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Alice Dinsenmeyer,1,a) J�erôme Antoni,1 Quentin Leclère,1 and Antonio Pereira2

1University of Lyon, INSA Lyon, Laboratoire Vibrations Acoustique, F-69621 Villeurbanne, France
2University of Lyon, �Ecole Centrale de Lyon, INSA Lyon, Universit�e Claude Bernard Lyon I, CNRS,
Laboratoire de M�ecanique des Fluides et d’Acoustique, UMR 5509, F-69134 �Ecully, France

ABSTRACT:
Array measurements can be contaminated by strong noise, especially when dealing with microphones located near

or in a flow. The denoising of these measurements is crucial to allow efficient data analysis or source imaging. In

this paper, a denoising approach based on a Probabilistic Factor Analysis is proposed. It relies on a decomposition of

the measured cross-spectral matrix (CSM) using the inherent correlation structure of the acoustical field and of the

flow-induced noise. This method is compared with three existing approaches, aiming at denoising the CSM, without

any reference or background noise measurements and without any information about the sources of interest. All

these methods make the assumption that the noise is statistically uncorrelated over the microphones, and only one of

them significantly impairs the off-diagonal terms of the CSM. The main features of each method are first reviewed,

and the performances of the methods are then evaluated by way of numerical simulations along with measurements

in a closed-section wind tunnel. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001098
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I. INTRODUCTION

Nowadays, the use of multichannel measurements is a

current practice for the experimental characterization of

noise sources. Automotive, health-care, and aeronautics are

a few examples of industries where array systems are largely

employed. In this context, several techniques based on

advanced signal processing have been developed. Some of

them are in the field of acoustic imaging techniques, where

the main goals are to locate, quantify, and rank noise sour-

ces of different origins. Common to all experimental

approaches is the presence of (extraneous) measurement

noise affecting the quality of measured signals. Examples of

measurement noise are, for instance, electronic noise, ambi-

ent noise or flow-induced noise, among others.

The issue of measurement noise has been investigated

since the late 1970s in the signal processing community.

One classical work is the well-known multiple signal classi-

fication (MUSIC) algorithm.1 The MUSIC algorithm

exploits the eigenstructure of an estimated covariance

matrix in order to distinguish signal from noise. The algo-

rithm is based on the assumption that signal and noise span

different subspaces, which can be identified by a clear tran-

sition if one looks at the eigenvalue spectrum of the covari-

ance matrix. However, this observation holds only for high

signal-to-noise ratio (SNR) scenarios and small number (as

compared to the number of microphones) of uncorrelated

sources. Apart from these particular cases, the eigenvalues

of the covariance matrix exhibit a continuous decrease and

the separation of noise and signal subspaces is more cum-

bersome. Also in the late 1970s, Chung2 proposed a method

for the extraction of flow-induced noise from simultaneous

measurements of pressure fluctuations. The method, which

has then been coined as the “three-microphone method,” is

based on the coherence function between each microphone

pair of a three-probe system. The main assumption of this

approach is that the flow noise at three spatially separated

transducers is uncorrelated.

In the early 1990s, in the underwater acoustics commu-

nity, researchers started to deal with the scenario of poor

SNRs.3 In this context, a first proposition has been formu-

lated for the particular case of uniform linear arrays. It is

known that for uncorrelated sources the cross-spectral

matrix (CSM) measured by this particular array under a far-

field assumption has a block Toeplitz structure. Thus,

denoising is performed by forcing the estimated CSM to be

Toeplitz by averaging its elements along its diagonals. In

the signal processing community, this method is also known

as Cadzow denoising.4 Forster and Ast�e5,6 later generalized

this technique for the case of arbitrary array configurations.

The main idea therein is to first generate a subspace of

Hermitian matrices based upon a model that depends on the

array geometry and the assumption of uncorrelated sources.

Denoising is then simply performed by projecting the esti-

mated CSM onto the designed subspace.

Aeroacoustics is another field of application that has

shown interest in the problem of denoising acoustical pres-

sure signals. This is mainly due to the fact that the signals of
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interest are often highly disturbed by the presence of flow-

induced noise or installation effects in aerodynamic wind-

tunnels, for instance.7 A widespread practice is to set the

diagonal entries of an estimated CSM to zero. The justifica-

tion behind it is that flow induced noise generally has a spa-

tial correlation, which is smaller than a typical microphone

inter-spacing encountered in arrays. More advanced meth-

ods have been recently proposed in this community. For

instance, Bult�e8 has applied similar ideas to the subspace

approaches mentioned in the previous paragraph for the sup-

pression of extraneous noise inherent to wind tunnel mea-

surements. It is proposed that the noise subspace may be

generated either performing a singular value decomposition

of a measured “background” CSM or by using a Spherical

Harmonics Decomposition of the sound field generated by

multiple equivalent sources around the model. Transforming

the spatially sampled pressure field to other representation

spaces such as the wavenumber domain9–11 has recently

seen much use for the separation of pressure fluctuations

stemming from different origins. Ehrenfried et al.12,13 have

proposed an algorithm, so-called BiClean, which uses a

wavenumber decomposition to reduce background noise

from wind-tunnel array measurements.

In practical situations, it is sometimes possible to mea-

sure separately the contaminating background noise by

either simply “switching off” the source of interest or with-

out the mock-up in wind tunnel measurements, for instance.

This background measurement can be used to advantage to

remove its influence when the total noise field is actually

measured. It can be done by either simply using spectral

subtraction approaches or more advanced methods that take

this prior information into account in the processing, such as

the work in Refs. 14–16. Removing unwanted flow-induced

noise by physically suppressing it has also been proposed in

the literature. It has been shown that this can be obtained by

setting-up the microphones behind a Kevlar screen17 or

using a porous layer in order to absorb sound waves reach-

ing the array at oblique incidence.18 Another alternative

might be the use of a vibrating structure (e.g., a thin plate)

equipped with accelerometers.19 It has been shown that the

structure acts as a low-pass filter in the wavenumber

domain, thus filtering out components with high wavenum-

bers associated with flow-induced noise. It is necessary

though to convert the acceleration signals into wall-pressure

signals using inverse techniques.20

Speech signal processing is another field in which much

research effort has been devoted to developing noise reduc-

tion methods.21 Spectral subtraction22 methods and sub-

space approaches23 are examples of techniques proposed in

this community.

The problem addressed in this paper is the suppression

of uncorrelated extraneous noise over a microphone array in

a blind manner. The term “blind” is to be understood as

“without any measurement of a reference background

noise.” Indeed, it is common in practice that the separate

measurement of the unwanted noise (i.e., without the source

of interest) is not available since it is the source itself that

generates the extraneous noise (see the example of fan noise

using in-duct measurements24). Moreover, no assumption is

made about the source location or propagation unlike the

beamforming-based methods proposed by Sijtsma et al.25

In the present work, a new method is proposed which is

based on a Probabilistic Factor Analysis (PFA) problem and

three other denoising approaches from the literature are also

investigated. After a section dedicated to the problem state-

ment, an overview of all these methods is given in Sec. III.

The denoising performance of each approach is then com-

pared first on numerical simulations (in Sec. IV) and then on

real wind-tunnel measurements (in Sec. V).

Since the aforementioned Chung2 method is still widely

used, it is presented in light of the other denoising methods

in Appendix A, but because of its limitations, this method is

not compared with the other methods for the numerical and

experimental applications.

