
A NUMERICAL METHOD TO REMOVE THE HYDRODYNAMIC
INSTABILITY GENERATED IN TIME-DOMAIN SIMULATIONS OF

ACOUSTIC PROPAGATION IN A LINED FLOW DUCT

Yuanyuan Deng, Antoni Alomar, Didier Dragna, Marie-Annick Galland
Univ Lyon, Ecole Centrale de Lyon, INSA Lyon Université Claude Bernard Lyon I, CNRS,
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ABSTRACT

A partial gradient term suppression (GTS) method aiming
at removing hydrodynamic instabilities generated during
acoustic propagation along a lined flow duct is presented.
Time-domain simulations are conducted to assess impacts
of the partial GTS method based on the NASA Grazing
Incidence Tube (GIT) benchmark experiment. The effec-
tiveness of the partial GTS method for removing hydrody-
namic instabilities is shown. However the sound pressure
is underestimated by several dBs for certain frequencies
especially in the low Helmholtz number range. It is found
that a relatively accurate prediction of acoustic propagation
can be obtained with partially suppressing the mean flow
gradient term, in particular for high Helmholtz number.

1. INTRODUCTION

Time-domain approach is well chosen for dealing with
broadband problems. However when acoustic waves prop-
agate along the lined duct with mean flow, the arising insta-
bility issues lead to the inaccurate predictions of the acous-
tic field. Since the instability has been revealed through
many experiments, a considerable amount of research has
been conducted to the study of hydrodynamic instabilities.
Various numerical techniques to remove or at least atten-
uate instabilities related with liners have been proposed.
The strategies to remove instabilities can be classified into
three classes, which are using coarse meshes and selective
filtering [1, 2], taking account of viscous effects [3, 4] and
substituting the LEE by related and stable equations [5–9]

This paper presents that the partial GTS method, orig-
inally proposed for avoiding the generation of instabilities
in shear flows, is also valid for suppressing hydrodynamic
instabilities generated during the acoustic propagation in a
lined flow duct. The paper is organized as follows. The
configuration of the model, the governing equations and
the numerical schemes are presented in Section 2. The
partial GTS method is presented in Section. 3. Finally, in
Section 4, impacts of the partial GTS method on the hydro-
dynamic instabilities and acoustic propagation are finally
discussed.
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Figure 1. Schematic view of NASA Grazing Incidence
Tube (GIT)

2. NUMERICAL MODEL

2.1 Set-up of the NASA experiments

The set-up configuration in the paper is based on the NASA
GIT test [10], which has been already considered in many
papers. The duct consists of 3 sections with dimensions of
Lx × Ly × Lz (Lx = 0.812 m, Ly = Lz = 0.0508 m).
The liner is located in the middle of the upper wall with a
length Lt = 0.406 mm as shown in Fig. 1.

The liner used is a ceramic tubular liner, referred to as
CT57. The pressure is measured by 31 microphones placed
along the lower wall. The source is harmonic, with fre-
quencies from 500 Hz to 3000 Hz, in steps of 100 Hz. It
is located at the input section of the duct. Experiments
are conducted for 5 flow speeds, with average Mach num-
bers M equal to 0, 0.079, 0.172, 0.255, 0.335 and 0.4. At
the duct exit, although the exit impedance is measured by
NASA, it will be further assumed that the termination is
anechoic. The speed of sound in air c0 is 344.283 m/s. The
density of air ρ0 is 1.29 kg/m3.

2.2 Governing equations

Acoustic propagation in the duct is governed by the lin-
earized Euler equations (LEE). Assuming the mean flow is
homentropic and neglecting the gradient of mean pressure,
the LEE can be expressed as:
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where p, u and v are the acoustic pressure and components
of the acoustic velocity along the x and z-direction, respec-
tively.
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The mean flow velocity profile is given by:

u0 (z) = M
nt + 1

nt
(1− |1− 2z|nt) , (2)

where M is the Mach number corresponding to the mean
velocity. The parameter nt specifies the flow profile and
can be related to the boundary layer thickness. The dis-
placement thickness, defined by:

δ =

∫ 1/2

0

(
1− u0(z)

u0(1/2)

)
dz, (3)

is equal to δ = 1/[2(nt + 1)].

2.3 Time-domain solver

The LEE are solved using high order finite-difference time-
domain methods. For the interior gird points, the op-
timized fourth-order finite-difference schemes of Bogey
& Bailly [11] are adopted for the calculating the spatial
derivative and the selective filters of Bogey et al. [12]
are used for filtering the grid-to grid oscillations. For
the boundary points, the non-centered finite-difference
schemes of Berland et al. [13] are employed together with
these selective filters of Berland et al. [13]. The optimized
fourth order six-stage Runge-Kutta algorithm of Berland
et al. [14] is employed for time integration. To avoid
computing the convolution integral, the admittance time-
domain boundary condition proposed in Troian et al. [15]
is used. The admittance of the liner is obtained by a fit
of the educed values provided by Jones et al. [10] for
M = 0.335. In this case, two pairs of complex-conjugate
poles are sufficient to have a good match from 500 Hz up
to 3 kHz.

