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a b s t r a c t 

The gradient term suppression (GTS) method for removing the hydrodynamic instability 

appearing in the time-domain solutions of the linearized Euler equations (LEE) along a 

lined flow duct is assessed. For this, the characterization of a convective instability in the 

time domain, with the aid of a complementary modal analysis, is first presented. The ef- 

fect of the mesh size and spatial filtering on the instability is investigated. In particular, a 

convergence of the instability in the time domain is achieved for a small enough grid size. 

The consequence of suppressing the mean flow gradient term on the modes is then inves- 

tigated. It is shown that the unstable modes are indeed removed, but also that acoustic 

modes are significantly modified, especially for low Helmholtz numbers. The GTS method 

is finally applied to the NASA grazing impedance tube benchmark. It is found that tuning 

the weight of the mean flow gradient term within the LEE can be effective for suppressing 

the instability while conserving a reasonable accuracy of the acoustic component. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

Acoustic liners are widely used in the intake or bypass of the aero-engines to attenuate the noise generated by airplanes.

To study their interaction with acoustic waves in the presence of a mean flow, time-domain approaches, based on the 

linearized Euler equations (LEE), are well-suited, as broadband results can be obtained with a single simulation [1–3] . In

addition, extension to account for nonlinear effects due to large sound pressure levels can be considered. Time-domain 

approaches are however especially sensitive to instabilities, which can contaminate the pressure field and complicate the 

extraction of the acoustic component. 

The presence of an instability over acoustic liners was first detected experimentally through the transmission coefficient 

[4–7] . The transmission coefficient became larger than 1 around the liner resonance at sufficiently high Mach numbers, im- 

plying a source of acoustic energy. The source was rightfully attributed to an instability. Optical flow measurements [8,9] led

to a full spatial characterization of the instability, and revealed its convective nature. 
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The use of the Ingard-Myers boundary condition [10,11] , which describes how acoustic perturbations interact with an 

impedance wall for a vanishingly-thin inviscid boundary layer, was the usual approach from the early numerical and theo- 

retical works on the subject. By doing so, instabilities were observed in many studies [1,12–16] . Later, Brambley [17] showed

that the Ingard-Myers boundary condition is mathematically ill-posed in the time domain because the model supports un- 

stable modes of unlimited exponential growth at arbitrarily short wavelengths. He [18] has shown later theoretically that 

accounting for a boundary layer thickness in the boundary condition (modified Ingard-Myers boundary condition) regular- 

izes the problem. Since many studies have questioned the validity of the Ingard-Myers boundary condition [19,20] , the use

of a finite boundary layer thickness has been explored to improve the modeling of the instabilities [21–26] . Detailed nu-

merical analysis with a mass-spring-damper impedance model showed that the use of a mean velocity profile instead of 

the Ingard-Myers boundary condition with a uniform flow transformed the unstable mode from absolute to convective [27] . 

However, even with a full velocity profile, absolute instabilities seems to be present in time-domain simulations for liners 

with a more realistic broadband impedance [28] . 

The thermoviscous effects [29] or turbulent dissipation through an eddy viscosity profile [30–32] are capable of atten- 

uating the instability. It can even lead the nature of instability to change from absolute to convective [29,30] . Including

turbulent dissipation, the properties of the instability appear to be close to the experimental results. More recently, numer- 

ical simulations of a channel flow with an acoustic liner using implicit large eddy simulations [33] were performed. Surface

waves with characteristics similar to the instability predicted by linear stability analysis were exhibited. However, very fine 

grids, and even tremendous computational resources for direct numerical simulations, are needed in those studies to prop- 

erly capture the instability, which is a strong disadvantage if the goal of the simulations is the computation of the acoustic

field. 

Various strategies to attenuate the instability numerically in time-domain simulations have been explored in the past. 

Since it is observed that the instability often appears in fine grids, the use of coarse grids and artificial damping has been

recommended to attain a stable simulation by some authors. In particular, the studies of Gabard and Brambley [27,34] sug-

gest that the origin of the absolute instability lies in the dispersion properties of the finite-difference schemes, and they 

proved the effectiveness of numerical filtering at the boundary to avoid spurious numerical instabilities. Marx [25] exam- 

ined the case of a convective instability in the timedomain, and assessed the impact of selective filtering and grid size. He

considers that if the instability is physical, increasing the grid size or strengthening the selective filters do not necessarily 

attenuate the instability. 

Another approach, widely used in flows reminiscent of shear instabilities, is the substitution of the underlying LEE 

by a new set of equations which are inherently stable. Among them we can mention the gradient term suppression

method (GTS) [35–39] , the acoustic perturbation equations [40] , the linearized perturbed compressible equations [41,42] , 

or the gradient term filtering method [43,44] . These methods have been applied to deal with Kelvin-Helmholtz (KH) in-

stabilities in various cases with shear flows, such as sound radiation through two-dimensional shear layers and sound 

radiation from a bypass duct [36,44] . It has been shown that most of them are similarly effective for these particular

flows [44] . 

To the authors’ knowledge, such methods have not been employed yet for the suppression of instabilities generated in 

a lined flow duct. It is worth mentioning that the mechanism for these instabilities, while related to KH instabilities, is

different. Specifically, the instabilities in a lined flow duct are related to the presence of acoustic liners and not only due

to the shear flow. Among the methods existing in the literature for KH instabilities, we have opted to restrict ourselves to

GTS in this study, as a first approach to the case of acoustic liners. However, other methods might perform similarly or even

better in certain cases, so a future comparative study would certainly be useful. 

The objective of the paper is to analyze the effectiveness of the GTS method in suppressing the hydrodynamic instability 

that appears in the time-domain simulations of acoustic propagation along a lined duct. For this, it is beforehand verified 

that the instability is not of numerical origin and is a part of the LEE solution and that its characteristics are in good

agreement with the predictions of a reference modal analysis, following Marx [25] . In particular, the impact of the grid

resolution and the amount of selective filtering on instabilities are analyzed. 

The paper is organized as follows. The configuration of the model, the governing equations and the numerical schemes 

are presented in Section 2 . An example of an instability in the time-domain approach is shown and is characterized in

Section 3 . In Section 4 , the effect of the selective filter and mesh size on the instability is assessed. Finally, in Section 5 , the

performance of the partial GTS method to suppress the instability is analyzed, and is applied on the NASA GIT benchmark

problem. 

2. Numerical models 

A two-dimensional partially lined duct, of size H × L, is considered, as shown in Fig. 1 . The acoustic liner is installed

on the upper wall, while the lower wall is rigid. A point source is fixed in the center of the duct. The source is impulsive,

unless stated otherwise. A parallel shear flow of velocity profile u 0 goes from left to right, and vanishes on the walls. ρ0 is

the mean density, and c 0 is the sound speed. The physical quantities with dimensions of length, time, velocity, and pressure

are nondimensionalized using H, H/c 0 , c 0 and ρ0 c 
2 
0 
, respectively. 
2 
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Fig. 1. Numerical configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Governing equations 

Acoustic propagation in a lined flow duct is governed by the LEE. Assuming the mean flow is homentropic and neglecting

the gradient of mean pressure, the LEE in dimensionless form are written as: 

∂ p 

∂t 
+ u 0 

∂ p 

∂x 
+ 

∂u 

∂x 
+ 

∂v 
∂z 

= Q (1a) 

∂u 

∂t 
+ u 0 

∂u 

∂x 
+ v 

d u 0 

d z 
+ 

∂ p 

∂x 
= 0 (1b) 

∂v 
∂t 

+ u 0 
∂v 
∂x 

+ 

∂ p 

∂z 
= 0 (1c) 

where p, u and v are the acoustic pressure and components of the acoustic velocity along the x and z-direction, respectively.

