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An analytical theory is developed that describes acoustic microstreaming produced by
two interacting bubbles. The bubbles are assumed to undergo axisymmetric oscillation
modes, which can include radial oscillations, translation and shape modes. Analytical
solutions are derived in terms of complex amplitudes of oscillation modes, which means
that the modal amplitudes are assumed to be known and serve as input data when the
velocity field of acoustic microstreaming is calculated. No restrictions are imposed on the
ratio of the bubble radii to the viscous penetration depth and the distance between the
bubbles. The interaction between the bubbles is considered both when the linear velocity
field is calculated and when the second-order velocity field of acoustic microstreaming is
calculated. Capabilities of the analytical theory are illustrated by computational examples.
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1. Introduction

Much theoretical and experimental work has been done on the study of steady vortical
flows, called acoustic microstreaming, that are produced by an oscillating bubble. A
detailed discussion of this work is provided in a series of recent publications, which are
devoted to acoustic microstreaming generated by non-spherical oscillations of a single gas
bubble in an unbounded liquid (Doinikov et al. 2019a,b; Inserra et al. 2020a,b). Recently,
an excellent review of earlier studies on acoustic microstreaming has also been performed
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by Mobadersany & Sarkar (2019). It is pointed out in their review that the continued
interest in this physical phenomenon is caused by its implication in numerous biomedical
effects, such as haemolysis, sonoporation, targeted drug delivery and bone healing, as well
as in microfluidic technologies, such as micromixing and ultrasonic cleaning.

The case of two bubbles is the next natural step after the case of a single bubble in
the theoretical modelling of acoustic microstreaming. The study of this case allows one
to understand how the acoustic interaction between bubbles affects the behaviour of the
acoustic microstreaming. This case also paves the way to more practical situations where
the streaming flow is induced by a bubble cluster with a large number of cavitation bubbles.

Experimental data on acoustic microstreaming induced by two interacting bubbles
are still scarce. The main difficulties in studying a multiple-bubble system are its
three-dimensional nature and the difficulty of precisely controlling bubble locations
in space. For these reasons, experimental studies mainly focus on substrate-attached
bubbles (Tho, Manasseh & Ooi 2007; Bolanos-Jimenez et al. 2017), pancake-like
bubbles constrained in microchannels (Mekki-Berrada et al. 2016) or arrays of armoured
bubbles printed on the base of a microfluidic channel (Bertin er al. 2017). In the
presence of a boundary, secondary flows appear in the vicinity of the bubble interface,
which considerably complicate the analysis of the flow trajectories in three dimensions.
Therefore, experimental studies usually consider the case of a streaming flow resulting
from purely volume oscillations of bubbles, the interaction between volume and
translational oscillations or the interaction with an ellipsoidal mode in the case of
armoured bubbles. Investigation of streaming interactions in the case of axisymmetric
shape modes for free, being far from boundaries, bubbles would require a certain type
of optical or acoustical trapping (Garbin et al. 2007). Such a trapping has recently been
performed in the case of two interacting bubbles that underwent axisymmetric shape
oscillations (Regnault et al. 2020), but no associated streaming pattern has been shown.

A theoretical study on acoustic microstreaming generated by two bubbles has been
carried out by Wang & Chen (2013). However, their analytical model is based on
considerable constraints. It assumes that the bubbles only undergo radial and translational
oscillations. Shape modes are not considered. That is not mentioned explicitly but their
solutions for the linear velocity field are only accurate up to leading terms in the inverse
inter-bubble distance, which means that the distance between the equilibrium centres of
the bubbles should be large compared with the equilibrium bubble radii. The acoustic
interaction between the bubbles is only considered in the linear approximation. This
means that, when the linear velocity field is calculated, boundary conditions at the bubble
surfaces allow for the effect of the scattered wave from one bubble on the oscillation of
the other bubble. However, when the time-averaged liquid velocity (velocity of acoustic
streaming) is calculated, boundary conditions at the bubble surfaces ignore the effect of
second-order streaming flows produced by the neighbouring bubble. Furthermore, their
derivation assumes that the viscous boundary layer is small compared with the bubble
radii, i.e. viscous effects are considered essential only within a thin boundary layer next to
the bubble interfaces and the liquid motion is assumed inviscid beyond this layer. A more
accurate theoretical study on acoustic microstreaming induced by an interacting bubble
pair has been performed by Doinikov & Bouakaz (2016). They did not impose restrictions
on the thickness of the viscous boundary layer but all the other restrictions mentioned
above are kept in their model, including the assumption that the bubbles only undergo
radial and translational oscillations.

In the present study, we propose an analytical theory that describes acoustic
microstreaming in the case of two interacting bubbles undergoing oscillation modes of
arbitrary order, which means radial oscillations, translation and non-spherical oscillations

931 A19-2


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.926

Downloaded from https://www.cambridge.org/core. Ecole Centrale de Lyon, on 26 Nov 2021 at 19:12:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.926

Acoustic microstreaming

Ceo

Bubble 1 (z=2z)) Bubble 2 (z =z,)

Figure 1. Coordinate systems used in calculations.

known as shape modes. Our derivation provides analytical solutions in terms of complex
amplitudes of oscillation modes, which means that the modal amplitudes are assumed to
be known (for example, obtained from the experimental microbubble dynamics) and serve
as input data when the velocity field of acoustic microstreaming is calculated. It should
be mentioned that, if necessary, the modal amplitudes can be evaluated theoretically,
for example, in terms of the amplitude of the driving acoustic pressure (Plesset 1954;
Francescutto & Nabergoj 1978; Hall & Seminara 1980; Shaw 2006; Guédra & Inserra
2018). No restrictions are imposed on the ratio of the bubble radii to the viscous penetration
depth and the distance between the bubbles. Therefore, the obtained analytical solutions
are valid for any values of liquid viscosity and any separation distances between the
bubbles. The interaction between the bubbles is considered both when the linear velocity
field is calculated and when the second-order velocity field of acoustic microstreaming is
calculated.

