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Résumé

Il a été clairement établi expérimentalement que des instabilités hydrodynamiques peuvent être
générées dans un conduit en présence d’écoulement quand un absorbant acoustique est placé sur
une des parois. Ces instabilités apparaissent également dans les simulations numériques issues
des équations d’Euler linéarisées, et empêchent une prédiction correcte des champs acoustiques.
Les objectifs de la thèse sont de caractériser finement les instabilités qui apparaissent dans les
simulations temporelles pour un conduit traité avec écoulement, de proposer des méthodes pour
éviter leur génération et finalement d’évaluer leur efficacité.

Les méthodes numériques utilisées sont présentées dans un premier temps. Les équations
d’Euler linéarisées sont résolues dans le domaine temporel avec des schémas aux différences finies
d’ordre élevé, faiblement dissipatifs et dispersifs. Une condition aux limites d’impédance a été
développée dans le domaine temporel spécifiquement pour ces schémas d’ordre élevé. Les études
ont porté sur une série de cas test développée pour étendre le cas de référence, le conduit « NASA
GIT », au cas de la propagation de modes supérieurs. Les résultats obtenus avec ces simulations
dans le domaine temporel sont comparés avec ceux issus d’une méthode modale et ceux provenant
d’un logiciel commercial résolvant les équations d’Euler dans le domaine fréquentiel par éléments
finis. Un bon accord est observé entre ces trois méthodes et également avec les données issues
des mesures. Il apparaît que des instabilités sont générées en simulation numérique, aussi bien
dans le domaine temporel que fréquentiel.

Une analyse fine des instabilités générées dans les simulations temporelles est ensuite réalisée,
par une analyse modale développée à partir de la méthode des caractéristiques. L’influence
des paramètres numériques est précisée, notamment en termes de nombre d’ondes et de formes
modales. Une convergence est observée quand la taille des éléments diminue. Par ailleurs, un
réglage optimal du filtre sélectif spatial utilisé dans la résolution numérique doit être opéré,
afin de retrouver les caractéristiques attendues pour l’instabilité. L’impact d’autres facteurs
est également présenté : fréquence d’excitation, profil de la vitesse moyenne, impédance du
traitement, . . .

Finalement, la méthode GTS (pour Gradient Term Suppression), qui a été proposée initiale-
ment pour éviter la génération d’instabilités dans des écoulements cisaillés, est mise en œuvre
et évaluée dans les configurations précédemment étudiées. Elle consiste à réduire le terme lié au
gradient de l’écoulement moyen dans les équations d’Euler linéarisées. L’étude montre qu’il existe
un impact sur les champs acoustiques obtenus, notamment sur les modes se propageant dans le
sens de l’écoulement. Ainsi la pression peut, selon les cas, être sous- ou sur- estimée de quelques
dBs. Cette étude suggère ainsi que d’autres méthodes développées pour réduire les instabilités
de Kelvin Helmholtz pourraient être efficaces dans le cas d’un conduit traité sous écoulement.

Mots clés: propagation acoustique en conduit; absorbant acoustique sous écoulement; simulation
temporelle; instabilité hydrodynamique; suppression des instabilités.
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Abstract

Hydrodynamic instabilities in a lined flow duct have been reported in several experiments. Such
instabilities also appear in the numerical solutions of the linearized Euler equations and preclude
the accurate prediction of the acoustic field. The objectives of the thesis are to finely characterize
instabilities appearing in time-domain simulations of a lined flow duct, to propose methods to
remove these instabilities and finally to evaluate their efficiency.

Firstly, the numerical methods are presented. The linearized Euler equations are solved in
the time domain using high-order and low dissipative and dispersive finite-difference schemes. A
time-domain impedance boundary condition developed for high-order methods is implemented.
A series of test cases is proposed with the aim of extending the NASA GIT benchmark data
for higher-order mode propagation. Results obtained with the time-domain simulations are com-
pared to those obtained with a mode matching method and a commercial software that solves
the linearized Euler equations in the frequency domain with a finite element method. A good
agreement is found between the results for the three methods and the experimental data. The
presence of an instability is shown in the solutions of the linearized Euler equations both in the
frequency and time domain.

An analysis of instabilities generated in time-domain simulations is then conducted, using a
modal analysis based on the method of characteristics. The impact of the numerical parameters
on the properties of instabilities, namely wavenumber and mode shape, is investigated. A con-
vergence is obtained as the mesh size decreases. In addition, a fine tuning of the spatial selective
filter used in the numerical algorithm is necessary to retrieve the predicted characteristics of the
instabilities. A parametric study is then performed to examine the effects of the source frequency,
the mean flow profile and the impedance on the instability.

Finally, the gradient term suppression (GTS) method, originally proposed for avoiding the
generation of instabilities in shear flows, is implemented and evaluated on the configurations
previously studied. It corresponds to the reduction of the mean flow gradient term in the linearized
Euler equations. The effectiveness of the method for a lined flow duct is illustrated. It is shown
however that the acoustic field is impacted, especially for the downstream propagating modes.
The sound pressure level can then be overestimated or underestimated by a few dBs. As a future
work, this study indicates that other methods targeting Kelvin Helmholtz instabilities could also
be adopted for the suppression of instabilities in a lined flow duct.

Key words: duct acoustics; lined flow duct; time-domain simulation; hydrodynamic instabilities;
suppression of instabilities.
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1 Introduction

1.1 Context of the study

Since the 1970s, certifications and requirements have become more stringent after the first inter-

national aircraft noise standard was promulgated by the International Civil Aviation Organiza-

tion (ICAO). The Advisory Council for Aviation Research and Innovation in Europe (ACARE)

also set some targets for noise reduction in 2050, which mentioned the noise need to be reduced

to 65 % relative to the year 2000 [1]. Although the noise of a single aircraft has been reduced

by approximately 75 % in the past 30 years, the growing of air traffic leads to that many EU

citizens still face high noise levels, especially for residents near airports. Regarding the noise

around airports, four suggestions have been put forward by ICAO: reduction at source, land-use

management and planning, noise abatement operational procedures and operating restrictions.

Among them, operating restrictions limit access to an airport, which have an obvious side effect

on local economies. Besides, in terms of long-range and low-carbon travel, there is no other choice

than aviation. Therefore, technological innovation in the aviation manufacturing industry is still

the priority to solve this problem.

Figure 1.1: Evolution of propulsion-noise sources over time; original figure courtesy of Pratt &
Whitney [2].

To improve fuel efficiency and reduce the jet mixing noise, the bypass ratio of aircraft engines

has been progressively increased. Since the 1960s, a decrease of 20 EPNdB has been achieved
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Chapter 1 : Introduction

for the noise of an individual aircraft [3]. With a sharp reduction of the jet noise, the fan noise

becomes a significant loud noise source as shown in figure 1.1.

Aircraft manufacturers generally install acoustic liners in the intake and bypass duct of a

turbo engine aiming at eliminating the fan noise. Thanks to these treatments, the overall aircraft

perceived noise level can be reduced by 4∼5 dB at take-off stage and 2 dB at landing. To ensure

high efficiency of acoustic liners and guide process improvement at the design stage, the sound

field along a lined duct with the presence of a mean flow should be predicted accurately at first.

Indeed, many techniques, such as the finite element method (FEM), the mode matching

method, solutions of linearized Euler equations (LEE), the boundary element method (BEM)

etc., have been proposed. A general review of techniques used in Computational Aeroacous-

tics (CAA) can be found in [3, 4]. The wide availability of the finite element method (FEM) makes

it popular since the 1980s. It has been broadly applied for implementing heterogeneous mate-

rials, considering complex geometries and dealing with nonlinearities [5]. Nevertheless, when a

three-dimensional problem is considered, the computation can be costly. The BEM discretizes

a surface rather than a volume, and as a result presents a low computation cost. However, it

can not fully present a mean flow profile because of a uniform flow. The mode matching method

describes the sound field with the solution of a mode basis. It is widely adopted for its efficiency

and its accuracy when higher-order modes propagation is included.

Regarding that a new design of aircraft demands multi-objective optimizations accounting for

aircraft performances, operational costs, environmental impacts, etc., a fast approach is desirable.

The time-domain approach is beneficial to solve broadband problems. In the meanwhile, it also

suits to deal with nonlinear problems. Therefore, the time-domain approach is chosen as one of

the main tools to study the sound field in a lined flow duct in this study.

Actually, the sound field in a lined duct has not been fully understood yet. The studies

or experimental data on higher-order modes propagation in a lined flow duct are insufficient.

Besides, other difficulties still exist in the numerical simulation of the sound field in a lined flow

duct.

Firstly, the impedance of acoustic liners is originally described in the frequency domain. In

the early stage of the study, the use of Ingard-Myers boundary condition with the assumption

of a uniform flow has been widely adopted. However numerous studies have questioned the use

of a uniform flow and have highlighted the importance of considering the effect of the boundary

layer. Consequently, the problems arose—what is the appropriate boundary condition used to

describe the interaction between the acoustic propagation and acoustic liners. Moreover, to

include the effect of acoustic liners in the time-domain calculation, it is imperative to find an

equivalent alternative of the frequency-domain impedance boundary condition. Indeed, the direct

computation of the convolution from the frequency domain to the time domain is costly. Hence,

the second difficulty lies in the implementation of a time-domain impedance boundary condition.

In this study, a model which approximates well liner impedance characteristics is established.

The impedance boundary condition is implemented with the consideration of a mean flow profile

12



1.2 Outline of the thesis

instead of applying the Ingard-Myers boundary condition with the a uniform flow.

Furthermore, the existences of instabilities, which result from complex interactions between

the acoustic waves, the mean flow and acoustic liners, have been observed over recent decades in

several experimental results [6, 7, 8, 9]. These phenomena reveal the existence of hydrodynamic

instabilities in certain circumstances, for example, a high mean flow velocity, a liner with small

resistance and for plane waves [10]. These instabilities are observed more often in numerical

simulations than in engineering applications, especially in time-domain simulations, and they

hinder the application of time-domain methods in engineering practice. It is worthwhile to

explore the answers to these questions: what is the nature of these instabilities? Can these

instabilities be predicted when solving the acoustic field? Is it possible to remove instabilities

without greatly impacting the acoustic field? What is the cost of a stable simulation when the

instabilities are removed? These issues are discussed through the thesis.

1.2 Outline of the thesis

The outline of this study is arranged as follows: chapter 2 presents three numerical tools, namely

the mode matching method, solving LEE in the frequency domain by using a finite element

method (based on the commercial software COMSOL) which is commonly applied in the study

of duct acoustics and a high-order time-domain LEE solver. The objective of this chapter is to

validate the use of the time-domain approach in studying the sound field in a lined flow duct.

Among these three methods, the high-order time-domain solver is a homemade approach first

developed by the acoustic team of LMFA [11]. The impedance model, as well as the implemen-

tation of the impedance boundary condition in the time domain, is introduced. A comparison

of the results is then conducted among the three approaches against the experimental data pro-

vided by the NASA GIT benchmark experiment below the cut-off frequency (f ≤ 3 kHz). The

higher-order modes propagation is also studied. The effect of the boundary layer thickness on

the acoustic propagation is finally discussed.

Chapter 3 presents the modal analysis approach which solves the LEE in the frequency domain

by seeking the solution as a sum of modes. This chapter aims at presenting the viability of

the modal analysis approach in interpreting the sound field with mode solutions. The modal

analysis approach is essentially an eigenvalue problem (EVP). In the first part, the EVP is

established and solved by the Chebyshev spectral method. In the second part, the validation

of the modal analysis approach is conducted by comparing the results with an analytical/semi-

analytical approach. Specifically, modes and mode shapes of acoustic propagation for a rigid duct

and a lined duct with a uniform flow are presented. Finally, the impact of a shear flow on the

acoustic propagation is investigated. The modal analysis approach will be continuously utilized

in the analysis of hydrodynamic instabilities in the next chapter.

Chapter 4 is dedicated to investigating hydrodynamic instabilities generated during the prop-

agation of acoustic waves in a lined flow duct. There are two primary aims of this study: 1. To

13



Chapter 1 : Introduction

characterise the hydrodynamic instabilities by using the time-domain LEE solver and the modal

analysis approach. 2. To analysis how the source frequency, a mean flow and a liner impedance

impact instabilities. The first part covers four cases according to the existence and the type

of instabilities. These four cases are: case 0, without mean flow and with a ceramic tubular

liner (CT57); case 1, with a weak shear flow and a mass-spring-damper (MSD) liner; case 2, with

a strong shear flow and a MSD liner; case 3, with a strong shear flow and a CT57 liner. In the

second part, the Briggs-Bers criterion is applied to specify the type of instabilities for case 2 and

case 3. The characterization of the instabilities, namely the spatial growth rate, the wavelength

and the mode shapes of the instabilities for case 2, are compared between the modal analysis

approach and the LEE time-domain method. As the impact of numerical parameters has been

indicated in many researches, the third part presents a study for the influence of the selective

filtering and the mesh size on instabilities in time-domain simulations. Finally, a parametric

study on the source frequency, the mean flow profile and the liner impedance is carried out.

The strategies to suppress instabilities in a lined duct are presented in chapter 5. The chapter

sets out to show the effect of the partial Gradient Term Suppressing (GTS) method on removing

instabilities and its impact on the acoustic field. In the first part, the commonly used methods

for suppressing the instabilities in a lined flow duct are reviewed as well as the techniques to

remove the Kelvin-Helmholtz instabilities in shear flows. In the second part, one of the tech-

niques targeted for suppressing Kelvin-Helmholtz instabilities, namely the partial GTS method,

is adopted to diminish the instabilities related to acoustic liners. In the third part, the partial

GTS method is evaluated according to its viability to suppress instabilities and the ability to

predict an accurate sound field. Three cases, which are a rigid duct, a duct lined with a MSD

liner and a duct lined with a CT57 liner, are tested in the frequency domain and in the time

domain. The responses of acoustic waves, convective instabilities and absolute instabilities to the

partial GTS method are investigated.

14



2 Acoustic propagation in a lined flow duct

To achieve maximum performance of acoustic liners, it is necessary to accurately predict the

acoustic propagation in the design stage of acoustic liners. While sound propagation along an

acoustically lined duct with the presence of a mean flow has been largely studied in the literature,

there are still open questions. Recently, researchers have conducted numerous studies on this

topic regarding the issues, i.e., suitable boundary conditions[12, 13, 11], the interface boundary

condition between lined and unlined part [14, 15, 16], and instabilities [17, 8, 18] along the

lined surface. For developing a deep understanding of this topic, three methods, namely, a

mode matching method, the commercial software COMSOL Multiphysics solving linearized Euler

equations (LEE) in the frequency domain and a high-order finite difference time-domain solver

of LEE [19] proposed by the acoustic team of LMFA, are presented in this chapter.

The objective of this chapter is to present these methods aiming at dealing with acoustic

propagation in a lined flow duct. Firstly, the configuration used through the thesis is described.

A brief overview of acoustic liners is given. Accordingly, the three approaches are introduced in

details. Another objective of this chapter is to validate the use of the high-order low dissipative

and dispersive finite difference time-domain solver by comparing the results obtained from the

three methods. For this, a well known benchmark problem proposed by Jones et al. [20] is

considered. The results obtained by three methods are compared with the experimental results

considering the plane wave propagation. An extension is also proposed considering higher-order

modes propagation. Two cases, corresponding to wave propagation without and with a mean

flow, are investigated below and above the duct cutoff frequency.

2.1 Set-up modeling

The set-up used to model the acoustic propagation in a duct with the presence of a mean flow is

introduced. An acoustic liner is partially installed on the wall of a duct to absorb acoustic waves.

A brief overview of acoustic liner models, namely Mass-Spring-Damper (MSD) liners, ceramic

tubular liners and Single Degree Of Freedom (SDOF) liners, is provided.
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Chapter 2 : Acoustic propagation in a lined flow duct

2.1.1 Set-up configuration

A partially lined duct, with dimensions of Lx × Ly × Lz, is considered. The duct is split into

three sections, a first rigid part, a lined part and a second rigid part. The mean flow u0 is from

left to right with a bulk Mach number M . An acoustic liner is located in the middle of the upper

wall with a length Lt as shown in figure 2.1. An acoustic source Q, which can be impulsive or

harmonic, is installed in the source plane. The exit plane is supposed to be anechoic which means

that no sound is intended to be reflected. ρ0 is the density of the air and c0 is the speed of sound.

Note that convention eiωt is adopted throughout the study.

Figure 2.1: The schematic view of numerical set-up.

2.1.2 Acoustic liner models

Aircraft noise has several sources. Among them, engine noise, generated by the exhausting jets

and moving turbomachinery blades, is one of the main contributors in the take-off and approach

stage. The engine noise has a broadband spectrum, with a frequency content in the range of

50 Hz to 10 kHz. The corresponding Sound Pressure Level (SPL) can even reach 160 dB. Noise

attenuation can be realized by installing acoustic liners in the intake and bypass of nacelles; this

technique has been proved to be one of the efficient strategies to attenuate the engine noise.

However, acoustic liners are not effective for the whole frequency range in the takeoff and landing

phase. Noise reduction by acoustic liners is just effective in a certain narrow frequency band

around the fan blade-passing frequency. Active control of noise [21, 22, 23], which does not

convert the acoustical energy to heat as passive techniques, aims at reducing noise by means of

electronic transducing systems. They are adapted to any frequencies and usually used for low

frequencies, where passive techniques are not efficient. Noise reduction through active control can

be achieved through breaking the vortices, constructing an anti-phase sound field or increasing

the acoustic damping. Another approach, namely hybrid techniques [24, 25, 26], which consist in

a combination of the two techniques mentioned above to cover the entire frequency range. High

frequency noise is reduced by passive techniques and the low frequency components by active
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control.

However, active control is rare in realistic applications, and therefore only passive acoustic

liners are hence considered to reduce noise in this study. Acoustic liners can be divided into

locally reacting liners and non-locally reacting liners. Locally reacting liners, for example, Single

Degree OF Freedom (SDOF) and Double Degree OF Freedom (DDOF) liners, are commonly

used in nacelles. Interactions between acoustic liners and sound waves are supposed to be local.

Generally, these liners include a perforated or micro-perforated plate and backing cavities. The

structure of these liners, for example, the length of the cavities, are designed to attenuate the

tonal noise. For non-locally reacting liners, such as porous materials and metallic foams, acoustic

waves can propagate in all directions inside the materials. The noise reduction is completed by

the energy dissipation arising from the friction between the wave transmission and liners.

For a locally reacting liner, the surface impedance is the unique parameter to describe its

acoustic properties. It models the interactions between acoustic waves and acoustic liners. The

surface impedance Z(ω) is defined by

Z(ω) =
p̂(ω)

v̂n(ω)
, (2.1)

where ω is the frequency of the source, p̂(ω) is the acoustic pressure and v̂n(ω) is the normal

acoustic velocity on the lined surface. The surface impedance is originally described in the

frequency domain.

In this study, locally reacting liners described by an impedance boundary condition are

considered. For time-domain simulations, the impedance should be translated into an equiv-

alent function in the time domain. Several time-domain impedance models have been pro-

posed [27, 28, 13]. Among them, a three-parameters model, the Mass-Spring-Damper (MSD)

has been widely adopted in many studies [29, 30, 31]. Another commonly chosen models is

the extended Helmholtz resonator model, proposed by Rienstra [28]. It provides a guaranteed

physical time-domain representation. Detailed introduction about the implementation of a time-

domain impedance boundary condition is given in Section 2.3. The examples given below contain

impedance models used in calculations, namely MSD models and two kinds of realistic locally

reacting liners, respectively, ceramic tubular liners and SDOF liners.

Mass-Spring-Damper liners

The first kind of liners introduced here is the MSD liner. Tam and Auriault [27] proposed this

3-parameter model aiming at implementing the time-domain impedance boundary condition.

Later, MSD liners are widely chosen in the analytical and numerical studies for their simplicity.

Assuming that the acoustic displacement in the normal direction is ξ, the motion of the MSD

system is governed by

m
∂2ξ

∂t2
+R

∂ξ

∂t
+Kξ = p, (2.2)
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Chapter 2 : Acoustic propagation in a lined flow duct

where R, m and K are respectively the damping, mass and spring stiffness. The impedance of

the MSD liner is thus

Z (ω) = R+ iωm+
K

iω
. (2.3)

The normalized impedance and admittance of the MSD liner used are shown in figure 2.2, with

R = 0.2, m = 5.4× 10−3 and K = 0.
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Figure 2.2: Real and imaginary parts of the normalized impedance (left) and admittance (right)
of the MSD liner.

Ceramic tubular liners

dc

lc

Figure 2.3: A schematic view of ceramic tubular liner.

Ceramic tubular liners have been investigated extensively for the past 25 years [32, 20, 33, 34,

35, 36, 37]. It is well chosen for their linear reaction to the grazing flow and the incident acoustic

level. Another advantage of ceramic tubular liners is its wide frequency range corresponding to

the engine noise in nacelles.

The ceramic tubular liners consist of a tight pack of ceramic tubes and a rigid backplate.

The tubes are parallelly installed, and perpendicular to the opening of the tubes as shown in

figure 2.3. The tube has a length lc and its diameter is dc. The porosity of the surface of the

material is σp. Following Monteghetti et al. [13], the normalized acoustic surface impedance Z
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2.1 Set-up modeling

can be modelled as

Z =
1

σp
coth (ikclc) , (2.4)

where kc is the acoustic wavenumber inside the tube. Bruneau [38] derived an expression for the

wavenumber kc in an air-filled isothermal cylindrical cavity of diameter dc:

kc = k0

√[
1 + (γ − 1)Kh

1−Kv

]
, (2.5)

where k0 = ω/c0 is the acoustic wavenumber and γ = 1.4 is the ratio of specific heats. Kh and

Kv are given by:

Kh =
4

khdc

J1

(
khdc/2

)
J0

(
khdc/2

) , Kv =
4

kvdc

J1

(
kvdc/2

)
J0

(
kvdc/2

) . (2.6)

In the above equations, J0 and J1 are respectively the 0th- and 1st-order Bessel functions of the

first kind. The parameters kh and kv, obtained with:

kh =

√
−ik0

lh
, kv =

√
−ik0

l′v
, (2.7)

are related to the thermal characteristic length lh = ν/(c0Pr) and to the viscous characteristic

length l′v = ν/c0, where ν = 1.84 × 10−5 m2/s is the kinematic viscosity and Pr = 0.71 is the

Prandtl number.

The geometrical properties of the ceramic tubular liner, referring to CT57 liner used in the

NASA GIT experiment [20], are reported in Table 2.1. The NASA GIT experiment, which has

been widely used as a benchmark for studying acoustic propagation in a lined duct, will be

also investigated in section 2.4. Nevertheless, with these parameters, the agreement with the

impedance data given by Jones et al. [20] was not sufficient. The parameters dc and lc have

been modified to enable a better fit between the impedance data and the broadband model. The

effective parameters thus obtained are given in Table 2.2. Finally, the normalized impedance and

admittance (inverse of the impedance) of the broadband CT57 liner for M = 0 and M = 0.335

are shown in figure 2.4. The educed impedance of NASA GIT experiment is also attached for

comparison.

Table 2.1: Properties of the CT57 liner

surface porosity σp tube diameter dc tube length lc
57% 0.6 mm 85.6 mm
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Table 2.2: Parameters used in the CT57 liner impedance model

M effective tube diameter d′c effective tube length l′c
0 0.72 mm 75.3 mm

0.335 0.75 mm 77.5 mm

0 2000 4000 6000 8000 10000
0

4

8

0 2000 4000 6000 8000 10000

-2

0

2

0 2000 4000 6000 8000 10000
0

1

2

3

0 2000 4000 6000 8000 10000

-2

0

2

M = 0

0 2000 4000 6000 8000 10000
0

4

8

0 2000 4000 6000 8000 10000

-2

0

2

0 2000 4000 6000 8000 10000
0

2

4

0 2000 4000 6000 8000 10000

-2

0

2

M = 0.335

Figure 2.4: Real and imaginary parts of the normalized impedance and admittance of the CT57
liner for M = 0 and M = 0.335: × educed values by NASA , broadband impedance and
admittance.

Single degree of freedom liners

Figure 2.5: A schematic view of SDOF liner [28].

SDOF liners are composed of a resistive layer, air cavities and a rigid backing as shown in

figure 2.5. The resistive layer can be a perforated plate or a wire mesh sheet. The liner may have
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2.1 Set-up modeling

different responses according to the choice of the resistive layer. The liner is not sensitive to a

mean flow and has a wide bandwidth when the covering is a wire mesh sheet. The liner shows

nonlinear responses to a mean flow, and its acoustic attenuation has a narrow bandwidth when

a perforated plate is used. The thickness of the resistive layer compared to the wavelength is

small. The air cavities can be seen as a layer of honeycomb cores. The backing is supposed to be

rigid. The SDOF is also supposed to be a locally reacting liner, and the acoustic waves can only

propagate parallel to the cavity axis. The acoustic performance of SDOF liners is quite similar

to Heltmoltz-type resonator. It is usually applied to give an optimal attenuation according to

the designed frequency. However, a major problem with SDOF liner is that higher-order modes

are propagative along the transverse direction [39]. Several semi-empirical models [40, 41, 42, 43]

have been proposed for predicting the impedance of SDOF liners. Among them, the model of

Guess [40] is introduced.

The impedance model of Guess takes account of the effects of viscosity, radiation, backing and

also of high sound amplitude and steady tangential airflow. The full expression of the impedance

associates all the effects together, and it is given in the non-dimensional form as

Z = ZV + ZR + θNL + iχB, (2.8)

where ZV is the viscous and mass impedance, ZR is the radiation impedance, θNL is the non-

linear resistance, and χB is the specific reactance. The viscous and mass impedance Zv is given

as

Zv =

√
8νωt′p
σ0c0d

+ i

(
ωtp
σ0c0

+

√
8νωt′p
σ0c0d

)
, (2.9)

where ω is the angular frequency, tp is the plate thickness, t′p = tp + d is the corrected length, σ0

is the open area ratio, d is the hole diameter and L is the backing depth.