The mean flow velocity profile is given by: 

u 0 ( z ) = M 

n t + 1 

n t 

(
1 − | 1 − 2 z | n t ), (2) 

where M is the Mach number corresponding to the mean velocity. The parameter n t specifies the flow profile and can be

related to the boundary layer thickness. The displacement thickness, defined by: 

δ = 

∫ 1 / 2 

0 

(
1 − u 0 (z) 

u 0 ( 1 / 2 ) 

)
d z (3) 

is equal to δ = 1 / [2(n t + 1)] . Unless stated otherwise, the flow profile parameter is set to n t = 9 , corresponding to δ = 5 % .

Note the 2D velocity profile in Eq. (2) does not have an inflection point and should not support any KH instability. While not

shown for conciseness, it has been verified that the time-domain simulations in a rigid duct with this sheared flow profile

do not present any instability. 

2.2. Time-domain solver 

The LEE are solved using high order finite-difference time-domain methods. The spatial derivatives are calculated by 

optimized 4th-order finite-difference schemes over 11 points. Namely, the centered scheme of Bogey and Bailly [45] and the 

non-centered schemes of Berland et al. [46] are employed for the interior and boundary points, respectively. The optimized 

4th-order 6-stage Runge-Kutta algorithm of Berland et al. [47] is employed for time integration. The time step is �t =
0 . 0014 . 

Selective filters are used to remove grid-to-grid oscillations. For the interior points, the centered 11-point 6th-order se- 

lective filter of Bogey et al. [48] is adopted. For the boundary points, the selective filters of Berland et al. [46] are used. A

parameter, denoted by σ and referred to as the filtering strength, allows one to adjust the effect of the selective filters. It

ranges from 0 to 1, 0 meaning that no filtering is applied and 1 meaning that grid-to-grid oscillations are totally removed.

As the filtering is applied at every iteration, a filtering strength of 1 is usually not necessary and can even deteriorate longer,

well-resolved wavelengths. The default value is σ = 0 . 5 . 

The mesh is uniform in the x -direction with a size of �x = 0 . 02 . This ensures that the number of points per acoustic

wavelength λ = 2 π/ω is larger than 10 up to ω = 10 π . It can be noticed that the duct cut-off frequency in the no-flow

case corresponds to ω = π . Damping zones with a length of 20, are implemented upstream and downstream to prevent

reflections. In these zones, the mesh spacing gradually increases with a stretching factor of 3% and a Laplacian filter is
3 
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applied to add artificial dissipation [49] . Along the z-direction, the mesh size decreases gradually towards the walls with a

shrinking factor of 1% . The number of grid points along the duct height is n z , with default value 175. 

For the rigid wall, the boundary condition v (x, z = 0) = 0 is imposed. The lined wall is modelled through the impedance

boundary condition: 

p(x, z = 1 , t) = [ ̃ z ∗ v n ](x, t) , (4) 

where ∗ denotes the convolution operator, v n (x, t) = v (x, z = 1 , t) and ˜ z (t) is the impedance model in the time domain. To

avoid computing the convolution integral, the time-domain boundary condition proposed in Troian et al. [50] is employed. 

For this, the admittance in the frequency domain β( ω ) , related to the time-domain impedance model by 

β(ω) −1 = 

∫ + ∞ 

−∞ 

˜ z (t) e −i ωt dt , (5) 

is approximated by a rational function: 

β(ω) = Y ∞ 

+ 

P ∑ 

i =1 

A i 

λi + i ω 

+ 

S ∑ 

i =1 

(
B i − i C i 

αi − i βi + i ω 

+ 

B i + i C i 
αi + i βi + i ω 

)
, (6) 

where λi and αi ± i βi are respectively the real poles and complex-conjugate pole pairs of β(ω) , P and S denote their number

and Y ∞ 

, A i , B i and C i are real coefficients. For a given broadband impedance model, the admittance parameters in Eq. (6) are

determined using the vector fitting algorithm [51] in the frequency band of interest. The implementation of the time-domain 

impedance boundary condition is not further described here but interested readers can refer to Troian et al. [50] for details.

The source term Q in Eq. (1a) is chosen as 

Q ( x, z, t ) = λ(t) exp 

(
−x 2 + ( z − 0 . 5 ) 

2 

B 

2 
s 

ln 2 

)
, (7) 

where B s is the Gaussian half-width of the source, with a value of 0.104. Both impulsive and harmonic sources are used in

this study. For impulsive sources, λ(t) is defined as: 

λ(t ) = 

t − t s 

t c 
exp 

(
− ( t − t s ) 

2 

t 2 c 

ln 2 

)
H(t ) (8) 

where t s = 5 . 42 is a time shift, t c = 0 . 95 specifies the frequency content of the source signal and H(t) is the Heaviside

function. In the case of a harmonic source, λ(t) is defined as: 

λ(t) = exp ( i ωt ) H(t) (9) 

with ω the angular frequency. A complex-valued harmonic source is chosen for an easier extraction of instability charac- 

teristics. It can be noticed that acoustic pressure and velocity fields in the time-domain numerical simulations are also 

complex-valued when this harmonic source is employed. 

2.3. Modal analysis approach 

A modal analysis is also performed to determine the stability properties of the lined section, from which the wavenum-

bers and the mode shapes of all modes can be determined, including the unstable modes. Monochromatic waves propagating 

in an infinite, homogeneous duct are considered: 

u = U ( z ) e i ( ωt−kx ) , 

v = V ( z ) e i ( ωt−kx ) , 

p = P ( z ) e i ( ωt−kx ) , 

(10) 

where U, V and P are the mode shapes, which depend only on z, and k is the mode wavenumber. Note that ω and k can

be complex-valued. 

In order to obtain this information, the next step is to introduce Eq. (10) into Eqs. (1) to obtain an eigenvalue problem.

The eigenvalue problem is not directly formulated using the physical variables; instead, the characteristic variables, i.e., U, 

P − V and P + V, are used. Specifically, P − V and P + V are the characteristic waves travelling along the −z and + z-direction,

respectively. The motivation for using the characteristic variables is described below. The discretization of the LEE on a grid 

with N points leads to a system of 3 N equations for 3 N unknowns. The boundary conditions however bring two additional 

equations. In order to avoid having an overdetermined system, it is thus necessary to choose two equations to eliminate, 

which is not trivial and somewhat arbitrary. The characteristic variables allow for a suitable choice (see Appendix A). 