The paper is organised as follows. In § 2, the core of the theoretical derivation is
described. In § 3, capabilities of the analytical theory are illustrated by computational
examples. In Appendices A to E, details of the analytical derivation are provided in order
to make the understanding of mathematical aspects easier for the reader.

2. Theory

We consider two gas bubbles that are immersed in a viscous incompressible liquid and
undergo axisymmetric oscillations. The distance between the equilibrium centres of the
bubbles is denoted by d. We use two spherical coordinate systems in our calculations,
(r1, 01, e1) and (2, 62, £2), which are originated at the equilibrium centres of bubbles 1
and 2, respectively, and the direction 8; = 6, = 0 corresponds to the z axis; see figure 1.

2.1. First-order scattered field

Before we proceed to calculations, a comment should be made. In the case of a single
bubble undergoing shape modes, a scattered wave generated by a certain mode has the
same angular dependence as the generating mode. For example, a shape mode depending
on P,(cos 0), where P,, is the Legendre polynomial of degree n, generates a scattered wave
depending on P,(cosf). In the case of two bubbles, the structure of the total scattered
wave is different. Due to multiple rescattering between the bubbles, every oscillation mode
generates a scattered wave with P, (cos 0) of all degrees, i.e. P,,;(cos 6). This effect can be
seen in solutions obtained by Doinikov & Bouakaz (2015). Although Doinikov & Bouakaz
(2015) assume that two bubbles only undergo pulsation and translation, the scattered wave
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includes terms with P,,(cos 0) of all degrees and the amplitudes of these terms are related
to one another. This fact is taken into account in the derivation below.

We assume that each bubble undergoes shape modes, which can have different orders
and different frequencies because some of them are excited parametrically. The modes can
be divided into groups in accordance with their frequency. These groups can be considered
separately because the interaction of modes having the same frequency can only contribute
to acoustic microstreaming (Doinikov et al. 2019a,b; Inserra et al. 2020a,b). We consider
modes with a frequency w, which can be equal to the driving frequency or any other sub-
or ultra-harmonic of the driving frequency if the modes are excited parametrically.

We assume that the jth bubble undergoes N; modes with a frequency w. The modes have

numbers M Y), Mg) , Mz(\]/j) In this case, the w-dependent deformation of the surface of the
Jjth bubble can be represented as

0
M
Nj

r) = et Z sOPL (1)), 2.1)
n:My)

where u; = cos6; and sﬁ{ ) is the complex amplitude of the nth mode of the jth bubble,
which is assumed to be known (for example, obtained from the experimental bubble
dynamics).

The total first-order liquid velocity generated by both bubbles is given by

v=0D 4+ 9®, (2.2)

where v") is the first-order liquid velocity generated by the jth bubble. The value of v
can be represented as

V) =V 4V x ¢, (2.3)

where ¢ and ¥ are the scalar and the vector velocity potentials, respectively.
In view of axial symmetry, ¢’ and ¥ are written as (Doinikov ez al. 2019a)

0 _ iy o (R )"
—1
o =7y "l (7]) Pu(i)), 2.4)
n=0
- - . oo -
YO =y, 0. Degj = e e b (kyry)P) (1), 2.5)
n=1

where Rjo is the equilibrium radius of the jth bubble, P! is the associated Legendre

n
polynomial of the first order and degree n, h,(f) is the spherical Hankel function of the first
kind, k, = (1 +i)/4 is the viscous wavenumber, § = +/2v/w is the viscous penetration
depth, v = n/p is the kinematic liquid viscosity, n is the dynamic liquid viscosity, p is the
equilibrium liquid density and eg; is the unit azimuth vector of the jth bubble. Note that
axial symmetry allows us to set €1 = &, and e.| = eg3.

931 A19-4


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.926

Downloaded from https://www.cambridge.org/core. Ecole Centrale de Lyon, on 26 Nov 2021 at 19:12:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.926

Acoustic microstreaming

@ 10¢ b "¢
A ~ 1o ¢
o~ 100 ° b
g & .
o * £ 102
- ° =
= = [ ]
= 102 =)
= ° o107
° °
4 4
Oy 2 3 4 s 107 2 3 4 5
n n

Figure 2. Magnitude of the linear scattering coefficients for bubble 1. Due to the equivalence of the
calculation parameters, the linear scattering coefficients for bubble 2 have the same magnitude.

Substitution of (2.4) and (2.5) into (2.3) yields

—iwt X

0 ==Y e [ay(%’) ¥ nb,ym,g”(kvr,-)} Pa).  (26)
T n=0 /

o _ e | o (R (1 1 1
vy = — > 1a? (T) — DDA (heyry) + keyrih D ()17 PL),  (2.7)
I =1 J

where the prime denotes the derivative with respect to the argument in brackets. Note
that when calculating (2.6) and (2.7), we have used mathematical properties of P, (1) and
P,ll () (Abramowitz & Stegun 1972).

To find ag) and b,(f), called linear scattering coefficients, boundary conditions at the
bubble surfaces are applied. Since this calculation is cumbersome, it is performed in
Appendix A.

As an example, figure 2 shows the magnitudes of afl’) and b,({) calculated for bubbles
with Rigp = Ryp = 50 wm at the inter-bubble distance d = 300 wm and the oscillation
frequency f = 30 kHz. The surrounding liquid is water. The bubbles are assumed to
undergo the radial oscillation with an amplitude of 5 wm. As one can see, the scattering
coefficients with n > 0 are not zero despite the fact that both bubbles only pulsate, but the
magnitude of the scattering coefficients quickly decreases with increasing n. It is worth
noticing that the coefficients af,l) are six orders of magnitudes larger than the coefficients
bg,l). This difference is explained by the weight of the radial functions (Rjp/ rj)"+1 and
Hankel function hf,l)(kv rj) that are respectively associated with the coefficients aill) and

bV in (2.6) and (2.7).