II. PROBLEM STATEMENT

Let pðr;xÞ be the acoustic signal (i.e., pressure fluctua-

tions) measured by a receiver at position r 2 R3 in space at

a given angular frequency x. The measured signal can be

modeled as a linear combination of signals emitted by noise

sources having any distribution in space. After proper dis-

cretization of the domain of interest, the signal measured at

a microphone position i may be simply written as

pðri;xÞ ¼ aðri;xÞ þ nðri;xÞ; (1)

where nðri;xÞ represents additive noise statistically inde-

pendent of the signal of interest aðri;xÞ. Considering that

the acoustical field is spatially sampled by M receiver posi-

tions, Eq. (1) may be conveniently expressed in matrix-form

as

p ¼ aþ n; (2)

and the acoustical field is

a ¼ Hq; (3)

where H 2 C
M�K

is a matrix that maps the acoustic pres-

sure to K coefficients q of a given representation basis.

Let us now define the covariance matrix of measure-

ments (i.e., the theoretical CSM if the covariance between

Fourier coefficients is of concern) as Spp¢EfppHg, where

�H stands for the conjugate transpose (Hermitian) operator

and Ef�g is to be understood as the expected value over

realizations of the stochastic process.

Therefore, from Eqs. (2) and (3), the theoretical model

of the CSM used in this work is

Spp ¼ HSqqHH þ Snn: (4)

For convenience, let us define the first term on the right

hand side of Eq. (4), hereafter referred to as signal CSM,

Saa ¼ HSqqHH. The theoretical CSM is thus a sum of the
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signal CSM related to the source of interest and the noise

CSM, which gives

Spp ¼ Saa þ Snn: (5)

In practice, whenever the pressure field may be assumed

statistically stationary (i.e., ergodic stochastic process), an

estimate of the theoretical CSM may be obtained from aver-

aging the measurements over a finite number of snapshots

Ŝpp ¼
1

Ns

XNs

j¼1

pjp
H
j ; (6)

where the subscript j refers to the jth snapshot, Ns is the

number of snapshots, and the superscript �̂ is used through-

out the paper to define an estimated quantity.

Using this estimate, when summing the acoustical field

and the noise as in Eq. (4), averages of cross terms such as

ðHqÞnH are supposed to be negligible, which is not neces-

sarily the case in practice if the number of snapshots is low.

Finally, the denoising problem of interest in this paper

is the following:

Problem 1. Given an estimate of the CSM Ŝpp � Saa

þ Snn, where Saa and Snn are both unknown, recover Saa.

It is noteworthy that the noise power is allowed to vary

between different microphones and to be much higher than

the acoustic source power.

In order to solve this problem, it is possible to exploit

the difference of structure of the two terms Saa and Snn.

First, the spatial coherence of the noise field is supposed to

be smaller than the microphone inter-spacing; that is, the

noise is assumed to be spatially uncorrelated over the micro-

phone array. Second, the sound field is correlated by the

propagation effect; that is, the spatial coherence associated

to the source of interest is much greater than the noise spa-

tial coherence.

III. METHODS TO REDUCE STRONG UNCORRELATED
NOISE FROM MULTI-CHANNEL MEASUREMENTS

A. Diagonal reconstruction

As discussed in Sec. II, it is assumed that the noise cor-

relation length is smaller than the microphone inter-spacing.

Following this assumption, the theoretical noise CSM is a

diagonal matrix. From Eq. (5), the measured CSM can then

be written as

Ŝpp � Saa þ dr2c; (7)

where the notation dr2c stands for a diagonal matrix whose

diagonal entries are the elements in vector r2.

In this section, we describe three methods from the

aeroacoustic literature used to reduce the self-induced noise

concentrated on the diagonal of the measured CSM. These

methods all propose to minimize the diagonal elements

while keeping the denoised CSM positive semi-definite,

which can be formulated as follows:

maximize jjr2jj1
subject to Ŝpp � dr2c � 0;

(8)

where jj � jj1 is the ‘1 norm. Each method solves this prob-

lem in a different way.

1. Convex optimization

Hald26 directly uses semidefinite programming to

solve this problem, more specifically the SDPT3 solver

from CVX Matlab toolbox.27,28 This solver is an interior-

point algorithm suitable for such conic optimization

problems.29

2. Linear optimization

Dougherty30 restates the problem of Eq. (8) as the fol-

lowing linear programming problem, solved iteratively,

maximize jjr2
ðkÞjj1

subject to VH
ðk�1Þ Ŝpp�dr2cðkÞ

� �
Vðk�1Þ � 0

(9)

at the kth iteration. Vðk�1Þ are the eigenvectors of Ŝpp

�dr2cð1;:::;k�1Þ, concatenated from the k – 1 previous itera-

tions. This problem is later solved using the dual-simplex

algorithm from the MATLAB linprog function.

The concatenation of the eigenvectors increases the

problem dimension—and therefore the calculation time—at

each iteration. Consequently, the convergence can be very

slow and the final denoised CSM may not be semi-positive

definite.

3. Alternating projections

The minimization problem given by Eq. (8) can also

be solved by an Alternating Projections algorithm, as pro-

posed in Ref. 31. In this case, Alternating Projections aims

at finding the intersection between 2 convex sets that are

the positive semi-definite matrices (i.e., non-negativity of

eigenvalues) and the matrices with the same extra-diagonal

elements as the measured CSM. For the sake of clarity,

Algorithm 1 is the pseudo-code of this procedure.

ALGORITHM 1: Alternating projections.

Require: Ŝpp

�Sppð0Þ :¼ Ŝpp � diagðŜppÞ � set diagonal to zero

for k do

� computes eigenvalues and eigenvectors:

sðkÞ :¼ eigenvaluesðSppðkÞ Þ
VðkÞ :¼ eigenvectorsðSppðkÞ Þ
� set negative eigenvalues to zero:

sðkÞ :¼ sþðkÞ
� inject in measured CSM:

Ŝppðkþ1Þ :¼ �Sppð0Þ þ ddiagðVH
ðkÞdiagðsðkÞÞVðkÞÞc

end for

Return: updated Ŝpp
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B. Robust principal component analysis (RPCA)

Another strategy to solve the Problem 1 is to use two

particular properties of Saa and Snn, namely, low-rankness

and sparsity.

Let us start with the discussion on the physical interpre-

tation of the rank of a covariance matrix in acoustic signal

processing. It has been shown elsewhere that the rank is

directly related to the number of statistically independent

noise sources32,33 at the origin of a given acoustical field. In

other words, the rank gives the number of uncorrelated com-

ponents that are necessary in order to reproduce a particular

sound field. From an experimental point of view, the number

of acquisition channels in recent systems has been rapidly

increasing. It is common nowadays to take measurements

with a large number of simultaneously acquired signals,

leading to high-dimensional data. Thus, in many practical

situations, the number of independent sources of interest is

much lower than the number of measurement channels. This

justifies the assumption of a low-rank model to cross-

spectral matrices in acoustics.

The use of a sparse model for a CSM of uncorrelated

noise has been discussed in Sec. II: the CSM tends to be

diagonal when the number of snapshots tends to infinity.

Thus, when the number of channels is large, the noise CSM

may be approximated by a sparse matrix since the number

of non-zero diagonal elements is much less than the null off-

diagonal ones.