Doing so, the LEE in the frequency domain are written as: ⎛ 

⎜ ⎝ 

1 

−1 
2i ω 

d u 0 
d z 

1 
2i ω 

d u 0 
d z 

0 1 − 1 
i ω 

d 
d z 

0 

0 0 1 + 

1 d 

⎞ 

⎟ ⎠ 

⎛ 

⎝ 

U 

P − V 

P + V 

⎞ 

⎠ = 

k 

ω 

⎛ 

⎝ 

u 0 
1 
2 

1 
2 

1 u 0 0 

1 0 u 0 

⎞ 

⎠ 

( 

U 

P − V 

P + V 

) 

. (11) 
i ω d z 
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This matrix system has to be completed with appropriate boundary conditions. On the rigid wall, the boundary condition 

becomes [ P + V ](z = 0) = [ P − V ](z = 0) . On the lined wall, the impedance boundary condition is written as: 

[ P − V ](z = 1) = 

1 − β

1 + β
[ P + V ](z = 1) (12) 

Note that the admittance in Eq. (12) depends on the frequency. In the stability analysis performed in Section 3 , the frequency

can be complex-valued and the admittance has to be calculated accordingly. To be noticed, admittance models given by a 

rational function in Eq. (6) are used in the paper. 

The eigenvalue problem in Eq. (11) is solved numerically. The spatial derivatives are discretized using the Chebyshev 

spectral method [52] , which is able to generate smaller numerical errors than finite-difference schemes for a given number 

of grid points. The gradient of the mean flow d u 0 / d z is also calculated numerically using the Chebyshev spectral method. 

The default value of the number of grid points N used in the modal analysis is 150. The discretized LEE are then recast into

a generalized eigenvalue problem, which is solved by the \ verb|eig| function of MATLAB . Details on the discretization and on

the implementation of boundary conditions are provided in Appendix A . 

3. Stability analysis 

As described in the previous section, both methods will be applied to study hydrodynamic instabilities. The occurrence 

of a hydrodynamic instability depends on the characteristics of the liner, the mean flow profile and the source frequency. 

Two cases with Mach numbers of M = 0 . 1 and M = 0 . 3 are considered. The corresponding flow profiles are shown in Fig. 2 .

For simplicity, a mass-spring-damper (MSD) liner is used, with impedance 

Z ( ω ) = R + i ωm + 

K 

i ω 

, (13) 

where R, m and K are respectively the damping, mass and spring stiffness. The impedance spectrum of the liner used in

our case is shown in Fig. 3 , with R = 0 . 2 , m = 5 . 4 × 10 −3 and K = 0 . 
Fig. 2. Mean flow profile for: M = 0 . 1 and M = 0 . 3 . 

Fig. 3. Impedance of the MSD liner. 

5 
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Fig. 4. Pressure response ln | p ( x, z = 1 , t ) | t o an impulsiv e sour ce on the lined wall for (a) M = 0 . 1 and (b) M = 0 . 3 . The source position is indicated by the 

vertical dashed line. 

 

 

 

 

 

 

 

 

3.1. Example of time-domain simulation 

Time-domain simulations are first performed using an impulsive source to illustrate the acoustic propagation along the 

lined duct. Fig. 4 shows the pressure response varying with time and position along the x -axis on the lined wall. For M = 0 . 1 ,

two branches originating from t = t s are observed, corresponding to upstream and downstream propagating waves. These 

acoustic waves are attenuated along the lined wall. After t ≈ 18 , they have left the computational domain and the remaining

fluctuating pressure is almost null. For M = 0 . 3 , these two branches are retrieved. Their orientation is modified due to the

difference in the Mach number. Another contribution is however observed in the downstream direction. Its magnitude and 

its spatial extent increase as it propagates away from the source, indicating it is an instability. Moreover, since the pressure

response is given as a function of the distance and time, the velocity of acoustic waves and instabilities can be deduced

from the slopes of the different branches. It can then be estimated that the propagation velocity of the instability is smaller

than that of the acoustic waves. 

3.2. Characterization of the instability from modal analysis 

This section aims at correlating the instability observed in the time-domain simulations with the modal analysis. There- 

fore, a harmonic source is imposed on both approaches. For predicting the response to a harmonic excitation, a spatial 

stability analysis is performed: the frequency is real-valued and the mode wavenumbers can be complex. Fig. 5 displays 

the wavenumbers of all modes at ω = 0 . 9271 for both M = 0 . 1 and M = 0 . 3 . This particular frequency is chosen because

it corresponds to a dimensional frequency f = 10 0 0 Hz for the benchmark data of the NASA GIT duct (sound speed
Fig. 5. Wavenumber obtained from modal analysis for ω = 0 . 9271 and for (a) M = 0 . 1 and (b) M = 0 . 3 . The encircled wavenumber indicates a possible 

unstable hydrodynamic mode. 

6 
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Fig. 6. Growth rate of the unstable mode for a real wavenumber and for M = 0 . 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 0 = 344 . 28 m s −1 and duct height H = 0 . 0508 m), which is considered in Section 5.3 . It is also close to the frequency

ω = 0 . 8344 where the maximal spatial growth rate is observed (not shown). For M = 0 . 1 , there is no mode in the upper-

right complex k -plane and therefore no possible instability. For M = 0 . 3 , the wavenumber of one mode ( k = 6 . 78 + 1 . 97i )

has both positive real and imaginary parts. This is possibly an unstable mode, and its stability depends on the propaga-

tion direction. If the mode is an upstream decaying mode, the propagation is stable. On the other hand, if it propagates

in the downstream direction, it corresponds to an instability. The propagation direction of this mode therefore needs to be 

determined. 

In Fig. 5 , noticeable modes other than the acoustic modes and the instability are convected modes which satisfy the

dispersion relation ku 0 ( z ) = ω. For a sheared mean flow, they come as a continuous spectrum, located in the k -plane along

the horizontal half-line starting at k = ω/ max (u 0 ) . In solving numerically the eigenvalue problem, this continuous spectrum

turns into individual modes, which are greatly dependent on the discretization. In particular, the wavenumbers of these 

modes may have small positive imaginary parts and thus be weakly unstable. As shown in the study of Brambley et al. [53] ,

the contributions of the continuous spectrum are negligible when the point source is located at the duct centerline, where 

the mean flow is relatively unsheared. Note that the use of selective filters, as employed in the time-domain simulations, 

tends to move the convected modes towards the lower right quadrant of the k -plane [25] and thus to make all these modes

stable. As we are primarily interested in the instability, no specific method is employed to have an accurate prediction of

convective modes. Such a method has been for instance described in Vilenski and Rienstra [54] . 