2.2. Acoustic streaming

As shown by Doinikov et al. (2019a), the Eulerian velocity of acoustic streaming can be
written as

vE=V XV, (2.8)
931 A19-5
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where ¥ obeys the vorticity equation derived by Westervelt (1953) for the case of
solenoidal first-order motion,

1
AP = —;V x (v - Vo), (2.9)

with () denoting the time average.
Equation (2.9) is shown by Doinikov et al. (2019a) to be transformed to

A2 = %Re{V x [(AY*) x v]}, (2.10)

where Re means “the real part of” and the asterisk denotes the complex conjugate.
Substituting v = v + v@ and ¥ = ¥V + ¥, one obtains
1
AW = S RelV x (AP D) x vD] 4V x [APP*) x v?] @.11)
v .
+V x [AGDH) x v ]+ V x (A7) x v}

Equation (2.11) can be represented in the coordinates (71, 01) or (12, 63). It is shown in
Appendix B that ¥ in the coordinates (r, 01) is written as

¥ (r1,01) =¥ (r,0e;1, (2.12)

where ¥ (rq, 1) obeys the following equation:

2 oo
1 1
(1) _ 1 (1) 1) (1)
(A,B = r%sngl) Yo = [Z(:)Pn(m)Pm(m)[Kl,,m(rl) + Ly (r) + My, (r1)]

m=1

oo
V=13 Y PaDPY DIKS,, (D) + K5, (D) + Ly, () + L), (m) + M), (1) + My, (r)]
n,m=1

(2.13)

Here, the operator Aié) is defined by (B5) and the r1-dependent functions are calculated
by (B9), (B10), (B13), (B14), (B20) and (B21).

Equation (2.13) is valid for r; < d since this restriction is imposed on coordinate
transformations (Appendix A) that were used to derive (2.13). Therefore, the solution of
(2.13) describes acoustic streaming in the domain D1 shown in figure 3.

As shown in Appendix B, ¥ in the coordinates (13, 6») is written by

Y (r2, 02) = ¥ (r2, h)ee, (2.14)
where ¥ (12, 6>) is calculated by

2 o0
1 1
2) _ 1 2) (2) 2)
(Aw - 9) V0= lg““‘””m(“”““”’"(’” 2 M )

m=1

o0
2 2 2 2 2 2
1= 13 Y PL)P () [KS, () + K5 () + LS (r2) + L) (r2) + My, (r2) + Mgy, ()] ¢ .
n,m=1

(2.15)

Here, the operator A%) is defined by (B5) and the r>-dependent functions are calculated
by (B26), (B27), (B30), (B31), (B34) and (B35).
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Figure 3. Regions where (2.13) and (2.15) are valid.

Equation (2.15) is valid for » < d and hence its solution describes acoustic streaming in
the domain D, shown in figure 3. Equations (2.13) and (2.15) must give the same results in
the space between the bubbles so the domains Dy and D> can be combined to get acoustic
streaming around both bubbles, as shown in figure 3.

It should be emphasised that the above restrictions on the solutions of (2.13) and
(2.15) are not related to the ratio of the bubble radii to the viscous penetration depth or
to the inter-bubble distance. The restrictions shown in figure 3 result from geometrical
transformations of coordinates that are used in our derivation and hence are of purely
geometrical nature. They are necessary to provide the convergence of infinite sums used
in the solutions.

Equations (2.13) and (2.15) are solved in Appendix C. The result is given by

o
v 0) =Y PP ). j=1.2, (2.16)
=1

where Wl(j)(rj) is calculated by (C8). Substituting (2.16) into (2.8), one obtains the
components of the Eulerian streaming velocity,

o0

1 .
vEr (17, 6) = = D10+ D8 () Piy). 2.17)
I =1
e :
oo (1. 0)) = —— > 1 () + @ 1P (). (2.18)

J =1

where & (1) is calculated by (C17).
The components of the Lagrangian streaming velocity are defined by

v (rj, 0)) = vEr(r, 0)) + vs, (1), 6)), (2.19)
v (rj, 0)) = vEe(rj, 0;) + vso (1}, 6)), (2.20)
931 A19-7
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where vg,(rj, 6;) and vse(rj, ;) denote the components of the Stokes drift velocity
(Longuet-Higgins 1998), which are calculated in Appendix E and given by (E15) and
(E16).

Combining the solutions in the coordinates (ri,61) and (rp, 62) provides acoustic
microstreaming in the area shown in figure 3. As a consequence, when the distance
between the bubbles is reduced, the boundary of the spatial domain where our
second-order solutions are valid shifts to the bubble interfaces. It is also worth mentioning
that the domain D = {r; < d U ry < d} is a theoretical upper limit for the spatial domain
where (2.19) and (2.20) are valid. Since in the process of numerical calculations one has
to truncate the infinite sums in (2.17) and (2.18), one can only approach this upper limit
by increasing the number of terms in the truncated sums, which naturally leads to more
time-consuming computations.

3. Numerical simulations

Preparatory to the numerical analysis of specific cases of microstreaming induced by an
interacting bubble pair, attention is paid to the convergence of the numerical modelling.

3.1. Convergence analysis

In the present modelling, the interaction between bubbles is considered both when the
linear velocity field is calculated and when the second-order velocity field of acoustic
microstreaming is calculated. Physically, the interaction is realised by re-scattering of
sound between the bubbles. One can see that in the course of the calculation of the linear
velocity, multiple scattering effects are included into the derivation of the linear scattering

coefficients a,({ ) and bf{ ), which are given by the system of (A41) and (A42) for j = 1 and
n > 1. The infinite summation appearing in (A41) and (A42) must be truncated at some
finite value of a given number n of the linear scattering coefficients, while the coefficients
appearing in this system of equations, which are given by (A43)—(A48) also involve infinite
sums, which determine the number of re-scattering events that are allowed for. These sums
must also be truncated to some finite value m;,,,. The numerical case under consideration
is the interaction between two bubbles of identical size Rjg = Ryo = 50 pm separated by
the inter-bubble distance d = 150 wm that oscillate radially in phase, with the amplitude
5 pm at the frequency 30 kHz. In order to estimate the number of the linear scattering
coefficients required to accurately describe multiple scattering effects, figure 4(a) shows
the evolution of the total energy » ||a§1) Ik

aEl) up to the value n. The energy reaches a plateau at n = 5, providing the limiting

number of first-order interactions that should be taken into account. The linear scattering

coefficient of the highest amplitude agl), in the case n #0, is plotted in figure 4(b) as
a function of the limit value my;,. Setting my;,, = 5 in our case is enough to ensure the
convergence of the linear scattering coefficients.