Finally, the decomposition of the CSM in sparse and

low-rank matrices can be written as the following optimiza-

tion problem:

minimize jjŜaajj�þkjjŜnnjj1
subject to ŜaaþŜnn ¼ Ŝpp: (10)

The nuclear norm jj � jj� (sum of the eigenvalues) and the ‘1

norm (jjAjj1 ¼
P

ijjAijj) are convex relaxations of low rank

and sparsity constraints, respectively. The trade-off between

sparsity of the noise and low-rankness of the source CSM is

handled by the regularization parameter k. The regulariza-

tion strategies are multiple and not detailed here. Denoising

results are presented below for two regularization parame-

ters: kopt, which gives the smallest error (known only for

simulations), and the constant parameter k ¼ M�1=2, pro-

posed in Ref. 34.

This procedure, known as RPCA, has been used by

Finez et al.35 and Amailland et al.36 to denoise aeroacoustic

and hydroacoustic data. A collection of algorithms is avail-

able to solve this convex problem. The reader can refer to

the LRSLibrary37,38 in which the Accelerated Proximal

Gradient algorithm, developed by Wright et al.,34 is used for

the denoising applications of the present paper.

C. Canonical coherence analysis (CCA)

The use of CCA to denoise the measured CSM in a con-

text of aeroacoustic measurements has been introduced

recently by Hald.39 The principle of CCA is to find the

linear combination of two subgroups of sensors with the

highest mutual correlation. The vector of pressure measure-

ments pj at the jth snapshot is divided into two sub-sets xj

and yj of I and J channels, with M ¼ I þ J, such that

xj ¼ Lxcj þ nxj
and yj ¼ Lycj þ nyj

; (11)

with cj a vector of N uncorrelated equivalent sources, where

N � minðI; JÞ. Setting EfccHg ¼ IN (with IN the identity

matrix of dimension N), without loss of generality since

matrices Lx and Ly can always be defined accordingly, one

has

Sxx ¼ LxLH
x þEfnxnH

x g;
Syy ¼ LyLH

y þEfnynH
y g;

Sxy ¼ LxLH
y : (12)

The last equation shows that noise is canceled if it is uncor-

related between the two groups x and y. This gives hope to

get estimates of the factors Lx and Ly, say L̂x and L̂y, from

the measured CSM Ŝxy. If so, the signal CSM can in turn be

estimated as

Ŝaa ¼ L̂x

L̂y

 !
L̂x

L̂y

 !H

: (13)

Estimates of the factors are obtained from a generalized

singular value decomposition (GSVD)

Ŝxy ¼ ~UR~V
H
; (14)

where ~U ¼ Ŝ
1=2

xx U and ~V ¼ Ŝ
1=2

yy V and with U and V the left

and right singular vectors of Ŝ
�1=2

xx ŜxyŜ
�1=2

yy , respectively.

Upon truncating the GSVD to its N leading singular values,

L̂x ¼ ~UNR1=2
N and L̂y ¼ ~VNR1=2

N ; (15)

where ~UN (respectively, ~VN) stands for the matrix contain-

ing the corresponding N “leading” left (respectively, right)

singular vectors, the complete denoised CSM reads

~Saa ¼
Ŝ

1=2

xx UNR1=2
N

Ŝ
1=2

yy VNR1=2
N

0
@

1
A Ŝ

1=2

xx UNR1=2
N

Ŝ
1=2

yy VNR1=2
N

0
@

1
AH

: (16)

The thresholding of the singular values proposed in

Ref. 39 is empirical, and for the applications presented in

Secs. IV and V, the same strategy is adopted since the appli-

cation is very similar.

The classical CCA is not able to extract a number of

canonical components that is higher than the number of

channels in the smallest subgroup, which is a limitation to

represent a high number of uncorrelated sources. Therefore,

Hald proposed to overcome this limitation by performing

several CCA iteratively with different sub-groups, on the

residuals of the denoised matrix from the previous iteration.
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However, the number of iterations has to be adapted to the

number of sources in the acoustical field. In the following,

the sub-groups and the number of iterations are chosen to be

the same as the empirical recommendations given in Ref.

39. Any other sub-arrays of M/2 sensors could have been

used. An idea of the procedure is given in Algorithm 2.

ALGORITHM 2: Canonical coherences.

Require: Sxx; Syy; Sxy for two sub-arrays

K :¼ S�1=2
xx SxyS�1=2

yy

� perform a singular value decomposition of K

K :¼ URVH

� thresholding of the canonical coherences

Rij ¼ 0 if Rij < rthres

� computes the canonical components

P ¼ S1=2
xx UR1=2

Q ¼ S1=2
yy VR1=2

� built the denoised CSM

Saa ¼
�

PPH PQH

QPH QQH

�
Repeat: for other sub-arrays, depending on the number of significant
canonical coherences

Return: Saa

D. PFA

PFA is an inference problem that aims at fitting the

measurements with the following model:

pj ¼ Lcj þ nj; j ¼ 1;…;Ns; (17)

where c is the vector of j < M equivalent sources or latent

factors [the same as in Eq. (11)], L 2 C
M�j is the matrix

that mixes the factors, n is a vector of residual errors (inde-

pendent of the factors) and j refers to the jth snapshot.

Similarly to principal component analysis (PCA), factor

analysis is a means to reduce data dimension by fitting the

signal CSM to a low-rank matrix model. In PCA, the data

are decomposed into a limited number of independent varia-

bles whose contributions to measurement points are orthog-

onal. PFA also involves a linear combination of variables

but with contributions to measurement points that are not

necessarily orthogonal. Therefore, PFA allows the incorpo-

ration of more assumptions about the latent structures of the

data.

No physical interpretation can be made from L and c,

since L 6¼ H and c 6¼ q in general. Indeed, if the Lc decom-

position of the acoustical field a is unique, L and c are not.

In the context of PFA, all the unknown parameters of

the model are seen as random variables, with an assigned

probability density function (PDF). In the classical PFA

model, all the assigned PDFs are Gaussian.

Throughout the paper, the term Gaussian refers in a

short way to the class of circularly-symmetric multivariate

complex Gaussian distributions, and is noted NCðl;XÞ
where l is the mean vector and X the covariance matrix.

Using the notation ½x	 for the conditional PDF of x, the

assigned PDF for the factors and the noise vector are the

following:

½c	 ¼ NC 0; Ijð Þ and ½n	 ¼ NC 0; dr2c
� �

: (18)

Notice that a heteroscedasticity of the noise is assumed,

which means that the noise variance might vary over the

microphones (i.e., the values in the vector r2 might be

different).

Taking the expectation over the snapshots in Eq. (17)

leads to the following decomposition of the theoretical

CSM:

Spp ¼ LLH þ dr2c: (19)

There are several methods to solve this fitting prob-

lem. We propose in this paper two of them, based on a

Bayesian approach. Two algorithms are used to find the

maximum a posteriori estimates of the unknown parame-

ters, namely, each element of the matrix L and the noise

vector r2,

L̂; r̂2
� �

¼ argmax L; r2jŜpp

h i
; (20)

where ½xjy	 stands for the conditional PDF of x given y.