The source term Q in Eq. (1a) is chosen as

Q (x, z, t) = λ(t) exp

(
−x

2 + (z − Lz/2)
2

B2
s

ln 2

)
. (4)

The Gaussian half-width of the source Bs is set to 5.3 ×
10−3 m. An impulsive source is centered at xs = 5 ×
10−2 m. λ(t) is defined as:

λ(t) =
t− ts
tc

exp

(
− (t− ts)2

t2c
ln 2

)
H(t) (5)

where ts = 8× 10−4 s and tc = 1.4× 10−4 s respectively
stand for a time shift and a parameter determining the fre-
quency content of the source signal and H(t) is the unit
step function.

The time step is 2 × 10−6 s and the whole simulation
lasts for 2 × 10−2 s. The grid is uniform along the x-
direction with a mesh spacing ∆x = 1.1 × 10−3 m. In
both sides of the duct, damping zones are implemented to
ensure no reflection by the ends of the duct. In these zones,
the mesh spacing is gradually increased with a stretching
factor of 3 %. Along the z-direction, the mesh size is ∆z =
∆x in the middle of the duct, and it decreases gradually
towards walls with a shrinking factor of 1%.

3. GRADIENT TERM SUPPRESSION
TECHNIQUES

A natural generalization of the original GTS method is
used here to suppress the instability, consisting of a par-
tial suppression of the gradient term instead of a complete
suppression. Eq. (1b) is modified by adding a coefficient
ε in front of the term of du0/dz. Consequently, Eq. (1b)
turns to
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where ε adjusts the strength of the mean flow gradient term
and ranges from 1 to 0.

Combining Eqs. (1a), (6) and (1c) leads to the wave
equation:
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where D/Dt = ∂/∂t + u0 ∂/∂x is the material deriva-
tive. In particular, the Lilley’s equation is recovered for
ε = 1. The decrease of ε from 1 to 0 is thus equivalent to
transforming the original Lilley’s equation, which sustains
unstable modes, to a simplified form of Lilley’s equation
which appears to be inherently stable [5]. In addition, de-
creasing ε from 1 to 0 diminishes the refraction term pro-
portional to du0/dz in the original Lilley’s equation by a
factor of two. A gradual suppression of the instability is
then expected when diminishing the value of ε. It should be
noted that the effect of the partial GTS method on acoustic
propagation is mostly observed at low frequencies [5]. It is
because that with the decrease of ε, the coefficient in front

of the refraction term
du0
dz

∂2p

∂x∂z
in Eq. (7) turns to 1 + ε

while the coefficient is 2 in the original Lilly’s equation.
As a result, the influence of ε on acoustic propagation is
comparatively weak in the high frequency range.

4. RESULTS

The time series of the pressure obtained at a virtual micro-
phone located on the rigid wall at x = 0.5L are shown in
Fig. 2 for several values of ε. The successive appearance
of the initial acoustic pulse and the instability is observed.
The impact of ε is mainly on the instability component:
decreasing ε induces a delay in the emergence of the insta-
bility. For ε = 0.3 and 0 no instability appears within the
simulation time.

The resulting SPL and phase of the acoustic pressure
along the duct wall opposite to the liner are also studied
at different frequencies and for different values of ε. To
assess the effectiveness of the GTS, another quantity of in-
terest, namely the insertion loss (IL), is also compared with
the experimental results.

The NASA GIT benchmark deals with small Helmholtz
numbers (a non-dimensional frequency ω ≤ 2.8). To ex-
amine the performance of the partial GTS method for high
Helmholtz numbers, simulations are conducted for a duct
whose height H = 0.508 m is 10 times larger than the one
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Figure 2. Time series of pressure on the rigid wall at x =
0.5L for: ε = 1, ε = 0.7, ε = 0.5,

ε = 0.3 and ε = 0.

of the NASA GIT duct. These results have been obtained
already and will be presented in the presentation.

5. CONCLUSION

An analysis of the partial GTS method for suppressing hy-
drodynamic instabilities in a lined flow duct has been per-
formed. The effectiveness of this method has been shown
for removing the instabilities in time-domain simulations
based on the NASA GIT benchmark. The SPL was how-
ever underestimated by several dBs for certain frequencies.
In particular, a total suppression of the mean flow gradient
term seems too severe to accurately predict sound propaga-
tion in a lined flow duct, while a partial suppression of this
term seems to provide an acceptable prediction, especially
in the high frequency range.

Since the effectiveness of the partial GTS method has
been proved, other techniques proposed for dealing with
shear instabilities [6–9, 16] can also be considered
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