In the second-order streaming velocities, the velocity field is also defined by an infinite
sum of the angular functions P,(u) and P}l(u), such as in the system of (2.17) and (2.18)
for the components of the Eulerian streaming velocity. The numerical truncation of these
infinite sums to a finite value /j;;,, is quantified on the radial and tangential components of
the Lagrangian streaming velocity in figure 4(c,d). The velocity components are computed
at the location (r; = Rg; + 5 pwm,f; = 1/2) in the reference frame of bubble 1. The
velocity components have converged for /j;, > 6. In the following, numerical results are
only considered for which the convergence has been achieved.
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Figure 4. Convergence analysis of the numerical modelling for the case of two spherically oscillating bubbles
of identical radii (Rj9 = Ryp = 50 wm) driven by a 30 kHz ultrasound wave in water. (a) Convergence of the
energy spectrum of the linear scattering coefficients as a function of the number n of scattered modes. (b)

Convergence of the highest scattering coefficient agl) a function of the finite upper limit my;, of the sums
appearing in (A41)—(A438). (c,d) Convergence of the radial V, and tangential Vp components of the Lagrangian
streaming velocity as a function of the finite upper limit /;;,, of the sums appearing in (2.17) and (2.18).

3.2. Effect of the inter-bubble distance

A single bubble that pulsates radially in an unbounded fluid does not produce any
microstreaming (Doinikov et al. 2019a). Due to the presence of a second bubble, multiple
sound scattering leads to a non-zero microstreaming flow. Figures 5(a)-5(c) shows
streamline patterns, for different inter-bubble distances, around two bubbles with identical
equilibrium radii Rjp = Ry = 50 wm, oscillating radially in phase with the amplitude
5 pm at the frequency 30 kHz. The bubbles are indicated by full circles and the flow
pattern is only displayed within the region of validity D = {r; < dU r < d}.

The streamline patterns consist of large lobes located above and below each bubble. The
form and the size of the lobes are changed with increasing inter-bubble distance, namely
the centre of rotation is shifted away from the bubbles and the extent of the vortices
increases. Along the horizontal direction 61 = 0, the streaming flow is directed towards
the bubbles in the inter-bubble space. Two pairs of recirculation vortices are observed
in the distance from the bubbles along the horizontal axis. The size of these vortices
decreases when the inter-bubble distance increases. Figure 5(d) depicts the evolution of
the magnitude of the Lagrangian streaming velocity as a function of the inter-bubble
distance at the locations (r; = 1.3Rg1, 61 = nt/2) and (r» = 1.5R¢1, 62 = m). The velocity
magnitude rapidly decreases to values of the order of 10 m s~!. Such small velocities
cannot be observed experimentally. It is worth noticing that these results are in good
qualitative agreement with the experimental observations of Mekki-Berrada et al. (2016).
Although their study is devoted to the analysis of streaming flows induced by pancake-like
bubbles, the same kind of long-range streaming pattern is observed around the interacting
bubble pair.
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Figure 5. Evolution of the streaming flow as a function of the inter-bubble distance d in the case of two
spherically oscillating bubbles (with the same parameters as in figure 4); (@) d = 150 pwm, (b) d = 300 pm,
(¢) d =750 pm. (d) Evolution of the magnitude of the Lagrangian streaming velocity as a function of
the inter-bubble distance. The velocity is measured at the locations (r; = 1.3Rp1,0; = 1t/2) and (rp =
1.5Ro1, 62 = 7).

(a) J \%

—

)

Figure 6. Comparison of (@) the microstreaming pattern obtained by the superimposition of two flows given
by the single-bubble theory and () the pattern predicted by the present model.

3.3. Contribution of the present model

In order to illustrate the contribution of the present model, we perform a comparison
between the microstreaming pattern that is obtained by the superimposition of two
streaming flows calculated by the single-bubble theory and the pattern predicated by the
present model. The microstreaming pattern induced by each bubble in the non-interacting
case is calculated by the theoretical approach of Inserra et al. (2020b). Numerical

results are shown in figure 6 for two identical bubbles with Rjg = Ryp = 50 um at
(1,2

the inter-bubble distance d = 200 wm, exhibiting radial (s, ™ =5 pwm) and mode 2
(sél’z) = 10 wm) oscillations at the driving frequency 30 kHz in water. As one can see,

the microstreaming patterns in figures 6(a) and 6(b) look markedly different. Note, for
example, that the direction of streamlines in the areas above and below the bubbles is
different in figures 6(a) and 6(b).

In order to reinforce the validity of these results, a computational fluid dynamics
simulation has been performed using StarCCM+ software. The computational fluid
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@ " s > )

Figure 7. Microstreaming flow obtained by CFD simulation. (a) Cross-section view of the flow. (b)
Three-dimensional view of the streamlines illustrating the vortex ring generation around the bubbles.

dynamics (CFD) simulation is based on the interface motion of a deformable spheroid
that sets in motion the fluid in its surroundings. The interface motion is described
by (2.1) for each bubble. The interface deformation is achieved by the morphing
module implemented in StarCCM+. This method was first validated successfully when
investigating the microstreaming flow induced by a single axisymmetric bubble, whose
theoretical modelling is known (Doinikov et al. 2019a,b; Inserra et al. 2020a,b). In the
present study, the numerical modelling has been extended to two bubbles undergoing
axisymmetric shape oscillations. The computational domain consists of a quarter of a
millimetre sphere (liquid medium) containing two quarters of sub-millimetre spheroids
(i.e. two bubbles), see Appendix F. The axes of each quarter of the sphere are aligned
together. The Navier—Stokes and continuity equations are resolved through a laminar,
incompressible and unsteady model using a pressure boundary applied at the far field
and a slip condition at the interfaces. The smallest mesh size at the interface is 1 pwm.
To compare the fluid field given by the CFD simulation with that given by our analytical
model, the velocity field is averaged over one period. Figure 7 displays the microstreaming
pattern obtained by the CFD simulation. The microstreaming pattern is very similar to the
analytic one shown in figure 6(b). The location and the size of the lobes are well captured
and the flow direction is identical to that obtained analytically. Figure 7(b) shows a partial
three-dimensional view of the streamlines induced by the bubble oscillations. This figure
highlights the generation of vortex rings around the bubbles, which correspond to the lobes
shown in the different cross-view.