1. Expectation-maximization (EM) algorithm

The first procedure to solve Eq. (20) is an iterative algo-

rithm that alternates between two steps at each iteration i:

• Performing the expectation of the complete-data log-pos-

terior (i.e., including the missing values Scc) using the

estimates of the parameters from the previous iteration i – 1

(see pp. 439–441 of Ref. 40),

Q ¼ E log L; Scc; r
2jŜpp;Li�1; Scci�1

; r2
i�1

h in o
: (21)

• Finding the parameters that maximize the expected value

from the previous step

Li; Scci
; r2

i

� �
¼ argmax Q: (22)

These parameters are found making use of the old

parameters to evaluate Scci
,

Scci ¼ Ij � BLi�1 þ BŜppBH; (23)

with

B ¼ LH
i�1 Li�1LH

i�1 þ dr2ci�1

� ��1
: (24)

Then, searching for the local maximum of Q leads to

the following updates of L and r2,

Li ¼ ŜppBHS�1
cci
; (25)

3112 J. Acoust. Soc. Am. 147 (5), May 2020 Dinsenmeyer et al.

https://doi.org/10.1121/10.0001098

https://doi.org/10.1121/10.0001098


r2
i ¼ diagð IM � LiBð ÞŜpp IM � LiBð ÞH

þ Li Ij � BLið ÞLH
i Þ: (26)

The reader can refer to the section 12.2.4 of Ref. 40 for

detailed calculations and implementation of the EM algo-

rithm for PFA. The pseudo-code for this procedure is given

in Algorithm 3. Note that, by construction, Scc is positive

semi-definite and, therefore, so is the denoised CSM.

If the posterior is multimodal, the EM algorithm may

converge toward a local maximum. Multiple strategies exist

to avoid this situation, e.g., performing several EM itera-

tions with different random initializations.

ALGORITHM 3: PFA solved with EM.

Initialization: L0; r2
0

Require: Ŝpp; j; imax; �

for i do

Estimation of Scci
using Eq. (23)

Estimation of Li using Eq. (25)

Estimation of r2
i using Eq. (26)

� Convergence criteria

if i � imax or jjr2
i � r2

i�1jj2=jjr2
i�1jj2 � � then

Stop

end if

end for

Return: Li; Scci
; r2

i

2. Monte Carlo Markov Chain (MCMC) algorithm

Another way to solve Eq. (20) is to use the Gibbs sam-

pler,41 a MCMC that consists of iterative draws in the mar-

ginal condition distributions of each parameter of the model

until convergence. In this procedure, the sampling of the

factors CSM is needed. Therefore, the unknown parameters

are estimated by their maximum a posteriori

L̂; r̂2; Ŝcc

� �
¼ argmax L; r2; SccjŜpp

h i
: (27)

Unlike the EM algorithm, MCMC methods perform a

global optimization and take advantage of the entire distri-

bution available from the sampling. Therefore, MCMC can

give a credible interval for each estimated parameter.

As a counterpart, MCMC methods are known to be far

more computationally expensive than EM or other methods

(see Table IV).

In Table I the prior PDFs assigned to each parameter of

the model [Eq. (17)] can be found. First, the mixing matrix

L is assumed to follow a centered Gaussian PDF, with a nor-

malized variance, such that the energy of the signal part is

only driven by the factors. The factors are supposed to be a
priori independent and identically distributed, with the same

energy c2 (also called homoscedasticity of the factors). The

factor variance c2 is itself assigned a prior PDF in the form

of an inverse Gamma law (written IG). This is a classical

choice for variance parameters (see Ref. 42, pp. 42–43),

since it has positive support, it simplifies the maths thanks

to its conjugacy with the Gaussian and finally, its shape and

scale parameters can be tuned to specify different levels of

prior information, from very precise to very vague.

The noise is supposed to be Gaussian, with a variance

that may vary over the microphones (also called heterosce-

dasticity of the noise). This variance is distributed following

an inverse Gamma law for the same reason as for the factor

variance. As MCMC enables more flexibility in the paramet-

ric model than EM, an extra unknown matrix dac can be

added, giving this model extension

pj ¼ Ldaccj þ nj; j ¼ 1;…;Ns; (28)

and taking the expectation over the snapshots

Spp ¼ LdacSccdacLH þ dr2c: (29)

This new diagonal matrix adds weights to factor in a

way that enforces sparsity on the latent factors. Indeed, these

weights are assigned an exponential PDF (written E in

Table I), which is known to be a sparse prior. As this distri-

bution has a great mass distributed around zero, it is prone

to quickly shrink many values to zero. By doing so, even if

the user overestimates the number of factors, unused factors

will be set to zero and an optimal solution will be found

with a better convergence rate.

All the posterior distributions that are required to

implement the CSM-based Gibbs sampler are given in

Appendix B. More details for the calculation of the poste-

rior can be found in Ref. 43. The pseudo-code for the

Gibbs sampler for PFA is shown in Algorithm 4, for which

a thousand of iterations are performed and the returned

estimate of denoised matrix results from the mean over the

last 500 samples (in Algorithm 4, the number of iterations

is denoted as NrunÞ. Considering that these last samples

tend to have a stationary, symmetric, and unimodal distri-

bution, the maximum a posteriori is assumed to be well

estimated by the mean value.

Section IV B studies the influence of the chosen number

of factors in the PFA models on the estimation error,

through a numerical experiment. It is observed that without

weight (i.e., a ¼ 1), the reconstruction error given by the

Gibbs sampler increases when the number of input factors is

overestimated. On the contrary, the estimation error coming

from the EM solver and the one from the MCMC solver fit-

ting data on the sparse model [Eq. (29)] is minimal for any

number of factors greater than the rank of the signal CSM

(see Fig. 2).

TABLE I. Prior PDF assigned to each parameter of the PFA model solved

with MCMC.

Priors Hyper-priors

½c	 ¼ N cð0; c2IjÞ ½c2	 ¼ IGðac; bcÞ
½n	 ¼ N cð0; dr2cÞ ½r2	 ¼ IGðar; brÞ
½a	 ¼ EðaaÞ
½L	 ¼ N c 0; IMj=jð Þ
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Note that instead of adding some weights a, a strategy

to promote sparsity of the model order would be to allow for

heteroscedasticity of the factors in the model Eq. (17) as in

Ref. 43. These two strategies are very similar: homoscedas-

ticity is equivalent to a mixture of Gaussians with different

variances following inverse Gamma laws, which is known

to generate a Student-t marginal distribution for the factors c
(see Ref. 40, pp. 102–103), whereas the strategy of adding

weights a is equivalent to a mixture of Gaussians with dif-

ferent variances exponentially distributed, leading to a

Laplace distribution for the product dacc.44 The Laplace and

Student-t distributions are both heavy-tailed distributions,

which are prompt to produce sparse solutions. In order to

further enhance the sparsity of the solution, these two strate-

gies may even be used simultaneously.

ALGORITHM 4: PFA solved with the Gibbs sampler.

Initialization: L0; r2
0; c2

0; a0

Require: Ŝpp; j; ac; bc; ar; br; aa, Nrun

for i ¼ 1;…;Nrun do

Sample Scci following Eq. (B7)

Sample Li in Eq. (B9)

Sample c2
i in Eq. (B12)

Sample ai in Eq. (B14)

Sample r2
i in Eq. (B15)

end for

Return: Posterior PDFs of Scc; L; r2; c2; a

IV. NUMERICAL EXPERIMENTS

The denoising processes introduced above rely on dif-

ferent assumptions regarding the signal and noise properties.

One can thus wonder what is the performance of each

method depending on whether or not these assumptions hold

true.

To answer this question, the denoising algorithms are

tested on multiple CSMs, with varying properties, namely,

noise level, rank of the signal CSM, and number of snap-

shots. The CSMs are numerically simulated through the pro-

cedure described in Sec. IV A.