By assuming
ωd

c0
<

1

2
, the expression for radiation impedance is

ZR =
π2

2σ0

(
d

λ

)2

+ i

(
ωδ

σ0c0

)
, (2.10)

with end correction

δ =
8

3π

d
(
1− 0.7

√
σ0

)
1 + 305M3

. (2.11)

The non-linear resistance, which is due to the high sound amplitude and steady flow tangential

to the plate, is developed by Ingard [44] as

θNL =
1− σ2

0

σ0

[
|uor|+ |vtr|

c0

]
, (2.12)

where |uor| is the amplitude of the orifice velocity, and |vtr| is the magnitude of the turbulent

velocity fluctuation through a turbulent boundary layer.

Backing impedance is determined by the nature of the backing to perforated plates. Since the
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cell walls are perpendicular to the perforated face sheet, the backing impedance is purely reactive

and the specific backing reactance is given as

χB = coth

(
iωL

c0

)
(2.13)

As non-linear effects are not considered, the final expression of the normalized impedance Z

is

Z =

[√
16νiω

σ0c0

(
1 +

tp
d

)
− (diω)2

σ0c2
0

+ iω

(
tp + δ

)
σ0c0

+ coth

(
iωL

c0

)]
. (2.14)

One example of SDOF referring to the sample of Busse-Gerstengarbe [45] is considered. The

corresponding parameters are shown in the Table. 2.3. The normalized impedance and admittance

of the SDOF liner are shown in figure 2.6.

Table 2.3: Parameters used in the SDOF liner impedance model

cell depth L hole diameter d plate thickness tp open area ratio σ0

12.7 mm 1.45 mm 1 mm 4.4%

1000 2000 3000 4000 5000
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Figure 2.6: Real and imaginary parts of the normalized impedance (left) and admittance (right)
of the SDOF liner.

2.2 Frequency-domain approaches

Frequency-domain approaches, whether they are analytical or numerical, are particularly well-

suited for predicting tonal noise. Two kinds of frequency-domain approaches are adopted in the

study. The first one is the mode matching method, a semi-analytical approach, which offers an

efficient way for predicting acoustic propagation. However, it is based on the assumption that

the mean flow profile is uniform. The second method is based on a finite element model. It

solves LEE in the frequency domain by using the commercial software COMSOL Multiphysics.

The second method is more costly but it can handle more realistic flows. Both methods are well

spread, and a detailed description is given in this section.
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2.2 Frequency-domain approaches

2.2.1 Mode matching method

The acoustic field can be described as an infinite sum over the eigenmodes in each homogeneous

section along the duct. Eigenmodes are defined by the boundary condition. And the mode

matching method is the way to ensure the continuity between the rigid and the lined sections.

Many studies have been conducted on the derivation of numerical and analytical mode matching

methods. An overview is given to show the development of this method.

Review of mode matching methods

The analytical mode matching method [46, 47] has the advantage of being efficient. By assuming

that only the fundamental mode propagates, the analytical solution is easy to be drawn. This

method is quick since the roots of the governing eigen equation do not need to be found. However,

for higher frequency and larger size problem, it is reported to be inaccurate. By including

higher-order modes, the accuracy of the prediction can be improved at the expense of calculation

efficiency. This requires iterative methods as the Newton-Raphson method [48, 49] or the Secant

method [50, 51]. Without a mean flow, the governing equations can be simply solved by enforcing

continuity of pressure and axial velocity at the interface between the input and exit planes.

However, with the presence of a mean flow, the analytical solution becomes less straightforward.

Another challenge of the analytical mode matching method lies in the choice of appropriate

boundary conditions when a mean flow exists. Aurégan et al. [14] performed an experiment

with a reactive silencer under a grazing flow. They pointed out that the realistic condition was

between the continuity of displacement and velocity rather than energy conservation and axial

momentum conservation. This modified condition considers the effect of viscosity in the acoustic

and hydrodynamic boundary layer. For circular dissipative silencers with a mean flow, Kirby

and Denia [15] argued that the transverse continuity condition rather than the axial continuity

condition should be used to match between the mean flow region and absorbing materials. It

is due to the assumption of the infinitely thin depth made for a perforated screen of dissipative

silencers in the analytical derivation. Indeed, the depth of a perforated screen can not be neglected

in the experimental study. Furthermore, the viscous boundary layer adjacent to one side of the

perforated screen affects the measurement of the impedance, while the analytical model assumes

an infinitely thin boundary layer. Compared with the experiment and the analytical method,

the use of continuity of pressure and displacement gives a more accurate prediction for the

transmission loss than the use of continuity of pressure and velocity. Gabard [52] proposed a

modified mode matching scheme. He utilized the conservation of mass and momentum and

considered the contribution of the boundary terms. The acoustic power at the interface between

the rigid and lined part was analysed. He indicated that the edge conditions, which enforce that

the streamline along the lined wall is smooth and continuous, can also achieve conservation of

energy.

Improvements have also been made for developing numerical mode matching methods to
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avoid the iterative procedures to find roots of the eigen equation. Astley et al. [53] used a finite

element method to solve the governing equations. A point collocation technique is applied to

match the acoustic pressure and the normal particle velocity across the interface between rigid

and lined section. Pagneux and his co-works proposed a series of multimodal method[54, 55, 56]

to consider the sound propagation along the non-uniform lined ducts. Glav [57, 58] adopted a

point matching technique to study uniform silencers with irregular cross-section. However, the

convergence of this method was sensitive to the silencer geometry and collection grids. For a long

time in the literature, the numerical mode matching methods were supposed to be less efficient

than analytical ones. Kirby [59] questioned the general assumption and performed comparisons

between analytical methods [47, 15], numerical methods [60, 15] and a hybrid finite element

method [61]. The results showed that the numerical methods and a hybrid finite element method

were not slower than the general analytical method for calculating the transmission loss with the

accuracy converging to the one decimal place. He indicated that the numerical methods can be

applied in an iterative design environment and it was the most efficient technique. Pagneux and

his co-works proposed a series of multimodal method[54, 55, 56] to consider the sound propagation

along the nonuniform lined ducts.

Calculation of the wavenumbers

The mode matching method used in [62] is utilized in the present study. Assuming a uniform

mean flow, the governing equations can be simplified to the convected Helmholtz equation:(
ik0 +M

∂

∂x

)2

p̂−∇2p̂ = 0. (2.15)

In each section of the lined duct, the solution of Eq. (2.15) can be sought as a modal expansion:

p̂(x, y, z, ω) =
∑
m,n

cos (σmy)

[
Am,n cos

(
γ+
n z
)

e−ik+mnx +Bm,n cos
(
γ−n z

)
e−ik−mnx

]
, (2.16)

where m and n are the number of modes along y- and z- directions. On the lined surface of the

duct, the Ingard-Myers boundary condition:

∂p̂

∂z

∣∣∣∣
z=Lz

+
β

ik0

(
ik0 +M

∂

∂x

)2

p̂(z = Lz) = 0 (2.17)

is imposed. The wavenumbers along the y-direction are given by σ = mπ/Ly. In the un-

lined sections, the wavenumbers along the z-direction are similarly equal to γ± = nπ/Lz. The

wavenumbers k can then be obtained from the dispersion relation

k2 + σ2 + γ2 = (k0 −Mk)2 , (2.18)
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leading to:

k± =
−Mk0 ±

√
k2

0 − (1−M2)(γ2 + σ2)

1−M2
(2.19)

In the lined section, the wavenumbers γ and k can not be obtained analytically. Each mode

however satisfies the boundary condition in Eq. (2.17) leading to the equation:

ik0γ sin(γLz) + β(k0 −Mk)2 cos(γLz) = 0. (2.20)

Combining Eqs. (2.18) and (2.20) leads to an equation in the form f(k) = 0 that can be solved

numerically to obtain the values of k±. For this, we employ the MATLAB function fsolve,

using as an initial guess the values of k± for the unlined sections. The wavenumbers γ± are

then obtained from Eq. (2.18). Note that, in our study the solutions of the dispersion relation

in Eq. (2.20) only consist of acoustic waves, since the wavenumbe in the rigid part is used as

initial guess to obtain the wavenumber in the lined section. For more general cases as pointed

out in [63, 4], acoustic modes, vorticity modes as well as entropy modes can exist. Specifically,

when flow is not uniform but a shear flow, vorticity modes are presented and convect with the

mean flow.

To simplify the notation, Eq. (2.16) can be rewritten as

p̂(x, y, z, ω) =
∑
m,n

[
Am,nψ

+
m,n(y, z)e−ik+mnx +Bm,nψ

−
m,ne−ik−mnx

]
. (2.21)

In the rigid and lined section, ψ± are respectively

ψ±r = Λm,n cos(
mπ

Ly
y) cos(

nπ

Lz
z), ψ±t = Λm,n cos(

mπ

Ly
y) cos(γ±n z), (2.22)

where indices r and t notify the coefficient in the rigid and lined section. The coefficient Λm,n

which depends on the combination of m and n are given in Appendix A.

Figure 2.7: The configuration considered in the calculation of acoustic propagation in a lined
duct.

Calculation of the amplitudes

Figure 2.7 shows the configuration used in the calculation of acoustic propagation in a partially

lined duct. Specifically, Ar, 1 and Ar, 2 are the amplitudes of outgoing waves in the first and
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second rigid section. Reflected waves are generated at the interface between the rigid and lined

section. Br, 1 and Bt denote the amplitude of reflected waves in the first rigid and lined section.

No reflected waves exit in the second rigid section, since the exit plane of the duct is supposed to

be anechoic. The modal contents of the source are imposed by setting the values of Ar, 1 in the

first rigid duct section. The interfaces conditions, i.e., continuity of pressure and normal velocity,

are then imposed to obtain the unknown values of Ar, 2, Br, 1, At and Bt in the duct.

Applying
∂p

∂x
= −ikp̂ and

∂vx
∂x

= −ikv̂x with the Euler equation

∂vx
∂t

+ u0x
∂vx
∂x

= −∂p
∂x
, (2.23)

the velocity along the x-axis v̂x can be expressed as

v̂x =
k

ω −Mk
p̂. (2.24)

The continuity of pressure at the interfaces can be written as

Ar, 1ψ
+
r +Br, 1ψ

−
r = Atψ

+
t +Bte

ik−t Ltψ−t (2.25)

and

Ate
−ik+t Lxψ+

t +Btψ
−
t = Ar, 2ψ

+
r . (2.26)

The continuity of velocity is derived as

Ar, 1
k+
r

ω −Mk+
r
ψ+
r +Br, 1

k−r
ω −Mk−r

ψ−r = At
k+
t

ω −Mk+
t

ψ+
t +Bte

ik−t Lx
k+
t

ω −Mk−t
ψ−t (2.27)

and

Ate
−ik+t Lx

k+
t

ω −Mk+
t

ψ+
t +Bt

k−t
ω −Mk−t

ψ−t = Ar, 2
k+
r

ω −Mk+
r
ψ+
r . (2.28)

Eq. (2.25) is given as an example to show the process of implementing the continuity equations.

We project on the modal basis of the rigid duct, that is to say we multiply a mode ψ′r of a fixed

order (m, n) in the rigid section and integrate the product:

ˆ Lz

0

ˆ Ly

0
(Ar, 1ψ

+
r +Br, 1ψ

−
r )ψ′rdydz =

ˆ Lz

0

ˆ Ly

0
(Atψ

+
t +BtE

−ψ−t )ψ′rdydz (2.29)

where E− = eik−t Lx , E+ = e−ik+t Lx .

As
´ Ly

0

´ Lz

0 ψrψrdydz = 1, the left side of Eq. (2.29) leads to Ar, 1 + Br, 1. Hence Eq. (2.29)

is rewritten as:
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Ar, 1 +Br, 1 = At

ˆ Lz

0

ˆ Ly

0
ψ+
t ψ
′
rdydz︸ ︷︷ ︸

X+

+BtE
−
ˆ Lz

0

ˆ Ly

0
ψ−t ψ

′
rdydz︸ ︷︷ ︸

X−

(2.30)

with

X± =

ˆ Ly

0

ˆ Lz

0
Λm,n cos(

mπ

Ly
y) cos(γ±n z)Λm,n cos(

m′π

Ly
y) cos(

n′π

Lz
z)dydz. (2.31)

The value of X± is:

X± =


0, m 6= m′

Λ2
m,n

Ly

2

ˆ Lz

0
cos(γ±n z) cos(

m′π

Lz
z)dz, m = m′

(2.32)

and should be calculated numerically according to the number of modes m and the impedance

boundary condition. The modes, which are propagative in the rigid section, can be supposed to

be the incident modes for the lined section. Similarly, the same derivation can also be applied to

Eq. (2.26), (2.27) and (2.28), leading to

Ar, 1 +Br, 1 = X+At + E−X−Bt

Ar, 2 = E+X+At +X−Bt

K+
r Ar, 1 +K−r Br, 1 = K+

t X
+At +K−t E

−X−Bt

K+
r Ar, 2 = K+

t E
+X+At +K−t X

−Bt

(2.33)

K+
r =

k+
r

ω −Mk+
r
, K−r =

k−r
ω −Mk−r

, K+
t =

k+
t

ω −Mk+
t

, K−t =
k−t

ω −Mk−t
. (2.34)

Eq. (2.33) can be finally written as a matrix system:
0 I −X+ −X−E−

I 0 −X+E+ −X−

0 K−r −X+K+
t −X−K−t E−

K+
r 0 −X+K+

t E
+ −X−K−t




Ar,2

Br,1

At

Bt

 =


−Ar,1

0

−KrAr,1

0

 . (2.35)

N modes are excited in the first section, and each mode is corresponding to a certain (m, n).

Ar,1, Ar,2, Br,1, At and Bt are column vectors with a length of N . I and 0 are respectively

identity matrix and zero matrix. E±, K±r and K±t are the diagonal matrices with a size of N×N .

X± are matrices with a size of N ×N , but they are not diagonal. The amplitudes in each section

are obtained by solving the system matrix in MATLAB.
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2.2.2 Solving LEE in the frequency domain

The mode matching method can provide efficient predictions for acoustic propagation in a lined

duct. However, the mathematically convenient assumption of a uniform flow is questionable

in realistic conditions. The Ingard-Myers boundary condition is also not accurate under some

situation as shown by Gabard [16]. He showed that the use of Ingard-Myers boundary condition

may overestimate sound attenuation.

To consider a more realistic mean flow, the second method, solving LEE in the frequency

domain with the commercial software COMSOL Multiphysics version 5.4 is introduced. The

model is constructed in the “aeroacoustics branch” using the “Linearized Euler, Frequency Do-

main” module and is shown in figure 2.8. The acoustics perturbations of density, velocity, and

pressure with a mean flow, which can be assumed as ideal gas flow, can be calculated in this

module. The governing equations are:

jωρ̂+ ρ̂ (∇ · u0) + u0 · ∇ρ̂+ v̂ · ∇ρ0 + ρ0 (∇ · v̂) = Sc (2.36)

jωv̂ +

[(
v̂ +

ρ̂

ρ0
u0

)
· ∇

]
u0 + (u0 · ∇) v̂ +

1

ρ0
∇p̂ = Sm (2.37)

jωp̂+ v̂ · ∇p0 + γp̂ (∇ · u0) + u0 · ∇p̂+ γp0 (∇ · v̂) = Se (2.38)

where v̂ and ρ̂ refer to acoustic velocity and acoustic density in the frequency domain respectively.

The properties of the background mean flow, such as pressure p0, velocity u0, temperature T0

and density ρ0 need to be specified in the “model input” and “fluid properties”. A plug flow will

not be used since a flow profile can be directly implemented.

The initial values of ρ̂, v̂ and p̂ can be imposed in “initial value” (with the default value set

to 0). The source terms Sc, Sm and Se in Eqs. (2.36)-(2.38) are defined by “domain sources” in

the module. Specifically, the domain source can be set according to:

Sc = Ms

Sm = A− u0Ms

ρ0
or Sm =

1

ρ0
(F − u0Ms)

Se = prc +
γp0MS

ρ0
or Sc = (γ − 1)Qs +

γp0Ms

ρ0

(2.39)

where Ms is a mass source, A is an acceleration source, F is a volume source, prc is a pressure

rate of change source and Qs is a volumetric heat source.

Concerning the boundary conditions, the rigid and lined wall boundary condition can be de-

fined respectively in the “rigid wall” and “impedance”. Specifically, the Ingard-Myers boundary

condition is applied to the upper wall of the lined section. One should notice that the classic

impedance boundary condition can be obtained from the Ingard-Myers boundary condition with

a mean flow velocity diminishing to zero on the walls. The value of impedance can be an ana-

lytical function or interpolated data. To model anechoic terminations, perfectly matched layer
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2.3 Time-domain approach

(PML) domains are added at the input and the output of the duct. PML aims at absorbing the

propagating waves without introducing reflections.

The COMSOL solution of the frequency-domain LEE is based on the finite element ap-

proach. There are several types of discretization available, such as linear, quadratic Lagrange

and quadratic serendipity. To obtain higher accuracy, quadratic Lagrange elements are selected

for simulations performed in the study. Many types of mesh are available in COMSOL, such as

triangular, quad and tetrahedral mesh. An unstructured tetrahedral mesh is used for its simplic-

ity. The choice of “boundary layers” can also be selected to generate fine meshes in the normal

direction along the chosen layers. It is applied for all the surface walls of the duct region in our

study.

Figure 2.8: Finite element model built in COMSOL Multiphysics

A parallel sparse direct solver PARDISO is chosen and “parallel sparse direct solver for cluster” is

selected, which allows COMSOL running in a distributed mode. During the calculation, all matrix

factorization is stored as blocks and written in the disk if the estimated memory is exhausting

the physically available memory.

2.3 Time-domain approach

Time-domain methods are well suited for solving broadband and multi-dimensional problems,

and also have advantages for dealing with nonlinear and transient problems. With the enhanced

computation capabilities, time-domain approaches have been developed [64, 12, 65] in recent

decades. Compared to frequency-domain methods, they allow one to obtain results over a large

band of frequencies in a single simulation. This is of particular interest for broadband eduction

methods [65, 66, 19, 67].

The time-domain analysis is based on the previous study of Troian et al. [19]. Assuming a

homentropic flow and neglecting the mean pressure gradient, the governing equations are given
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Chapter 2 : Acoustic propagation in a lined flow duct

by:

∂p

∂t
+ (u0 · ∇) p+ ρ0c

2
0∇ · v = ρ0c

2
0Q (2.40)

∂v

∂t
+ (u0 · ∇)v + (v · ∇)u0 +

1

ρ0
∇p = 0 (2.41)

where p and v are the acoustic pressure and velocity in the time domain, respectively. The mean

flow is u0 = u0ex, and Q is a source term.

The numerical scheme to solve the linearized Euler equations in Eqs. (2.40) and (2.41) can

be written as
∂U
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

+ H = S, (2.42)

where the vector of unknown variables U = [p, ρ0vx, ρ0vy, ρ0vz]
T and the vectors E, F, G, H and

S are given respectively by

E =


u0xp+ ρ0c

2
0vx

u0xρ0vx + p

u0xρ0vy

u0xρ0vz


, F =


u0yp+ ρ0c

2
0vy

u0yρ0vx

u0yρ0vy + p

u0yρ0vz


, G =


u0zp+ ρ0c

2
0vz

u0zρ0vx

u0zρ0vy

u0zρ0vz + p


,

H =


0

ρ0v · ∇u0x

ρ0v · ∇u0y

ρ0v · ∇u0z


, S =


ρ0c

2
0Q

0

0

0


.

(2.43)

2.3.1 Finite difference scheme

Finite difference schemes are used to calculate the spatial derivatives of the variables, namely the

pressure and velocity, at each node of the grid. The general form of a finite difference scheme is

given as:
∂u

∂x
(x0) =

1

∆x

N∑
j=−M

aju(x0 + j∆x), (2.44)

where ∆x is the grid spacing and aj are the coefficients of the chosen numerical scheme. The

derivative of u(x0) is obtained from the N grid points located forwards and the M grid points

located backwards. The finite difference schemes are called centered if M = N and non-centered

otherwise. The coefficients of the finite difference schemes can be determined classically from the

Taylor expansion. We use here optimized schemes developed in the computational aeroacoustics

community, which aim at reducing the dispersion error. The general idea behind these opti-

mized schemes is explained thereafter. The schemes are designed in consideration of dispersion

properties [68].
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2.3 Time-domain approach

Applying Fourier transform:

û (k) = F
[
u (x)

]
=

ˆ +∞

−∞
u (x) e−ikxdx. (2.45)

on Eq. (2.44), the effective wavenumber is obtained as

ik∗ =
−i

∆x

N∑
j=−M

aje
ik∆xj . (2.46)

For the centered scheme, Eq. (2.46) can be simplified as

ik∗ =
2

∆x

N∑
j=1

aj sin(k∆xj). (2.47)

The difference between the effective wavenumber k∗ and the exact wavenumber k is denoted

by the dispersion error. The schemes are developed to obtain a small value of dispersion error for

a larger range of wavenumbers up to k∆x = π/2 corresponding to four points per wavelength.

Figure 2.9 shows the relation of the effective wavenumber and the real wavenumber when a series

of finite difference schemes are used, namely the fourth order 5 points standard finite difference

scheme, fourth order 11 points optimized finite difference scheme and tenth order 11 points

standard finite difference scheme. The coefficients are given in Appendix A of [69]. Compared

with fourth order scheme, the 11 points optimized scheme has an obviously less dispersion error

compared with the five points standard scheme. Its performance is even better than the tenth

order standard 11 points finite difference scheme for π/4 ≤ k∆x ≤ π/2.

Through the whole study, the fourth order 11 points optimized finite difference scheme is

chosen to calculate the spatial derivation for the interior points. For the boundary points, the

non-centered fourth-order finite difference schemes over 11 points of Berland et al. [70] are chosen.

2.3.2 Time integration method

The LEE can be rewritten in the general form:

∂u

∂t
= F (u). (2.48)

There are a lot of time-integration algorithms to advance this type of equation in time. Among

them, Runge-Kutta algorithms [69, 71, 72, 73] are largely used. Optimized Runge-Kutta algo-

rithms have been proposed in order to improve stability and accuracy. Low-storage optimized

Runge-Kutta algorithms are more desirable for its low storage requirements and relatively high

performance of accuracy and stability. The process to obtain the variable u from n-th to the
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Figure 2.9: Effective wavenumber obtained with several finite difference schemes. Left, effective
wavenumber as a function of exact wavenumber and right, dispersion error in logarithmic scales.
fourth order 5 points finite difference scheme: ; fourth order 11 points optimized finite
difference scheme: ; tenth order 11 points optimized finite difference scheme: .

(n+ 1)-th iteration for the explicit p-stage Runge-Kutta algorithm is shown as

u0 = un,

ul = un + αl∆tF (u)l−1 for l = 1, ..., p,

un+1 = up,

(2.49)

where αl is the coefficient of the algorithm and ∆t is the time-step. The equation

un+1 = un +

p∑
j=1

p∏
l=p−j+1

αl∆t
j ∂

jun

∂tj
(2.50)

can be written for linear F (u), where γj =
∏p
l=p−j+1 αl. Then applying temporal Fourier trans-

form to Eq. (2.50), the amplification factor of this time marching scheme can be evaluated as

GRK(ω∆t) =
ûn+1(ω)

ûn(ω)
= 1 +

p∑
j=1

γj(iω∆t)j , (2.51)

and can also be expressed as |GRK(ω∆t)|eiω∗∆t. For the angular frequency ω, the exact angular

amplification factor is given as eiω∆t. The difference in phase is written as ω∗∆t− ω∆t.

Figure 2.10 shows the amplification rate and the differences in phase for several Runge-Kutta

algorithms, namely the standard fourth order four-stage, optimized fourth order six-stage and op-

timized second order six-stage Runge-Kutta algorithm. The coefficients are given in Appendix. C

of Bogey & Bailly [69] and Table 1 of Berland et al. [74]. It is seen that the stability properties of

optimized schemes are better than the standard Runge-Kutta scheme as the amplification factor

remains below 1 for higher values of ω∆t. For the phase difference, the optimized Runge-Kutta

six-stage algorithm has a broader range of frequency, where the phase difference is close to 0.

The optimized fourth order six-stage Runge-Kutta algorithm of Berland et al. [74] is employed
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Figure 2.10: The amplification rate (left) and differences (right) in phase for several Runge-Kutta
algorithms. Standard fourth order four-stage Runge-Kutta algorithm: ; optimized fourth
order six-stage Runge-Kutta algorithm: ; optimized second order six-stage Runge-Kutta
algorithm: .

for time integration in the present study.

2.3.3 Selective filter

The acoustic waves with large wavenumber (k∆x ≥ π/2) are not resolved with the finite difference

scheme. In addition, these short waves can lead to numerical instabilities. It is thus imperative

to remove them from the calculations. To do that, selective filtering [75, 70, 76] is applied at

every point and after every time step in the time-domain simulation. The selective filtering acts

as an artificial dissipation for short waves without affecting the physical long waves. For a central

2N + 1 point stencil filter, which is employed on u(x), it is in the form of

uf (x0) = u(x0)− σdDu(x0), with Du(x0) =
N∑

j=−N
dju(x0 + j∆x), (2.52)

where dj = d−j and σd is a constant between 0 and 1. The spatial Fourier transform of Eq. (2.52)

is applied

Dk(k∆x) = d0 +

N∑
j=1

2dj cos(jk∆x), (2.53)

where Dk is the damping function holding Dk(k∆x = 0) = 0 and Dk(k∆x = 1) = 1. The

dissipation is small for the long waves and quite effective for the short waves. The parameter dj
are developed to minimize the integral dissipation

ˆ lnπ/2

lnπ/16
Dk(k∆x)d(ln(k∆x)). (2.54)

Figure 2.11 illustrates damping functions of the standard tenth-order and optimized sixth-

order centered 11-point selective filtering. Corresponding coefficients can be found in [69, 76]. It is

shown that the optimized selective filtering provides appreciable dissipation over π/2 ≤ k∆x ≤ π.
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Figure 2.11: Damping functions of the optimized selective filters: optimized 11-points sixth-order
centered selective filter ; standard 11-points centered tenth-order selective filter: . Left,
linear scale; right, logarithm scale.

Moreover, its impact is weaker than the standard method for the waves with small wavenumbers,

for example, π/16 ≤ k∆x ≤ π/2. In the present work, two types of selective filters, namely the

centered 11-points sixth-order selective filter of Bogey et al. [76] and the optimized non-centered

selective filter of Berland [70] are utilized.