It is worth noting that the computational time of the CFD simulation is of the order of
24 hours, while the calculation of streamlines by the analytical model takes approximately
2 hours.

We have also made a comparison with the theory developed by Doinikov & Bouakaz
(2016). Recall that this theory, first, assumes the distance between the bubbles to be large
compared with the bubble radii and, second, ignores the interaction between the bubbles
in second-order solutions. Figure 8(a) demonstrates a streamline pattern predicted by this
theory, while figure 8(b) shows a pattern given by the present model. The simulations were
made for bubbles with Rijg = Rog = 50 pm at d = 300 wm, assuming that both bubbles
undergo radial oscillations with the amplitude 5 pwm at the frequency 30 kHz in water.
As one can see, figure 8(a) predicts an opposite direction of the streaming flow, which is
likely to be a consequence of the fact that the theory of Doinikov & Bouakaz (2016) only
allows for the interaction of the bubbles in the first-order solutions.
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Figure 8. Comparison of (a) the streamline pattern given by the theory of Doinikov & Bouakaz (2016) and
(b) the pattern predicted by the present model.

(a) 0.001 Pas

==

Z

Figure 9. Streamline patterns produced by two radially oscillating bubbles of equal radii at different
inter-bubble distances and different values of the liquid viscosity: (a,d,g) n = 0.001 Pa s; (b,e,h) n = 0.01 Pas;
(c,f;i)n =0.1 Pas.

3.4. Effect of viscosity

Figures 9-12 illustrate the effect of the liquid viscosity on the behaviour of the
microstreaming. The simulations were made for bubbles with Rjg = Ryp = 50 wm at the
frequency 30 kHz, three values of the inter-bubble distance d and three values of the
viscosity n = 0.001, 0.01 and 0.1 Pas.

Figure 9 shows streamline patterns in the case that both bubbles undergo radial
oscillations with the amplitude 5 pm. As one can see, if d is not large, with increasing
n, the form of vortices is changed noticeably. The vortices become increasingly detached
from the bubble surfaces and their extent increases. Figure 10 shows how the magnitude
of the Lagrangian streaming velocity |vz| depends on the liquid viscosity. |vz| depicted
as a function of the distance from the bubble surface at two values of the inter-bubble
distance along two directions. Direction 1 is counted from the surface of bubble 2 at
6> = 0, while direction 2 is counted from the surface of bubble 1 at ; = —mx/2. As one
can see, increasing 7 leads to increasing |vz| and the peak value of |vy| is shifted away
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Figure 10. The magnitude of the Lagrangian streaming velocity |vy|, which is generated by two radially
oscillating identical bubbles, as a function of the distance from the bubble surface along two directions.
Direction 1 is counted from the surface of bubble 2 at 6, = 0, while direction 2 is counted from the surface of
bubble 1 at ) = —m/2. The other parameters are as in figure 9.

from the bubble surface. It is interesting to note that, along direction 2, the increase of
|vp| at n = 0.01 Pa s is higher than at n = 0.1 but the region where |vy | is relatively high
remains wider at n = 0.1.

Figure 11 shows streamline patterns in the case that both bubbles undergo radial and
mode 2 oscillations. The amplitude of both modes is 5 pm and the phase shift between
modes 0 and 2 is zero. As one can see, with increasing 1, the vortices become increasingly
detached from the bubble surfaces. At d = 600 um and n = 0.1 Pa's, a complicated
structure of streamlines is observed in the inter-bubble space. The dependence of the
magnitude of the Lagrangian streaming velocity on the liquid viscosity is illustrated by
figure 12, which is analogous to figure 10. As one can see, along direction 1, |vz| at
n = 0.01 Pa s is higher than at = 0.001 Pa s but further increasing the viscosity to 0.1 Pa
s results in a |vy | that is lower than at n = 0.001 Pa s. Other effects are similar to those in
figure 10.

3.5. Comparison with existing experimental observations

Streaming flows induced in the vicinity of an interacting bubble pair have been reported
by Mekki-Berrada et al. (2016) for flattened bubbles undergoing non-spherical oscillations
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Figure 11. Streamline patterns produced by bubbles of equal radii, undergoing radial and mode 2 oscillations,
at different inter-bubble distances and different values of the liquid viscosity: (a,d,g) n = 0.001 Pa s; (b,e,h)
n = 0.01 Pas; (c,f,;i) n = 0.1 Pass.

in a microchannel. They consider the case of two bubbles of radii Rjg = Ryo = 38 pm,
separated by d = 200 pm, undergoing spherical, translational and mode 2 oscillations.
The associated mode dynamics, meaning the values of the complex amplitudes 98112;
is provided. The resulting streaming pattern, which is shown in figure 13(a), consists
of two anti-fountain vortices on both sides of the bubble pair and two pairs of smaller
vortices that are located between the bubbles. Along the line joining the bubble centres,
the streaming flow is directed towards the bubbles. Experimental streaming velocities are
found to be of the order of millimetres per second. The measured input data for s((){ 12%
provided by Mekki-Berrada et al. (2016) allow one to perform a qualitative comparison
with our model. Although our theory implies that bubbles are initially of spherical shape
and located in an unbounded fluid, one can expect that their dynamics should exhibit
similar qualitative features as in the case investigated by Mekki-Berrada et al. (2016).
The theoretical streaming pattern is shown in figure 13(b) and is in good agreement with
the experimental one: both the large lobes and the small vortices between the bubbles
are observed. Also, our theory provides velocity magnitudes of the same order as in the
experimental results.