A. Simulation of noisy CSM

The way CSMs are simulated is inspired by a bench-

mark case from the aeroacoustic context, described in Ref.

45 and studied in Refs. 46 and 39. A line of free-field acous-

tic monopoles with spectra q radiates up to a circular array,

which can be expressed as the linear system a ¼ Hq, using

the following Green’s functions:

Hmn ¼
e�jkrmn

4prmn
; (30)

with k being the acoustic wavenumber 2pf/c0 and rmn the

distance between a source n and a receiver m. The location

of the sources and receivers is shown in Fig. 1.

Source spectra are independently drawn from a centered

complex Gaussian distribution, with common variance r2
q,

qj½ 	 ¼ NC 0; r2
qIK

� �
; (31)

where j refers to the realization number and K is the number

of uncorrelated sources.

An independent Gaussian noise is then added to each

signal a [see Eq. (2)],

½nj	 ¼ NC 0; dr2c
� �

;

with r2 ¼ diag r2
qHHH

� �
10�SNR=10: (32)

And finally, the CSM of measurements is estimated using

Eq. (6) and the CSM without noise is also estimated in the

same way: Ŝaa ¼ ð1=NsÞ
PNs

i¼1 aia
H
i . The objective of the

denoising process is to recover this last quantity. The devia-

tion of the denoised CSM (written ~Saa) from the noise-free

simulation is evaluated looking at the reconstruction error of

the diagonal elements, given by

d ¼ jjdiag Ŝaa

� �
� diag ~Saa

� �
jj2

jjdiag Ŝaa

� �
jj2

; (33)

where diagðAÞ is the vector containing the diagonal ele-

ments of A and jj � jj2 is the ‘2 norm.

This reconstruction error is investigated for each denoising

method and for varying parameters of the simulation:

• The rank of the signal matrix Saa, given by the number of

uncorrelated monopoles.
• The noise level, given by an SNR varying from –10 to 10 dB.
• The number of snapshots Ns from 10 to 5� 104.

When a parameter is varied, the others remain constant,

given by the default values from Table II. Error curves are

shown in Sec. IV C.

The denoising performances of each method are mainly

evaluated considering only the diagonal elements of the recov-

ered matrix. The reason for this is that all the compared algo-

rithms modify in a negligible way the off-diagonal terms.

Illustrated explanations of this choice are given in Sec. IV D.

B. Initialization and input parameters for PFA

In order to have a satisfying convergence rate, the EM

and MCMC algorithms have to be properly initialized and

the required priors have to be chosen appropriately.

FIG. 1. Receiver (
) and source (�) positions for acoustic field simulations,

inspired by Ref. 45.
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1. Initialization for PFA

The initial values for PFA solved with EM and MCMC

are given in Table III. For the MCMC procedure, the noise

is supposed to dominate the diagonal of the measured CSM

Spp, so the noise variance is initialized with these diagonal

elements. For the EM algorithm, the unknowns are empiri-

cally initialized close to zero.

2. Initial choice for the number of factors j

In the PFA model, the maximum number of factors j
that describes the acoustic field has to be set by the user. If

this number is under-estimated (i.e., under the real number

of independent source contributions), the acoustic field will

not be fully described.

If the input number of factors is overestimated, the

computational burden will be high and the convergence may

be slow, until all the useless factors reach zero, depending

on the initialization.

An illustration of this is given in Fig. 2. In this figure,

the reconstruction error of the diagonal element of the

acoustical CSM is plotted as a function of the input number

of factors j for the EM and MCMC algorithms. For the two

algorithms, the minimum error is obtained when the input j
is equal to the real number of sources (20 in this example).

The EM algorithm is known to have a fast convergence

if well initialized. That is why, even if j is overestimated,

the reconstruction error remains low.

The solid gray line corresponds to the MCMC algo-

rithm with the PFA model described by Eq. (29), without

any update of the weights a, which means no sparsity

enforced. In this case, if the initial number of factors is over-

estimated, the reconstruction error increases a bit because

some useless factors are not totally switched off. On the

contrary, when the sparsity in the PFA model is enforced

with an update of the weights a, the effective number of sour-

ces is rapidly inferred from the data by weighting the useless

factor, and the error remains low, even with a high j.

3. Prior parameters

According to the Table I of the priors for PFA solved

with MCMC, some constant parameters have to be set by

the user. Here are the assigned values:

• ac ¼ bc ¼ ar ¼ br ¼ 10�3, which corresponds to a very

flat, and thus vague, prior to the source and noise variance.
• aa ¼ 1=a0 so that a0 is the probability mass center of the

prior [a].

C. Results

In this section, we compare the performance of each

investigated approach to denoise the synthesized data, look-

ing at the relative reconstruction error for different configu-

rations of the numerical experiment described in Sec. IV. A

list of the studied methods is given in Table IV with a rough

approximation of the computing time required by each

method to denoise one 93� 93 CSM, using non-optimized

MATLAB codes on a laptop.

TABLE II. Default values for the numerical simulations.

Parameter Default value

Frequency (invariant) f¼ 15 kHz

Sound velocity (inv.) 340 m/s

Number of receivers (inv.) M¼ 93

Number of monopoles K¼ 20

SNR SNR¼ 10 dB

Number of snapshots Ns¼ 104

TABLE III. Initial values for PFA solved with EM and MCMC algorithms.

JM;j is a M � j matrix full of ones. The operator eigjðAÞ refers to the j
highest eigenvalues of A, normalized in order to have

P
eigjðAÞ ¼ 1.

PFA-EM PFA-MCMC

L0 ¼ 10�16JM;j L0 sampled in N c 0; IMj=jð Þ
r2

0 ¼ 10�16IM r2
0 ¼ diag ðSppÞ

j ¼ M � 1 j ¼ M � 1

a0 ¼ eigjðSppÞ
c2

0 ¼ 1=MTrace ðSppÞ
Scc0

sampled in ½SccjL0; a0; r
2
0	

FIG. 2. (Color online) Relative reconstruction error of the signal CSM diag-

onal, as a function of the assumed number of factors in the PFA model. The

minimum error is obtained when the input number of factor is equal to the

number of sources used in the numerical experiment (default value is 20).

TABLE IV. List of the denoising methods and their approximate computing

time to denoise one 93� 93 CSM, using non-optimized Matlab codes on a

laptop.

Denoising method Acronym Computing time

Convex optimization DRec 1 s

Linear optimization 60 s

Alternating projections 3 s

Robust Principal

Component Analysis

RPCA 0.5 s

Canonical Coherence

Analysis

CCA <0.1 s

PFA, solved with EM PFA-EM 1 s

PFA, solved with MCMC PFA-MCMC 300 s for j¼ 92

10 s for j¼ 10
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1. Comparison of the Diagonal Reconstruction
methods

The three diagonal reconstruction methods described in

Sec. III A solve a very similar problem. We first compare

them with one another. Error curves are given in Fig. 3, as a

function of the rank of the signal CSM (a), the noise level

(b), and the number of snapshots (c).

As expected, when no denoising is applied, the error is

given by the opposite value of the SNR. The performance of

each method mainly differs regarding the signal rank. As

shown in Ref. 26, the error increases suddenly when the

rank of the signal CSM is too high for the problem to remain

identifiable. Convex optimization is less sensitive to the

increase of the number of sources, thanks to its faster

convergence.