The Briggs-Bers criterion [55,56] is used to determine the propagation direction of the modes, and, if an unstable mode 

is present, whether it is convective or absolute. This criterion has been introduced to study the plasma instability and has

been later considered for the stability analysis of acoustic propagation in a lined flow duct [17] . However, before using

the Briggs-Bers criterion, it must be checked that it is applicable. For instance, as discussed by Brambley [17] , the acoustic

propagation in a lined duct with a plug flow and the Myers impedance boundary condition is mathematically ill-posed, 

implying that Briggs-Bers criterion can not be used. In order to apply the Briggs-Bers criterion, one must first check that

the growth rates of all modes, and in particular the unstable modes, are bounded. To do so, a temporal stability analysis

is conducted. The wavenumber here remains real, and the frequency ω, possibly complex-valued, satisfying the dispersion 

relation is sought. If for a particular value of the wavenumber, one has Im (ω) < 0 , the system is then unstable. Fig. 6 shows

the growth rate of the possible unstable mode for M = 0 . 3 as a function of Re (ω) . It is observed that the growth rate is

bounded at Im ( ω ) ≈ −0 . 23 , meaning that the instability will not be amplified at an arbitrarily large growth rate for any

given real frequency. The Briggs-Bers criterion can thus be applied in this case. 

To determinate if a possible unstable mode is an instability, the trajectory of its wavenumber in the complex k -plane

is recorded as ω = Re ( ω ) + i Im ( ω ) is varied. More specifically, Re ( ω ) is fixed while Im ( ω ) is varied from −∞ to 0. Fig. 7

shows this process for Re ( ω ) = 0 . 9271 , while the imaginary part Im ( ω ) goes from −1 . 4 to 0. The wavenumber of the pos-

sible unstable mode crosses the real k -axis from the lower k -plane when Im ( ω ) is approaching 0. The crossing of the real

k -axis from the lower half k -plane indicates that this mode is indeed a downstream propagating mode and is thus an insta-

bility. 

In addition, in order to discard the existence of an absolute instability, it should be verified, that the trajectories of

the wavenumbers in the k -plane for any Re ( ω ) do not show any saddle point, which corresponds to merging roots of k

from different halves of the k -plane. This has been carefully checked on a large range of values of Re ( ω ) . To sum up, for

ω = 0 . 9271 , there is only one hydrodynamic instability, and it is a convective instability. 

3.3. Characterization of the instability from time-domain simulation 

3.3.1. Instability type 

The type of the instability observed in the time-domain simulations can also be investigated by considering acoustic 

propagation driven by a harmonic source with ω = 0 . 9271 . The logarithm of | p| on the lined wall z = 1 varying with t and
7 
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Fig. 7. Trajectories of the wavenumbers for Re ( ω ) = 0 . 9271 as Im ( ω ) varies from -1.4 to 0. The arrow indicates the direction of increasing Im ( ω ) . 

Fig. 8. Pressure response ln | p ( x, z = 1 , t ) | t o a harmonic source at ω = 0 . 9271 obtained from the time-domain simulation for M = 0 . 3 . The source position 

is indicated by the vertical dashed line. 

 

 

 

 

 

 

 

x is shown in Fig. 8 . With a harmonic source, the response of pressure has a constant value at x = 0 . The attenuation by

the liner can be noticed along the upstream direction, and the hydrodynamic instability is observed in the downstream 

direction. Once a steady-state is attained, the magnitude of the instability at a given location is not increasing over time. It

thus appears that the instability observed in the time-domain simulation is also a convective one. 

3.3.2. Wavenumber 

If the instability is convective and is the main contribution to the pressure field, the fluctuating pressure will have the

form: 

p ( x, z, t ) = P HI ( z ) e 
i ωt e −iRe ( k HI ) x e Im ( k HI ) x , (14) 

where P HI is the mode shape of the instability and k HI is its wavenumber. 

In this case, the phase of the complex pressure, denoted by arg is given by: 

arg [ p ( x, z, t ) ] = −Re ( k HI ) x + ωt + arg [ P HI ( z ) ] . (15) 

The real part of the instability wavenumber can then be estimated from the time-domain solution through the axial evo- 

lution of the phase for the complex pressure. Fig. 9 shows arg (p) along the liner ( z = 1 ) at t = 90 , for which it has been

checked that the instability is well developed. The phase has been unwrapped to ensure that arg (p) is continuous. The 

estimated slope for 2 ≤ x ≤ 6 of the phase is −6 . 89 , which is very close to the prediction of modal analysis Re (k HI ) = 6 . 78 . 

Similarly, the growth rate of the convective instability Im ( k HI ) in Eq. (14) can be calculated from the logarithm of 

| p(x, z, t) | : 
ln | p ( x, z, t ) | = Im ( k HI ) x + ln | P HI ( z ) | . (16) 

A snapshot of ln | p| at t = 90 from the time-domain simulation is depicted in Fig. 10 (a). The instability is seen growing

from the source at the vicinity of the liner. Fig. 10 (b) shows the spatial variation of ln | p(x, z = 1 , t = 90) | . A linear growth

is observed downstream, where the instability is the dominant contribution to the pressure field. The estimated slope for 

2 ≤ x ≤ 6 is 1.99, which is again in close agreement with the spatial growth rate predicted by modal analysis Im ( k ) = 1 . 97 .
HI 
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Fig. 9. Comparison of the phase of the pressure on the lined wall from the time-domain solution at t = 90 and from the analytical solution in 

Eq. (15) ( arg (p) ∝ −6 . 78 x ) . 

Fig. 10. (a) Snapshot of ln | p| at t = 90 and (b) comparison of the amplitude of the pressure on the lined wall from the time-domain solution and 

from the analytical solution in Eq. (16) ( ln | p| ∝ 1 . 97 x ) . 

 

 

 

 

 

 

 

Another example for a different frequency ω = 0 . 4636 can be found in Appendix B . This shows the viability of the time-

domain method in simulating the instability. 

3.3.3. Mode shapes 

The mode shapes P, U and V of the instability determined from modal analysis are compared with the vertical profiles 

of p, u and v calculated from the time-domain solution in Fig. 11 . The results of the time-domain solution correspond to

the section x = 4 at t = 90 , for which it has been checked that the solution is not changing after additional time iterations.

When the time-domain solution is in a steady-state, the vertical profiles of p, u and v should hold similar shapes regardless

of x -position and time iteration. For comparison, the mode shapes of the instability and the vertical profiles of p, u and v
are normalized by the maximum of the pressure modulus. The peaks of the amplitudes are observed near the lined wall.

Then they gradually decrease to a small value on the rigid wall. The match between modal analysis and the time-domain
solution is remarkable. 

Fig. 11. Comparison of the mode shape of the instability for (a) U ( z ) , (b) V ( z ) and (c) P ( z ) determined from the time-domain solution at x = 4 

and t = 90 and calculated by modal analysis. 
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Fig. 12. (a) Real and (b) imaginary parts of the instability wavenumber estimated from the time-domain solution as a function of the filtering strength 

σ and predicted by modal analysis. The grey region indicates unstable simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

4. Convergence of instability 

Previous studies on the same topic, i.e., instabilities appearing during sound propagation in a lined flow duct, have in- 

vestigated the impact of spatial filters and grid resolution on the instabilities. It was concluded that selective filtering is 

effective to remove or partly remove the instability [3,34] and that the use of fine grids can reinforce the instability [2,27] ,

in particular when using the Myers impedance boundary condition instead of resolving the boundary layer as done here. 

Therefore, the effects of both factors on the hydrodynamic instabilities are studied. 