2.3.4 Boundary conditions

In this part, the impedance boundary condition and non-reflective boundary condition are respec-

tively introduced. The implementation of boundary conditions is a key point in the time-domain

simulation to describe the complex interactions of acoustic waves, mean flow and acoustic liners.

In practice, the impedance boundary condition can be imposed by utilizing either the impedance,

admittance or reflection coefficient. When the acoustic and aerodynamic perturbations (vorticity

and entropy waves) leave the computation domain, spurious waves may arise. Since spurious

waves could contaminate the acoustic solution, implementation of a non-reflective boundary con-

dition is necessary.

Admittance boundary condition

The surface impedance describes the macroscopic properties of locally acoustic liners in the

frequency domain. To perform time-domain calculations, the representation of the frequency-

domain impedance boundary condition involves the convolution

p(t) =

ˆ t

−∞
Z(t− t′)vn(t′)dt′, (2.55)

where Z(t) is the inverse Fourier transform of the impedance function Z(ω). To derive physically

admissible time-domain impedance functions, several requirements need to be satisfied according

to Rienstra [28]:

• Reality condition: For Z(ω) = Z∗(−ω∗), and therefore Z(t) ∈ R.
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2.3 Time-domain approach

• Passive condition: The impedance wall is a passive wall for ω ∈ R, Re(Z(ω)) ≥ 0.

• Causality condition: Z(ω) should be analytic and non zero for Im(ω) < 0.

Indeed, the direct calculation of convolution integral is non-desirable due to its large com-

putational cost. In the recent three decades, many efforts have been undertaken to develop

formulation for the impedance boundary condition in the time domain. Nearly in the same pe-

riod, the teams of Özyörük and Long [77] and Tam and Auriault [27] presented their researches

on implementing the Myers boundary conditions in the time domain. Tam and Auriault [27] used

a MSD model mentioned previously. An implementation of the time domain impedance bound-

ary condition was presented with a mean flow. Tam and Auriault [27] noticed the existence of

instabilities generated on the liner. They assumed the instabilities are of Kelvin-Helmholtz type.

They supposed that the instabilities could be avoided by using an effective impedance of acoustic

liners including the effect of a mean flow instead of assuming the existence of a vortex sheet in

the Myers boundary condition. Thereafter, the implementation of the three-parameter model

was conducted by Fung et al. [78] by using reflection coefficients. They argued that the imple-

mentation on the reflection coefficient would get rid of instabilities that may be due to the direct

translation of impedance into time domain of Tam and Auriault [27]. Later, Li et al. [79] proposed

an effective impedance model including the mean flow convection effect. Rienstra [28] proposed

the extended Helmholtz resonator (EHR) model which can easily satisfy the requirements re-

ferring to the implementation of impedance boundary condition in the time domain. Based on

this impedance model, several implementations of impedance boundary condition[80, 65, 81] into

the time domain have been carried out. Chevaugeon et al. [80] and Pascal et al. [81] applied

a discontinous Galerkin CAA method to implement the EHR model. While a finite difference

scheme was utilized by Richter et al. [65]

Formulations of the time-domain impedance boundary condition have been also developed

for more general impedance functions. In particular, the use of a rational function to approx-

imate impedance functions has been the subject of several studies. Özyörük & Long [77] pro-

posed the z-transform, which was originally used in the computational electromagnetics. The

impedance model was built in the z-domain by a rational function. The time-domain impedance

corresponded to an infinite impulse and a digital recursive filter. Later, recursive convolution

methods were proposed by Reymen et al. [36]. The convolution was calculated through sim-

ple algebraic recursive relation with the assumption that the pressure was piecewise constant or

piecewise linear within a time step. Subsequently, Li et al. [82] proposed an improved multipole

broadband impedance model through splitting the rational polynomial function into residues and

poles. Then Dragna et al. [83] proved that the recursive convolution methods were at the best

in the second-order accurate in time. The numerical accuracy was limited when using high-order

time-integration methods. Bin et al. [84] represented the frequency domain impedance bound-

ary condition as a linear sum of second-order frequency responses. Zhong et al. [85] used a

controllable canonical form transferred the rational polynomials into an equivalent state space
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mode. This state space model involved several first-order ordinary differential equations, which

can be implemented straightforwardly. Monteghetti et al. [13] relied on a diffusive technique

and recast the time-domain impedance boundary condition as first order differential equations.

Troian et al. [19] applied the auxiliary differential equations (ADE) method, which not only

guaranteed the accuracy but also kept low memory requirements compared with z-transform and

recursive methods.

One can choose to use impedance, admittance or reflection coefficients to implement the

lined wall boundary conditions in solving the LEE in the time domain. The approach of

Troian et al. [19], corresponding to a broadband time-domain admittance boundary condition,

v̂n(ω) = β(ω)p̂(ω)

vn(t) =

ˆ t

−∞
β(t′)p(t− t′)

(2.56)

is applied in the present study. A detailed introduction is given below.

The broadband admittance model β(ω) can be written as a rational function by using a partial

fraction decomposition,

β(ω) = Y∞ +
P∑
k=1

Ak
λk + jω

+
S∑
k=1

(
Bk − jCk

αk − jβk + jω
+

Bk + jCk

αk + jβk + jω

)
(2.57)

where λk and αk ± jβk are respectively the real poles and complex conjugate pole pairs of β(ω),

P and S denote their number and Y∞, Ak, Bk and Ck are numerical coefficients determined from

the vector fitting algorithm [86]. These coefficients are determined to fit measured admittance

data or calculated admittance values from a model over a given frequency range. Thus according

to a certain practical problem, different impedance models can be considered.

The use of a rational function enables us to calculate the convolution by advancing in time

first-order differential equation, which is solved at the same time as LEE with a small additional

computational cost. This method, originated from electromagnetism [87], is referred to as the

auxiliary differential equation method.

First of all, the inverse Fourier transform of the admittance model β(ω) can be expressed as

β(t) = Y∞δ(t) +
P∑
k=1

Ake
−λktH(t) +

S∑
k=1

2[Bk cos(βkt) + Ck sin(βkt)]e
αktH(t), (2.58)

where δ is the Dirac generalized function. Combining Eq. (2.58) with Eq. (2.56), vn can be

expressed as

vn(t) = Y∞p(t) +

P∑
k=1

Akφ(t) +

S∑
k=1

2[Bkψ
(1)
k (t) + Ckψ

(2)
k (t)], (2.59)
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where φk and ψk, which are called accumulators in Reymen et al. [36], are respectively

φ(t) =

ˆ t

−∞
p(t′)e−λk(t−t′)dt′

ψ
(1)
k (t) =

ˆ t

−∞
p(t′)e−αk(t−t′) cos(βk(t− t′))dt′

ψ
(2)
k (t) =

ˆ t

−∞
p(t′)e−αk(t−t′) sin(βk(t− t′))dt′.

(2.60)

Taking time derivative of the above equation, leads to:

dφk
dt

+ λkφk(t) = p(t)

dψ
(1)
k

dt
+ αkψ

(1)
k (t) + βkψ

(2)
k (t) = p(t)

dψ
(2)
k

dt
+ αkψ

(2)
k (t)− βkψ

(1)
k (t) = 0

(2.61)

Finally, the time-domain admittance boundary condition is obtained through combining Eq. (2.61)

with Eq. (2.59).

Non-reflective boundary condition

To allow acoustic waves to leave the computation domain without significant reflections, non-

reflective boundary conditions are required. Specifically, additional zones are added to surround

the computational domain to attenuate the outgoing disturbances. Various approaches [88, 89,

90, 91] to construct the absorbing zones have been proposed. Among them, the perfectly matched

layer method [91], developed for electromagnetic wave propagation [92], is one of the most popular.

The original formulation was shown to lead to numerical instabilities in the presence of a mean

flow and an extension has been proposed by Hu [91].

In the present study, non-reflecting boundary conditions proposed by Tam & Dong [89] and

extended to three dimensions in Bogey & Bailly [90] are chosen. These boundary conditions

are based on the far-field asymptotic solutions of the linearized Euler equations. Sponge zones,

combining additional damping and grid stretching, are also implemented to decrease the reflected

waves.

2.4 Test case

In order to compare the three methods and ascertain the viability of the high order finite dif-

ference time-domain solver to deal with wave propagation problems, the benchmark problem of

NASA GIT experiment [20] is considered as a test case. It is widely used for the validation for

aeroacoustic solvers to solve wave propagation along a lined duct. The plane wave (f ≤ 3000 Hz)

and high-order modes propagation (f = 5000 Hz and f = 7000 Hz) have been studied by applying
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three methods with a mean flow M = 0 and M = 0.335.

The partially lined duct, which consists of 3 sections with dimensions of Lx = 0.812 m,

Ly = Lz = 0.0508 m is considered. The liner is located in the middle of the upper wall with a

length Lt = 0.406 m as shown in figure 2.1. The ceramic tubular liner mentioned in section 2.1.2

is used. The acoustic pressure is measured by 31 microphones placed along the lower wall. The

source is harmonic, with frequencies from 500 Hz to 3 kHz, in steps of 100 Hz. It is located

at the input section of the duct. Experiments were conducted for 5 flow speeds, with average

Mach numbers M equal to 0, 0.079, 0.172, 0.255, 0.335 and 0.4. At the duct exit, although the

exit impedance has been measured by NASA, it will be further assumed that the termination is

anechoic. The air density ρ0 is 1.29 kg/m3. The speed of sound in air c0 is 344.283 m/s.

The coefficients of the interpolation using a rational function, obtained by fitting the curve

of the normalized broadband admittance model in figure 2.12 are given in Table 2.4. Note that

for the CT57 liner, there are no real poles and six complex conjugate pole pairs are sufficient

to accurately interpolate the admittance model from 500 Hz to 10 kHz. The impedance and

admittance models for the CT57 liner and their interpolations by the rational function are shown

as a function of frequencies in figure 2.12. The normalized impedance and admittance for M = 0

and M = 0.335 educed by NASA are also attached for comparison. It is seen that the two curves

are superimposed. The admittance provided by the rational function will be used through the

paper for the three methods.

Table 2.4: Coefficients of the rational function for the normalized broadband admittance model

M = 0

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

αi 18854 3096 2868 2423 1872 1056
βi 81463 61748 −47536 33516 −19660 −6047
Bi 10908 2500 2659 2595 2525 2399
Ci −15119 291 4 −104 148 261
Y∞ 0.29

M = 0.335

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

αi 15066 3119 2785 2319 1776 991
βi −76133 60206 −46238 −32593 −19127 5904
Bi 7884 2720 2669 2538 2447 2316
Ci 12946 367 58 144 165 −250
Y∞ 0.29

The mean flow velocity profile u0 = u0ex is defined as:

u0 (y, z) = Mc0
ny + 1

ny

1−

∣∣∣∣∣1− 2y

Ly

∣∣∣∣∣
ny
 nz + 1

nz

(
1−

∣∣∣∣1− 2z

Lz

∣∣∣∣nz
)

(2.62)

where ny and nz are two parameters describing the flow profile, which can be related to the
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Figure 2.12: Real and imaginary parts of the normalized impedance and admittance of the CT57
liner for M = 0 (a) and M = 0.335 (b): × educed values by NASA , broadband impedance
and admittance, and their interpolation using a rational function.

boundary layer thickness. Thus, the displacement thickness, defined by:

δ∗ =

ˆ Lz/2

0

(
1− u0(Ly/2, z)

u0(Ly/2, Lz/2)

)
dz, (2.63)

is given by δ∗ = Lz/[2(nz + 1)]. The parameters of the flow profile are set to ny = nz = 24,

corresponding to δ∗/Ly = δ∗/Lz = 2 %.

To generate acoustic waves, the source terms Sc, Sm and Se in Eqs. (2.36)-(2.38) in the module

“domain sources” in COMSOL are used. Sc is given by:

Sc (x, y, z) = exp

[
− ln 2

(x− xs)2

B2
s

]
r∑

m=0

s∑
n=0

Am,n cos

(
mπy

Ly

)
cos

(
nπz

Lz

)
. (2.64)

where r and s are integers. The Gaussian half-width of the source Bs is set to 5.3× 10−3 m. The

source is centered at xs = 5× 10−2 m. In order to generate only acoustic fluctuations, Sm is set

to zero and Se = γp0Sc/ρ0.

For the LEE in the time domain, the source Q in Eqs. (2.40) is defined as

Q = Scλ(t). (2.65)
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The source signal λ(t) is defined as

λ(t) =
t− ts
tc

[
− ln 2

(t− ts)2

t2c

]
H(t), (2.66)

where the source signal ts = 8× 10−4 s and tc = 1.4× 10−4 s respectively stand for a time shift

and a parameter determining the frequency content. H(t) is the unit step function.

Because the simulations performed with COMSOL are based on finite element approach, the

computation is quite demanding in terms of memory space. We have therefore chosen to perform

simulations in a 2D geometry for frequencies below 3 kHz, for which only the plane wave mode

is propagative and for which 3D effects are expected to be negligible. In this case, a very fine

mesh is employed. For frequencies above 3 kHz, higher-order modes are propagative and a 3D

simulation is mandatory. The mesh size is set to 8 points and 9 points per wavelength for the

maximum and minimum size. The use of “boundary layer” also allows one to have a refined

mesh near the boundaries. The mesh in the cross-section of the duct used for f = 7 kHz is

shown in figure 2.13. All the simulations were performed on standard desktop computers with

similar specifications (CPU clockspeed around 3GHz and 32GB of RAM). For the last simulation

containing approximately 3 million elements of mesh grids, the physical memory was overwhelmed

leading COMSOL to use swap spaces on the hard-drive. Computation was largely slowed down

and it took nearly 56 hours to obtain the numerical solution. A finer mesh grid would even lead

to the sudden stop of the simulation, as the available memory space on the hard-drive was not

sufficient.

0 1

1

𝑦/𝐿𝑦

𝑧/
𝐿
𝑧

Figure 2.13: Mesh grids of the duct cross-section in COMSOL.

For the high order finite difference time-domain solver, the time step is 2 × 10−6 s and the

whole simulation lasts for 2 × 10−2 s. The grid is uniform along the x-direction with a mesh

spacing ∆x = 1.1× 10−3 m. At each side of the duct, damping zones are implemented. In these

zones, the mesh spacing is gradually increased with a stretching factor of 3 %. Along the y- and

z-directions, the grid is similar with 55 points. In the middle of the duct, the mesh spacing is

∆y = ∆z = ∆x. Near the walls, it is gradually reduced with a shrinking factor of 1 %. The mesh

size along the duct for x- and z-direction is shown in figure 2.14. The simulations performed
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with an in-house solver of the time-domain LEE, written in Fortran 90, run for approximately 6

hours, for a grid with 4 million points.
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Figure 2.14: Mesh size along the x- (left) and z-direction (right) for time domain approach.
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Figure 2.15: Left, pressure signal forM = 0 and for solving the LEE in the time domain obtained
by the receiver located at x = 0.86 Lx, y = 0.5 Ly, z = 0. Right, the window function used for
signal processing.

The pressure signals are collected at every time step through the receivers located at every

grid node on the lower wall. In order to obtain the frequency spectrum of the pressure field, a

tapered cosine window is applied to the pressure signals to discard the instability component.

The Fourier transform of the filtered signals is then computed. Example of the pressure signal

obtained by a receiver located at x = 0.86 Lx, y = 0.5 Ly, z = 0 with the window function used

for signal processing is shown in figure 2.15.

2.4.1 Plane wave

We now consider results for frequencies below 3 kHz, for which NASA experimental results are

available. For these frequencies and the Mach numbers M = 0 and M = 0.335, only the plane

wave mode is propagative in the rigid sections. For the three methods, the modal amplitudes are

then set to A 0, 0 = 1 and Am,n = 0 for m ≥ 1 or n ≥ 1. For comparison, the sound pressure level

(SPL) and phase at the source plane are set as 130 dB and 0◦.
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The results obtained by the three numerical methods are shown in figure 2.16. The measured

data from the NASA GIT experiment [20] are also provided. The SPL presents the classical

pattern for plane wave propagation in a duct. It is almost constant in the unlined sections and

decreases continuously along the lined section. For 1 kHz, discrepancies are observed between all

the three methods and the NASA experiment with and without flow. This frequency is related

to the resonance frequency of the liner and the predictions are strongly sensitive to the liner

admittance. Also, it can be noted that the result obtained by solving LEE in the frequency

domain for M = 0.335 exhibits an increase of the pressure in the lined region. Additional

simulations for this particular case have been conducted to investigate the effect of the mesh grid

on the results. It was not possible to obtain a converged solution even for a finer mesh. Such

kind of pressure increase is an evidence for the existence of instabilities with a shear flow.

Although some differences exist at some specific frequencies, results of the three numerical

methods are all in close correspondence and agree with the experimental results. The differ-

ence between the numerical methods and the experimental results can be mainly attributed to

the discrepancy between the real behaviour of the liner used in the NASA experiment and the

admittance model.

2.4.2 Higher-order modes

Table 2.5: Mode amplitudes for the higher-order modes case.

A0, 0 A1, 0 A0, 1 A1, 1 A2, 0 A0, 2

5 kHz 1 -1 -1 1 - -
7 kHz 1 1

Simulations are now performed for higher-order modes propagation. Two cases corresponding

to without and with a mean flow are investigated. In the first one, the first 4 modes, corresponding

to the mode indices (m, n) equal to (0,0), (0,1), (1,0) and (1,1), are excited and results for a

frequency of 5 kHz are analyzed. In the second one, the first 6 modes are considered with the

additional modes (2,0) and (0,2). The comparison is performed at a frequency of 7 kHz. The

mode amplitudes for each case are indicated in Table 2.5.

Results for the three different methods, with the same normalization as used in Sec. 2.4.1, are

shown in figure 2.17. A good agreement among the three different methods is obtained. At 5 kHz,

the three numerical solutions are almost superimposed. For a frequency of 7 kHz, a discrepancy

between the frequency-domain solution of the LEE and other methods can be observed in the

SPL. Although the difference exists in the SPL, the phase graph has an excellent match with the

others.

2.4.3 Existence of an instability

It has been indicated in section 2.4.1 that an instability has been observed in the results obtained

with COMSOL at 1 kHz with Mach number M = 0.335. In fact, this instability has also
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(b) M = 0.335

Figure 2.16: SPL and phase of the acoustic pressure along the duct when only the plane wave
mode propagates for (a) M = 0 and (b) M = 0.335. mode matching method, solving
LEE in the frequency domain, solving LEE in the time domain and × NASA experiments.

been observed in the numerical solution of LEE in the time domain. Figure 2.18 presents the

pressure signal at the receiver (x = 0.86 Lx, y = 0.5 Ly and z = 0) for M = 0.335 obtained by

solving LEE in the time domain. The signal is composed of two wave packets. The first wave

packet (t < 0.006 s) corresponds to the acoustic pulse generated by the source. A second wave

packet, with an arrival time at t = 0.01 s can be distinguished. Its amplitude is growing with

time, indicating an instability. Its period is approximately of 10−3 s, which corresponds to a

frequency of 1 kHz. As the signal is windowed for signal processing, only the first wave packet is

accounted for when computing the SPL as in figure 3.4 (b). This instability encountered in the

solutions of LEE with a shear flow has been analysed theoretically and experimentally in previous
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(b) M = 0.335

Figure 2.17: SPL and phase of the acoustic pressure along the duct when higher-order modes
propagate for (a) M = 0 and (b) M = 0.335. mode matching method, solving LEE
in the frequency domain and solving LEE in the time domain.

studies [93, 94, 33, 95]. Specifically, for the same geometry, a similar instability was observed at

1 kHz by Burak [33] both in the time and frequency domains. The instability generated in the

acoustic propagation in a lined flow duct will be investigated in chapter 4.

Snapshots of the acoustic pressure along the duct up to t = 18 ms are shown for two Mach

numbers in figure 2.19. At t = 1.3 ms, the acoustic signal arrives at the leading edge of the liner.

A diffracted wave of small amplitude is generated and travels in the opposite direction to that

of the direct wave. The direct pulse continues its propagation along the duct, being gradually

attenuated by the liner. Without a mean flow, after t = 6 ms, the main acoustic pulse has left
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Figure 2.18: Pressure signal forM = 0.335 and for solving LEE in the time domain obatined by a
receiver located at x = 0.86 Lx, y = 0.5 Ly, z = 0. (a), pressure signal; (b), the window function
used for signal processing and (c), comparison the normalized pressure before( ) and after
the window ( ).

the duct. The remaining pressure fluctuations are then small and the acoustic pressure signal

is almost null, as observed in figure 2.15 and figure 2.19 (a). However, for M = 0.335, an

instability is generated at the leading edge of the liner and grows continuously along the lined

section during the acoustic signal propagation. As t increases, the instabilities almost spread the

whole calculation domain. The efficiency and accuracy of the time-domain solutions will finally

be hindered.

2.4.4 Effect of flow profile

In this section, the effect of flow profiles on sound propagation is investigated. For this, the 2D

LEE are solved in the time domain. Several mean flow profiles are considered with boundary layer

thickness δ∗ corresponding to 0.5 %Lz, 2 %Lz and 8 %Lz. The 2D mean flow profile u0 = u0ex

already used in section 2.4, is given by

u0 (z) = Mc0
nz + 1

nz

(
1−

∣∣∣∣1− 2z

Lz

∣∣∣∣nz
)
, (2.67)
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(a) M = 0 (b) M = 0.335

Figure 2.19: Pressure map (Pa) along the duct forM = 0 andM = 0.335 at y = Ly/2 at different
times.

where nz is respectively 99, 24 and 5.5. These profiles are displayed in figure 2.20. Instead of the

plane source used previously, the source imposed is a point source. Indeed, for a thick boundary

layer, it has been observed that using a plane source generates some trapped waves near the duct

boundaries. This leads to some oscillations on the SPL, which makes it difficult to compare. For

a point source, these trapped waves were not distinguishable.

0 50 100

0

1

Figure 2.20: A sketch of flow profiles. δ∗ = 0.5 %Lz , δ∗ = 2 %Lz, δ∗ = 8 %Lz.

Figure 2.21 shows the pressure signals obtained by the receiver located at the same position as

in figure 2.15 for the three profiles. As discussed previously, these signals are composed of two wave

packets. The first, containing the acoustic information, is approximately the same for the three

profiles. The second one, corresponding to the hydrodynamic instability, is dramatically different

depending on the boundary layer thickness. Note also that, as indicated in the literature [65], this
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Figure 2.21: Time series of pressure obtained at x = 0.84Lx, y = 0.5Ly, z = 0 for different flow
profiles. δ∗ = 0.5 %Lz, δ∗ = 2 %Lz, δ∗ = 8 %Lz.

instability is very sensitive to the numerical parameters, and in particular to the filter applied at

each iteration to remove short waves.

The SPL and phase along the duct for different frequencies and for the three flow profiles

are shown in figure 2.22. It can be seen that the flow profile has an affect mostly for the low

frequency range. At higher frequencies, the results are all similar for the three flow profiles.

To assess the effect of flow profile, another quantity of interest, namely the power difference

∆W , is considered. It is defined in this case as the difference in acoustic power at the sections

x = 0 and x = L of the duct following Troian et al. [19].

∆W = log10(WR/WL), (2.68)

where WR and WL are respectively the sound power computed at exit plane of the first rigid

section and the lined section. The power W is obtained by the integration of the sound intensity

I over the cross-section of the duct

W (x) =

¨
I(x, y, z)dy dz. (2.69)

The acoustic intensity I with the presence of a mean flow [96] can be approximated as

I(x, y, z) =
1

2

[
(1 +M2)Re(p̂v̂∗x) +

M

ρ0c0
Re(p̂p̂∗) +Mρ0c0Re(v̂xv̂

∗
x)

]
. (2.70)

Figure 2.23 shows the frequency variations of ∆W calculated for different flow profiles δ∗, as

well as estimated from the NASA measurements. The impact of δ∗ on ∆W is weak except near

the resonance and also for f > 2.5 kHz. A peak is observed at around 1 kHz close to the liner

resonance. For δ∗ = 2 %Lz and 8 %Lz, a good agreement between the time-domain approach and

NASA experiment is retrieved. The power difference ∆W is underestimated for δ∗ = 0.5 %Lz

especially around 1 kHz, which is supposed to relate with the observed instabilities.

Since the Fourier transform is utilized to convert time-domain signals into the frequency
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Figure 2.22: SPL and phase of the acoustic pressure along the duct for M = 0.335 and for
different boundary layer thickness: δ∗ = 0.5 %Lz , δ∗ = 2 %Lz , δ∗ = 8 %Lz and
× NASA experiments.

domain, the effect of the window function on thepower difference ∆W is also studied. Three

different windows, shown in figure 2.24, are considered. Other parameters are maintained the

same as in section 2.4.1. It should be mentioned that the window function b is used in the whole

study. The power difference ∆W is overestimated with the use of a narrow window, while it is

underestimated by using a broad window. It is seen that the effect of the window function is not

obvious except near 1 kHz, because that instabilities around 1 kHz are eliminated. Therefore

the effort of the window function is pronouncing around the frequency range where instabilities

exist. It should be also noticed that if the window is relatively narrow, the acoustic signal could

be truncated when instabilities are filtered.
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Figure 2.23: Power difference ∆W for M = 0.335 with different boundary layer thickness: δ∗ =
0.5 %Lz , δ∗ = 2 %Lz , δ∗ = 8 %Lz and × NASA experiments.
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Figure 2.24: Three windows (left) considered and power difference ∆W (right): window function
a , window function b , window function c and × NASA experiments.

2.5 Conclusion

Three approaches, aiming at predicting acoustic propagation in a partially lined flow duct, have

been introduced. They are respectively mode matching method, solving LEE in the frequency

domain and solving LEE in the time domain.

A benchmark problem proposed by Jones et al. [20] was tested and extended. Plane wave

and higher-order modes propagation without and with a mean flow were analysed by using the

three methods. When only the plane wave mode propagates, the three methods showed excellent

agreement with the reference NASA experimental data. When the source frequency was above

the cutoff frequency(f ≈ 3 kHz) with higher-order propagative modes, the numerical results

were also in good agreement. The viability of the time-domain method to predict the acoustic

propagation in a lined flow duct was ascertained.

The effect of flow profile on the sound propagation was studied. The results showed that SPL

and phase of acoustic propagation in the low frequency range were sensitive to the flow profile.

