit
time integration method would make it possible to circumvent
the numerical stability by using a time step only driven by the flow
physics [30,52].
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Appendix A. Scheme and filter coefficients

See Tables A.3 and A.4.

Appendix B. Finite-volume formulation of the finite-difference
scheme

In a similar way as Popescu et al. [53], a finite-difference
scheme can be recasted in a finite-volume framework. We consider
the following non-linear conservation law:

@tuþ @xf ðuÞ ¼ 0: ðB:1Þ
A finite-difference scheme can be written in the classical form:

@xf ðuÞji �
1
Dx

Xq

m¼�r

smf ðuiþmÞ:

On the other hand, a finite-volume discretization leads to:

d
dt

Z xiþ1=2

xi�1=2

uðx; tÞdxþ fiþ1=2 � fi�1=2 ¼ 0:

Thus, a finite-volume formulation of the finite-difference scheme is:Xq

m¼�r

smf ðuiþmÞ ¼ fiþ1=2 � fi�1=2;

with

fiþ1=2 ¼
Xq

m¼�rþ1

bmf ðuiþmÞ:

Finally, the finite-volume coefficient bm can be expressed using the
finite-difference ones:

bq ¼ sq

bm � bmþ1 ¼ sm � r þ 1 6 m 6 q� 1
b�r ¼ s�r

8><>:
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