4.1. Effect of the filtering strength 

In the time-domain simulations, a selective filter of strength σ is applied on the whole domain to remove the grid-to- 

grid oscillations. In the previous sections, σ was set to 0.5. Simulations are now performed with different values of σ in 

order to study how the properties of the hydrodynamic instability are modified. 

Fig. 12 shows the real and imaginary parts of the instability wavenumber obtained with the time-domain solutions as a 

function of σ . The results are compared with the reference wavenumber obtained by modal analysis. When the strength of 

selective filter is between 0.7 and 1, the strong dissipation of the selective filter results in a noticeable deviation between

the reference result and the time-domain prediction. In particular, the growth rate of the instability is overestimated. As 

σ decreases, Re( k HI ) and Im( k HI ) start to approach the reference wavenumber. The value of σ does not make a significant 

difference to Re( k HI ) and Im( k HI ), when it is in the range between 0.2 and 0.5. For σ below 0.2, spurious numerical waves

with a short wavelength are rapidly growing near the duct walls and the simulations become unstable instantly. Therefore, 

for accurately predicting the hydrodynamic instability, the filtering strength should be chosen as small as possible while 

sufficiently large to stabilize the numerical calculation. A value of σ between 0.2 and 0.5 seems to be a good compromise

considering the time step used in the time-domain simulations. 

4.2. Effect of the mesh size along the duct height 

Along the x -direction, centered high-order finite-difference schemes, with dispersion-relation preserving properties, are 

employed. It is assumed that the mesh size �x is small enough so that the dispersion properties of the instability are well-

reproduced. In particular, it has been checked that k ∗(k HI ) is very close to k HI , where k ∗ is the effective wavenumber of

the centered finite-difference scheme employed here. No particular effect in reducing �x is thus expected. The grid along 

the z-direction is anticipated to have more impact on the instability. Indeed, non-centered schemes are used near the walls, 

which enhance dispersion. They can amplify or dissipate even constant-amplitude waves, contrary to centered schemes. In 

addition, the instability is directly related to the mean flow profile through u 0 and d u 0 / d z. The discretization of the mean

flow profile, in particular within the boundary layer, is expected to play a role in the results. 

Fig. 13 shows the impact of the number of grid points along the z-direction n z on the real and imaginary parts of the

instability wavenumber. For n z ≤ 155 , the deviations of Re( k HI ) and Im( k HI ) estimated from the time-domain simulations

and the modal analysis are noticeable. Note that the mesh is already fine enough for n z = 55 to precisely calculate the

acoustic propagation. As shown in [57] , the pressure of instabilities should decay exponentially away from the lining as 

exp [ −Re (μ)(1 − z)] with μ2 = k 2 − (ω − Mk ) 2 . In the present case, Re (μ) = 6 . 69 so that the number of points per wave-

length is about 2 πn z / Re (μ) ≈ 52 , which is very large. However, that is still not sufficient to precisely calculate the hydrody-

namic instability. As n z increases, the features of hydrodynamic instability can be captured and the wavenumber gradually 

approaches the prediction of modal analysis. With n z ≥ 175 the time-domain solution is deemed converged. 
10 
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Fig. 13. (a) Real and (b) imaginary parts of the instability wavenumber estimated from the time-domain solution as a function of the number of grid 

points along the duct height n z and predicted by modal analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Suppression of the hydrodynamic instability 

In all cases tested with realistic Mach numbers, it was not possible to prevent the appearance of the instability using

coarse grids and increased selective filter strength. We turned therefore to the methods based on the stabilization via mod- 

ification of the underlying equations. Given the similar performance of many of these methods in turbulent jets [44] , we

opted for the gradient term suppression (GTS) method due to its simplicity and performance. 

In the case that the acoustic field is generated by an impulsive source, as in the present case, it may be possible to

separate the acoustic and instability components in time through a temporal window. This would allow to account for the 

full LEE, but it is of use only when the instability is weak enough. In general, a robust suppression strategy is needed with

a minimal impact on acoustic propagation. 

5.1. Partial GTS 

A natural generalization of the original GTS method is used here to suppress the instability, consisting of a partial sup-

pression of the gradient term instead of a complete suppression. Eqs. (1) are modified by adding a coefficient ε in front of

the term of d u 0 / d z. Therefore, Eq. (1b) turns to 

∂u 

∂t 
+ u 0 

∂u 

∂x 
+ ε

d u 0 

d z 
v + 

∂ p 

∂x 
= 0 (17) 

where ε adjusts the strength of the mean flow gradient term and ranges from 1 to 0. 

Combining Eqs. (1a) , (17) and (1c) leads to the wave equation: 

D 

D t 

(
D 

2 p 

D t 2 
− ∇ 

2 p 

)
+ ( ε + 1 ) 

d u 0 

d z 

∂ 2 p 

∂ x∂ z 
= 

D 

2 Q 

D t 2 
(18) 

where D / D t = ∂ / ∂ t + u 0 ∂ / ∂ x is the material derivative. In particular, the Lilley’s equation is recovered for ε = 1 . The de-

crease of ε from 1 to 0 is thus equivalent to transforming the original Lilley’s equation, which sustains unstable modes, to a

simplified form of Lilley’s equation which appears to be inherently stable [35] . In addition, decreasing ε from 1 to 0 dimin-

ishes the refraction term proportional to d u 0 / d z in the original Lilley’s equation by a factor of two. A gradual suppression of

the instability is then expected when diminishing the value of ε. 

Another remarkable value is ε = −1 for which Eq. (18) corresponds to the material derivative of the convected wave

equation. However, Eq. (18) is already stable for ε = 0 . In addition, it will be shown that the prediction of the acoustic

propagation tends to be deteriorated with the decrease of ε. Therefore, the study is hereafter restricted to ε ∈ [0 , 1] . 

The GTS method is expected to provide an accurate prediction of acoustic propagation at high frequencies [35] . This

can be explained by conducting an order of magnitude analysis. The order of the magnitude of each term in Eq. (1b) is as

follows: 

D u 

D t 
∼ (ω − Mk ) ̂  u , 

d u 0 

d z 
v ∼ M 

δ
ˆ v , 

∂ p 

∂x 
∼ k ̂  p , 

where for acoustic modes the wavenumber is in the order of the frequency k ∼ ω and the acoustic variables are in the same

order of magnitude ˆ u ∼ ˆ v ∼ ˆ p . The mean flow gradient term in Eq. (1b) can be neglected if ∣∣∣∣v d u 0 

d z 

∣∣∣∣ �
∣∣∣∣∂ p 

∂x 

∣∣∣∣, 
∣∣∣D u 

D t 

∣∣∣. (19) 

which, considering the orders of magnitude above, shows that the mean flow gradient term is expected to have a negligible

effect on the acoustic propagation for ωδ � M. This explains why the high frequency components are less impacted by the 

partial GTS method. 
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5.2. Effect on the wavenumber and the mode shape 

The wavenumbers are studied when ε varies from 1 to 0. Fig. 14 shows the wavenumbers in the k -plane determined by

modal analysis for different values of ε for the rigid and partially lined duct. It is first noticed that modifying ε tends to

move all the modes in the complex k -plane. The instability for the lined duct, observed for ε = 1 , is not seen for the smaller

values of ε, which shows that a small decrease of ε is sufficient to suppress the instability. Also, the wavenumbers for the

rigid duct are less sensitive to ε than for the lined duct. 