For 20 sources, sensitivity to noise level is the same for

all the methods, and the error decreases linearly with an

increasing SNR, and the same behavior is observed for a

logarithmic increase of the number of snapshots.

As convex optimization runs faster and provides more

accurate denoising, it is used for comparison with the other

methods, referred to in the following as DRec (for Diagonal

Reconstruction).

2. Comparison of the other methods

We now present the relative reconstruction error for all

the other denoising methods, still considering only the diag-

onal elements of the acoustical CSM. In Fig. 4 the error as a

function of the number of sources is plotted, SNR and num-

ber of averages, for the following methods:

• Convex optimization for diagonal reconstruction, referred

to as DRec.
• RPCA with a constant regularization parameter close to

1=
ffiffiffiffiffi
M
p
� 0:1, as suggested in Ref. 34.

• RPCA with the regularization parameter that gives the

minimal error, written koptimal. Note that this optimal

FIG. 3. (Color online) Relative reconstruction error of the diagonal terms of the signal CSM as a function of the number of sources (a), SNR (b), and the

number of snapshots (c). The diagonal reconstruction methods are: Alternating Projections ( ), linear optimization ( ), convex optimization (further

referred to as DRec, ), no denoising ( ).

FIG. 4. (Color online) Relative reconstruction error of the diagonal terms of the signal CSM, as a function of the number of sources (a), SNR (b), and the num-

ber of snapshots (c). The denoising methods are: DRec ( ), RPCA with k ¼ 0:1 ( ), RPCA with koptimal ( ), CCA ( ), PFA-MCMC ( ),

PFA-EM ( ), no denoising ( ).
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value will never be known in practice since its calculation

requires the knowledge of the ground-truth CSM Saa.
• CCA with both thresholding of the canonical coherences

and adaptive iteration count.
• PFA solved with the EM algorithm, referred to as PFA-

EM.
• PFA solved with the MCMC algorithm, referred to as

PFA-MCMC.
• No denoising applied.

The results from the PFA denoising achieved with EM

and MCMC are very similar because both methods rely on

the formulation of a very similar inverse problem. However,

when the number of sources is high, EM performs better

than MCMC because the latter makes a stronger assumption

on low-rankness of the signal CSM. Moreover, for a very

low number of sources, or low number of snapshots, EM

does not converge toward an optimal solution, whereas

MCMC, being a global optimization algorithm, converges

better.

Concerning RPCA, one can see that the selection of a

regularization parameter can have a strong impact on the

denoising performance, especially when the number of sour-

ces increases. The parameter k ¼ 0:1 proposed by Wright is

tuned for low rank signal matrix. When the number of sour-

ces increases, the regularization parameter must also

increase to keep the balance between the low-rankness of

the signal CSM and sparsity of the noise CSM.

When proper assumptions are fulfilled (low rank signal

CSM and high number of snapshots), the PFA solution is

similar to one given by RPCA when using the optimal regu-

larization parameter, whereas the DRec error is most of the

time 5 dB higher.

The reconstruction error given by CCA is very similar

to those presented in Ref. 39 since the simulated case is

nearly the same. The number of iterations automatically

selected from the number of significant canonical coher-

ences is also comparable to Ref. 39. This varying number of

iterations induces significant discontinuities on the CCA

error plotted versus the number of sources, which can be

corrected by an appropriate tuning of the empirical thresh-

olding values and iteration count criterion. Note that the

CCA method generally suffers from a bias error due to the

fact that the square root matrices S�1=2
xx and S�1=2

yy used in

Algorithm 2 carry over the presence of noise, which proba-

bly explains why it has an error a few dB higher than PFA

and RPCA.

D. About the denoising of the off-diagonal terms

All the studied methods make the assumption that the

noise CSM is diagonal or nearly diagonal. Consequently,

the extra-diagonal elements are expected to be almost

unchanged by the denoising process.

To verify this fact, we can compare the relative error of

the off-diagonal elements, defined as follows:

doff ¼

				
				Ŝaa � ~Saa �

l
diag Ŝaa � ~Saa

� �k				
				
F				

				Ŝaa � ddiag Ŝaa

� �
c
				
				
F

; (34)

where jj � jjF is the Frobenius norm.

The relative error curves of the cross-spectra are plotted

in Fig. 5 for the denoising performed with PFA, RPCA, and

CCA, always from the same numerical experiments. In this

figure, one can see that PFA and RPCA denoising do not

significantly change the off-diagonal terms, except that PFA

provides a slight denoising for very low SNR. Neither

RPCA nor PFA gives a worse error than without any denois-

ing. This is not the case for CCA, which modifies the cross-

spectra except when the number of sources is lower than 10

and when the number of snapshots is lower than 6000.

V. EXPERIMENTAL APPLICATION

The denoising methods are now compared on data

acquired in a wind-tunnel so as to see how they behave with

a real turbulent boundary layer noise (TBL).

FIG. 5. (Color online) Relative reconstruction error of the signal CSM cross-spectra obtained from three denoising methods: RPCA with koptimal ( ), PFA-

MCMC ( ), PFA-EM ( ), CCA ( ), and without denoising ( ), as a function of the number of sources (a), SNR (b), and number of snapshots (c).
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A. Experimental setup

The experiment is conducted in a closed-section wind

tunnel at �Ecole Centrale de Lyon (LMFA laboratory), shown

in Fig. 6(a). Three acoustic sources are mounted in the ceil-

ing of the test-section, arranged in a dipole and a monopole,

spaced by 20 cm, excited by two uncorrelated white noises

of comparable amplitude. Wall-pressure fluctuations are

measured using an array of 73 Microelectromechanical sys-

tems microphones in a spiral arrangement, located in the

floor of the tunnel [see Figs. 6(b) and 6(c)]. The microphone

inter-spacing varies from 0.2 to 27.4 cm.

A first measurement without flow is performed to be used

as a baseline for the acoustical field CSM. The measurements

to be denoised are conducted with a flow speed of 20 m/s and

with the acoustic sources switched on. The duration of the

acquired signal is 30 s and the CSM are computed with a

16 Hz resolution, and a Hanning window with 66% of overlap-

ping, which is equivalent to about 994 effective snapshots.

B. Results

1. Denoised autospectra

Figure 7(a) shows the autospectra, averaged over the

microphones, of all the denoised CSMs, along with the

baseline source autospectrum and the 95% credible interval

provided by the PFA-MCMC denoising. As the noise may

vary over the microphones, the average autospectra may not

be fully representative of the denoising level. Therefore, a

denoising error for each method is also given in Fig. 7(b),

which illustrates the distance from each microphone auto-

spectrum to the corresponding baseline autospectrum as

follows:

d ¼
jjdiag S?aa

� �
� diag ~Saa

� �
jj2

jjdiag S?aa

� �
jj2

; (35)

where ~Saa is the denoised CSM and S?aa is the baseline

source CSM.

It not possible to have ~Saa ¼ S?aa in general, first

because of the estimation error due to the limited number of

snapshots, and second because of the convection effect.

Indeed, the denoised CSM contains the acoustical part sub-

jected to a convection effect, which is not compensated by

the denoising process, whereas the baseline source CSM

comes from measurements without any convection effect.

Therefore, even after an optimal denoising, the denoising

error should be limited by these two thresholds, which are

numerically evaluated further below.

FIG. 6. (Color online) Description of the facility for the wind-tunnel tests.