Instabilities were found in the solutions of LEE when acoustic waves propagate with a shear flow

along the lined duct.
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3 Modal analysis for duct acoustic

propagation with a shear flow

Describing the sound field by its modal behaviour is quite interesting to have a further inter-

pretation of the complex sound field. To include a more realistic flow profile and benefit the

advantage of modal techniques, the modal analysis approach is utilized and the modes are deter-

mined numerically. It is essentially an EigenValue Problem (EVP) aiming at relating the acoustic

propagation with modes behaviour.

Indeed, the modal analysis approach is quite a common strategy when the interest focuses on

instabilities generated in numerical simulations. The governing equations solved in the EVP can

be LEE [97, 29], Pridmore-Brown equations [95] and linearized Navier-Stokes equations [98, 10].

Mode solutions, especially for the ones related to instabilities, can then be obtained.

In this chapter, the implementation of EVP is presented for an infinite lined duct. The modal

analysis approach is validated by using an analytical/semi-analytical solution with a uniform

flow. Finally, the impact of a mean flow on the modes is investigated.

3.1 Governing equations

The configuration considered in the modal analysis approach is shown in figure 3.1. Monochro-

matic waves propagate in a two-dimensional infinite and homogeneous duct. The duct height is

denoted by H. The walls can be rigid or lined. A parallel mean flow goes from left to right. The

physical quantities with dimensions of length, time, velocity, and pressure are nondimensionalized

using H, H/c0, c0 and ρ0c
2
0, respectively. The flow is supposed to be isentropic. The acoustic

propagation is governed by LEE. The nondimensionalized LEE are given by:

∂p

∂t
+ u0

∂p

∂x
+
∂u

∂x
+
∂v

∂z
= 0 (3.1a)

∂u

∂t
+ u0

∂u

∂x
+ v

du0

dz
+
∂p

∂x
= 0 (3.1b)

∂v

∂t
+ u0

∂v

∂x
+
∂p

∂z
= 0 (3.1c)
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Figure 3.1: The configuration considered in the modal analysis approach.

The modal analysis approach is based on the use of a mode expansion. Then the acoustic

perturbations are sought as
u = U (z) ei(ωt−kx),

v = V (z) ei(ωt−kx),

p = P (z) ei(ωt−kx),

(3.2)

where U , V and P are the mode shapes, which depend only on z, and k is the mode wavenumber.

Note that ω and k can be complex-valued.

Substituting Eqs. (3.2) into the nondimensionalized LEE, leads to:

i(ω − u0k)P − ikU +
dV

dz
= 0

i(ω − u0k)U +
du0

dz
V − ikP = 0

i(ω − u0k)V +
dP

dz
= 0

(3.3)

3.2 Implementation of the EVP

3.2.1 Boundary condition

To implement boundary conditions, the EVP is not directly formulated using the physical vari-

ables; instead, characteristic variables, i.e. U , P − V and P + V , are used. The idea of using

characteristics variables is quite common, for instance, Fung & Ju [99] utilized characteristics

variables for implementation of the time-domain impedance boundary condition.

Specifically, P − V and P + V are the characteristic waves travelling along the −z and +z-

direction, respectively. Thus, at z = 0, the incident wave on the boundary is P − V and the

reflected wave is P + V . Therefore, P + V is determined with the boundary condition and not

from LEE. Similarly, at z = 1, the incident and reflected wave are P +V and P −V , respectively
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and, hence, P − V is determined with the boundary condition. Eq. (3.3) can be rewritten as:

1
−1

2iω

du0

dz

1

2iω

du0

dz

0 1− 1

iω

d

dz
0

0 0 1 +
1

iω

d

dz





U

P − V

P + V


=
k

ω



u0
1

2

1

2

1 u0 0

1 0 u0





U

P − V

P + V


. (3.4)

This matrix of the system has to be completed with appropriate boundary conditions. We

will consider two cases, namely a rigid duct and a lined duct. These two cases are illustrated in

figure 3.2.

zz

β

Figure 3.2: Sketches of a rigid duct case (left) and a lined duct case (right).

For the rigid duct case, the boundary conditions on the walls are

[P + V ]

∣∣∣∣
z=0

= [P − V ]

∣∣∣∣
z=0

and [P + V ]

∣∣∣∣
z=1

= [P − V ]

∣∣∣∣
z=1

. (3.5)

For the lined duct case, the rigid wall boundary condition is imposed on the lower wall as

previously and the Ingard-Myers boundary condition is imposed on the lined upper wall as

[P + V ]− [P − V ]

∣∣∣∣
z=1

= (iω + u0
d

dx
)
[P + V ] + [P − V ]

iω
β

∣∣∣∣
z=1

. (3.6)

For a shear flow whose velocity vanishes on the walls, the classic impedance boundary condition

[P − V ]

∣∣∣∣
z=1

=
1− β
1 + β

[P + V ]

∣∣∣∣
z=1

(3.7)

is retrieved from the Ingard-Myers boundary condition in Eq. (3.6).
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3.2.2 Chebyshev spectral method

The EVP in Eq. (3.4) requires the calculation of spatial derivatives. They can be determined

by finite difference methods or Chebyshev spectral methods. Chebyshev spectral methods are

generally preferred as they generate smaller numerical errors for a given number of grid points

than finite difference schemes. A comparison between the Chebyshev spectral method and the

finite difference scheme was conducted by Marx [29]. It shows that the Chebyshev spectral

method can attain more accurate results with a relatively small computation cost. Therefore,

the Chebyshev spectral method [100] is selected in the modal analysis approach.

To discretize the computation domain, a differentiation matrix is defined based on a set of

points

zj = cos

(
jπ

N

)
, j = 0, 1, · · · , N, (3.8)

which hold 1 = z0 > z1 > · · · zN = −1. These points are known as Chebyshev points or

Chebyshev-Gauss-Lobatto points. This matrix is the Chebyshev differentiation matrix D. For

N ≥ 1, the Chebyshev differentiation matrix D has a size of (N + 1) × (N + 1). The entries of

the matrix are given as

D00 =
2N2 + 1

6

Djj =
−zj

2(1− z2
j )
, j = 1, · · · , N − 1,

Dij =
ci
cj

(−1)i+j

zi − zj
, i 6= j, i, j = 0, · · ·N,

DNN = −2N2 + 1

6
,

(3.9)

where

ci =

2, i = 0 or N,

1, otherwise.
(3.10)

The corresponding differentiation matrix is given in figure 3.3. Following Trefethen [100], Dii =

−
∑N

j=0,j 6=iDij is applied to reduce the rounding errors.

The Chebyshev points are scaled so as to (zi)1≤i≤N+1, with z1 = 0 and zN+1 = 1. To be

noticed, the indices of z is from 1 to N + 1 after scaled. The number of Chebyshev points is

N + 1. Eq. (3.4) could be rewritten as a generalized eigenvalue problem AX =
k

ω
BX. The size

of matrix A and B is (3N + 3) × (3N + 3). X is a (3N + 3) × 1 column vector. The spatial

differentiation of a vector is acquired by multiplying this vector with the differentiation matrix

D.

The next step is to implement the boundary condition in the discretized LEE. The variables

at the boundaries should satisfy both the LEE and the boundary conditions. To avoid having

an over-constrained system, some information must be discarded. The wavenumbers and mode

shapes are obtained by solving the EVP with eig function of MATLAB. The matrices A and B

of the discretized problem including boundary conditions are given in Appendix B.
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Figure 3.3: A sketch of Chebyshev differentiation matrix.

3.3 Test cases with a uniform flow

The aim of this section is to validate the use of the modal analysis approach to obtain mode

solutions. For this, an analytical and a semi-analytical method for two cases—without a mean

flow and with a uniform flow, are available. Acoustic propagation is investigated for two different

scenarios, i.e., a rigid duct and a lined duct. The wavenumbers and mode shapes are compared

between the two approaches. One should notice that a flow profile can be imposed in the modal

analysis approach.

3.3.1 Rigid duct

When acoustic waves propagate along a rigid duct with a uniform mean flow, the wavenumbers

and mode shapes can be obtained analytically from the convected Helmholtz equation(
iω +M

∂

∂x

)2

p− ∂2p

∂x2
− ∂2p

∂z2
= 0. (3.11)

The wavenumber along the x-direction is

k =

−Mω ±
√
M2ω2 −

(
1−M2

) [
(nπ)2 − ω2

]
1−M2

, (3.12)
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where n is a non-negative integer. The acoustic propagation without a mean flow and with a

uniform mean flow M = 0.3 at ω = 0.9271 along a rigid duct is analyzed. The parameter N

in Chebyshev matrix is set to N = 150 through the study if no declaration is made. Actually,

N = 150 is far more enough to ensure converged results. A detailed study of the effect of

Chebyshev points on the obtained wavenumbers and mode shapes is shown in section 3.4.2. The

wavenumbers along the x-direction obtained through both methods are compared in figure 3.4.

It shows a good agreement between the results obtained through both methods with or without

a uniform mean flow. The wavenumbers near k = 3.09 + 0i in the complex k-plane only obtained

with the modal analysis approach are a series of solutions corresponding to the dispersion relation

ω − u0k = 0.
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Figure 3.4: Mode wavenumbers of acoustic propagation along the rigid duct for M = 0 (left) and
M = 0.3 (right). ◦ analytical solution and + modal analysis approach.

3.3.2 Lined duct

In this part, the modal analysis approach for calculating the modes along a lined duct without

and with a uniform mean flow is validated by comparing with a semi-analytical solution.

The semi-analytical method, which is used to obtain the axial wavenumbers in the lined

section, as introduced in section 2.2.1 is applied. The source and mean flow are similar as the

rigid duct case. The MSD liner introduced in section 2.1.2 is installed on the upper wall. Its

impedance at ω = 0.9271 is Z = 0.2 + 0.005i.

The wavenumbers obtained by using these two approaches are shown in figure 3.5. Good

matches between the two methods can also be noticed without and with a uniform mean flow.

For the uniform flow, a mode with wavenumber around k = 4.704 + 2.958i is only obtained

through the modal analysis approach. This mode corresponds to Ingard-Myers instabilities. As

discussed in chapter 2, it is not calculated using the semi-analytical method for determining

modes from the dispersion relation. The modes with wavenumber around k = 3.098 + 0i are also

due to solutions of ω − u0k = 0. Even if the acoustic propagation is not plane any more because

of acoustic liners, we still name the first downstream propagative mode as the “plane wave” mode.
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Figure 3.5: Mode wavenumebrs of acoustic propagation along the lined duct forM = 0 (left) and
M = 0.3 (right). ◦ semi-analytical solution and + modal analysis approach.

The mode shapes |U |, |V | and |P | of the “plane wave” mode for the two scenarios are displayed

in figure 3.6. |U |, |V | and |P | are normalized by the maximum of |P |. The mode shapes do not

resemble a “plane” anymore due to the lined wall. The maximum of |P | and |U | are obtained on

the rigid wall for M = 0 and on the lined wall for M = 0.3. However the maximum of |V | for
the “plane wave” mode is found on the lined wall no matter whether the mean flow is imposed.

The agreement for the two scenarios between the two approaches is excellent. The mode shapes

referring to Ingard-Myers instability, are also displayed in figure 3.7. The amplitude of the mode

shapes grows rapidly from the rigid wall to the lined wall.
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Figure 3.6: The shapes of the “plane wave” mode for the lined duct case without mean flow
(upper) and with a uniform mean flow M = 0.3 (lower). Left, |U |; middle, |V |; right, |P |.

semi-analytical solution and modal analysis approach.
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Figure 3.7: The shapes of the mode referring to Ingard-Myers instability. Left, |U |; middle, |V |;
right, |P |.

3.4 Modal analysis with a shear flow

Since the modal analysis approach is validated sound propagation with a shear flow can thus be

considered. The source and the liner used in this part are the same as used in section 3.3.2. The

profile of the shear mean flow is illustrated in section 2.4.4. The default value of the boundary

layer thickness is δ∗ = 5 % corresponding to nz = 9.

3.4.1 Rigid duct case

Acoustic propagation in the rigid duct with the presence of a shear mean flow is analysed. The

wavenumbers are given in figure 3.8 and the shapes of the “plane wave” mode are shown in

figure 3.9. Changes are observed for higher-order modes compared to the case of a uniform flow

(figure 3.4). The “plane wave” mode for the uniform and the shear flow is respectively situated

at k = 0.7132 and k = 0.71. Figure 3.9 shows the significant effect of the shear mean flow on the

shapes of the “plane wave” mode, especially, on |V |.
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Figure 3.8: Mode wavenumbers of acoustic propagation with a shear mean flow.
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Figure 3.9: The shapes of the “plane wave” mode for a shear mean flow M = 0.3. Left, |U |;
middle, |V |; right, |P |.

3.4.2 Lined duct case

Finally, acoustic propagation along a lined duct with a shear mean flow is considered. The

wavenumbers obtained with N = 150 are shown in figure 3.10. The mode situated at k =

1.336−0.850i is referring to the “plane wave” mode. It is slightly damped because of the acoustic

liner. A branch of continuous modes is observed close to the real axis for Re(k) > 2.78. As

mentioned before, the modes with wavenumber k∗0 are such that ω − k∗0u0(z∗) = 0. The number

of these modes is N + 1. These modes only appear with a mean flow. The phase velocity of this

mode equals to its mean flow velocity on the position z = z∗. The mode (k = 6.783+1.97i) in the

right upper quarter with a positive imaginary part is a possible unstable mode if it propagates

downstream. A detailed analysis on the unstable mode and the instability will be given in the

next chapter.
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Figure 3.10: Mode wavenumbers of acoustic propagation with a shear mean flow. 1st evanescent
downstream mode, +; 1st evanescent upstream mode, +; “plane wave” mode, +; unstable mode,
◦.

A convergence study is performed to analyze the effect of the discretization on the mode

wavenumbers and mode shapes. As shown in Table 3.1, the wavenumbers of the first evanescent

downstream mode (1st down), the first evanescent upstream mode (1st up), the “plane wave” mode
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(plane) and the possible unstable mode (unstable) are presented for an average Mach number

M = 0.3 and for N = 20, 60, 100, and 150. It shows that acoustic modes can be obtained

with less computation cost compared with the unstable mode. The convergence for both acoustic

modes and unstable mode is obtained for N = 150.

Table 3.1: Wavenumbers obtained by using different values of N in the Chebyshev matrix.

N = 20 N = 60 N = 100 N = 150

1st down −0.147− 1.607i −0.147− 1.607i −0.147− 1.607i −0.147− 1.607i
1st up −0.532 + 1.108i −0.532 + 1.108i −0.532 + 1.108i −0.532 + 1.108i
plane 1.336− 0.850i 1.336− 0.850i 1.336− 0.850i 1.336− 0.850i

unstable 6.544 + 2.049i 6.781 + 1.973i 6.783 + 1.970i 6.783 + 1.970i

The corresponding mode shapes for different values of Chebyshev points N are shown in

figure 3.11. The results are converged for N = 150. It also shows the characteristics of the

unstable mode may be predicted inaccurately with a relatively small N . For all modes, the

magnitudes of |U | are relatively larger than those of |V | and |P |. The maximum of |U | and |V |
are obtained in the vicinity of the lined wall. For |P |, its maximum value is located on the rigid

wall for the first evanescent modes. For the “plane wave” mode and unstable mode, the peak

of |P | is located on the lined wall. It is noted that the mode shapes of the possible unstable

mode has a sharp increase from the rigid wall to the lined wall, which indicates the existence of

instabilities.

3.4.3 Effect of the boundary layer thickness

The effect of mean flow profiles on the wavenumbers and mode shapes are examined for the rigid

duct case and the lined duct case. The boundary layer thickness δ∗ is respectively 0.5 %, 2 %

and 5 % with average Mach number M = 0.3. The results for a uniform flow are also attached

for comparison.

Rigid duct case

Table 3.2 shows that the effect of boundary layer thickness on the cut-off frequency ωn for the

n-th mode on the x-direction. With the increase of the boundary layer thickness δ∗, the cut-off

frequency for the n-th mode (n ≥ 2) gradually decreases. The ratios between the cut-off frequency

for the shear mean flow and the uniform flow are also indicated. For the same boundary layer

thickness δ∗, the ratio becomes close to 1 when higher-order modes are considered. It indicates

that the cut-off frequency is less affected by the mean flow profile for higher order modes.

The effect of mean flow profiles on the wavenumbers and mode shapes are respectively shown

in figures 3.12 and 3.13. Concerning the wavenumbers, the downstream and upstream “plane

wave” modes are not sensitive to flow profiles, while higher order evanescent modes are more

affected by flow profiles. The higher evanescent modes tend to be left-shifted and their damping

rates (Im(k)) is decreasing with the increase of the boundary layer thickness δ∗.
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Figure 3.11: The mode shapes obtained for different values of N in Chebyshev matrix for a, the
1st evanescent downstream mode; b, the 1st evanescent upstream mode; c, “plane wave” mode
and d, the unstable mode. Left, |U |; middle, |V |; right, |P |. : N = 20; : N = 60;

: N = 100; : N = 150.

The mode shapes |U |, |V | and |P | are studied for the first downstream evanescent mode, the

upstream and downstream “plane wave” mode. The mode shapes of the upstream and downstream

“plane wave” mode are strongly affected comparing with the evanescent mode, even if their mode

wavenumbers have hardly changed. For δ∗ = 0.5 %, the results are close to the uniform flow case.
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Table 3.2: Cut-off frequency ωn for the n-th mode on the x-direction for several value of δ∗.

The percentage in blue shows the ratio between the cut-off frequency ωn for a shear flow and a uniform flow.
n = 2 n = 3 n = 4

the uniform flow 2.9992 5.9946 8.9910
δ∗ = 0.5 % 2.9945 (99.84 %) 5.9891 (99.91 %) 8.9836 (99.92 %)
δ∗ = 2 % 2.9871 (99.60 %) 5.9752 (99.68 %) 8.9642 (99.70 %)
δ∗ = 8 % 2.9556 (98.55 %) 5.9427 (99.13 %) 8.9456 (99.51 %)
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Figure 3.12: Mode wavenumbers of acoustic propagation along a rigid duct and for several values
of the boundary layer thickness. +: uniform flow; +: δ∗ = 0.5 %; +: δ∗ = 2 %; +: δ∗ = 5 %.

Lined duct case

The effect of flow profiles on the wavenumbers for the lined duct case is presented in figure 3.14.

For the “plane wave” mode, the first evanescent downstream and upstream mode, they do not

have obvious variation when the boundary layer thickness changes. The unstable mode is more

sensitive to flow profiles. With the increase of the boundary layer thickness, the wavelength of

the unstable mode decreases gradually. The imaginary part of this mode, which represents the

spatial growth rate of this mode if it propagates downstream, shows a decreasing trend when the

boundary layer thickness of the mean flow becomes thicker..

Figure 3.15 shows the corresponding mode shapes for the 1st evanescent downstream mode,

the 1st evanescent upstream mode, the “plane wave” mode and the unstable mode for different

values of boundary layer thickness. |U | and |V | near the lined wall are affected greatly by the

boundary layer thickness. Especially for |U |, a thin boundary layer will lead to a rapid increase

of amplitude |U | close to the lined wall. The effect of boundary layer thickness δ∗ on |P | is
noticeable only for the“plane wave” mode and the unstable mode. The results obtained with a

uniform flow and with a shear flow δ∗ = 0.5 % are quite close, except on the lined wall, where

great discrepancies are observed. It can be explained by the different boundary conditions applied

on the lined wall.
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Figure 3.13: Mode shapes for acoustic propagation along a rigid duct for several values of δ∗.
(a), 1st evanescent downstream mode; (b), upstream “plane wave” mode; (c), downstream “plane
wave” mode. Left, |U |; middle, |V |; right, |P |. : uniform flow; : δ∗ = 0.5 %;

: δ∗ = 2 %; : δ∗ = 5 %.
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Figure 3.14: Mode wavenumbers of acoustic propagation along a lined duct and for several values
of boundary layer thickness. +: the uniform flow; +: δ∗ = 0.5 %; +: δ∗ = 2 %; +: δ∗ = 5 %.
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Figure 3.15: Mode shapes for acoustic propagation along a lined duct for several values of δ∗.
(a), 1st evanescent downstream mode; (b),1st evanescent upstream mode; (c), “plane wave” mode
and (d), unstable mode. Left, |U |; middle, |V |; right, |P |. : uniform mean flow;

:δ∗ = 0.5%; : δ∗ = 2%; : δ∗ = 5%.
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3.5 Conclusion

A modal analysis approach has been introduced to interpret the acoustic propagation with the

behaviour of modes with the presence of a mean flow. Firstly, the method was presented. A

generalized EVP problem was formulated and was solved by using the Chebyshev spectral method.

To validate the modal analysis method, the acoustic propagation was compared between the

modal analysis approach and the analytical/semi-analytical method for the rigid duct and the

lined duct with or without a uniform mean flow. The results of wavenumbers and mode shapes

showed a good agreement between these two approaches.

Then acoustic propagation with a shear flow has been investigated for a rigid duct and a

lined duct. The wavenumbers and mode shapes were illustrated. The effect of boundary layer

thickness on the cut-off frequencies for the rigid duct was examined. The results showed that for

the same average Mach number, the cut-off frequencies were decreasing with the increase of the

boundary layer thickness. The effect of the boundary layer thickness on the wavenumbers and

mode shapes were also investigated.

As discussed in chapter 2, instabilities can be seen in numerical simulations of acoustic propa-

gation in a lined duct with a mean flow. In this chapter, the modal analysis approach is provided

to describe the acoustic propagation with mode solutions. A detailed study of the instabilities will

be carried out in chapter 4 by using the modal analysis approach and the time-domain method.
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4 Characterization of the instability

As shown in the previous chapter, instabilities are observed during the acoustic propagation along

a lined flow duct, and are caused by the complex interactions of acoustic waves with mean flow

and liners. These instabilities have attracted many interests in recent decades.

The presence of instabilities over acoustic liners was first revealed experimentally through the

transmission coefficient [6, 7, 8, 9]. The transmission coefficient became larger than 1 around the

liner resonance at sufficiently high Mach numbers, implying an increase of acoustic energy.

Meyer et al. [6] experimentally investigated the influence of turbulent flows with different bulk

velocities on sound attenuation along a rectangular duct lined with porous materials, a damped

Helmholtz resonator and an undamped Helmholtz resonator. A decrease in sound absorption

was observed with the increase of flow velocity. A negative attenuation with an exponentially

increasing amplitude was found in the experiment for an undamped Helmholtz resonator. Bran-

des et al. [7] investigated reflection and transmission coefficients of a radial λ/4-resonators. They

noticed that the strong amplification in the downstream direction for frequencies close to the

resonance frequency of the liner was related to a strong coupling between an acoustic and a hy-

drodynamic mode. They found the amplified wave in the lined duct propagated at a speed in the

order of the flow velocity, but the nature of the amplified wave was not clear. Aurégan et al. [8]

performed an experimental study on acoustic propagation with a grazing flow along a rectangular

duct lined with a ceramic liner. They showed that the transmission coefficient could be larger than

1 at Mach number 0.3. Moreover, the static pressure drop was greatly affected by the acoustic

waves. They attributed all these phenomena to the existence of hydrodynamic instabilities.

By applying optical flow measurements[94, 101, 18], full spatial characterization of hydrody-

namic instabilities was obtained, with its convective nature reveal. The study of Marx et al. [101]

is the first to characterize the instability over a locally reacting liner. The wavelength, convection

speed and growth rate of the instability were given. Alomar et al. [18] performed a study on

a porous liner. They found the hydrodynamic instability wave travelled at half the mean flow

velocity. It was also indicated that the inhomogeneities of the wall-normal velocity field and the

detachment of the vorticity core were not observed in the case of a locally reacting liner [101].

They suggested the existence of flow inside porous materials.

Motivated by the experimental observation of instabilities, analytical and numerical researches
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have been performed. The use of the Ingard-Myers boundary condition [102, 103], which describes

how acoustic perturbations interact with an impedance wall for a vanishingly-thin inviscid bound-

ary layer, was an usual approach in the early stage on this subject. By doing so, instabilities

were reported in many studies [104, 27, 34, 63, 105, 79].

Tester [104] theoretically studied the acoustic propagation in a lined duct with a uniform

mean flow. A spatially amplified mode was found, which could be attributed to convective

instabilities. Tam and Auriault [27] also noticed instabilities in their study. They pointed out

that the instabilities were of Kelvin-Helmholtz kind. They thought the instabilities are caused

by the postulate of a vortex sheet discontinuities next to the impedance in the Ingard-Myers

boundary condition. They argued that this instabilities would not be present if an impedance

boundary condition could include the effect of mean flow instead of considering kinetic effect of

a vortex sheet in Ingard-Myers boundary condition.

Özyörük et al. [34] found that when applying Myers boundary condition with a plug flow,

simulations suffered from instability issues. Rienstra [63] investigated the ducts modes in a

cylindrical duct and found the existence of the acoustic surface modes and hydrodynamic surface

modes, which propagated close to the surface of the duct wall. He found that one of the modes

corresponding to an instability by applying the Crighton-Leppington criterion. However the

Crighton-Leppington criterion was proved to be flawed by Brambley, as shown in the example 1

in [31]. Instead, the Briggs-Bers criterion [106, 107] was suggested to be applied.

However, some studies have even questioned the validity of the Ingard-Myers boundary con-

dition, since the assumption of a uniform flow is not realistic. Aurégan et al. [108] analysed sound

propagation in a 2D duct lined with a ceramic liner and a SDOF liner by using a multimodal

method. They first assumed the flow was uniform. Then the transmission and reflection coeffi-

cients were compared between from the experiments and numerical simulations. The hypothesis

of a uniform flow used in the numerical simulation was questioned due to the large discrepancies

observed.

Brambley [31] showed that part of the instabilities lay in the ill-posedness of the mathe-

matical model since the system supported an arbitrarily quick exponential growth at arbitrarily

short wavelength. Later Myers boundary condition was modified to consider the effect of a thin

boundary layer to regularize the problem [109].

Besides applying modified Myers boundary condition in the time domain simulation, consid-

ering a finite boundary layer thickness has been explored to improve the modelling of instabilities

[28, 110, 97, 111, 29, 112]. A detailed numerical analysis with a MSD liner showed that the

unstable mode transformed from an absolute one to a convective one [113] by using a impedance

boundary condition with a mean velocity profile instead of the Ingard-Myers condition. How-

ever, even if with a full velocity profile, absolute instabilities seem to be present in time-domain

simulations for liners with a more realistic broadband impedance [114].