To analyze more finely the effect of ε on the instability, the variations of the instability wavenumber are plotted as a

function of ε in Fig. 15 . The results are shown for three different grid sizes ( N = 100 , 200 and 300). The growth rate of the

unstable mode Im (k HI ) decreases gradually with ε which proves the stabilizing effect of decreasing ε. It is interesting to 

note that for ε ≤ 0 . 94 , the wavenumber of the unstable mode starts depending on the grid size. There, the unstable mode

merges into the continuous spectrum of convected modes near the real k -axis. 

Acoustic modes are also affected by reducing the parameter ε. To quantify the impact of the partial GTS method on

the wavenumbers of the acoustic modes, the attenuation rate of the propagative acoustic mode is provided in Fig. 16 (a).

The attenuation rate α, defined as α = 20 log 10 e 
−Im (k ) , expresses the decrease per unit distance ( H) of the signal amplitude

during the propagation along the axial direction. For ω = 0 . 9271 , the attenuation rate of the plane wave mode increases

from 7.39 to 14.95 dB /H when ε decreases from 1 to 0. 

In addition, Fig. 17 depicts the mode shapes of the acoustic velocity components and pressure for the plane wave mode

and for the leading upstream and downstream evanescent modes for different values of ε. The modulus of all three variables

are normalized by the maximum of | P | . Modifying ε has an evident impact on | U| and | V | , noticeably near the lined wall.

This effect is particularly dramatic for | U| , whose peak on the lined wall decreases by a factor of 10 from ε = 1 to ε = 0 .

Also, a noticeable increase of | V | near the lined wall is observed as ε decreases. Concerning the pressure, the mode shape

does not vary too much with ε. For the plane wave mode, a decrease of the amplitude is noticed near the rigid wall, while

for the evanescent modes, the amplitude grows gradually near the lined wall as ε decreases. 
Fig. 14. Wavenumbers in the k -plane at ω = 0 . 9271 for a duct (a) with two rigid walls, (b) with one rigid wall and for different strengths of gradient term: 

ε = 1 , ε = 0 . 7 , ε = 0 . 5 , ε = 0 . 3 and ε = 0 . 

Fig. 15. Variations of the (a) real and (b) imaginary parts of the instability wavenumber k HI as a function of ε for different numbers of grid points: 

N = 100 , N = 200 and N = 300 . 
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Fig. 16. (a) Attenuation rate of acoustic modes and (b) ratio of the attenuation rate determined for the partial GTS method to that for the original LEE for 

(dashed) ω = 0 . 9271 and (full) ω = 9 . 271 : + plane wave mode, ◦ second downstream propagative mode and ∗ third downstream propagative mode. 

Fig. 17. Mode shapes for the MSD liner at ω = 0 . 9271 and for several values of ε: (a) plane wave mode and leading (b) downstream and (c) upstream 

evanescent modes for, from left to right, velocity components along x and z-direction and pressure: ε = 1 , ε = 0 . 7 , ε = 0 . 5 , 

ε = 0 . 3 and ε = 0 . 
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Fig. 18. Wavenumbers in the k -plane at ω = 9 . 271 for a lined duct and for several values of ε: ε = 1 , ε = 0 . 7 , ε = 0 . 5 , ε = 0 . 3 and ε = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impact of the partial GTS method on the acoustic propagation at high Helmholtz numbers is here studied. Fig. 18

provides the mode wavenumbers for ω = 9 . 271 , while keeping the same impedance and boundary layer thickness as for

ω = 0 . 9271 . Three downstream propagative modes are noticed and no unstable mode is observed. The mode wavenumbers

are less changed due to the partial GTS method compared with Fig. 14 . The attenuation rates for the three downstream

propagative modes are also plotted in Fig. 16 (a). The deviation caused by the gradient term suppression are respectively

0.017, 0.13 and 0.16 dB /H for the three modes. The ratio of the attenuation rate obtained with the partial GTS method to

that determined with the original LEE is also shown in Fig. 16 (b). It is seen that the largest changes of attenuation rate occur

for low Helmholtz numbers. 

5.3. NASA GIT benchmark 

The GTS method is now applied to the GIT benchmark problem [58] , which is widely used for validation of aeroacoustic

solvers of lined ducts under plane wave propagation. A number of numerical studies have reported the existence of an 

instability at 1 kHz for this problem [16,28,59] . The tube has a dimension of 0 . 8128 × 0 . 0508 × 0 . 0508 m. The upper wall

is lined with a ceramic tubular liner (CT57) with a length of 0.406 m. The sound pressure level (SPL) and phase of acoustic

waves have been measured at various Mach numbers and for frequencies from 500 Hz to 3 kHz. 

The source is installed ahead of the section x = 0 at a distance of 0.05 m. The mean velocity profile is given by Eq. (2) ,

with a Mach number of 0.335 and a boundary layer thickness equal to 2 % of the duct height. A grid of 55 points is used

along the z-direction, while the grid size along the x -direction is �x = 0 . 0011 m. The time step has been set to 2 × 10 −6 s.

The broadband admittance of the liner (see. Eq. (6) ) is obtained by a fit of the educed values provided by Jones et al. [58] for

M = 0 . 335 . In this case, two pairs of complex-conjugate poles are sufficient to have a good match from 500 Hz up to 3 kHz,

as shown in Fig. 19 . The coefficients of the obtained admittance model are given in Table 1 . 

Fig. 20 shows a series of successive snapshots of the pressure. The left and right columns correspond to the results

without GTS ( ε = 1 ) and full GTS ( ε = 0 ), respectively. We focus first on the case without GTS. Once the incoming pulse

encounters the liner leading edge, it splits into two wave fronts, a first one that is transmitted downstream and is progres-

sively attenuated by the liner, and a second one that is reflected upstream. At the same time, the instability is generated at
Fig. 19. (a) Impedance and (b) admittance of the CT57 liner: NASA educed values and fit obtained with the vector fitting algorithm. 
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Fig. 20. Pressure map (Pa) along the duct at different times for (a) ε = 1 and (b) ε = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the leading edge of the liner. Briefly afterwards, when most of the transmitted and reflected acoustic pulses have left the

computational domain, the instability takes over in the entire lined section, leading to a divergent pressure field. In the case

of full GTS, the same overall behavior is observed for the acoustic component. However, no instability is generated and the

acoustic energy falls to zero at increasing times. 

Even though the full GTS method shows encouraging results for suppressing instabilities, it should be applied carefully. 

Indeed, it may not be always physically valid to ignore the instability. Alomar et al. [9] showed experimentally a feedback

mechanism between the instability and the acoustic waves for a liner of finite length. The instabilities generated at the 

leading edge of the liner are scattered into acoustic waves at the trailing edge; these acoustic waves propagate upstream 

and trigger another instabilities once they are scattered at the leading edge. This feedback mechanism can not be reproduced 

when the full GTS method is employed. 