FIG. 7. (Color online) CSM denoised with DRec ( ), RPCA with k ¼ 0:1 ( ), CCA ( ), PFA-MCMC ( ), PFA-EM ( ), and the CSM

not denoised ( ). (a) Also plots the source mean autospectrum ( ) and the 95% credible interval for PFA-MCMC ( ).
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The major differences between the experimental data

and the previous numerical simulations concern the noise

properties. In the real measurements, the noise is generated

by the pressure fluctuations caused by the TBL and domi-

nates the data, leading to a very poor SNR (from more than

–20 dB at low frequencies to –5d B at high frequencies).

Moreover, the TBL noise is highly correlated over the

microphones in the low frequency range, which does not ful-

fill the requirements of the denoising methods investigated

in the present work. Therefore, low performance is expected

from every method at low frequencies.

CCA and PFA associate all the coherent field to the

signal CSM, possibly including the one from the TBL

noise. Therefore, the signal CSM is overestimated in the

frequency range where the TBL noise is highly corre-

lated over the microphones. RPCA provides a more effi-

cient denoising below 1.2 kHz thanks to the value of the

regularization parameter (k ¼ 0:1), which drives the

solution to a favorable low-rankness of the signal CSM

and slightly prevents the autospectra from being

overestimated.

The denoising performance provided by PFA-EM is

very variable over frequencies because the algorithm con-

verges to local maximima that depend on the initialization

and the choice of the stopping criteria. Below 1.5 kHz, PFA-

EM provides a very unstable solution, with a rather high

denoising error compared to those from the other methods.

In the low frequency range, the efficiency of CCA could

be improved by a better thresholding of the canonical coher-

ences, but the appropriate thresholding is hard to set in prac-

tice when no information about the real source CSM is

available. The performance of PFA-MCMC could also be

improved by taking into account a CSM fitting a TBL model

such as Corcos47 in Eq. (29), with known or inferred TBL

parameters. This can be done by simply adding one or sev-

eral sampling steps in the Gibbs sampler.

Between 2 and 3 kHz, PFA-MCMC provides an esti-

mate of the mean source autospectra very close to the mea-

surement without noise, thanks to a sparse model that leads

to an exact estimation of two uncorrelated components in

the acoustic field.

Up to 5 kHz, the autospectra denoised with the diag-

onal reconstruction method remains overestimated of at

least 3 dB. Above 3.5 kHz, PFA, CCA, and RPCA pro-

vide a similar amount of denoising, but the denoising

error is limited by the convection effect on the acoustic

propagation. Indeed, the effect of the flow on the acous-

tic propagation imposes a lower bound for the denoising

error of Eq. (35). This bound can be evaluated numeri-

cally, by simulating the source propagation with and

without convection.

Knowing the positions for the sources and micro-

phones from the experimental setup, two measured CSM

are simulated. First, the baseline source CSM is simulated

using free-field Green functions [see Eq. (30)]. Then,

another acoustic CSM is simulated using a convected

propagation

Hconv
mn ¼

ejkDrmn

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � rmnÞ2 þ b2jrmnj2

q ; (36)

with Drmn ¼ ð1=b2Þð�M � rmn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � rmnÞ2 þ b2jrmnj2

q
Þ

and where M is the Mach number vector, b2 ¼ 1� jMj2;
rmn is the difference between the microphone m and the

source n position vectors and � indicates a dot product. The

two simulated CSMs are then injected in the Eq. (35) (~Saa

being the convected acoustic CSM and S?aa the free-field

one) and the error is plotted in Fig. 8. This error depends

on the frequency because of the directivity of the dipole.

In this figure the estimation error of the CSM due to the

finite number of snapshots is also plotted (994 for the

experimental test cases). One can see that the denoising

error from 3.5 kHz is clearly limited by the convection

effect on the denoised spectra, but not by the estimation

error.

2. Rank of the denoised CSMs

As several denoising methods rely on a low-rankness

assumption for the acoustic CSM, Fig. 9 shows the eigenval-

ues of the denoised CSM at three different frequencies. In

this figure, one can see that RPCA does not preserve the

positive-semidefiniteness of the denoised CSM. A positivity

constraint could be added to the RPCA problem as proposed

in Ref. 36. It is also visible that DRec performs a reduction

of the eigenvalues until the smallest one reaches zero.

An overview of the eigenvalues of the denoised CSM

against frequency is also given in Fig. 10. The number of

significant eigenvalues is plotted in this figure—an eigen-

value is arbitrary considered significant if it is greater than

1% of the highest one. At low frequencies, all the methods

overestimate the rank of the denoised CSM because of the

correlation of the TBL noise over the microphones. Above

2200 Hz, PFA-MCMC provides a CSM with exactly two

significant eigenvalues, whereas PFA-EM often provides

only one significant eigenvalue [which is related to the

underestimation of the mean autospectra on Fig. 7(a)].

FIG. 8. (Color online) Same error curve as in Fig. 7(b), along with the error

due to the convection effect on the acoustic field (black solid line) and the

estimation error of the CSM (black dashed line).
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The CSMs denoised by CCA all show a jump in their eigen-

values due to the thresholding step during the denoising pro-

cess. In general, the experimental setup with two uncorrelated

sources is favorable to the PFA-MCMC approach which is

able, thanks to its strong sparsity constraint, to provide a very

low-rank CSM.

VI. CONCLUSION

This work offers an overview of some methods for the

denoising of the CSM in the framework of multi-sensor

acoustic measurements.

The three diagonal reconstruction methods give very

comparable results with varying computational costs. The

diagonal reconstruction method with the lowest computational

cost is the one based on the convex optimization, but its per-

formance is limited when the number of sources is very low,

as shown by the numerical and wind-tunnel experiments.

RPCA and CCA provide a higher noise reduction, but

their performance relies on the setting of empirical

parameters, a regularization parameter and a thresholding of

the canonical coherences, respectively.

Finally, the Bayesian-based method PFA allows for a

high level of denoising, assessed on numerical simulations and

on measurements in presence of a strong TBL noise, as shown

in the present study and in Ref. 48. The main drawback of the

PFA method is its high computational cost, yet this is balanced

by some benefits, among which are the following:

• The denoised CSM is written as a linear combination of a

very limited number of components, which might result

in a high data-compression.
• The Gibbs sampler returns a credible interval for each

inferred parameter.
• The Bayesian framework is very flexible and any prior

information about the acoustic or the noise CSM can be

considered. For example, an extension of the model

could take into account a correlation structure in the

noise CSM.
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APPENDIX A: RELATION TO CHUNG’S METHOD

In an early paper, Chung2 introduced a method for

rejecting flow-noise in measured auto-spectra in the special

scenario where three microphones measure a group of

completely coherent sources, treated as an equivalent single

source. In lines of the present paper, the method assumes

flow-noises to be mutually uncorrelated at the microphones.

FIG. 9. (Color online) Eigenvalues of the CSM denoised with: DRec (yellow colored squares), RPCA with k ¼ 0:1 (red colored triangles), CCA (green col-

ored pentagons), PFA-MCMC (violet colored stars), PFA-EM (blue colored diamonds), no denoising (grey colored circles). Eigenvalues of the baseline

source measurements are also plotted (black colored circles).