The purposes of this chapter are to answer the questions if the instability in the time domain

is physical or numerical and whether we can have a precise prediction of the instability or not.
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4.1 Existence of an instability in the time-domain simulation

Actually it is an extension of the study of Marx [29]. Attention should be paid that neither

the Myers boundary condition nor the modified Myers boundary condition is used. Since the

modal analysis is a general approach to conduct stability analysis, it is used as a reference

for comparison. The results concerning the characterization of the instability are compared

between modal analysis and time-domain results. The effects of selective filtering and mesh size

on instabilities are studied. Finally, a parametric study is conducted to investigate the effect of

source frequency, mean flow and acoustic liners on instabilities.

4.1 Existence of an instability in the time-domain simulation

When acoustic waves propagate with the presence of a shear flow along a lined duct, time-

domain simulations are sensitive to instabilities. To exemplify the instability generated in the

time domain simulation, two examples based on the test case in section 2.4 are illustrated. A

SDOF liner and a CT57 liner are considered. The impedances of the SDOF liner and the CT57

liner are shown in figure 2.6 and 2.12. The mean flow Mach number is M = 0.335. In figure 4.1,

acoustic responses to an impulsive source are shown for the SDOF liner and the CT57 liner. The

pressures are recorded by a microphone installed at x = 0.28 m on the lined wall. Figure 4.1

presents the received pressure for these two cases. The pressure consists of two wave packets.

One is the response to the acoustic impulse and the other is related to the instability. After the

acoustic impulse propagates away, the instability generates and increases rapidly. The amplitude

of the instability is larger than the acoustic part. The frequency of the instability for the SDOF

liner is close to the resonance of the SDOF liner, 2 kHz. When the liner is replaced by the CT57

liner, the same phenomenon is also observed as mentioned before. The ceramic liner has several

resonance frequencies. However, the frequency of the instability is around 1 kHz.
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Figure 4.1: Acoustic propagation along a lined duct with a shear flow for a SDOF liner (left) and
a CT57 liner (right).

To study the hydrodynamic instabilities in the flow duct, a two-dimensional lined duct, of size

H×L, is considered, as shown in figure 4.2. The acoustic liner is installed on the upper wall, while

the lower wall is rigid. A point source is fixed in the center of the duct. The source is impulsive,
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Chapter 4 : Characterization of the instability

unless stated otherwise. A parallel shear flow of velocity profile u0 goes from left to right, and

vanishes on the walls. Nondimensional parameters are used and the nondimensionalization refers

to section 3.1.

Since the occurrence of hydrodynamic instabilities depends on the characteristics of the liner,

the mean flow profile and the source frequency, four cases corresponding to the existence of the

hydrodynamic instabilities are proposed. Their pressure responses to the impulsive source are

analysed.

For the time-domain approach, the source term Q is chosen as

Q (x, z, t) = λ(t) exp

(
−x

2 + (z − 0.5)2

B2
s

ln 2

)
, (4.1)

where Bs is the Gaussian half-width of the source, with a value of 0.104. Both impulsive and

harmonic sources are used in this study. For impulsive sources, λ(t) is defined as:

λ(t) =
t− ts
tc

exp

(
−(t− ts)2

t2c
ln 2

)
H(t) (4.2)

where ts = 5.42 is a time shift, tc specifies the frequency content of the source signal and has

been set to tc = 0.95 in order to excite only frequencies below the duct cut-off frequency. Finally,

H(t) is the Heaviside function. In the case of a harmonic source λ(t) is defined as:

λ(t) = exp (iωt)H(t) (4.3)

lined wall

rigid wall

z

x

source

H mean flow

Figure 4.2: Time-domain simulation model

4.1.1 Case 0

In case 0, the ceramic tubular liner CT57 used in the NASA GIT experiment[20], is installed on

the lined wall. The impedance of the CT57 liner varying with ω is shown in figure 4.3. Acoustic
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4.1 Existence of an instability in the time-domain simulation

propagation with no mean flow is studied.
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Figure 4.3: The impedance of the CT57 varying with ω.

Figure 4.4 shows the snapshots of acoustic propagation along the duct for case 0. The sound

is generated by an impulsive source. Acoustic waves attenuate along the lined wall during their

propagation. It is shown that when the CT57 liner is applied without a mean flow, no instability

is observed along the lined wall.

Figure 4.4: Snapshots of pressure response ln |p (x, t) | to an impulsive source for case 0.

In order to better show the phenomenon of sound propagation on the lined surface, figure 4.5

shows that the pressure response along the x-direction on the lined wall varying with time for
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case 0. The position of the source on the x-axis is marked by the red dash line. Two branches

originating from t = ts are observed, corresponding to upstream and downstream propagating

waves. Without a mean flow, the two branches are symmetric. These acoustic waves are at-

tenuated along the lined wall. After t ≈ 25, they have left the computational domain and the

remaining fluctuating pressure is almost null. It indicates that no instability is generated during

the propagation of acoustic waves.

Figure 4.5: Pressure response ln |p (x, z = 1, t) | to an impulsive source on the lined wall for case
0. The source position is indicated by the vertical dashed line.

4.1.2 Case 1

In case 1, a mass-spring-damper liner is used. The corresponding parameter of the MSD liner is

R = 0.2, m = 5.4 × 10−3 and K = 0. The left figure of figure 4.6 shows the impedance varying

with ω. The Mach number of the mean flow is M = 0.1, and the thickness of the boundary layer

is δ∗ = 5%. The profile of the mean flow is shown in the right figure.
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Figure 4.6: Liner and mean flow used in the case 1. Left, impedance of the MSD liner and right,
the mean flow profile.

The acoustic propagation along the lined duct is shown in figure 4.7. The acoustic waves are

observed to be attenuated along the lined wall. No hydrodynamic instability is generated even

if a mean flow is imposed. After the acoustic waves convect away the duct, the pressure in the
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4.1 Existence of an instability in the time-domain simulation

domain is null. The pressure response on the lined wall for case 1 is also shown in figure 4.8. The

similar branches related with acoustic propagation are also retrieved. To conclude, instabilities

are not generated with the presence of a weak mean flow along a duct lined with the MSD liner.

Figure 4.7: Snapshots of pressure response ln |p (x, t) | to an impulsive source for case 1.

Figure 4.8: Pressure response ln |p (x, z = 1, t) | to an impulsive source on the lined wall for case
1. The source position is indicated by the vertical dashed line.
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4.1.3 Case 2

The MSD liner is still used in case 2. The mean flow Mach number for case 2 is M = 0.3, which

is larger than case 1. The thickness of the boundary layer is δ∗ = 5%. The flow profile is shown

in figure 4.9.
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Figure 4.9: The mean flow profile in case 2.

Figure 4.10 shows that instabilities are generated along the lined wall during acoustic propa-

gation. The velocity of instabilities is smaller than the acoustic waves. For example, instabilities

start to generate after sound waves already leave the duct at t = 16. After acoustic waves

propagate away, the amplitude of instabilities amplifies during its movement, as illustrated at

20 ≤ t ≤ 60. At t = 90, spurious waves with small wavelengths start to be generated in the entire

computational domain.

Figure 4.11 shows pressure response ln |p (x, t) | on the lined wall for case 2. There are two

kinds of components in the figure. The first one is acoustic waves, which exist for t ≤ 20.

Another kind of pattern is however observed in the downstream direction for 10 ≤ t ≤ 60. Its

magnitude and its spatial content increase as it propagates away from the source, indicating it

is an instability. Moreover, since the pressure response is given as a function of the distance and

time variation, the velocity of acoustic waves and instabilities can be deduced from the slopes of

the different branches. It can then be estimated that the propagation velocity of the instability

is smaller than that of the acoustic waves. To conclude, acoustic waves are generated during

the acoustic propagation along the duct lined with the MSD liner, when a strong mean flow is

imposed.
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4.1 Existence of an instability in the time-domain simulation

Figure 4.10: Snapshots of pressure response ln |p (x, t) | to an impulsive source for case 2.

4.1.4 Case 3

In case 3, the liner used is the same as in case 0. The Mach number is M = 0.335 and the

boundary layer thickness of the flow profile is δ∗ = 2% as shown in figure 4.12. This case is

inspired by the NASA GIT benchmark problem [20], since instabilities have been reported in a

lot of numerical studies based on this test case [79, 33, 114]. Li [79] solved the linearized Euler

equation in the time domain. He postulated the nature of the instability generated in solving

LEE in the time domain is of Tollmien-Schlichting kind. He thought the spatial growth rate of the

instability was a linear one. Burak et al. [33] also observed the instability at 1 kHz with adopting

a large eddy simulation and a linearized Navier-Stokes solver. Therefore, case 3 is devoted to

analysing the instabilities mentioned in the study of NASA GIT experiment.
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Figure 4.11: Pressure response ln |p (x, z = 1, t) | to an impulsive source on the lined wall for case
2. The source position is indicated by the vertical dashed line.
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Figure 4.12: The Mean flow profile used in case 3

Figure 4.13 shows the snapshots of pressure responses along the duct for case 3. The insta-

bilities are much more pronounced compared with figure 4.10. Once instabilities are generated,

they spread all the domain and become the predominant contribution. In figure 4.14, similar

branches and instability patterns, respectively related to the acoustic propagation and hydrody-

namic instabilities, are observed. One obvious difference between the figure 4.11 lies in the feature

of instabilities. For example, the instabilities in case 3 seem to grows temporally and spatially.

However, the instabilities in case 2 convect away from the duct even if they also amplify during

their movements.
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4.1 Existence of an instability in the time-domain simulation

Figure 4.13: Snapshots of pressure response ln |p (x, t) | to an impulsive source for case 3.
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Figure 4.14: Pressure response ln |p (x, z = 1, t) | to an impulsive source on the lined wall for case
3. The source position is indicated by the vertical dashed line.
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4.2 Analysis of stability

This section aims at correlating the instability observed in time-domain simulations with the

modal representation. Therefore, a harmonic source is imposed on both approaches. Subse-

quently, the type, the wavenumber and mode shapes of the instability are investigated. The

method for characterization of instabilities in time-domain solutions is presented. The results are

compared with the prediction of the modal analysis approach.

4.2.1 Wavenumbers of 4 cases obtained by modal analysis

The wavenumbers of all the modes for the 4 cases at ω = 0.9271 (f = 1000 Hz) are shown

in figure 4.15. For case 0 and 1, there is no mode in the upper-right complex k-plane and

therefore no possible instabilities. For case 2 and case 3, several modes are located in the upper

right complex k-plane. These are possible unstable modes, and their stability depends on their

propagation direction. If the mode is an upstream decaying mode, the propagation is stable. On

the other hand, if it propagates in the stream wise direction, it corresponds to an instability. The

propagation direction of this mode therefore needs to be determined.

In figure 4.15, noticeable modes other than the acoustic modes and the instability are con-

vected modes which satisfy the dispersion relation ku0 (z) = ω. For a sheared mean flow, they

come as a continuous spectrum, located in the k-plane along the horizontal half-line starting

at k = ω/max(u0). In solving the eigenvalue problem numerically, this continuous spectrum

turns into individual modes, which are greatly dependent on the discretization. In particular,

the wavenumbers of these modes may have small positive imaginary parts and thus be weakly

unstable. Note that the use of selective filters, as employed in the time-domain simulations, tends

to move the convected modes towards the lower right quadrant of the k-plane [29] and thus to

make all these modes stable. As we are primarily interested in the instability, no specific method

is employed to have an accurate prediction of these modes. Such a method has been for instance

described in Vilenski and Rienstra [115].

4.2.2 Briggs-Bers criterion

The Briggs-Bers criterion [106, 107] was first proposed to analyse the plasma instability and then

was extended to the instabilities in fluid mechanics and aeroacoustics[116, 117, 118, 119]. Later it

has been applied in the stability analysis of acoustic propagation in a lined flow duct [31]. It allows

one to determine the propagation direction of the modes, and, if an unstable mode is present,

whether it is convective or absolute. However, before using the Briggs-Bers criterion, it should

be checked whether it is applicable. For instance, as discussed by Brambley [31], the acoustic

propagation in a lined duct with a plug flow and the Myers impedance boundary condition is

mathematically ill-posed. The system supports the instability waves grow at an infinite large

growth rate, therefore the Briggs-Bers criterion can not be used.
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Figure 4.15: Wavenumber obtained from modal analysis at ω = 0.9271. a, case 0; b, case 1; c,
case 2 and d, case 3. + modes obtained from modal analysis, ◦ possible unstable hydrodynamic
modes.

Bounded temporal growth rate

Since there are possible unstable modes in cases 2 and 3, it is necessary to check whether the

Briggs-Bers criterion is applicable, before applying the stability analysis. Specifically, the max-

imum of the amplification rate for all modes, particularly the possible unstable one, should be

bounded. For this based on the dispersion relation D (k, ω), the frequency ω is given as a function

of wavenumber k. We need to check that there is a minimum of the imaginary part of ω satisfying

ωmin = min
k∈R

[Im(ω(k))]. (4.4)

In other words, for a purely real wavenumber k, the temporal growth rate Im(ω(k)) of the possible

unstable mode needs to be calculated.

The temporal growth rate Im (ω) of the unstable mode in case 2 is shown in figure 4.16.

An example of an ill-posed problem applied with the Ingard-Myers boundary condition, rather

than the impedance boundary condition is also given in the figure. The temporal growth rate of

the possible mode is studied when Re(ω) gradually increases from -1.5 to 1.5. The figure shows

that the temporal growth rate −Im(ω) of the mode has a trend to become infinitely large for
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an arbitrary ω by adopting Ingard-Myers boundary condition with a uniform flow. Therefore

the Briggs-Bers criterion, in this case, is not applicable. However, with the impedance boundary

condition considered, the growth rate is bounded at Im (ω) ≈ −0.23, meaning that the instability

will not amplify at an arbitrarily large growth rate for any given real frequency. The Briggs-Bers

criterion can thus be applied in this case.
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Figure 4.16: Temporal trajectory of the unstable mode. The case 2, and the case adopting
Ingard-Myers bounadry condition with a uniform flow M = 0.3, .

Similarly, the temporal growth rate Im (ω) of the unstable mode for case 3 is shown in figure

4.17. Im (ω) is bounded. It should be noticed that several discontinuities are observed. The reason

is that the dispersion relation D (k, ω) has several roots of real k at a certain ω. Among all the

roots, we are primarily interested in the one obtained at the largest negative value of Im (ω).

Table 4.1 indicates the number of purely real k obtained for different ranges of ω. Because of

the symmetry between the positive and negative Re (ω), only the positive values of Re (ω) are

considered. Figure 4.18 illustrates the different numbers of real k obtained for different range of

Re (ω) during the variation of Im (ω) from -0.7417 to 0.7417.
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Figure 4.17: Temporal trajectory of the unstable mode for case 3.
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Table 4.1: Number of real roots k of D(ω, k) for ω at different ranges.

Re(ω) 0 ∼ 0.7547 0.7547 ∼ 0.8715 0.8715 ∼ 0.9960

N 1 3 1
0.9960 ∼ 1.0384 1.0384 ∼ 1.0801 1.0801 ∼ 1.4834
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Figure 4.18: Three trajectories of the unstable mode Im (ω) varying from -0.7417 to 0.7417. Left,
Re (ω) = 0.1854; middle, Re (ω) = 0.9735; right, Re (ω) = 1.0662.

Procedure of applying Briggs-Bers criterion

Applications of the Briggs-Bers criterion include distinguishing the unstable modes from the

stable modes and indicating the type of instability existing in the system. A detailed introduction

of the Briggs-Bers criterion can be found in Appendix C. Procedures[106] to conduct analysis

based on the criterion are:

• When ω is real, the mode wavenumber which has a positive imaginary part Im (k) is the

candidate for the unstable mode. To determinate if a possible unstable mode contributes to

instabilities and whether the instabilities are convective or absolute ones, the trajectories of

wavenumbers in the complex k-plane are recorded as ω varies. More specifically, the value of

Re (ω) remains unchanged while Im (ω) is varied from −∞ to 0. And then repeating this process

for numerous values of Re (ω). If the mode derives from the lower half plane, the mode is a

downstream propagating mode, and if the mode is originating from the upper half plane, the

mode is an upstream propagating one. If the trajectory of the downstream propagating mode

crosses the real-k axis, the mode is an unstable one.

• Once the existence of the unstable mode is ascertained, the type of instabilities can be

indicated by the presence or not of a saddle point. The saddle point corresponds to merging

roots of k from different halves of the k-plane. Mathematically, it represents a second-order

algebraic branch point at a certain ω. If the trajectories of the wavenumbers in the k-plane

show a saddle point, the absolute instabilities can be deduced. Attention should be paid on the

merging points, one root should come from the lower-half k-plane, and the other should come

from the upper, as shown in figure 4.19.

• During the variation of Im (ω) from −∞ to 0, the trajectory of modes crosses the real k-axis,

and no saddle point is observed, then the amplifying waves are of convective type. An illustration
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Figure 4.19: Trajectory of wavenumber k with variation of ω when absolute instabilities are
consisted. Left, variation of the frequency ω in the complex plane. Right, corresponding variation
of the wavenumber k with ω. referring to the saddle point.

is given in figure 4.20.

Figure 4.20: Trajectory of wavenumber k with variation of ω when convective instabilities are
consisted. Left, variation of the frequency ω in the complex plane. Right, corresponding variation
of the wavenumber k with ω.

Following the procedures mentioned before, figure 4.21 shows this process for case 2. The

illustration is given for Re(ω) = 0.9271, while the imaginary part Im (ω) goes from −1.4 to 0.

The wavenumber of the possible unstable mode crosses the real k-axis from the lower k-plane

when Im (ω) is approaching 0. The crossing of the real k-axis from the lower half k-plane indicates

that this mode is indeed a downstream propagating mode and is thus an instability. It has been

carefully checked that on a large range of values of Re (ω) no saddle point is observed. To sum

up, the instabilities in case 2 corresponds to convective instabilities.

The trajectories of the wavenumbers for case 3 are shown in figure 4.22. Re (ω) is set re-

spectively to ω = 0.9660, 0.9670 and 0.9679, meanwhile Im (ω) varies from −1.4 to 0. The

trajectories for both possible unstable modes are displayed in the left and right figure. Figure

4.22 shows that both possible unstable modes cross the real k-axis from the lower k-plane when

Im (ω) is approaching 0. The crossing of the real k-axis from the lower half k-plane indicates

that these modes are indeed downstream propagating modes and are thus instabilities. In the

left of figure 4.22, one mode coming from the lower k-plane and the other from the upper k-plane

merge at ωs = 0.9670− 0.2716i. The corresponding k is around 0.5 + 1.6i. Since a saddle point

is observed in case 3, the instabilities in case 3 are absolute instabilities.
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In addition to the mode related to the saddle, there is another unstable mode in the system.

The second unstable mode which also crosses the real-k from the lower k-plane during the vari-

ation of Im (ω). A large inspection for different Re(ω) has been made. Except for the merging

root near k = 0.5 + 1.6i, no other saddle points are observed. Therefore the second unstable

mode will lead to a convective instability.
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Figure 4.21: Trajectories of the wavenumber for case 2 by increasing values of Im (ω). The arrow
denotes the direction of path varies from -1.4 to 0.
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Figure 4.22: Trajectories of the wavenumber for case 3 by increasing values of Im (ω). The arrow
denotes the direction of path varies from -1.4 to 0. Re (ω) = 0.9660, •; Re (ω) = 0.9670, •;
Re (ω) = 0.9679, •. Left the saddle point form by one of the possible unstable mode. Right, the
second unstable mode.

4.2.3 Characterization of the hydrodynamic instability

The characteristics of the instability observed in the time-domain simulations can also be investi-

gated by considering acoustic propagation driven by a harmonic source at ω = 0.9271 (f =1 kHz).

The types of instabilities are studied for cases 2 and 3. The determination of mode wavenumbers

and mode shapes of the instabilities will be conducted on case 2.

For the modal analysis approach, there are 150 points along the duct height to obtain a
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converged result. For the time-domain method, the time step is ∆t = 0.0014. The grid size

along the x-direction for the calculated domain is ∆x = 0.02, which is fine enough for ensuring

far more than 10 points per wavelength. 175 points are used for discretization along the duct

height. The selective filter is applied on all the domain apart from the first grid point to remove

the grid-to-grid oscillations. The strength of the selective filter is denoted by xν and its default

value is 0.5. Receivers are located along the lined wall to collect pressure signal p(x, t) for all the

time iterations.

Instability type

The pressure responses to the harmonic source ω = 0.9271 are obtained from the time-domain

approach. Figure 4.23 shows the pressure response on the lined wall varying with time for case

2 and case 3. The response of pressure has a constant value at x = 0 since a harmonic source is

used. The attenuation of the pressure can be noticed along the lined wall, and the hydrodynamic

instability is observed in the downstream direction. For case 2, when a steady-state is attained,

the magnitude of the instability at a given location is not increasing over time. The amplification

of amplitude grows with the distance from the sound source. It thus appears that the instability

observed in the time-domain simulation is also a convective one.

However, the instability in case 3 not only grows with x-axis but also grows with time. It

shows that the instabilities in case 3 are absolute ones. As shown in figure 4.22, two unstable

modes respectively lead to convective instabilities and absolute instabilities. We infer that the

instabilities shown in figure 4.23 are the results of a combination of two types of instabilities. The

conclusion drawn by the time-domain approach agrees with the prediction of the modal analysis

approach.

Figure 4.23: Pressure response ln |p (x, z = 1, t) | to a harmonic source at ω = 0.9271 obtained
from the time-domain simulation for left, case 2; right, case 3. The source position is indicated
by the vertical dashed line.
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Wavenumber

The investigation of the wavenumber and mode shapes of instabilities is done on the case 2,

for which the instabilities are convective ones. If the instability is convective and is the main

contribution to the pressure field, the fluctuating pressure will have the form:

p (x, z, t) = PHI (z) eiωte−iRe(kHI)xeIm(kHI)x, (4.5)

where PHI is the mode shape of the instability and kHI is its wavenumber. In this case, the phase

of the complex pressure, denoted by arg is given by:

arg[p (x, z, t)] = −Re (kHI)x+ ωt+ arg[PHI (z)]. (4.6)

The real part of the instability wavenumber can then be estimated from the time-domain solution

through the axial evolution of the phase of the complex pressure. Figure 4.24 shows arg(p) along

the liner (z = 1) at t = 90, for which it has been checked that the instability is well developed. The

phase has been unwrapped to ensure that arg(p) is continuous. The estimated slope for 2 ≤ x ≤ 6

of the phase is −6.89, which is very close to the prediction of modal analysis Re(kHI) = 6.78.
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Figure 4.24: Comparison of the phase of the pressure on the lined wall from the time-domain
solution at t = 90 and from the analytical solution in Eq. (4.6) (arg(p) ∝ −6.78x) .

Similarly, the growth rate of the convective instability Im (kHI) in Eq. (4.5) can be calculated

from the logarithm of |p(x, z, t)|:

ln |p (x, z, t)| = Im (kHI)x+ ln |PHI (z) |. (4.7)

A snapshot of ln |p| at t = 90 from the time-domain simulation is depicted in figure 4.25 (a). The

instability is seen growing from the source at the vicinity of the liner. Figure 4.25 (b) shows the

spatial variation of ln |p(x, z = 1, t = 90)|. A linear growth is observed downstream, where the

instability is the dominant contribution to the pressure field. The estimated slope for 2 ≤ x ≤ 6

is 1.99, which is again in close agreement with the spatial growth rate predicted by the modal

analysis approach Im (kHI) = 1.97.
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Figure 4.25: (a) Snapshot of ln |p| at t = 90 and (b) comparison of the amplitude of the pressure
on the lined wall from the time-domain solution and from the analytical solution in Eq. (4.7)
(ln |p| ∝ 1.97x) .

Mode shapes

The mode shapes |P |, |U | and |V | of the instability determined from the modal analysis approach

are compared with the vertical profiles of p, u and v calculated from the time-domain solution in

figure 4.26. The results of the time-domain solution correspond to the section x = 4 at t = 90,

for which it has been checked that the solution is not changing after additional time iteration.

When the time-domain solution is in a steady-state, the vertical profiles of p, u and v should

hold similar shapes regardless of x-position and time iteration. For comparison, the mode shapes

of the instability and the vertical profiles of p, u and v are normalized by the maximum of the

pressure modulus. The peak of the amplitudes are observed near the lined wall. Then they

gradually decrease to a small value on the rigid wall. The match between modal analysis and the

time-domain solution is remarkable.
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Figure 4.26: Comparisons of mode shapes of the instability. Left, U (z), middle, V (z) and
right, P (z) determined from the time-domain solution at x = 4 and t = 90 and cal-
culated by modal analysis.
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4.2.4 Validation at ω = 0.4636

To check the viability of the time-domain method in obtaining the characteristics of instability,

additional simulations by using the time-domain method are performed at ω = 0.4636 (f =

500 Hz) and ω = 1.8542 (f = 2000 Hz) for case 2. One should pay attention that the impedance

model used in case 2 is a broadband one, therefore the impedance at different frequency is not

the same as shown in Table 4.2. Except the frequency and the impedance, the other parameters

are the same as in section 4.2.3.

Table 4.2: Impedance at different frequencies for the MSD liner used in case 2.

ω 0.4636 0.9271 1.8542

Z 0.2 + 0.0025 i 0.2 + 0.005 i 0.2 + 0.01 i

Figure 4.27 shows the mode wavenumbers predicted by the modal analysis approachg at

ω = 0.4636. The reference result ω = 0.9271 is also indicated. The wavenumbers of the “plane

wave” mode (k = 0.79−0.33i) and the unstable mode (kHI = 2.57 + 1.31i) show the most evident

change. Compared with ω = 0.9271, the spatial growth rate of the unstable mode slightly

decreases. However the wavelength becomes three times longer. Figure 4.28 shows the evolution

of arg(p) and ln |p| along the lined wall for ω = 0.4636 obtained from the time-domain solution

at t = 90 and predicted with the analytical solution in Eq. (4.5), where the value of kHI obtained

from modal analysis has been used. Here again, an excellent match is observed.
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Figure 4.27: Wavenumber obtained by modal analysis for ω = 0.4636. ◦ ω = 0.4636, + ω =
0.9271.