The time series of the pressure at three virtual microphones located on the rigid wall, at different axial locations, are

shown in Fig. 21 for several values of ε. The successive appearance of the initial acoustic pulse and the instability is observed

at all three locations. The impact of ε is mainly on the instability component: decreasing values of ε induces a delay in the

emergence of the instability. This is the expected behavior, as decreasing ε causes a decrease of the amplification of the 

unstable mode, and thus it takes more time for the instability to leverage the acoustic pressure levels. For ε = 0 . 3 and 0, no

instability appears within the simulation time. 

In order to obtain the frequency spectrum of the pressure field, a tapered cosine window is applied to the pressure sig-

nals to discard the instability component, as shown in Fig. 22 . The Fourier transform of the filtered signals is then computed.

Note that for the cases for which the partial GTS method induces a delay in the appearance of the instability, the window

could have be chosen longer; moreover, for the cases for which the partial GTS allows a suppression of the instability, the

window is not necessary. However, for consistency, the same window is applied on all the pressure signals and for all the

cases considered. 

The resulting SPL and phase of the acoustic pressure along the duct wall opposite to the liner are shown in Fig. 23 , at

different frequencies and for different values of ε. For comparison with the NASA measurements, the curves are adjusted 
Table 1 

Coefficients of the rational function for the normalized 

broadband admittance model of CT57. 

αi βi B i C i Y ∞ 

i = 1 6135 −14886 −4584 3729 1.16 

i = 2 507 5577 1788 −290 
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Fig. 21. Time series of pressure on the rigid wall at (a) x = 0 . 12 L, (b) x = 0 . 5 L and (c) x = 0 . 86 L for: ε = 1 , ε = 0 . 7 , ε = 0 . 5 , 

ε = 0 . 3 and ε = 0 . 

Fig. 22. Window function used for signal processing and example of (normalized) pressure signal at x = 0 . 12 L before and after windowing 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

so that the SPL and the phase are 130 dB and 0 ◦, respectively, at x = 0 . Without GTS ( ε = 1 ), some oscillations on the SPL

and on the phase are observed at 50 0, 10 0 0 and 150 0 Hz in the lined section. These are due to the difficulty in isolating

the acoustic contribution by simple windowing. Indeed, as seen in Fig. 21 (a) and (b), there is an overlap near t = 0 . 005 s

between the acoustic pulse and the instability. An obvious deviation between the simulations and the experimental results 

is noticed at 3 kHz. One of the reasons is that the window function applied for calculating the Fourier transform does not

account for the full acoustic signal. It can also be partly explained by the proximity of the cut-off frequency of the rigid duct,

which induced a significant error in the impedance eduction of the liner in the GIT experiment. Overall, the trends of both

the SPL and the phase are insensitive to ε. Decreasing ε tends to underestimate the pressure levels, especially downstream 

of the liner. The largest discrepancies are observed at f = 1 and 3 kHz. For the other frequencies, the SPL predictions are

within a few dBs from the measured values. 

To assess the effectiveness of the GTS, another quantity of interest, namely the insertion loss (IL), is considered. It is

defined as the difference in acoustic power at the exit section x = L with and without liner. Details on the calculation of

the acoustic power from the time-domain numerical solution can be found in Troian et al. [50] . Fig. 24 shows the frequency

variations of IL calculated for different values of ε, as well as estimated from the NASA measurements. A peak is observed

close to the liner resonance (1.1 kHz) for ε = 1 and 0.7, in good agreement with the experimental values. The impact of ε
on the IL is weak except in the immediate vicinity of the resonance and also for f > 2 . 5 kHz. Note that even if a significant

increase of IL is observed for f > 2 . 5 kHz when decreasing ε, a good match is achieved for ε = 0 . 5 . Figs. 21 and 23 show

that, for this particular case, ε = 0 . 5 seems to be the optimal value ensuring a good compromise between a stable simulation

and an accurate prediction. However, this is not a general conclusion, as the optimal value of ε may depend on the flow

profile, the Mach number and the liner, among others, and may thus be different from case to case. 

The NASA GIT benchmark deals with small Helmholtz numbers ( ω ≤ 2 . 8 ). To examine the performance of the partial

GTS method for high Helmholtz numbers, an additional set of time-domain simulations are conducted for a duct whose 

height H = 0 . 508 m is 10 times larger than the one of the NASA GIT duct. The lengths of the duct and of the liner are also

increased, with respective values of 4.06 m and 2.03 m. The boundary layer thickness of the mean flow remains equal to 2 %

of the duct height. The numerical parameters are the same as before except the number of grid points along the z-direction,

set to n z = 175 . 

The time series of the pressure at x = 0 . 5 L on the rigid wall of the large duct are presented for several values of ε
in Fig. 25 . Compared with the waveforms for the smaller duct in Fig. 21 , the signals are more complex because of the
16 
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Fig. 23. SPL and phase of the acoustic pressure along the duct for M = 0 . 335 and for different values of ε: ε = 1 , ε = 0 . 7 , ε = 0 . 5 , 

ε = 0 . 3 , ε = 0 , NASA experiments. 

 

 

 

 

 

 

 

 

 

multimodal propagation. Instabilities are only observed for ε = 1 and do not appear when the partial GTS method is applied.

A view on the pressure response for 0 . 004 s < t < 0 . 01 s is shown in Fig. 25 (b). The signals for the several values of ε are

almost superimposed even if the amplitude of the waveform is slightly reduced as ε decreases. 

The SPL and phase along the large duct on the wall opposite to the liner are provided for three frequencies and for several

values of ε in Fig. 26 . A window function, shown in Fig. 25 (a) is also applied to avoid the influence of instabilities and is

wider than the one shown in Fig. 22 . Compared with the results for the NASA GIT duct shown in Fig. 23 , the differences

due to the suppression of the gradient term are relatively small. 

Finally, the powers W at the exit plane x = L are compared for several values of ε and for both ducts. Fig. 27 shows the

power difference �W, which is defined as �W = 10 log 10 [ W (ε) /W (ε = 1)] , where W (ε) is the power when the partial GTS

method is applied and W (ε = 1) is the power calculated from the original LEE solution. For the NASA GIT case, �W has

a large peak near f = 1 . 1 kHz due to the suppression of the instability and has largest variations near f = 3 kHz. For the
17 
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Fig. 24. Insertion loss for M = 0 . 335 and for: ε = 1 , ε = 0 . 7 , ε = 0 . 5 , ε = 0 . 3 , ε = 0 , NASA experiments. 

Fig. 25. (a) Time series of pressure on the rigid wall of the large duct at x = 0 . 5 L and (b) view for 0 . 004 s ≤ t ≤ 0 . 01 s for ε = 1 , ε = 0 . 7 , 

ε = 0 . 5 , ε = 0 . 3 and ε = 0 . The dashed line shows the shape of the window function used in signal processing. 