4. Conclusion

Analytical equations have been derived that describe acoustic microstreaming induced
by two interacting bubbles undergoing arbitrary axisymmetric shape oscillations. The
developed theory imposes no restrictions on the bubble sizes and the liquid viscosity.
Numerical simulations have been performed to illustrate the influence of the interaction
of the bubbles on the microstreaming. In particular, it was shown that interacting bubbles
undergoing only radial oscillations could generate microstreaming in contrast to a single
radially oscillating bubble. Examples of streamlines for bubbles undergoing shape modes
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Figure 12. The magnitude of the Lagrangian streaming velocity |vz|, which is generated by two identical
bubbles undergoing radial and mode 2 oscillations, as a function of the distance from the bubble surface along
two directions. Direction 1 is counted from the surface of bubble 2 at 6, = 0, while direction 2 is counted from
the surface of bubble 1 at §; = —7/2. The other parameters are as in figure 11.

were presented and successfully compared with computational fluid dynamics simulations
and to experimental results available in the literature.

It should be mentioned that the approach applied in our study can be generalised to the
case of a bubble cluster. Theoretically, that is possible but will lead to very complicated
and cumbersome calculations. Another possibility is to apply the so-called two-particle
approximation, according to which, under certain conditions, pairwise interactions,
calculated by a two-particle theory, can be used to model the behaviour of a multi-particle
system.

Another point to be mentioned is the effect of Bjerknes forces experienced by bubbles.
It should be borne in mind in this connection that this effect is a nonlinear effect of the
second order, just as acoustic microstreaming. Therefore, theoretically, they are considered
independent, which means that within the framework of the second-order approximation,
Bjerknes forces and acoustic microstreaming are assumed not to affect each other.

Funding. This work was supported by the LabEx CeLyA of the University of Lyon (Grants No.
ANR-10-LABX-0060 and No. ANR-11-IDEX-0007). A.A.D. gratefully acknowledges support from Collegium
de Lyon.
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Figure 13. Comparison between (a) experimental observations of the steaming flow induced by a bubble pair
undergoing radial, translational and mode 2 oscillations (reproduced from Mekki-Berrada ez al. (2016), see the
copyright form) and (b) the theoretical results given by the present model.

Declaration of interest. The authors report no conflict of interest.

Author ORCIDs.
© Claude Inserra http://orcid.org/0000-0001-5145-7068.

Appendix A. Calculation of linear scattering coefficients

The boundary condition for the liquid velocity requires that the normal component of v at
;i = Rjo be equal to the normal component of the surface velocity of the jth bubble,

ar? Ml((lj)

( o ,

=y = g = T0e T D s Pali). (A1)
n:MY)

The second boundary condition requires that the tangential stress vanish at the bubble
surfaces because the gas viscosity is much lower than the liquid viscosity,

O = l%_,.aﬁ_v_e —=0atr = R; (A2)
=1 rj 00 orj rj J 70

It is worthwhile to explain the origin of (A1) and (A2). These equations represent a
generally accepted approximation that allows one not to consider the motion of gas inside
the bubbles and thus to simplify calculations. The approximation is based on the fact
that the viscosity of the gas is small compared with the viscosity of the ambient liquid.
This fact allows one to assume the slippage of the liquid over the bubble surface, which
means that the boundary condition for the tangential liquid velocity can be omitted so
that the boundary condition for the normal liquid velocity, (A1), is only applied. Next,
the exact boundary condition for tangential stress implies the equality of the tangential
stresses, o,g, on the outer and inner sides of the bubble surface. However, since o,g is
proportional to viscosity and the gas viscosity is much smaller than the liquid viscosity,
the tangential stress in the gas can be considered as negligible (zero) with respect to the
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tangential stress in the liquid, which results in (A2). Finally, the boundary condition for
normal stress is used to calculate the amplitudes of oscillation modes in terms of the
amplitude of an imposed acoustic pressure. However, we assume that we know the mode
amplitudes because we measure them experimentally. Therefore, the boundary condition
for normal stress is not necessary in our derivation.

In order to satisfy (A1) and (A2), we need to express »® and l/f(z) in the coordinates of
bubble 1 and vice versa.

For ¢ and ¢, the coordinate transformation can be done by the following identities
(Varshalovich et al. 1988; Doinikov & Bouakaz 2015):

P, m
,f/:f) d"+1 Z( D C"’”(d) Prn(u2), (A3)
r
Pu() (1) e
I’g-H — gt mXZ%)Cnm(E) Pp(p1), (A4)

where C,,, = (n + m)!/(n!m!) and d is the distance between the centres of the bubbles.
Equations (A3) and (A4) are valid for rj » < d.
Substituting (A3) into (2.4) at j=1 and (A4) into (2.4) at j =2, one obtains

oo
. ry\m
0V (r2.0) = ¢ Y Ve (1" Con () Pulna). (AS)
n,m=0
P20 = Y DTGy (5) " Putian. (A6)
n,m=0

where & = Rjo/d. Equation (AS) gives (p(l) in the coordinates (2, 6;) near the surface of

bubble 2, while (A6) gives go(z) in the coordinates (r{, 01) near the surface of bubble 1, i.e.
these equations can be used in the corresponding boundary conditions.

For the coordinate transformation of ¥ and ¥, the following identities are used
(Varshalovich et al. 1988):

) (ko) Py (1)
Y+ D) o iR (=DR QL+ 1D2h + 1)

Cl]Olzo 111120}112 (kyd)ji, (ky rz)Pll (12,

 Qn+ 1 et NAUESD
(A7)
V) (k) P (112)
Vi FD) o TR+ DL+ L, i , |
(2n T hHin 12: MOED) 1]0120C1]1120h12 (kvd)]ll (kvrl)Pll (m1),
(A8)

where CILI%I omy are the Clebsch—Gordan coefficients (Varshalovich et al. 1988; Zwillinger

2003) and j, is the spherical Bessel function. Equations (A7) and (A8) follow from (34)
of § 5.17 of the book by Varshalovich ez al. (1988). They are valid for rj » < d.
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Substituting (A7) into (2.5) at j =1 and (AS) into (2.5) at j =2, one obtains
¥ (2, 00) = vV (12, 0)es

R Z Vit D, )" l—D'@m+ DRI+ 1)
2 2 Gn i Jmm + 1)

x i OCmIIOhl ) (kyd)jm (kyr2) P (12), (A9)
v A1, 00) = P (r1, 0)eer

ot Jam+ 1) o "l em+ D21+ 1)
— e g, Z p
o, @n+ D i Vm(m +1)

x C, 010Cm110h1 ) (kyd)jm (kyr1) P (121). (A10)

Here, we have also used the fact that e,; = e.>. Just as (A5) and (A6), (A9) and (A10) are
valid near bubbles 2 and 1, respectively, and hence can be used in the boundary conditions
at the bubble surfaces.