Comparisons of mode shapes of the instability between the time-domain method and the

modal analysis approach at ω = 0.4636 are shown in figure 4.29. The vertical profiles u, v and p

of the time-domain solution at x = 5.5 at t = 90, for which it has been checked that the solution

is not changing after additional time iterations. Compared with figure 4.26, the predicted results

obtained by the two methods are consistent in terms of trends. It also shows that the peak of

the |U | at ω = 0.4636 is nearly twice large than the one at ω = 0.9271. In conclusion, the match

of mode shapes obtained through the two approaches is quite well.
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Figure 4.28: Comparisons of the phase (left) and amplitude (right) of the pressure on the lined
wall for ω = 0.4636 from the time-domain solution at t = 90 and from the analytical
solution .
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Figure 4.29: Comparison of the mode shape of the instability for (a) U (z), (b) V (z) and (c) P (z)
determined from the time-domain solution at x = 5.5 and t = 90 and calculated by

the modal analysis approach.

The wavenumber distribution for case 2 at ω = 1.8542 is displayed in figure 4.30. The

wavenumbers, both the acoustic modes and hydrodynamic modes, are quite different from the

reference result. The unstable mode obtained at ω = 0.9271 does not exist when ω = 1.8542,

which indicates the system is stable at this frequency. The time-domain approach at ω = 1.8542

is also performed. The instabilities are observed, even if they are not expected. It may be due

to the fact that the source in the time-domain simulations is not purely harmonic, and excites,

at the transient stage, a broadband frequency range. Instabilities, related to lower frequencies,

are thus generated. Once the instabilities are excited by the sudden jump in the implementation

of the harmonic excitation, the instabilities may convect in a small range of frequencies. The

difference compared with the previous cases is that the instability will not be converged and it

will convect away from the calculated domain. In the later stage of simulation, small grid to

grid oscillations gradually accumulate leading to inevitable numerical instabilities. Finally, the

numerical instability make the simulation crash, therefore no converged characteristics of the

instability can be acquired.
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Figure 4.30: Wavenumber obtained by modal analysis at ω = 1.8542. ◦ ω = 1.8542; + ω = 0.9271.

4.3 Convergence of the LEE time-domain approach

Previous studies on the same topic, i.e., instabilities appearing during sound propagation in a

lined flow duct, have mentioned the impact of spatial filters and grid resolution on the instabilities.

It was concluded that selective filtering is effective to remove or partly remove the instability [120,

121] and that the use of fine grids can reinforce the instability [113, 122], in particular when using

the Myers impedance boundary condition instead of resolving the boundary layer as done here.

Therefore, one of the main objective is to study the effects of both factors on the hydrodynamic

instabilities. A parametric study on the impacts of the source, a mean flow and acoustic liners

on instabilities are also performed.

4.3.1 Effect of the filtering strength

In time-domain simulations, a selective filter of strength xν is applied on the whole domain to re-

move the grid-to-grid oscillations. In the previous sections, xν was set to 0.5. Simulations are now

performed with different values of xν in order to study how the properties of the hydrodynamic

instability are modified.

Figure 4.31 shows the real and imaginary parts of the instability wavenumber obtained with

the time-domain solutions as a function of xν . The results are compared with the reference

wavenumber obtained by the modal analysis approach. When the strength of selective filter is

between 0.7 and 1, the strong dissipation of the selective filter results in a noticeable deviation

between the reference result and the time-domain prediction. In particular, the growth rate of

the instability is overestimated. As xν decreases, Re(kHI) and Im(kHI) start to approach the

reference wavenumber. The value of xν does not make a significant difference to Re(kHI) and

Im(kHI), when it is in the range between 0.2 and 0.5. For xν below 0.2, spurious numerical waves

with a short wavelength are rapidly growing near the duct walls and the calculation become

unstable instantly. Therefore, for accurately predicting the physical instability, the filter strength

should be chosen as small as possible while sufficiently large to stabilize the numerical calculation.
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To conclude, a value of xν between 0.2 and 0.5 seems to be a good compromise.
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Figure 4.31: Left, real and right, imaginary parts of the instability wavenumber: + estimated
from the time-domain solution as a function of the filtering strength xν and predicted by
modal analysis. The grey region indicates unstable simulations.

4.3.2 Effect of the mesh size along the duct height

Along the x-direction, centered high-order finite-difference schemes, with dispersion-relation pre-

serving properties, are employed. It is assumed that the mesh size ∆x is small enough so that

the dispersion properties of the instability are well-reproduced. In particular, it has been checked

that k∗(kHI) is very close to kHI, where k∗ is the effective wavenumber of the centered finite-

difference scheme employed here. No particular effect in reducing ∆x is thus expected. The grid

along the z-direction is anticipated to have more impact on the instability. Indeed, non-centered

schemes are used near the walls, which enhance dispersion. They can amplify or dissipate even

constant-amplitude waves, contrary to centered schemes. In addition, the instability is directly

related to the mean flow profile through u0 and du0/dz. The discretization of the mean flow

profile, in particular within the boundary layer, is expected to play a role in the results.

Figure 4.32 shows the impact of the number of grid points along the z-direction nz on the

real and imaginary parts of the instability wavenumber. For nz ≤ 155, the deviations of Re(kHI)

and Im(kHI) between using time-domain approach and modal analysis are noticeable. Note that

the mesh is already fine enough for nz = 55 to precisely calculate the acoustic propagation. The

number of points per wavelength is indeed about 2πnz/ω ≈ 370, which is very large. However,

that is still not sufficient to precisely calculate the hydrodynamic instability. As nz increases, the

features of hydrodynamic instability can be captured and the wavenumber gradually approaches

the prediction of modal analysis. With nz ≥ 175 the time-domain solution is deemed converged.

With successive increase in the point of grid from 175 to 305, no significant modifications of

wavenumbers are found compared with prediction of modal analysis. In summary, fine grids are

needed to capture accurately the instability in the time-domain simulation.
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Figure 4.32: Left, real and right, imaginary parts of the instability wavenumber: + estimated
from the time-domain solution as a function of the number of grid points along the duct height
nz and predicted by the modal analysis approach.

4.4 Parametric study

As shown in the four test cases, the hydrodynamic instability can be observed under certain con-

ditions. Furthermore, the properties of the hydrodynamic instability have significant differences

when various mean flow and the liners are imposed. For example, in cases 2 or 3, the hydrody-

namic instabilities can be convective or absolute ones, when different mean flow and liners are

imposed in the duct. Therefore, it is necessary to further understand the characteristics of hydro-

dynamic instability, so that the optimal solution of multi-objective optimizations for the acoustic

treatment can be obtained to maximize the efficiency of acoustic liners. A parametric study by

using modal analysis is conducted to investigate the effects of some parameters, i.e., the source

frequency ω, the boundary layer thickness δ∗, the Mach number M and the liner impedance Z

on hydrodynamic instabilities.

4.4.1 Effect of frequency ω

The effect of frequency ω on kHI is shown in figure 4.33. Except for the frequency and liner

impedance, the other parameters are kept the same as case 2 in section 4.2.1. One should notice

that the liner model is broadband one, and then the variation of the frequency will cause the

instability to change. The frequency ω varies from 0.4636 to 1.2052 (corresponding to 500 Hz to

1300 Hz). The real part of wavenumber Re(kHI) increases gradually with frequency ω, indicating

a decrease of the wavelength of the instability, as seen in the left of the figure. In the right of the

figure, a maximum spatial growth rate of the instability is obtained at ω ≈ 0.8344. Moreover, the

instability will only exist in a certain frequency range 0.4636 ≤ ω ≤ 1.2052: the unstable mode

will not be present if the frequency is too low or high.

4.4.2 Effect of boundary layer thickness δ∗

The boundary layer thickness of the mean flow δ∗ varies from 2 % to 7 %, while the Mach number

keeps M = 0.3. The other parameters are chosen as case 2 in section 4.2.1. The effect of the
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Figure 4.33: Effect of frequency ω on the wavenumber kHI. Left, Re(kHI) and right, Im(kHI).

boundary layer thickness on the wavenumber kHI is displayed in figure 4.34. The wavelength

of the instability tends to become longer when the boundary layer of the mean flow becomes

thinner, and the spatial growth rate of instability tends to be much larger. When the boundary

layer thickness approaches to 0, the instability is related to the instabilities in the application of

Ingard-Myers boundary condition. Simulations have also been performed by using a relatively

thick boundary layer, for example δ∗ = 10%, and no instability is observed. It also has been

demonstrated in previous studies [110]. The results indicate that instabilities tend to be observed

for the mean flow with a thin boundary layer.
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Figure 4.34: Effect of boundary layer thickness δ∗ on the wavenumber kHI. Left, Re(kHI) and
right, Im(kHI). Wavenumber calculated by using the Ingard-Myers boundary condition, •.

4.4.3 Effect of Mach number M

The effect of Mach number M on the wavenumber kHI is presented in figure 4.36. The Mach

number of the mean flow varies from M = 0.3 to M = 0.55 with the boundary layer thickness

remains δ∗ = 5%. The mean flow profiles are illustrated in figure 4.35. Other parameters keeps

same as case 2 in section 4.2.1. With the increase of Mach number M , the wavelength of the

instability grows continuously, while the spatial growth rate of the instability gradually decreases.
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Figure 4.35: Flow profiles varying with Mach number. From left to right, Mach number is
respectively M = 0.3, 0.35, 0.4, 0.45, 0.5 and 0.55.

To be noticed, since the ratio of the boundary layer thickness is kept the same, the real thickness

of the boundary layer becomes thicker. In the situation, the instabilities turn to become weaker

with the increase of Mach number M . Marx & Aurégan [10] also conducted the study of the

effect of a mean flow Mach number on the wavenumber of instabilities. They showed that there

was a threshold of mean flow Mach number for the existence of instabilities. When the mean

flow Mach number M was increased, the maximum of the spatial growth rate for instabilities

shifted towards a higher frequency. Therefore an accurate description of the mean flow profile is

necessary to precisely predict the instability.
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Figure 4.36: Effect of Mach number M on the wavenumber of the unstable mode kHI. Left,
Re(kHI) and right, Im(kHI).

4.4.4 Effect of resistance Re(Z)

The effect of resistance on the hydrodynamic instability is investigated at ω = 0.9271. The

resistance of the MSD liner Re(Z) increases from 0.05 to 0.4 with the reactance kept constant

Im(Z) = 0.005. The other parameters are chosen as case 2 in section 4.2.1. Actually, the

resistance of a acoustic liner aims at modelling dissipation effect; therefore the increasing of

Re(Z) may help to prevent the generation of instabilities. Figure 4.37 shows that the wavelength
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of the instability tends to be shorter with the increase of resistance. Meanwhile, the spatial

growth rate fluctuates. The maximum of the spatial growth is obtained at Re(Z) ≈ 0.2. It is also

checked that when the resistance is quite large, for example Re(Z) = 0.85, no unstable mode is

observed.
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Figure 4.37: The effect of resistance Re(Z) on the wavenumber kHI. Left, Re(kHI) and right,
Im(kHI).

The effect of resistance is also studied on case 3 of section 4.2.1, where absolute instabilities

are observed. The resistance of the liner CT57 is increased with a value 0.4 and 0.8, while the

reactance is maintained the same. The impedance of the original CT57 is denoted by Zct, while

the others are expressed as Zct +0.4 and Zct +0.8. The impedance and admittance are both given

in figure 4.38. The pressure response to a harmonic source at ω = 0.9271 for the modified liners

on the lined wall are respectively shown in figure 4.39. The absolute instability are weakened

greatly by increasing the resistance of the CT57 liner. The dissipation due to increasing the

resistance of the liner is encouraging.
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Figure 4.38: Impedance and admittance of the modified liner. ZCT57, ; ZCT57 + 0.4,
and ZCT57 + 0.8, . Left, impedance Z and right, admittance β.
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(a)

(b) (c)

Figure 4.39: The pressure response ln |p(x, z = 1, t)| by applying liners Zct, Zct +0.4 and Zct +0.8
at ω = 0.9271. (a),Zct; (b), Zct + 0.4 and (c), Zct + 0.8.

4.4.5 Effect of reactance Im(Z)

The impact of reactance on the instability is shown in figure 4.40. The reactance Im(Z) varies

from 0.001 to 0.1 while the resistance remains Re(Z) = 0.2. The other parameters are the same

as used in case 2 of section 4.2.1. The effect of reactance on the instability is shown in figure 4.40.

The wavelength becomes shorter during the variation of Im(Z) from 0.001 to 0.1. At the same

time, the spatial growth rate of the unstable mode grows successively, which implies instabilities

becomes more vigorous. The transition from convective instability to absolute instabilities may

be stimulated.

To validate the speculation that the increase of admittance would enhance the instability,

several MSD liners are utilized. The MSD liner models are linear ones. The resistance of the

MSD models remains 0.2 and the reactances of the MSD model at ω = 0.9271 (f = 1000 Hz) are

0.005, 0.1 and 0.2. The corresponding parameters of MSD liners are given in Table 4.3 and their

impedances and admittances are shown in figure 4.41.

When the MSD2 liner is applied, the temporal-spatial analysis is performed as shown in

figure 4.42. The saddle point obtained at ωs = 0.9243− 0.0185i (f = 997− 20i Hz) is located at

ks = 7.18 + 7.77i. The pressure responses ln |p (x, z = 1, t) | to a harmonic source at ω = 0.9271
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Figure 4.40: Effect of reactance Im(Z) on the wavenumber kHI. Left, Re(kHI) and right, Im(kHI).

Table 4.3: Parameters of several MSD liners

Z(ω) R m K

MSD 0.2 5.4× 10−3 0
MSD2 0.2 1.08× 10−1 0
MSD3 0.2 2.16× 10−1 0
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Figure 4.41: Impedance (left) and admittance (right) model for several MSD liners. ZMSD, ;
ZMSD2, and ZMSD3, .

for MSD2 liner and MSD3 liner are shown in figure 4.43. The type of instabilities is clearly the

absolute one for both case. Furthermore, the instabilities for the MSD3 liner is much severe than

the MSD2 liner. The results indicates that the increase of Im(Z) can lead to stronger instabilities.
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Figure 4.42: Trajectories of wavenumbers k with the Im (ω) increasing from large negative to 0
for different reactance Im (Z). Im (Z) = 0.1, Re (ω) = 0.9234, •; Re (ω) = 0.9243, •; Re (ω) =
0.9252, •.

Figure 4.43: Pressure response to the source at ω = 0.9271 on the lined wall z = 1 for left,
Im(Z) = 0.1 and right, Im(Z) = 0.2. source position on the x-axis.

4.5 Conclusion

In the present chapter, four cases: without instability, with convective instabilities and with

absolute instabilities, were studied in the frequency domain and time domain. These four cases

were proposed according to the existence of the hydrodynamic instabilities during the acoustic

propagation along a lined flow duct.

The modal analysis approach developed in the previous chapter was used to determine the

distribution of modes and mode shapes. The Briggs-Bers criterion was then applied to determine

the propagation direction of modes and to separate unstable downstream propagating modes

from stable upstream propagating modes. It was also used to specify the type of instabilities

for each case considered. It was shown that no instability, convective instability and absolute

instability were involved in the four cases.

The characterization of instabilities was focused on case 2. The method to obtain the

wavenumber of instabilities from the time-domain approach was presented. The results of the

characterization of the hydrodynamic instability from the time-domain simulations were also
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compared with the modal analysis approach. A good agreement for the wavenumber and mode

shape of the instability between the time-domain solutions and the modal analysis approach was

obtained. The impact of the grid resolution and selective filter on instabilities, which have been

reported to have a significant influence on instabilities in the literature, was investigated. It

turns out that very fine grids, compared to what is required for acoustic waves, are necessary to

precisely calculate the instability.

A parametric study was conducted to study the effect of the source frequency, the mean flow

profile and the impedance of the liner on the hydrodynamic instability. The instabilities existed

in a certain range of frequency and had a maximum growth rate in this range. The mean flow

profile, containing the boundary layer thickness and Mach number, had a complex effect on the

instability. The importance of a precise determination of flow profile was therefore addressed.

The instabilities tended to become more severe when a small resistance and a relatively large

reactance were adopted.
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5 Removing instabilities in the lined flow duct

The previous chapter has examined the hydrodynamic instabilities generated during the acoustic

propagation in a lined flow duct. Although the nature of the instabilities is proved to be physical,

these instabilities are found very rarely experimentally and only under special conditions [110].

When a time-domain LEE solver is employed to study the problem as presented in the previous

chapter, the instabilities often develop during the acoustic propagation. The acoustic field is

contaminated by the instabilities, and the prediction of the acoustic field is not reliable anymore.

Occasionally, they can even lead to diverged results and hinder the time-domain simulation.

The objective of the chapter is to present the partial Gradient Term Suppressing (GTS)

method for removing the instabilities generated during the acoustic propagation in a lined flow

duct. The impact of the partial GTS method on the acoustic propagation is hence imperative to

address. It is imperative to notice the compensate for a stable computation.

The outline of this chapter is as follows: the techniques commonly applied to suppress instabil-

ities are reviewed in the first part. The partial Gradient Term Suppressing (GTS) method is then

presented. Finally, three cases are tested to investigate the effect of the partial GTS method on

acoustic propagation, convective instabilities and absolute instabilities in the frequency domain

and in the time domain.

5.1 Techniques of removing instabilities

Various numerical techniques to remove or at least attenuate the instability on the liner have

been explored in the past. The strategies to remove instabilities can be classified into three

classes, which are using coarse meshes and selective filtering, taking account of viscous effects

and substituting the LEE by related and stable equations.

5.1.1 Selective filtering and coarse meshes

Since the instability often appears in fine grids, the use of coarse grids and an artificial damping

has been recommended to attain a stable simulation [123]. In computational aeroacoustic calcula-

tion, selective filters are applied to remove spurious short waves. They work as a low-pass spatial

filter and are regarded as artificial dissipation terms. Previous researches [123, 29, 120] examined
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the role played by selective filtering and mesh size on suppressing the instabilities related with a

lined flow duct.

Richter & Thiele [123] reported that resolving a shear flow with boundary layer without using

Myers boundary condition was capable of accounting for the diffraction effects. Nevertheless,

instabilities still existed in the system. In the case of a “plug flow” with the use of Myers

boundary condition, it was shown that an additional dissipative low order filtering stabilized the

hydrodynamic instabilities. Even if a 3-point selective filter can stabilize the Myers boundary

condition and the impact of filtering on the acoustic propagation is small for a generic intake

case, the suppression of instabilities by adjusting selective filters is however a process of trial

and error. It depends strongly on the numerical schemes and the instabilities themselves. As a

result, it may not be a reliable strategy to remove instabilities. On the other hand, the selective

filters are designed to remove grid-to grid oscillations. It is demanded to have relatively small

modifications on the acoustic part. If the instabilities do exist physically, the use of a selective

filter, which implicitly assumes the instabilities are of numerical kind, is not reasonable [113]. In

addition, it is not straightforward to ensure that the selective filters impact the instabilities and

not the acoustic part.

Marx [29] examined the case of convective instability in the time-domain and assessed the

impact of selective filtering and grid size. He considered that if the instability is physical, increas-

ing the grid size or strengthening the selective filters does not necessary attenuate the instability.

Instead, he proposed to consider the nonlinear terms in the equations and even to perform direct

numerical simulations to resolve the physical instabilities as realistically as possible.

Brambley & Gabard [120] studied the instabilities involved in the acoustic propagation with

the use of the modified Myers boundary condition and a “plug flow”. They indicated that both

the genuine instabilities of the unstable and artificial instabilities introduced by the numerical

discretization schemes existed in their temporally unstable system. Several spatial selective filters

were designed and applied only on the impedance boundary rather than the whole computational

domain. Finally, the encouraging performance of the seven point 4th order filter to remove the

artificial kind of instabilities was demonstrated.

5.1.2 Viscous effect

With the assumption of small perturbations, LEE is utilized to study the acoustic propagation.

However, because the viscous effect and nonlinear terms are neglected, the instabilities can grow

infinitely due to the complex interaction between the acoustic waves, the mean flow and the liner.

Researchers have attempted to evaluate the impact of the viscous effect on the instabilities.

The account for thermoviscous effects [124] or turbulent dissipation through an eddy viscos-

ity profile [10, 98, 125] is capable of attenuating the instability. It can even lead the nature

of instability to change from absolute to convective [10, 124]. Including turbulent dissipation

shows that the properties of the instability appear to be close to the experimental results. More

recently, numerical simulations of a channel flow with an acoustic liner using implicit large eddy
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simulations [126] were performed. Surface waves with characteristics similar to the instability

predicted by linear stability analysis were exhibited. However, very fine grids, and even tremen-

dous computational resources for direct numerical simulations, are needed in those studies to

properly capture the instability, which is a strong disadvantage if the goal of the simulations is

the computation of the acoustic field.

5.1.3 Substitution of LEE

The third approach is the substitution of the underlying LEE by a new set of equations which

are inherently stable. When LEE is employed to predict acoustic or vortical waves propagate

through a strongly sheared mean flow, the Kelvin-Helmoltz (KH) instabilities usually complicate

the results. Because of neglecting the nonlinear terms and viscous effect, the KH instabilities

develop into boundlessly infinitely growing instabilities and they finally lead to divergent and

inaccurate predictions. These instabilities exist in various shear flows, including fan exhaust

noise [127, 128, 129, 130], two-dimensional shear layers [131, 128, 132] and ducted flows [131, 128,

132, 130]. Therefore, numerous studies have attempted to eliminate the KH instabilities. The

KH instabilities which occur in the acoustic propagation are caused by the difference of velocity

in the shear flows, for example free stream and jet stream at a nacelle exhaust. The mechanism

of instabilities in a lined duct is however different from that of KH instabilities. Specifically,

the instabilities in a lined flow duct will only be generated with the use of acoustic liners. In

other words, instabilities are not present only because there is a shear flow. Even though it is

worthwhile to attempt to apply these techniques to suppress the hydrodynamic instabilities of a

lined flow duct.

Among them, we can mention the gradient term suppression method (GTS) [133, 128, 129,

134, 135], the acoustic perturbation equations (APE) [136, 130, 131], the linearized perturbed

compressible equations [137, 138], or the gradient term filtering method(GTF) [132, 131].

Bogey et al. [133] presented an acoustic analogy based on LEE to study the acoustic far-

field. The sound field generated by vortex pairings in mixing layers was studied. To avoid the

growing instabilities introduced through the mean flow gradient term, a simplified LEE, which

later was named as GTS method, was first proposed. Comparison between the original LEE and

the simplified one was made to analyse the acoustic pressure generated by a harmonic source

in a shear flow. They showed that the LEE with GTS gave a good approximation of acoustic

propagation.

Later the uses of GTS method were widely applied to obtain acoustic propagation free of

KH instabilities. Tester et al. [127] assessed the effect of the mean flow gradient term on fan

exhaust propagation noise at a landing and take-off stage. Both the analytical and numerical

methods were conducted to compare the difference of SPL between LEE and LEE with GTS (the

mean flow gradient term is totally removed). They showed the effect of GTS is small and not

significant. The author thought the GTS method could lead to an underestimation of acoustic

radiation. It was because of the interaction between Kelvin-Helmholtz instabilities with sharp
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Chapter 5 : Removing instabilities in the lined flow duct

lips and liner impedance instabilities [139].

Iob et al. [134] presented a numerical model for solving the exhaust noise radiation problem.

The near-field acoustic propagation was investigated with LEE and the GTS method to remove

Kelvin–Helmholtz instabilities. Coupled with the Ffowcs Williams and Hawkings method, the

acoustic propagation in far-field was obtained.

Özyörük and Tester [129] studied the acoustic propagation of fan noise through the bypass

exhaust jet and the radiation in the far-field based on a frequency-domain LEE solver. They

compared the results of their approach with experimental data. Convective instabilities appeared

in some of their results. In accordance with Michalke’s instability criterion, they found that the

convective instabilities referred to KH instabilities. They applied the GTS method to obtain a

pressure field free from instabilities. A good agreement between their approach with GTS method

and experimental data was reported, even if 2-3 dB deviation caused by suppressing the gradient

term was noticed.

Richter et al. [128] proposed a new method to suppress shear layer instabilities and compared it

with the method of Bogey [133], Ewert [136] and Li [140]. This method stabilizes the instabilities

through including filtering of the base flow and its derivatives. The flow field then is modified

with a less distinct inflection point and an increase of the shear layer thickness. The comparison

showed that the new method can both suppress instabilities and allow an accurate prediction

of acoustic field. However, the choice of the filtering and its filtering cycle needs to be specified

according to each specific case. In practice, when the analytical solution is not available, these

parameters are difficult to be set.

Zhang et al. [132] employed the Gradient Term Filtering (GTF) method on time-domain LEE

to study the sound propagation in a shear flow. A divergence operator and a curl operator used

as filters to maintain acoustic and vortical components. The results of the GTS method were

compared on several benchmark cases. It was concluded that the GTF method has a rather

small effect on the prediction of sound propagation and was capable of studying vortical waves.

Regarding computational cost, the GTF method was relatively expensive but easy to implement.

The APE [136] model which is developed from LEE, constructs an acoustic filtering matrix

to isolate the non-acoustic modes. Consequently, acoustic propagation free from instabilities is

available. Several variants, for example, from APE1 to APE4, have been developed. It can be

noted that the homogeneous APE without any source terms corresponds to the perturbation

equations of Pierce [141].

Huang et al. [130] presented two numerical models in cylindrical coordinates, the revised 2.5D

LEE model and the acoustic perturbations equation model(APE), to predict spinning modal

sound propagation in a flow duct. The revised 2.5D LEE model [142, 143], which omits the

mean flow gradient term to obtain a stable simulation, has a similar effect to the GTS method.

They showed that both methods can effectively remove instabilities generated in the shear layers.

The agreements between both methods for predicting acoustic propagation in the near-field and

far-field were quite well. They suggested the APE approach to consider arbitrary background
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flows.

Based on the existing techniques (GTS, GTF and APE methods), Sun et al. [131] proposed

several new methods, namely GTS-2, GTS-3, GTF-2 and an artificial damping terms (ADT)

method to remove KH instabilities. All the methods mentioned were tested on four benchmark

cases. The comparisons of errors for all the methods for the different test cases were given. Even

if depending on the certain benchmark case, the performance, the error and the computational

costs of each method varied, they demonstrated the effectiveness of their proposed methods to

limit the exponential growing waves in the sheared mean flow.