Fig. 26. SPL and phase of the acoustic pressure along the large cross-section duct for M = 0 . 335 and for different values of ε: ε = 1 , 

ε = 0 . 7 , ε = 0 . 5 , ε = 0 . 3 , ε = 0 . 
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Fig. 27. Power difference W (ε) /W (ε = 1) as a function of the frequency (a) for the NASA GIT duct and (b) for the large duct and for different values of ε: 

ε = 0 . 7 , ε = 0 . 5 , ε = 0 . 3 , ε = 0 . 

 

 

 

 

 

 

 

 

large duct, �W takes much smaller values. Over the entire frequency band of interest, it is smaller than 3 dB for the full

GTS method and than 1 dB for the partial GTS method and for ε = 0 . 7 . The results shown in this section confirm that the

partial GTS method noticeably impacts the acoustic propagation for low Helmholtz numbers but should be acceptable for 

large Helmholtz numbers. 

6. Conclusion 

An analysis of the partial GTS method for suppressing hydrodynamic instabilities in a lined flow duct has been performed. 

The case of a convective instability generated in a lined flow duct was first illustrated. The instability was calculated by

solving the linearized Euler equations with a finite-difference time-domain approach. The characteristics of the instability 

were compared with the predictions of modal analysis. It was shown that both methods indicate that the instability is 

convective. Perfect matches of wavenumber and mode shapes were also obtained. The effect of the grid resolution and 

selective filter, which have been reported in the literature to have a significant impact on the instabilities, was investigated. 

It turns out that very fine grids, compared with what is required for acoustic waves, are needed for precisely calculating the

instability. 

The partial GTS method for suppressing the instability was then assessed. The impact of diminishing the mean flow 

gradient term on the modes has been investigated. The unstable mode turns to be highly sensitive to the mean flow gradient

term. The acoustic modes are also greatly altered for small Helmholtz numbers, but are less affected for high Helmholtz 

numbers. The partial GTS method was finally applied on the NASA GIT benchmark. The effectiveness of this method has 

been shown for removing the instabilities in time-domain simulations. The SPL was however underestimated by several dBs 

for certain frequencies. In particular, a total suppression of the mean flow gradient term seems too severe to accurately 

predict sound propagation in a lined flow duct, while a partial suppression of this term seems to provide an acceptable

prediction, especially in the high frequency range. 

In addition, even if removing instabilities allows for a stable numerical calculation, it may be, in particular cases, not 

physically valid: as an example, the feedback mechanism between the instability and acoustic waves for a liner of finite 

length discussed in Alomar and Aurégan [9] could not be reproduced when the instability is suppressed. 

Future works can be conducted to study an absolute instability in the time-domain approach. Since the effectiveness of 

the partial GTS method has been proved, other techniques proposed for dealing with shear instabilities [40–44] can also be

considered. 
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Appendix A. Matrices of the discretized eigenvalue problem 

This appendix details the discretization of the eigenvalue problem to obtain the mode wavenumber and mode shapes. 

The number of grid points is denoted by N. Eq. (11) could be rewritten as: AX = 

k 
ω BX with X being the column vector of

unknowns at the grid points: 

X = [ U (z 1 ) · · ·U (z N ) (P − V )(z 1 ) · · · (P − V )(z N ) (P + V )(z 1 ) · · · (P + V )(z N ) ] 
T (A.1) 

where (z i ) 1 ≤i ≤N , with z 1 = 0 and z N = 1 , are the grid points. At the boundary points, the variables should satisfy both

the LEE equations and the boundary conditions. To avoid having an over-constrained system, some information must be 

discarded. The use of characteristic variables allows one to make a suitable choice. Thus, at z = 0 , the incident wave on the

boundary is P − V and the reflected wave is P + V . Therefore, P + V is determined with the boundary condition and not from

the LEE. Similarly, at z = 1 , the incident and reflected wave are P + V and P − V, respectively and, hence, P − V is determined

with the boundary condition. 

Bringing the LEE equations and the boundary conditions together lead to the 3 N × 3 N matrices: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

I (1: N) , (1: N) − ε
2i ω (DU 0 ) (1: N) , (1: N) 

ε
2i ω (DU 0 ) (1: N) , (1: N) 

0 N,N 

(
I − 1 

i ω D 

)
(1: N−1) , (1: N) 

0 N−1 ,N 

0 . . . 0 −1 − β 0 . . . 0 1 − β
0 N,N 1 0 . . . 0 −1 0 . . . 0 

0 N−1 ,N 

(
I + 

1 
i ω D 

)
(2: N) , (1: N) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(A.2) 

B = 

⎡ 

⎢ ⎢ ⎣ 

U 0 (1: N) , (1: N) 
1 
2 
I (1: N) , (1: N) 

1 
2 
I (1: N) , (1: N) 

I (1: N −1 ,N ) U 0 (1: N−1) , (1: N) 0 N,N 

0 1 ,N 0 1 ,N 
0 1 ,N 0 N,N 0 1 ,N 

I (2: N,N) U 0 (2: N) , (1: N) 

⎤ 

⎥ ⎥ ⎦ 

(A.3) 

where 0 I,J is the zero matrix with I rows and J columns and D and I are the differentiation and identity matrix, respectively,

both square matrices of size N. The matrix U 0 is a diagonal matrix of size N with diagonal elements U 0 i,i = u 0 (z i ) . In addi-

tion, the notation M (I: J) , (K: L ) indicates the submatrix of M formed by rows I to J and columns K to L . Finally, the parameter 

ε in matrix A controls the mean flow gradient term and is equal to ε = 1 for the LEE equations and to ε = 0 for the full GTS

method. 

Appendix B. Comparison of the instability characteristics for another frequency 

In this appendix, the comparison of the instability characteristics determined from the time-domain numerical solution 

with those predicted by the modal analysis approach, done in Section 3 for ω = 0 . 9271 , is performed for another frequency,

namely ω = 0 . 4636 . The objective is to confirm the viability of the time-domain method in simulating the instability. 

Fig. B1 displays the wavenumbers of the modes determined by modal analysis for ω = 0 . 4636 . The reference result ω =
0 . 9271 is also indicated. Note that the MSD liner model is still used and the liner impedance at these two frequencies is

different. The wavenumbers of the acoustic propagating mode ( k = 0 . 79 − 0 . 33i ) and the unstable mode ( k HI = 2 . 57 + 1 . 31i )

show the most evident change. Compared with ω = 0 . 9271 , the spatial growth rate of the unstable mode decreases only

slightly. On the other hand, the wavelength becomes three times longer. Fig. B2 shows the evolution of arg (p) and ln | p|
along the lined wall for ω = 0 . 4636 obtained from the time-domain solution at t = 90 and predicted with the analytical

solution in Eq. (14) , where the value of k HI obtained from modal analysis has been used. Here again, an excellent match is
observed. 

Fig. B1. Wavenumber obtained by modal analysis for ω = 0 . 4636 and ω = 0 . 9271 . 
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Fig. B2. Comparison of (a) the phase and (b) amplitude of the pressure on the lined wall for ω = 0 . 4636 from the time-domain solution at t = 90 

and from the analytical solution . 
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Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jsv.2021.115999 . 
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