We first apply (A1) to bubble 1. In this case, v( ) is calculated by (2.6) while v(z) is
calculated by (A6) and (A10) to give

v@(ry, 0) = e Z Pm(m){(_ Al Cunt}™ (2)(d>m—1

n,m=0
_ Jm(kyry) \/n(n+1 . B
. r 2n+ 1)i o 2+ l)lm\/nm—+b(2) Z ‘2l + l)CmOIO mlth(l)(k d)

=0
(A11)

Setting j =1 in (A1), substituting (2.6) with j=1 and (A11) and then equating terms at
the same Legendre polynomials, we obtain

o0

(n+ Da + n(n+ DAL kyRio)bY = {(—Dmncmns%zm*‘a,&?
m=0
. . vm(m + ) N
=0
M(l)
= iwR1g Z Sums, n >0, (A12)
m=m ("

where §,,,, is the Kronecker delta.

When (A1) is applied to bubble 2, v is calculated by (2.6) while v\" is calculated by
(AS) and (A9) to give

1) —iwt . (=D"m nt1 (1) m=1
v(r2.60) = e Y Puua) {1 Cunb] el (5

n,m=0
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.m kv + 1 m - — n n
= (mme“ DI"/mm + Db D (= Di™ @1+ Dy Coiohy” o)
) (A13)

Setting j =2 in (A1), substituting (2.6) with j =2 and (A13) and then equating terms at
the same Legendre polynomials, we obtain

(o.¢]

(n+ Dal? +nn+ DAV (kyRoo)bY — >~ {( D"'nCon}"* €3 a)

m=0

—"2n + V)y/n(n + 1)k, Rzo)ccb(l)Z( D@l + nemcmlon® (k,d)

=0
M)
=iwRyw Y Sumsly, n=0. (A14)
m:M%z)

M in the

To apply the boundary condltlon given by (A2), we need to calculate vy
coordinates (r, 6) and ”9 in the coordinates (r1, 61). By using (AS5) and (A9) for

calculating vél) and (A6) and (A10) for calculating véz), we obtain

—1wt S

IR {( D" Coné e ()"

n,m=0
Jnm+1) Cm+ 1)i™ B
@2n+Di" Jymm+1) "

x> (=D @1+ D Cnhioht” (ky d)} (A15)

1
Ué '(r2, 62) =

—[fm(kyr2) + kyrajl, (kyr2)]

—1a)t

i Ph {1ty e (5)"

Jnmn+1) Cm+ 1)i™ (2)
Qn+ Di* /m(m + 1)

X Zrl(zl+ DC™ 0 Cm oD d)} (A16)
=0

2
Ué '(r1, 61) =

~m(kyr1) + kyrijh (kyri)]

Let us apply (A2) to bubble 1. Setting j = 1, substituting (2.6) and (2.7) with j = 1, using
(A11) and (A16) and then equating terms at the same associated Legendre polynomials,
we obtain

2+ 2)a!) + (kR AV (kyR10) + (0 + n — 2RV (kyR10) 165

53 [=Dm200 = DCumsper™a?

m=0
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Jmm+1) 2n+ 1)i"
K2R3 j1 (kuR10) + (% + 1 — 2)ju(kyR p®
—[koRyjt/ (kyR10) + (n* + n — 2)ju(kyR10)] am+ D" Jao s D"
x Z “lr 4 nem,cmlont? (e, d)} =0, n=>1. (A17)
=0

For bubble 2, we set j=2 in (A2), substitute (2.6) and (2.7) with j =2, use (A13) and
(A15) and then equate terms at the same associated Legendre polynomials. As a result, we
obtain

2(n +2)a? 4 [KZR3ghV (kyRao) + (0% 4 n — 2)hD (kyRa0) 16>

- Z {1201 = DOt gal)

2p2 R )i (kuRyg)] L+ D Cr A DI g

— k2R3l (kyRao) + (n* + 1 — 2)ju (kyRao)] @m+ D mbm

x Z( Dl + nem,cmlon e, d)} =0, n>1. (A18)
=0

From (A12) and (A14) at n =0, it follows that

(1)
MNI

=iwRi0 ) Somsyy . (A19)
m=m\"
M(z)
a$? = iwRy Z Soms 2, (A20)
m=m>
which means that ag ) is non-zero if mode O exists and hence s(()’ ) 1S non-zero.
Forn > 1, (A12), (A14), (A17) and (A18) are combined in the following system:

o
ai" + OB = 3 (n2umdy) — Brunbly} = Bun, (A21)
m=1
o0
a,(lz) +f,§2)b,(12) - Z {nalnma ,Blnmb( )} = B, (A22)
m=1
1 1)1 o [ -1 2
a,g ) + g,(1 )b,s ) — Z = nt 2 Olana( ) — Vanb;(n)} = B3y, (A23)
m=1
2 2)1(2 o [ -1 1 1
a )—l—g( )b( ) Z { — alnma( ) Vlnmb( )} = By, (A24)

m=1
where the following designations are used:
fn(/') — ﬂhfll)(kuRjO), (A25)
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ZRE BV (kyRio) + (n* 4 1 — 20k (kyRjo)

() - > 07 A26
&n 2(n+2) ’ (A26)
(— 1) C
Qlpm = ’""s’"“éz, : (A27)
(— 1) C
Qo = —'"”sl gyt (A28)
Binm = njn(kyR20) G, (A29)
ﬁan = njn (kvRIO)Hnm’ (A3O)
[R2Ryji (kyRao) + (1 + 1 — 2)ju(kyR20) ]G )
Vinm = 2(n+2) :
K227 (kuR10) + (02 + 1 — 2)jn (ko R10) Hm
— , A32
V2nm = 2(n+2) ( )
"M+ Dymm 1) e ! 1
Goyn = 21+ 1 cmo cm h kyd A33
" @mt DY+ ) ;m( DRI+ DG Ctighy” (e, (A33)