It has been shown that most of them are similarly effective for these particular flows [131]. The

GTS method is opted in this study as a first approach to the case of acoustic liners. However,

other methods might perform similarly or even better in certain cases. A future comparative

study would certainly be useful.

5.2 Gradient term suppressing techniques

A natural generalization of the original GTS method is used here to suppress the instability, con-

sisting of a partial suppression of the gradient term instead of a complete suppression. Eq. (3.1b)

is modified by adding a coefficient ε in front of the term of du0/dz. Consequently, Eq. (3.1b)

turns to
∂u

∂t
+ u0

∂u

∂x
+ ε

du0

dz
v +

∂p

∂x
= 0 (5.1)

where ε adjusts the strength of the mean flow gradient term and ranges from 1 to 0.

Combining Eqs. (3.1a), (5.1) and (3.1c) leads to the wave equation:

D

Dt

(
D2p

Dt2
−∇2p

)
+ (ε+ 1)

du0

dz

∂2p

∂x∂z
=

D2Q

Dt2
(5.2)

where D/Dt = ∂/∂t + u0 ∂/∂x is the material derivative. In particular, the Lilley’s equation is

recovered for ε = 1. The decrease of ε from 1 to 0 is thus equivalent to transform the original

Lilley’s equation, which sustains unstable modes, to a simplified form of Lilley’s equation which

appears to be inherently stable [133]. In addition, decreasing ε from 1 to 0 diminishes the

refraction term proportional to du0/dz in the original Lilley’s equation by a factor of two. A

gradual suppression of the instability is then expected when diminishing the value of ε. It should

be noted that the effect of the partial GTS method on acoustic propagation is mostly observed at

low frequencies. It is because that with the decrease of ε, the coefficient in front of the refraction

term
du0

dz

∂2p

∂x∂z
in Eq. (5.2) turns to 1+ ε while the coefficient is 2 in the original Lilly’s equation.

With frequency increasing, the high derivative term
∂2p

∂x∂z
in Eq. (5.2) becomes predominant [144,

145, 133]. As a result, the influence of ε on acoustic propagation is comparatively weak in the

high frequency range.

It is also can be explained by conducting an order of magnitude analysis. The order of the
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magnitude of each term in Eq.(5.1) is as follows:

∂u

∂t
∼ ωu, u0

∂u

∂x
∼Mku, ε

du0

dz
v ∼ εM

δ∗
v,

∂p

∂x
∼ kp, (5.3)

where ω = k and v ∼ p. Therefore, the effect of mean flow gradient term can be neglected if∣∣∣∣εvdu0

dz

∣∣∣∣∣∣∣∣∂p∂x
∣∣∣∣ � 1. (5.4)

Combining Eq.(5.4) with Eq.(5.3), leads to the conclusion∣∣∣∣ εMδ∗ω
∣∣∣∣� 1 (5.5)

can thus be obtained. For ω � εM

δ∗
, the impact of the mean flow gradient term can be neglected.

It also explains why the high frequency components are less impacted.

5.3 Acoustic propagation with partial GTS method

Numerical simulations are performed to evaluate the viability of the partial GTS method to sup-

press instabilities and its effects on predicting acoustic propagation. The frequency-domain and

time-domain analysis are carried out considering three cases, namely a rigid duct, a duct lined

with the MSD liner and a duct with the CT57 liner. In the rigid duct case, no instabilities are

expected. This case is designed to show the impacts of the partial GTS on the acoustic propa-

gation. Then, the effect of the partial GTS on convective instabilities and absolute instabilities

are demonstrated by using the MSD liner and the CT57 liner. Since the absolute instabilities are

reported to be more severe than the convective one, we also want to check that how the partial

GTS method acts on the two instabilities. The MSD liner and CT57 liner are the same as used

in section 4.1.2 and 4.1.1, if there is no indication.

5.3.1 Frequency-domain study

The effect of the strength of mean flow gradient ε on the mode wavenumbers and mode shapes is

analysed through the modal analysis approach. The default value of the number of grid points

along the z-direction is 150. The frequency of the source is ω = 0.9271 for all three cases.

Rigid duct

The wavenumbers of acoustic propagation along a rigid duct with a sheared mean flow are given

in figure 5.1. The mean flow profile with an average Mach numberM = 0.3 and a boundary layer

thickness 5 % is shown in the right of figure 4.6. It can be clearly seen in figure 5.1 that the “plane
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5.3 Acoustic propagation with partial GTS method

wave” modes propagating along the +x- and −x-direction are weakly affected by the strength

of mean flow gradient ε. The evanescent modes with order between 2 and 5 are influenced more

greatly than the other modes. Even if the mean flow gradient term modifies the acoustic modes,

its effect seems to be weak.
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10

15

Figure 5.1: Wavenumbers in the k-plane at ω = 0.9271 for a rigid duct and for different values
of ε: ◦ ε = 1, ◦ ε = 0.7, ◦ ε = 0.5, ◦ ε = 0.2 and ◦ ε = 0.

The effect of ε on |U |, |V | and |P | are shown in figure 5.2. The shapes of 4 modes, namely the

downstream and upstream “plane wave” mode and the first downstream and upstream evanescent

mode, are illustrated. The modulus of all three variables is normalized by the maximum of

|P |. Compared with |U |, the variations of |V | and |P | are more noticeable. The shapes of the

downstream modes are impacted more seriously by the mean flow gradient term compared with

the upstream modes regardless that the modes are propagative or evanescent. For example, there

is a 12.3 % difference for the maximum of |V | between ε = 0 and ε = 1 for downstream modes and

a 4.4 % difference for upstream modes. The decrease of the strength of the mean flow gradient

leads to an increase in the maximum of the |V | except for the downstream evanescent mode.

The effect of ε on the cut-off frequency ωn of the n-th mode is given in Table 5.1. The study

has been conducted for three different values of the boundary layer thickness of the mean flow:

δ∗ = 0.5 %, 2 %, and 8 %. The average Mach number of the mean flow is M = 0.3. The

corresponding cut-off frequencies for the uniform flow are attached as reference. The ratios of

cut-off frequency between the sheared mean flow and the uniform flow are also given.

If we restrict ourselves to a specific mode, it is seen that the decrease of ε leads to the increase

of the cut-off frequency. For the sheared mean flow with a thin boundary layer, the variation of

ωn is relatively small. For example, the ratio difference of ωn is less than 0.1 % for the shear flow

δ∗ = 0.5 %, while it is up to 1.5 % for δ∗ = 8 %.

As already mentioned in Table 3.2, the cut-off frequencies with a shear flow are usually lower

than the ones with a uniform flow. However, the cut-off frequencies ωn for a shear mean flow

exceed the ones for a uniform flow when the mean flow gradient term is totally suppressed. For

example, the cut-off frequency ωn for δ∗ = 2 % and for ε = 0 is 100.03 % compared with the

uniform flow case.
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Figure 5.2: Mode shapes for the rigid duct at ω = 0.9271 and for several values of ε: ε = 1,
ε = 0.7, ε = 0.5, ε = 0.2 and ε = 0. (a) “Plane wave” mode (downstream);

(b) “plane wave” mode (upstream); (c) the first downstream and (d) upstream evanescent modes
for, from left to right, velocity components along x- and z-direction and pressure.

When we pay attention to a row in Table 5.1, we find that the ratio gets larger as the mode

order increases. However, the row for δ∗ = 8 % and ε = 0 is one exception: the monotonically

increasing trend is not satisfied in this case.
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Table 5.1: Cut-off frequency ωn for the n-th mode on the x-direction for several values of δ∗ and
ε.

The percentage in blue shows the ratios of cut-off frequency between the shear flow and the uniform flow.

ε n = 2 n = 3 n = 4

uniform flow 2.9992 5.9946 8.9910

δ∗ = 0.5 % ε = 1.0 2.9945 (99.85 %) 5.9891 (99.91 %) 8.9836 (99.92 %)

ε = 0.7 2.9955 (99.88 %) 5.9909 (99.94 %) 8.9864 (99.95 %)

ε = 0.5 2.9964 (99.91 %) 5.9919 (99.95 %) 8.9883 (99.97 %)

ε = 0.2 2.9973 (99.94 %) 5.9937 (99.98 %) 8.9901 (99.99 %)

ε = 0 2.9973 (99.94 %) 5.9946 (100 %) 8.9920 (100.01 %)

δ∗ = 2 % ε = 1.0 2.9871 (99.60 %) 5.9752 (99.68 %) 8.9642 (99.70 %)

ε = 0.7 2.9908 (99.72 %) 5.9807 (99.78 %) 8.9743 (99.80 %)

ε = 0.5 2.9927 (99.78 %) 5.9863 (99.86 %) 8.9799 (99.88 %)

ε = 0.2 2.9964 (99.91 %) 5.9919 (99.95 %) 8.9883 (99.97 %)

ε = 0 2.9982 (99.97 %) 5.9965 (100.03 %) 8.9938 (100.03 %)

δ∗ = 8 % ε = 1.0 2.9556 (98.55 %) 5.9427 (99.13 %) 8.9456 (99.51 %)

ε = 0.7 2.9714 (99.07 %) 5.9603 (99.43 %) 8.9614 (99.67 %)

ε = 0.5 2.9806 (99.38 %) 5.9724 (99.63 %) 8.9716 (99.78 %)

ε = 0.2 2.9936 (99.81 %) 5.9891 (99.91 %) 8.9864 (99.95 %)

ε = 0 3.0020 (100.09 %) 6.0002 (100.09 %) 8.9966 (100.06 %)

MSD liner

Acoustic propagation along the duct lined with the MSD liner is investigated when ε varies from

1 to 0. The mean flow is the same as the rigid duct case. Figure 5.3 depicts the wavenumbers

for different values of ε. It is first noticed that modifying ε tends to move all the modes in the

complex k-plane. The instability for the lined duct, observed for ε = 1, is not seen for the smaller

values of ε, which shows that a slight decrease of ε is sufficient to suppress the instability.

To analyse more finely the effect of ε on the instability, the variations of the instability

wavenumber are plotted as a function of ε with a smaller step in figure 5.4. The results are shown

for three different grid sizes (N = 100, 200 and 300). The growth rate of the unstable mode

decreases gradually with ε which proves the stabilizing effect of decreasing ε. It is interesting to

note that for ε ≤ 0.94, the wavenumber of the unstable mode starts depending on the grid size.

There, the unstable mode merges into the continuous spectrum of vorticity modes near the real

k-axis. The vorticity modes heavily depend on the discretization and they are not converging as

the mesh size decreases.

This approach can bring us insights into the transition of unstable modes to another mode type

i.e vorticity mode or evanescent mode, when the partial GTS method is applied. Specifically, the
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Figure 5.3: Wavenumbers in the k-plane at ω = 0.9271 for a duct lined with the MSD liner and
for different values of ε: ◦ ε = 1, ◦ ε = 0.7, ◦ ε = 0.5, ◦ ε = 0.2 and ◦ ε = 0.

acoustic modes and unstable modes are converged with the mesh size, while the vorticity modes

do not converge with the mesh size. This approach will be applied again in the study of CT57

liner to follow the transition of the unstable modes.
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Figure 5.4: Variations of the (left) real and (right) imaginary parts of the instability wavenumber
kHI as a function of ε for different numbers of grid points: N = 100, N = 200 and

N = 300.

Acoustic modes are also affected by reducing the parameter ε. As an illustration, figure 5.5 de-

picts the mode shapes of the acoustic velocity components and pressure for the “plane waves” mode

and for the leading upstream and downstream evanescent modes for different values of ε. The

modulus of all three variables are normalized by the maximum of |P |. Modifying ε has an evident

impact on |U | and |V |, noticeably near the lined wall. This effect is particularly dramatic for |U |,
whose peak on the lined wall decreases by a factor of 10 from ε = 1 to ε = 0. Also, a noticeable

increase of |V | near the lined wall is observed as ε decreases. Concerning the pressure, the mode

shape does not vary too much with ε. For the “plane wave” mode, a decrease of the amplitude is

noticed near the rigid wall, while for the evanescent modes, the amplitude grows gradually near

the lined wall as ε decreases.
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Figure 5.5: Mode shapes for the duct lined with MSD liner at ω = 0.9271 and for several values of
ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2 and ε = 0. (a) “Plane wave” mode
and leading (b) downstream and (c) upstream evanescent modes for, from left to right, velocity
components along x- and z-direction and pressure.

CT57 liner

The acoustic propagation along the duct lined with the CT57 liner with the mean flow for several

values of ε is studied. The parameters of the mean flow are the same as given in section 4.1.4.

Figure 5.6 shows the effect of variation of ε on mode wavenumbers. The unstable modes a and b

are obtained for ε = 1. Similar to the previous case, the unstable modes are modified significantly

as ε is varying. For example, when ε decreases from 1 to 0.7, the unstable modes a and b both

leave the upper right complex k-plane. The downstream and upstream “plane wave” mode are not

affected obviously compared with other modes. As for the higher-order evanescent downstream

and upstream modes, they move towards the right and left respectively with the decrease of ε.

To better observe the evolution of the two unstable modes with ε, figure 5.7 shows the wave-

mumbers varying with ε from 1 to 0.6 with a step of 0.04. Three different grid sizes N = 100,
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Figure 5.6: Wavenumbers in the k-plane at ω = 0.9271 for a duct lined with the CT57 liner and
for different values of ε: ◦ ε = 1, ◦ ε = 0.7, ◦ ε = 0.5, ◦ ε = 0.2 and ◦ ε = 0.

N = 200 and N = 300 are applied in the study.
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Figure 5.7: Variations of the real and imaginary parts of the wavenumbers of mode a and b
as a function of ε for different numbers of grid points: N = 100, N = 200 and

N = 300. Upper, mode a and lower mode b.

It is interesting to note that the spatial growth rate of mode a has a growing trend when

ε decreases from 1 to 0.94. It indicates that the partial GTS method may not always inhibit

the spatial growth rate of the instabilities. Then, when ε decreases from 0.94 to 0.6, Im(kHI) of
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the mode a gradually reduces to a relatively small number. The wavenumber is not converged

anymore for the three different grid sizes when ε ≤ 0.8. It can be deduced that this unstable

mode develops into a vorticity mode when ε gradually decreases from 1 to 0.6. For mode b, the

wavelength of this mode increases and Im(kHI) decreases with the reduction of ε. It finally turns

into an upstream evanescent mode.

The determination of the propagation direction of mode a and b for ε = 1 and 0.5 is illustrated

in figure 5.8. It is simple for the cases ε = 1. For the cases ε = 0.5, the wavenumber of two modes

are firstly obtained when ε decrease from 1 to 0.5 for a real frequency ω = 0.9271. Then these

wavenumbers are used as entries to obtain the variation of k when Im(ω) varies from -2 to 0.

These results validate our inference, which are during diminishing ε, mode a turns to a vorticity

mode. While, mode b develops in to a upstream evanescent mode. It can also be noted that the

unstable mode b is transformed from a downstream amplified mode to a upstream evanescent

mode during the reduction of ε.

In summary, the decrease of ε makes the wavenumbers of the two unstable modes leave the

upper right complex k-plane. However, the paths of the two modes have essential differences.

The unstable mode can either become an upstream evanescent mode or a vorticity mode. In

addition, suppressing the mean flow gradient term does not always restrain Im(kHI).

Since the unstable modes already develop into other types of mode when the value of ε

decreases from 1 to 0.6, figure 5.9 only shows shapes of the two unstable modes for ε = 1. The

modulus of all three variables is normalized by the maximum of |P |. For both modes, the peak

of |U |, |V | and |P | is located on the lined wall or close to the lined wall. The peak value of |U | is
the largest compared with |V | and |P |. For mode a, the maximum of |U | is 15 times larger than

the one of |P |, while for mode b, this ratio increases to 30. We also notice that the increasing

trend of mode shapes for mode b from the rigid wall z = 0 to the lined wall z = 1 is relatively

modest compared with mode a.

Shapes of acoustic modes for different values of ε are also presented in figure 5.10. The peak

value of |U |, which is on the lined wall z = 1, decreases with ε for the three modes. The decrease

of ε will lead to an amplification of |V | for the downstream modes, even if ε = 0 is an exception.

The greatest variations occur for |P | of the “plane wave” mode when ε decreases from 1 to

0. When ε ≥ 0.5, the maximum of |P | is located on the lined wall. While for ε = 0.2 and 0,

the position of the maximum of |P | is changed to the rigid wall. For the leading downstream

evanescent mode, the position of the peak of |P | also moves from the rigid wall to the lined wall

when ε decreases. Compared with the two downstream modes, the upstream evanescent mode is

not affected greatly. For this case, modifying ε will evidently alter the acoustic solution. Totally

removing the mean flow gradient term is too brutal, as it is not desirable to have such dramatic

modification of the acoustic field. The optimal value of ε should remove instabilities without

too much modification of the acoustic field, Specifically, ε = 0.7 seems to be a optimal value

for the case of MSD liner, while the optimal value for the CT57 liner can be set between 0.5

and 0.7. These optimal value can be finally determined combining with the time-domain study.
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Figure 5.8: Propagation direction of mode a and b when Im(ω) varies from -2 to 0 for Re(ω) =
0.9271 and for different values of ε. a, mode a, ε = 1; b, mode a, ε = 0.5; c, mode b, ε = 1 and
d, mode b, ε = 0.5.

Considering that instability is the result of the complex interaction of many factors, the choice

of ε are case dependent.
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Figure 5.9: Shapes of the unstable mode a and b for the duct lined with the CT57 liner at
ω = 0.9271 for ε = 1: upper, mode a and lower, mode b, from left to right, velocity components
along x- and z-direction and pressure.

5.3.2 Time-domain study

The effect of suppressing the mean flow gradient on the acoustic propagation is assessed in the

time domain approach. For the rigid duct and the duct lined with the MSD liner, the configuration

is shown in figure 4.2. For the CT57 liner, the NASA GIT experiment set-up is considered.

The shear flow used in this section is the same as in the frequency-domain study. The

impulsive source and the numerical parameters are kept as in section 4.1. Attention should be

paid that the non-dimensional LEE is solved for the rigid duct case and the MSD liner case. For

the CT57 liner case, the time-domain results are with dimensions. The same source and numerical

parameters are applied for three cases, even if the two previous cases are without dimension and

the last one with dimensions.

Rigid duct

Firstly, the partial GTS method is assessed for a rigid duct. The pressure responses on the wall

z = 0 to an impulsive source varying with time for several values of ε are shown in figure 5.11.

After the generation of the acoustic pulse, two branches related with the propagation of the “plane

waves” along the downstream and upstream directions are observed. However, except for these

two branches, a pattern similar to instabilities is observed for several values of ε. Obviously, the

amplitudes of the resembling instabilities are also impacted by ε. However, there should be no

instabilities for a rigid duct as shown in the frequency study, since no mode exists in the upper

right complex k-plane except the vorticity modes with small positive Im(k). We infer that these

patterns resembling instabilities are attributed to the vorticity modes.
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Figure 5.10: Mode shapes for the duct lined with the CT57 liner at ω = 0.9271 and for several
values of ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2 and ε = 0. (a) “plane
wave” mode and leading (b) downstream and (c) upstream evanescent modes for, from left to
right, velocity components along x- and z-direction and pressure.

The snapshots of ln(|p|) in sequential order for the rigid duct case and for ε = 0 are presented

in figure 5.12. The acoustic waves propagate along both directions as the response to the impulsive

source. At t = 9.7, the “plane waves” already leave the duct along the downstream direction.

For t ≥ 13.7, the waves patterns referring to the vorticity waves with relatively small amplitudes

are observed near the rigid walls. These waves only appear in the downstream direction. Their

velocities are much smaller when compared with the “plane waves”. When t = 30.6, the vorticity

waves leave the duct as well.

The pressure signals perceived with microphones located at x = 1.9685, x = 3.9370 and

x = 5.9055 on the lower wall z = 0 for ε = 0 are shown in figure 5.13. Acoustic propagation in

the rigid duct is similar to “plane wave” propagation. The amplitude and the shape of the three

pressure signals are quite similar. A zoom of these signals is shown in the right figure. As marked
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(a) (b) (c)

(d) (e)

Figure 5.11: Pressure response ln |p(x, z = 0, t)| to an impulsive source for the rigid duct and for
different values of ε. The source position is indicated by the vertical dashed line. (a), ε = 1; (b),
ε = 0.7; (c), ε = 0.5; (d), ε = 0.2; (e), ε = 0.

Figure 5.12: Snapshots of ln(|p|) for the rigid duct case and for ε = 0.

inside the box, other wave packets, referring to vorticity waves, follow “plane waves” closely. The

maximum of the amplitude of the vorticity waves is 3 % of the acoustic waves.

SPL and phase of the acoustic pressure on the wall z = 0 for the rigid duct varying with ε

are given in figure 5.14. The reference is set to 130 dB and 0 ◦. No window is applied for the

computation of SPL and phase. The acoustic pressures along the upstream direction are higher

than the ones along the downstream direction. This phenomenon can simply be explained by the
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Figure 5.13: Pressure perceived with microphones on the rigid wall z = 0 for the rigid duct:
x = 1.9685, x = 3.9370, x = 5.9055 and for ε = 0. Left, pressure signals for

whole time iterations, right, zoom of the pressure signals.

conservation of energy. Since the acoustic velocity in the upstream direction is smaller than the

downstream direction, the acoustic pressure in the upstream direction is supposed to be higher

than the one in the downstream direction.

As shown in the figure, suppressing the strength of the mean flow gradient term will lead

to an increase of SPL in the upstream direction and a decrease in the downstream direction.

However, the phase of the acoustic pressure is not impacted obviously by ε. Another issue needs

to be addressed is that fluctuations of SPL are observed along the downstream direction for

ω ≤ 1.8542. As mentioned before, it may be caused by vorticity waves.

Figures 5.15 shows the acoustic powers at the plane x = 0.9843, at the plane x = 5.9055 and

their ratio ∆W for several values of ε. Similar to the study of SPL and phase, no window is

applied. The power at the plane x = 0.9843 and x = 5.9055 are both impacted by the partial

GTS method. Suppressing the mean flow gradient term leads to a decrease of acoustic power at

both cross sections. Its influence is quite evident in the frequency range 1 ≤ ω ≤ 1.5. We also

notice that acoustic power in this frequency range is much larger.

Similarly, the power difference deviates from zero for frequencies ω ≤ 2. When ω ≥ 2, the

power difference ∆W proceeds towards zero for all five values of ε. The effect of the partial GTS

method on acoustic propagation is mostly observed in the low frequency range. It can also be

noted that the power difference around ω = 1.3907 for ε = 0.2 and 0 is negative, indicating an

increase of the acoustic power. It is maybe due to the vorticity modes which behave as instabilities.

It is inferred that the fluctuations of the power difference are due to the modification of acoustic

and vorticity waves by change of ε.

MSD liner

The effect of the partial GTS method on the instabilities in the duct lined with the MSD liner is

investigated. Two sets of simulations are performed and they are presented in figure 5.16 and 5.17.

Both figures depict the pressure response ln |p(x, z = 0, t)| for several value of ε. The differences
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Figure 5.14: SPL and phase of the acoustic waves on the rigid wall z = 0 propagate along the
rigid duct for six frequencies and for different values of ε: ε = 1, ε = 0.7, ε = 0.5,

ε = 0.2, ε = 0.

between them lie in the time step and the resolution along the z-direction. For the case shown

in figure 5.16, the time step is ∆t = 0.0014 and there are 175 points along the z-direction. The

time step is ∆t = 0.014 and there are 55 points along the z-direction for the study shown in

figure 5.17. The two sets of experiments show different phenomena when ε varying from 1 to 0.

In figure 5.16, the instabilities are obviously inhibited when ε decreases from 1 to 0.7. However,

the instabilities are not continuously suppressed when ε gradually decreases from 0.7 to 0. The

instabilities even amplify when ε decreases from 0.5 to 0. Combining with frequency-domain

studies in section 5.3.1, the unstable mode already converts into vorticity mode for ε ≤ 0.7.

Except for the vorticity modes whose wavenumbers have small positive imaginary parts, it is
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Figure 5.15: Acoustic power at the plane x = 0.9843 (left), at the plane x = 5.9055 (middle) and
the power difference between the two planes (right) for the rigid duct and for different values of
ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2, ε = 0.

not expected that not any other modes contribute to the instabilities. We hence infer that the

instabilities patterns for ε ≤ 0.5 may be due to vorticity waves. They are obvious for a very fine

mesh.

(a) (b) (c)

(d) (e)

Figure 5.16: Pressure responses ln |p(x, z = 0, t)| to an impulsive source for the duct lined with
the MSD liner with a refined mesh. The source position is indicated by the vertical dashed line.
(a), ε = 1; (b), ε = 0.7; (c), ε = 0.5; (d), ε = 0.2 and (e), ε = 0.

Figure 5.17 shows the instabilities are gradually suppressed as the value of ε is diminished.

For ε ≤ 0.5, no instabilities are observed in this case. Compared with figure 5.16 and 5.17, the

vorticity waves are significant for a refined mesh. We need to address that the main priority

in practice is to predict acoustic propagation along the duct rather than to characterize the

instabilities. Acoustic waves are already sufficiently described for a coarse mesh with far more

than 8 points per wavelength.

Figure 5.18 shows the successive snapshots of acoustic propagation with the refined mesh
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(a) (b) (c)

(d) (e)

Figure 5.17: Pressure responses ln |p(x, z = 0, t)| to an impulsive source for the duct lined with
the MSD liner with a coarse mesh. The source position is indicated by the vertical dashed line.
(a), ε = 1; (b), ε = 0.7; (c), ε = 0.5; (d), ε = 0.2 and (e), ε = 0.

case for ε = 1 and 0.5. The left figure presents the generation of instabilities on the lined wall

during the acoustic propagation for ε = 1. The right figure shows that the acoustic field is free

from hydrodynamic instabilities with ε = 0.5. However, it involves vorticity waves. In the early

stage of simulation t ≤ 9.8, the acoustic waves are excited by an impulsive source. The acoustic

propagation between ε = 1 and 0.5 is quite similar. For t ≥ 15.7, differences between the two

figures become apparent. The hydrodynamic instabilities are suppressed for ε = 0.5, however,

the acoustic pressure in the downstream direction is not null.