FIG. 10. (Color online) Number of significant eigenvalues of the CSM

denoised with DRec (yellow colored squares), RPCA with k ¼ 0:1 (red colored

triangles), CCA (green colored pentagons), PFA-MCMC (violet colored stars),

PFA-EM (blue colored diamonds), also of the CSM not denoised (grey colored

circles) and of the baseline source CSM (black colored circles). The significant

eigenvalues are those greater than 1% of the highest eigenvalue.
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By making use of the coherence functions between micro-

phones, it returns denoised auto-spectra at each of the three

microphones. As far as the authors know, this is probably

one of the first attempts to denoise the CSM. The principle

of the method is resumed using the notation of the present

paper. Let Ŝpipj
denote the measured cross-spectrum between

the pressure signals pi and pj measured by a pair of micro-

phones and Saiaj
the corresponding theoretical signal cross-

spectrum [Ŝpipj
and Saiaj

are the elements in cell (i, j) of the

CSMs Ŝpp and Saa, respectively]. After some lengthy calcu-

lations, Chung arrived at the following estimator of the sig-

nal cross-spectrum:

Ŝaiai
¼ Ŝpipi

cikcli

clk

; k 6¼ l 6¼ i; i ¼ 1; 2; 3; (A1)

with cij¢Ŝpipj
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝpipi

Ŝpjpj

q
the coherence function between

pi and pj. This results arrives readily when reformulating

Chung’s problem by means of Eq. (19),

Spp ¼ LLH þ dr2c; (A2)

where L is now a column vector of an arbitrary dimension

M � 3. It then comes that Ŝpipj
� LiL

�
j and, therefore,

Ŝaiai
¼ Ŝpipi

cikcli

clk

¼ Ŝpipk
Ŝplpi

Ŝplpk

� jLij2; i ¼ 1;…;M:

(A3)

This proves in one line that Ŝaiai
, as given in Eq. (A1),

is a valid estimator of the signal cross-spectrum. One draw-

back of Chung’s method is to be limited to the use of only

three microphones out of many more possibly available.

When more than three transducers are available, it requires

the selection of an arbitrary subset of three microphones in

order to apply Eq. (A1). Because of its lack of generality, it

will not be compared with the other methods in the experi-

mental sections.

APPENDIX B: POSTERIOR DISTRIBUTIONS FOR THE
GIBBS SAMPLER

Using the Bayes rule, the posterior distribution of each

parameter is given by

hj1½ 	 /
Y

i

ith child of hj Parents of ith child

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Likelihood

� hj Parents of h½ 	|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Prior

; (B1)

where “j1” is to be understood as “conditioned to all the

other variables of the model.” In this expression, the chil-

dren of h are all the parameters of the model that directly

depend on h, and the parents of h are all the parameters on

which h depends.

1. Expression of the likelihood of the data

According to the central limit theorem applied to

Fourier coefficients, the likelihood function of the measured

data tends to be Gaussian,

½pjj1	 ¼ NC Ldaccj; dr2c
� �

; (B2)

for the jth measurement.

2. Sampling of Scc

From the expressions of the likelihood [Eq. (B2)] and

the prior in Table I, the posterior of the factors c is

½cjj1	 / ½pjj1	½cj	
/ NC Ldaccj; dr2c

� �
NCð0; c2IjÞ : (B3)

Using the multiplication rule of Gaussians (see, for example,

Ref. 49) directly gives

½cjj1	 / NC lcj
;Xc

� �
(B4)

with Xc ¼ dacLHdr�2cLdac þ c�2Ij

� ��1

and lcj
¼ XcdacLHdr�2cpj:

In order to build a CSM-based Gibbs sampler, the same

approach as in Ref. 43 is followed. As cjj1 is Gaussian, it

can be written

cjj1 ¼ lcj
þ xj with xj½ 	 ¼ NCð0;XcÞ: (B5)

Then,

Scc ¼
1

Ns

XNs

j¼1

lcj
lH

cj
þ 1

Ns

XNs

j¼1

xjx
H
j þ

2

Ns

XNs

j¼1

xjl
H
cj
: (B6)

Since xj and lcj
are independent random variables, the last

terms tend to zero, and then

Sccj1 � XcdacLHdr�2cSppdr�2cHLdacXH
c þ

1

Ns
Wc;

(B7)

where Wc is a random matrix that follows a complex

Wishart distribution, with Ns degrees of freedom and vari-

ance matrix Xc.

3. Sampling of L

The sampling of L is made using a vectorized form of

L, written k ¼ vecðLÞ. The posterior of k is given by

kj1½ 	 /
YNs

j¼1

½pjj1	½k	

/ NC Ldaccj; dr2c
� �

NC 0;
IMj

j

� �
: (B8)
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Using the fact that

pj ¼ vecðLdaccjÞ þ nj ¼ daccT
j � IM

� �
kþ nj;

and some properties of the Kronecker product � (see, for

example, Ref. 50, pp. 59–60) leads to

kj1½ 	 / N cðlk;XkÞ; (B9)

with X�1
k ¼ dacS�ccdac � dr�2c þ jIMj

and lk ¼ Xkvecðdr�2cSpcdacÞ:

In this last equation, Spc is estimated using the same decom-

position of cj as before [see Eq. (B5)],

Spc ¼
1

Ns

XNs

j¼1

pjl
H
cj
þ 1

Ns

XNs

j¼1

pjx
H
j � Sppdr�2cLdXH

c c:

(B10)

4. Sampling of c2

Using the expression in Eq. (B1), the posterior for c2

can be written as follows:

c2j1

 �

/
YNs

j¼1

cjjc2

 �

c2

 �

/
YNs

j¼1

NCð0; c2IjÞIGðac; bcÞ: (B11)

The use of the conjugacy of the inverse-gamma with the

Gaussian directly gives the expression the posterior

c2j1

 �

/ IG ac þ jNs; bc þ Trace Sccð Þ
� �

: (B12)

5. Sampling of a

Still using Eq. (B1), the kth element of the vector a is

sampled as follows:

akj1½ 	 /
YNs

j¼1

pjjak;1

 �

½ak	; k ¼ 1;…; j

/
YNs

j¼1

NC Ldaccj; dr2c
� �

Eðaak
Þ: (B13)

This can be identified to a Gaussian

akj1½ 	 / NRðlak
; r2

ak
Þ1fak�0g; (B14)

with r2
ak
¼ 2LH

k dr�2cLkScckk

� ��1

and lak
¼ 2r2

ak
ð<fLH

k dr�2cðSpck
þakLkScckk

�LdacScck
Þg � aak

Þ;

where the single subscript notation Ak indicates the kth col-

umn of the matrix A and < is the real part operator.

6. Sampling of r2

From the prior assigned to r2 and the likelihood

function,

½r2j1	 /
YNs

j¼1

½pjj1	½r2
n	

/
YNs

j¼1

NC Ldaccj; dr2c
� �

NCð0; dr2cÞ: (B15)

Again using the conjugacy of the inverse-gamma with the

Gaussian, the expression of the posterior becomes

r2
mj1


 �
/ IG arm

þ Ns; brm
þ Tmmð Þ; m ¼ 1;…;M

(B16)

with T ¼ 1

Ns

XNs

j¼1

pj � Ldaccj

� �
pj � Ldaccj

� �H

¼ Spp þ LSccLH � SpcLH � LScp:

Making use of the expression of Spc given in Eq. (B10), Scc

is replaced by its expression given in Eq. (B7),

T ¼ ðIM � BÞSppðIM � BÞ þ LdacWcdacLH; (B17)

where B ¼ LdacXcdacLHdr�2c ¼ BH: (B18)

By doing so, it is visible that the semi-positivity of T is

preserved.
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