Although, for ε = 0.5, the vorticity waves are not negligible compared with the acoustic

waves. They are however still several orders of magnitude less than the one of hydrodynamic

instabilities. It indicates that once a lined duct system suffers from hydrodynamic instabilities,

the effect of vorticity waves can be neglected. In other words, the effect of vorticity waves has

a negligible impact on the process of characterising instabilities which demands a refined mesh.

However compared with acoustic waves, the vorticity waves are not negligible. In practice, with

consideration of viscosity and nonlinear terms, we infer that the vorticity waves may not be

observed. For example, in the study of Marx [29], the vorticity waves can be stabilized with a

dissipation term. The importance of viscosity is also addressed here. It needs to be pointed out

that the use of extremely refined mesh is kind of a waste if the objective is a precise prediction

of acoustic waves. Since it may lead to relatively strong vorticity waves interfering the acoustic

field.

The studies presented below are conducted with a coarse mesh. Figure 5.19 shows acoustic

pressure at x = 1.9685, x = 3.9370 and x = 5.9055 on the wall z = 0 for several values of ε.
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Figure 5.18: Snapshots of acoustic propagation in the duct lined with the MSD liner for ε = 1
(left) ε = 0.5 (right) with a refined mesh.

The instabilities are triggered by the acoustic propagation along the lined duct. They gradually

amplify with the propagation of the acoustic wave packet, and finally lead to strong oscillations

and then contaminate the acoustic signal. Most of the instabilities are suppressed for ε = 0.7, even

if some weak instabilities are still observed. For ε ≤ 0.5, such instabilities are nearly suppressed.

The lower figures show the pressure in the early stages of the simulation. The pressures of the

acoustic wave packet are also slightly modified with the decrease of ε. However, these changes are

not as significant as the impact on the instabilities. The wave packet related to vorticity modes

can not be recognized because of their relatively small amplitudes.

The SPL and phase for different values of ε are shown in figure 5.20. The results without mean

flow are also attached as reference values. A tapered cosine window is adopted when calculating

the Fourier transform as shown in figure 5.21. Note that for the cases for which the partial GTS

method induces a delay in the appearance of the instability, the window could have be chosen

longer; moreover, for the cases for which the partial GTS allows a suppression of the instability,

the window is not necessary. However, for coherency, the same window is applied on all the

pressure signals and for all the cases considered. Even if the window is applied, the instabilities

for ε = 1 are still included inevitably.

Figure 5.20 shows that the pressures are greatly influenced by the mean flow gradient term

in the frequency range 0.4636 ≤ ω ≤ 1.3907. It is especially noticeable for ω = 0.9271, because

the peak of the amplification rate for the unstable mode is close to this frequency. Generally

speaking, when applying GTS, SPL is underestimated along the upstream direction. The effect

on the SPL along the downstream direction is weak for the frequency range where the instabilities
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Figure 5.19: The pressure at x = 1.9685, x = 3.9370 and x = 5.9055 on the wall z = 0 during the
acoustic propagation in the duct lined with the MSD liner for different values of ε: ε = 1,

ε = 0.7, ε = 0.5, ε = 0.2, ε = 0. Upper, 0 ≤ t ≤ 100 and lower, 0 ≤ t ≤ 30.

are not expected. The modifications on phase are weaker compared with SPL, especially for high

frequencies.

Figure 5.22 shows the power at the planes x = 0.9843 and x = 5.9055 and their ratio.

Because of instability waves for ε = 1, the acoustic power at both plane and the power difference

are not reliable, particularly for the low-frequency range. For the MSD liner, a peak of the power

difference is attained for ω ≈ 1.4. Except for ε = 1, we find that the acoustic power is reduced at

the plane x = 0.9843 and is amplified at the plane x = 5.9055 with the reduction of mean flow

gradient term. As a consequence, the power difference may be underestimated with the use of

the partial GTS method. This error becomes relatively large for frequencies ω ≤ 2.

NASA GIT experiment

Section 2.4.3 reports the existence of instabilities in numeical simulation of the NASA GIT

experiment [20]. Investigation of the partial GTS method on this realistic case is finally conducted.

The numerical parameters are equivalent to those mentioned in section 2.4.3.

Figure 5.23 shows a series of successive pressure maps. The left and right columns correspond

to the results without GTS (ε = 1) and full GTS (ε = 0), respectively. We focus first on the

case without GTS. Once the incoming pulse encounters the liner leading edge, it splits into two

wave fronts, a first one that is transmitted downstream and is progressively attenuated by the

liner, and a second one that is reflected upstream. At the same time, the instability is generated

at the leading edge of the liner. Briefly afterwards, when most of the transmitted and reflected

acoustic pulses have left the computational domain, the instability takes over in the entire lined

section, leading to a divergent pressure field. In the case of full GTS, the same overall behaviour
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Figure 5.20: SPL and phase of acoustic pressures along the duct lined with the MSD liner for six
frequencies and for different values of ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2,

ε = 0, M = 0.

is observed for the acoustic component. However, no instability is generated and the acoustic

energy falls to zero at increasing times.

The time series of the pressure at three virtual microphones located on the rigid wall, at

different axial locations, are shown in figure 5.24 for several values of ε. The successive appearance

of the initial acoustic pulse and the instability is observed at all three locations. The impact of ε is

mainly on the instability component: decreasing values of ε induces a delay in the emergence of the

instability. This is the expected behaviour, as decreasing ε causes a decrease of the amplification

of the unstable mode, and thus it takes more time for the instability to leverage the acoustic

pressure levels. For ε = 0.3 and 0, no instability appears within the simulation time.
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Figure 5.21: The window function used for performing Fourrier transform.
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Figure 5.22: Acoustic power at the plane x = 0.9843 (left), at the plane x = 5.9055 (middle) and
the power difference between the two planes (right) for the duct lined with MSD liner and for
several values of ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2, ε = 0.

(a) ε = 1 (b) ε = 0

Figure 5.23: Pressure map (Pa) along the duct at different times for (a) ε = 1 and (b) ε = 0.

In the early stage of the simulation, we notice that the modification of acoustic pressure is

especially evident for the unlined section x = 0.12L and x = 0.86L. At x = 0.12L, the peak

value of pressure for ε = 0 is 81.50 % of the value of ε = 1. This ratio is 83.99 % at x = 0.86L.

In order to obtain the frequency spectrum of the pressure field, a tapered cosine window is

applied to the pressure signals to discard the instability component, as shown in figure 2.18. The

125



Chapter 5 : Removing instabilities in the lined flow duct

0 0.01 0.02

-0.2

-0.1

0

0.1

0.2

0 0.01 0.02

-0.2

-0.1

0

0.1

0.2

0 0.01 0.02

-0.2

-0.1

0

0.1

0.2

1 2 3 4

10
-3

-0.1

-0.05

0

0.05

0.1

1 1.5 2 2.5

10
-3

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5

10
-3

-0.05

0

0.05

0.1

(a) (b) (c)

Figure 5.24: Time series of pressure on the rigid wall at (a) x = 0.12L, (b) x = 0.5L and
(c) x = 0.86L for: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2 and ε = 0. Upper,
whole time iterations, lower, zoom of the whole time iterations.

resulting SPL and phase of the acoustic pressure along the duct wall opposite to the liner are

shown in figure 5.25, at different frequencies and for different values of ε. For comparison with the

NASA measurements, the curves are adjusted so that the SPL and the phase are 130 dB and 0,

respectively, at x = 0. Without GTS (ε = 1), some oscillations on the SPL and on the phase are

observed at 500, 1000 and 1500 Hz in the lined section. These are due to the difficulty in isolating

the acoustic contribution by simple windowing. Indeed, there is an overlap near t = 0.005 s

between the acoustic pulse and the instability. An obvious deviation between the simulations

and the experimental results is noticed at 3 kHz. One of the reasons is that the window function

applied for calculating the Fourier transform does not account for the full acoustic signal. It can

also be partly explained by the proximity of the cut-off frequency of the rigid duct, which induced

a significant error in the impedance eduction of the liner in the GIT experiment. Overall, the

SPL and the phase are modified with the variation of ε. Decreasing ε tends how to underestimate

the pressure levels, especially downstream of the liner. The largest discrepancies are observed at

f = 1000 and 3000 Hz. For the other frequencies, the SPL predictions are within a few dBs from

the measured values.

The effects of ε on the acoustic power at the sections x = 0 and x = L are also studied.

Two sets of the CT57 liner model are selected. The one used through the thesis is denoted as

broadband. It is obtained from the fit of the analytical model. The other set of impedance model

named as narrow is obtained from fitting NASA experiments educed values ranging from 500 Hz

to 3 kHz. Their impedance and admittance graphs are shown in figure 5.26 and are compared

with the “educed values” of NASA experiments. Even if both models approximate the CT57

liners used in the NASA experiment, deviations can still be noticed.
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Figure 5.25: SPL and phase of the acoustic pressure along the duct for six frequencies and for
different values of ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.2, ε = 0, × NASA
experiments.

Finally, figure 5.27 shows the frequency variations of power difference calculated for different

values of ε for both CT57 liner models as well as estimated from the NASA measurements. The

window shown in figure 2.18 is applied for both cases. For the power difference of both CT57

liner model, a peak is observed close to the liner resonance (1.1 kHz) for ε = 1 and 0.7, in good

agreement with the experimental values. The impact of ε on the power difference is weak except in

the immediate vicinity of the resonance and also for f > 2.5 kHz. Note that even if a significant

increase of power difference is observed for f > 2.5 kHz when decreasing ε, a good match is

achieved for ε = 0.5. Figure. 5.24 and 5.25 show that, for this particular case, ε = 0.5 seems

to be the optimal value ensuring a good compromise between stable simulation and accurate

prediction. However, this is not a general conclusion, as the optimal value of ε may depend on
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Figure 5.26: Impedance and admittance of two sets of CT57 liner model. broadband,
narrow.
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Figure 5.27: Power difference for M = 0.335 and for two CT57 liner models: left, impedance
model and right, narrow impedance model. ε = 1, ε = 0.7, ε = 0.5, ε = 0.2,

ε = 0, + NASA experiments.

the flow profile, the Mach number and the liner, among others, and may thus be different from

case to case.

Another important issue is that even if the two sets of CT57 impedance models do not manifest

big differences between each other,these small deviations however lead to obvious differences of

the power difference. This study confirms the importance of the precise description of liner

impedance.

COMSOL simulation

As shown in figure 3.4, the results of SPL and phase through COMSOL also indicate the insta-

bilities at f = 1000 Hz for M = 0.335. Therefore, the partial GTS method is tested on this case.

It can be set in the “Gradient Term Suppression Stabilization” in the “Linearized Euler Model”.

“Suppression of mean flow gradients” is selected, which stands for ε = 0 in our case. Figure 5.28

shows the SPL and phase before and after suppressing the mean flow gradient term. Encouraging

results of the suppressing mean flow gradient are observed to suppress instabilities. It is observed

that the SPL is no more increasing in the lined section, which shows that the instabilities has

been suppressed. The predictions of SPL and phase through COMSOL after suppressing mean

flow gradient are more closer to the results of the NASA experiment.

128



5.4 Conclusion

0 0.2 0.4 0.6 0.8

80

100

120

140

0 0.2 0.4 0.6 0.8
-180

0

180

Figure 5.28: SPL and phase of the acoustic pressure at f = 1000 Hz obtained through COMSOL.
ε = 1; ε = 0; × NASA experiments.

5.4 Conclusion

An analysis of the partial GTS method for suppressing physical instabilities in a lined flow duct

was presented. Acoustic propagation in three cases, a rigid duct, a duct lined with the MSD liner

and a duct lined with the CT57 lined, was investigated in the frequency domain and time domain

to assess the impact of diminishing the mean flow gradient.

Compared with the acoustic modes, the unstable modes turn to be more sensitive to the mean

flow gradient term. When diminishing the strength of the mean flow gradient term, unstable

modes would gradually leave the upper right complex plane and might turn into a vorticity mode

or an upstream evanescent mode. The system thus becomes relatively stable. In the meantime,

acoustic modes are also affected by the partial GTS methods, and in particular for the downstream

propagating modes.

In the time-domain study, the effectiveness of the partial GTS method has been shown.

The cost is that the acoustic pressure will be slightly modified and the SPL is overestimated

or underestimated by a few dBs for certain frequencies. The acoustic propagation in the low

frequency range was observed to be especially impacted.

Totally removing the mean flow gradient term seems to be too brutal. From a practical

point of view, the partial GTS method ensures a stable computation in the time domain, while

providing a relatively accurate prediction of acoustic propagation. However, one limitation of

the method is that the optimal ε is case dependent. The analysis of the partial GTS method

informs us that the methods used for dealing with shear instabilities may be also applied to the

instabilities in lined flow ducts.
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6 Conclusion and perspectives

The main objective of this study was to investigate how the sound waves propagate in a lined

duct with the presence of a mean flow. The time-domain LEE solver was used not only to give

an accurate estimate of the sound field but also to predict the presence of other waves, such as,

instability waves and vorticity waves. These waves have been characterized, and methods have

been presented aimed at avoiding their generation. The partial GTS method has been studied in

detail and particularly its impact on the acoustic fields.

Firstly, three approaches, the mode-matching method, solving LEE in the frequency domain

and solving LEE in the time domain, were respectively presented. The comparison of the three

methods was provided based on the NASA GIT benchmark experiment [20]. Two test cases,

“plane wave” and higher-order modes propagation, were considered with and without a mean

flow. Below the cut-off frequency (f ≈ 3 kHz), these three methods were consistent with each

other overall. The results provided by the three methods matched the experimental results

well. When the frequency was above 3 kHz, the NASA experiment data were not available.

The consistency of the results given by these three methods was also satisfactory. Therefore

the test case on the NASA GIT benchmark made us confident in the LEE time-domain solver.

Another important issue to be addressed is that instabilities existed in the solution of LEE. The

instabilities at 1 kHz, related to a sheared mean flow and a acoustic liner, have been reported in

many studies [93, 94, 33, 95].

Although the two other methods provide similar good predictions, they have several lim-

itations in some aspects. The mode matching method, a semi-analytical method, solves the

convective wave equation in the frequency domain. Assuming a uniform flow profile, it is not fea-

sible to consider a shear mean flow. The other method is to apply commercial software COMSOL

to solve LEE in the frequency domain. The results of this method are more costly to acquire

compared with the other two approaches, especially considering higher-order modes propagation

in 3D coordinates. Another limitation for both frequency-domain techniques is that they are

suitable for solving acoustic propagation at a harmonic frequency, and therefore they are repet-

itive and tedious when results over broadband frequency ranges are required. On the contrary,

the LEE time-domain solver is able to provide the results of a large number of frequencies in a

single run; thus, it is ideal to solve broadband problems. Another advantage of the time-domain
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method is that a complex flow profile can be imposed, and therefore the effect of a mean flow

shear layer can be taken into account. Thus the LEE time-domain solver is utilised as the main

tool to explore the lined flow duct problem.

As mentioned previously, the mode-matching method, which is based on the mode expansion,

is computationally efficient; however, it is restricted to the use of uniform flow with its simple

assumption. Then this study continued to find another way to interpret the sound field with

its modal behaviour, namely the modal analysis approach. The LEE was rewritten in a suited

form to obtain a modal solution. Then an eigenvalue problem was derived and solved with

the Chebyshev spectral method. Validations were conducted with an analytical/semi-analytical

method. The results suggested that characteristics of instabilities, namely mode wavenumbers

and mode shapes, were predicted accurately through the modal analysis approach.

With the use of the modal approach, the acoustic propagation in a rigid and a lined duct was

studied with and without a sheared mean flow. The effect of boundary layer thickness on the

mode wavenumbers and mode shapes was also investigated. More importantly, the modal analysis

approach threw lights upon the instabilities generated in a lined flow duct, and then details such

as the wavelength, the spatial growth rate and mode shapes, etc., became available. With the

use of the Briggs-Bers criterion, the unstable downstream propagating mode was detected from

upstream decaying modes. The type of instabilities, convective or absolute, was determined.

Four cases, which contained no instability, convective instabilities and absolute instabilities, were

displayed by using the time-domain method and the modal analysis approach.

The characteristics of convective instabilities were analysed. The methods to obtain its wave-

length and the spatial growth rate through time-domain simulations were presented. These

characteristics obtained by using the LEE time-domain solver perfectly matched with those pre-

dicted by the modal analysis approach. These encouraging results demonstrated the capability

of the LEE time-domain solver to predict not only acoustic waves and but also hydrodynamic

waves. Since the use of selective filters and a coarse mesh could help to inhibit the numerical

oscillation in the time domain, the impacts of these two parameters on the characterization of

hydrodynamic instabilities were investigated. The results showed that although the characteris-

tics of instabilities changed with the value of these two parameters, they nonetheless converged

to the predicted values when the strength of a selective filter and a mesh size was relatively small.

Notably, when decreasing the grid size to a certain value, the effect of continuously reducing the

grid size on the instability characteristics is minimal. Indeed, for characterizing the instabilities,

a sufficient fine mesh is necessary.

Hydrodynamic instabilities are due to the complex interaction between a mean flow, acoustic

liners and acoustic waves. With the interaction of these factors, hydrodynamic instabilities may

not exist or exist in a very strong form. Thus, a parametric study by using the modal analysis

approach was performed to analyse the effect of the source frequency, the mean flow profile

and the impedance of acoustic liners on hydrodynamic instabilities. The results revealed that

hydrodynamic instabilities existed in a specific frequency range. A peak of the spatial growth rate
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could be obtained in this frequency range. The mean flow profile, including the Mach number

and the boundary layer thickness, has complex effects on the instabilities. A duct whose mean

flow has a thin boundary layer was more likely to suffer from instabilities. When the boundary

layer thickness remained at a certain value, the growth of the Mach number inhibited the spatial

growth rate of instabilities. The instabilities were not likely to be generated for a acoustic liner

with a large resistance. With the increase of reactance, instabilities became more severe, for

example, transforming from convective instabilities to absolute instabilities.

Finally, the partial GTS method was investigated to suppress the instabilities related to

acoustic liners. The GTS method proposed by Bogey et al. [133] was designed to suppress the KH

instabilities generated in the acoustic propagation through a shear flow. The mean flow gradient

was identified as the cause of KH instabilities, and the authors presented that the time-domain

simulations were stabilized after removing the mean flow gradient. Inspired by its effectiveness

to suppress the KH instabilities, the mean flow gradient term in Eq. (5.1) was weighted with ε,

ranging from 1 (original LEE equation) to 0 (mean flow gradient totally removed) to suppress

the instabilities related to acoustic liners. Then studies on the acoustic waves and instability

waves were performed on three cases, without instabilities, with convective instabilities and with

absolute instabilities, for several values of ε.

Firstly, when decreasing the value of ε, the unstable modes left the upper right of the complex

k-plane and developed into vorticity modes or upstream evanescent modes. It should be noted

that diminishing ε does not always reduce the spatial growth rate of an unstable mode. As for the

effect on acoustic modes, downstream modes were more vulnerable compared with the upstream

modes. Secondly, the time-domain analysis evaluated the effectiveness of the partial GTS method.

Instabilities were gradually suppressed and a stable acoustic propagation in the time domain was

finally obtained. However, the effect of suppressing the mean flow gradient term was not limited

to instability waves, and it also impacted acoustic waves, especially for the acoustic propagation

in the low frequency range. The partial GTS method could cause a few dBs difference of SPL for

certain frequencies. With an appropriate value of ε, the partial GTS method not only prevented

the system from unstable interferences but also gave a relatively accurate estimate of the sound

field. Therefore, special attentions should be paid in choosing the value of ε. One limitation of

the partial GTS method is that there is no universal value of ε which can always be the optimal

one. The choice of this parameter depends on the mean flow field, acoustic liners and acoustic

propagation. Nonetheless, this analysis provided new ideas to suppress the instabilities related

to a lined flow duct.

Perspectives

Characterizing hydrodynamic instabilities is limited in this study to convective instabilities. This

work can be extended to absolute instabilities, for instance, quantifying their convective velocity,

the growth rate and checking if there are modes with a zero group velocity as seen in refer-
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ence [120].

In section 5.3, it is noticed that the effect of vorticity waves becomes evident with the sup-

pression of hydrodynamic instabilities. Vorticity waves could also be investigated in a following

study [146]. Besides that, Marx [29] showed that vorticity modes with a relatively small positive

Im(kHI), which tended to contribute to instabilities, could be stabilized by using an additional

dissipation similar to the effect of viscosity. So it is interesting to investigate the response of

vorticity waves as well as the convective and absolute instabilities when considering the influence

of viscosity by implementing an eddy viscosity profile [10, 98, 125].

The analysis of the partial GTS method shows the viability of the techniques, which were

proposed to deal with KH instabilities in a sheared mean flow, to remove instabilities related to

a lined flow duct. Therefore, other methods proposed in the literature, for example, GTF [132],

APE [136], source filtering method [147], etc., can also be attempted to remove instabilities.

Moreover, an evaluation of these methods could be performed to compare the effectiveness in

inhibiting instabilities, the impact on the acoustic waves, the implementation complexity as well

as the computation cost.

Future work could also be carried out to study the instability/acoustic waves interaction.

As shown in [18], the instabilities scattered into acoustic waves and then propagated along the

upstream direction. These upstream acoustic waves can trigger another instabilities. These

feedback between the acoustic and instabilities could be investigated in the future.
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A Coefficients in Eq. (2.22)

For the modal base to be orthogonal, the following relation must be fulfilled:

ˆ Ly

0

ˆ Ly

0
ψψdydz = 1. (A.1)

depending on the the indices (mn) of the mode, the integral can be determined, yielding

ˆ Ly

0

ˆ Ly

0
cos(θm) cos(σn)dydz =



LyLz
4

, m 6= 0,∧ n 6= 0

LyLz
2

, m = 0,∧ n 6= 0

LyLz
2

, m 6= 0,∧ n = 0

LyLz, m = 0,∧ n = 0

(A.2)

Since the modal base is an orthonormal base, the factor Λm,n is given as

Λm,n =



1√
LyLz

, m = n = 0√
2

LyLz
, m = 0⊕ n = 0

2√
LyLz

, m 6= 0 ∧ n 6= 0

(A.3)
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B Matrices of the discretized eigenvalue

problem

This appendix gives details the matrices A, B and vectors X of the EVP. As mentioned before,

the X is the column vector of unknowns at the grid points:

X =
[
U(z1) · · ·U(zN+1) (P − V )(z1) · · · (P − V )(zN+1) (P + V )(z1) · · · (P + V )(zN+1)

]T
,

(B.1)

where [ ]T denotes the non-conjugate transpose. This vector contains the value of U , P − V and

P + V at the discrete points. For example, (P + V )(zn) is the value of P + V at the Chebyshev

grid point znE. One should note that depending on the rigid and lined duct case, A has different

expressions. The original information in the line 2N + 2 and 2N + 3 of matrix A and B are

discarded and replaced by the boundary conditions.

For both the rigid and the lined duct case,

A =



I(1:N+1),(1:N+1) −
ε

2iω
(DU0)(1:N+1),(1:N+1)

ε

2iω
(DU0)(1:N+1),(1:N+1)

0N+1,N+1

(
I− 1

iω
D

)
(1:N),(1:N+1)

0N,N+1

0 . . . 0 −1− β 0 . . . 0 1− β

0N+1,N+1

1 0 . . . 0 −1 0 . . . 0

0N,N+1

(
I +

1

iω
D

)
(2:N+1),(1:N+1)



. (B.2)
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B =



U0(1:N+1),(1:N+1)
1

2
I(1:N+1),(1:N+1)

1

2
I(1:N+1),(1:N+1)

I1:N,N+1 U0(1:N),(1:N+1) 0N,N+1

01,N+1 0 . . . 0 −u0(N+1)β 0 . . . 0 −u0(N+1)β

01,1:N+1

0N+1,N+1

01,N+1

I(2:N+1,N+1) U0(2:N+1),(1:N+1)



, (B.3)

where 0I,J is the zero matrix with I rows and J columns and D and I are the differentiation and

identity matrix, respectively, both square matrices of size N + 1. The matrix U0 is a diagonal

matrix of size N+1 with diagonal elements U0 i,i = u0(zi). In addition, the notation M(I:J),(K:L)

indicates the submatrix of M formed by rows I to J and columns K to L. Finally, the parameter

ε in matrix A controls the mean flow gradient term and is equal to ε = 1 for the LEE equations

and to ε = 0 for the full GTS method.
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C Introduction of the Briggs-Bers criterion

This appendix introduces the Briggs-Bers criterion for analysing the hydrodynamic instabilities

appearing in acoustic propagation in a lined flow duct. This stability analysis considers the

response of the system to a perturbation in a long time limit. By performing a Fourier-Laplace

transform, the response of the system

G (x, t) =
1

4π2

ˆ
`ω

ˆ
`k

−iei(ωt−kx)(
ω − ωf

)
D (k, ω)

dkdω (C.1)

is studied, where ωf is the forcing frequency, `ω and `k are the integral paths. `ω and `k are

constrained by the requirement of causality (G ≡ 0 for t ≤ 0) and the requirement of the

integrals. `k is along the real axis of k, and `ω is deformed to ensure the path is below all the

poles of the integrand. As talked about Brambley[31], the long-time limit can be obtained by

deforming the contour around any poles of the integrand. The lowest poles in the ω-plane has the

exponentially dominating long-time contribution, and the remaining other poles have relatively

less contributions. In order to avoid poles crossing the k-plane during the process, the `k contour

may also need to be deformed. Three possibilities are respectively:

• The poles in the k plane do not across the real k-axis. `ω contour is deformed around the

poles at forcing frequency ωf around the real axis, and no deformation is necessary for the `k
contour as shown in figure C.1.(a).

• The poles in the k-plane cross the real k-axis. Figure C.1.(b) shows that `ω contour is

deformed around the poles at forcing frequency ωf around the real axis, and `k contour also

needs to be deformed. During the variation of ω, the mode crosses the real k-axis will have an

exponential spatial growth rate if the mode is a downstream propagating one.

• The poles in the k-plane cross the real k-axis, and two modes are located at opposite sides

of `k contour as shown in figure C.1.(c). Thus a branch cut should be taken at the frequency

ωs, at which the pinch appears. `ω contour needs to be deformed along the singularity near the

branch cut. The long-time contribution is in the form of eiωt−iksx/
√
t. With Im (ωs) < 0, the

solution grows exponentially with t, and the type of the instability is absolute one.
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Figure C.1: Intergrand path for several cases.
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