MR+ D /mm 1) e
e IN/ICES) > iler+ nemmecmionY (kd),  (A34)

I=|n—ml|

iwR M[(VII)

wR10

Bin=——6l6a +-=20 D Sunsyy (A35)

n+1 0
m=M,
M(Z)
(=D"n (1) . i@Ry &

By — n Sums2, A36
m= b + Z(z) sty (A36)
m=M,

n—1 )
B3, = n+2€1"€2610 . (A37)
(=D"(n—1) (1)
By = ————281Eay . A38
an = P §165a (A38)

In (A33) and (A34), the triangle inequality has been used, which requires that the indices
of CI . satisfy the following conditions: /j + b =L >0,[y =L +L >0, L + L +

L > 0 (Zwillinger 2003).
From (A22) and (A24), it follows that

2 2 ) 5
2 _ g:(z 'Bon — £¥Ban 1)f( ) _n(n +2)g( ) oo "
an o (2) ) - (2) 2) § a]nma
&n- —Jn (n+ 2)(8 ) m=1
NoONe) f(2) 2 : (gSL )lglnm _f(2)ylnm)b(1), (A39)
8n n
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B>, — Bay 2n+1 1
p@ — + E o) a E (Binm—n1 )b( ).
tR e e - ) oD P —g?

8n - =1
(A40)
Given a,(f) and bfl]), (A39) and (A40) allow one to calculate a,(12) and bg,z).
From (A21) and (A23), by using (A39) and (A40), one obtains
o0 o0
ZAlnka£” + 3 Asuby = Dy, (A41)
= k=1
ZAW - ZA akby) = Doy, (A42)
k=1
where
A = S n _ 1)) o i (2m + 1)(g§ll)/32nm _frEI)Van)almk
Ink = onk\&, > Q2) 2)
m=1 (m+ )(g f )
— DY =+ 2)g o [m? = Dfy? = mOm + 2)gie laaum@1me
n+2 = (m+2)(g5 i)
(A43)
o — o Bunk = yim) (83 Bam — i Yaom)
=) @ _ 0
m=1 &m m
L+ g — o = Dy i o2 (840 Bk = fsr Vimk) (A4
n—+2 2 2 >
m=1 8m m
Dy = ¢MBy, — f0py, 4+ MO g — = Dfy” i (85 Bom — i Bam)2um
=8n Bin —Jfy 'Ban n42 2 _ 2
m=1 8m m
(1)
(gn ' Bonm — V2nm) (Bom — B4m)
+ Z g(z) 2 (A45)
PR R (U Dfi = m(m + 2)g 1t2mm0mk
ke =
nERLD (m+2)(gh’ — )
> @Cm 4+ 1) (Bonm — V2nm)1imk A46
N Z @) _ £, (A46)
m=1 (m+2)(gm” — fm
2n+1 (85 Bumk — f vim) 2
— () _ (1) m m nm
Ak = (fy Wk + = Z 5o
m=1 8m m
+ Z (ﬁlmk Vlmk) (,Ban - )/an) (A47)

(2) _ @ ’
m
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2 2
2n+1 Z (g( )BZm _erl )B4m)a2nm

m=1

(Banm — Y2nm) (Bom — Bam)
+ Z (2 _ @

(A48)

To find afll) and bf,l), we have to solve (A41) and (A42). The scattering coefficients
decrease for n — oo; see figure 2. Therefore, we can truncate (A41) and (A42). For

example, we can take N, coefficients of afll) with n from 1 to N, and N; coefficients
of bﬁll) with n from 1 to Np. As a result, we will obtain the following truncated equations:

Ny Np
> Avway” + 3 Agby) =Di. n=1,2....Na, (A49)
Ny Np
> Aswal” + 3 Auby) = Doy, n=1,2,...N. (A50)

As one can see, we obtain N, equations from (A49) and N;, equations from (A50), which

give in total a system of N, + Nj equations in N, unknowns a,(ql) and Np, unknowns b,(,,l).

With the help of (A33) and (A34), the coordinate transformations for llf(i), vy ), and vg )
are written in a shorter form,

o
YO (r2,00) =7 Y b5 Gumjin(kyra) Py (12), (A51)
n,m=1
0 _ e T ne gmrl(T2\" ) :
v0(r2.00) = =— 3" n @l (<" Conb ] (3 ) = 0P (1 4+ DG Grr) | Pati).
=0
(A52)
(1) —iwt X (1) 11
n m
(72, 62) = ;{ " Cnt] ()
17:1;0
b Gunljn(kora) + koraj (o)1 | PhG2), (A53)
i [e¢])
Y1, 00) = e Y bP Hufinkor1) Py (1), (A54)
n,m=1
e—ia)t 0 i .
v (1.6 = —— 3 n[a@ D" Conty ™ (5) = b 1 DHan )| o),
ot
(AS55)
—1 o0
(2) _ e (2) m m+1 (71"
Vg (r1,601) = " n=1{ (=1 Cmng (d)
m=0
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—bD Hypljn (kyr1) + kvru'{,(kvrl)]} Py(p1). (A56)

These equations are used in the calculation of acoustic streaming.

Appendix B. Representation of the equation for ¥ in different coordinates

Equation (2.11) can be written as

AW =T, +T)+Thp, (B1)
where
1 . .
Tj = -Re{V x [(AYD*) x D]} j=1,2, (B2)
V
1
Tip = Re(V x [(AYD*) x vP] 4+ V x [(ApP*) x v DY), (B3)
1%

By using the coordinate transformations given in Appendix A, (B1)-(B3) can be
expressed in the coordinates (rq,61) or (rp, 6>). Both representations are needed to
calculate acoustic streaming around two bubbles.

Let us first express (B1)—(B3) in the coordinates (r1, 61).

As shown by Doinikov et al. (2019a), (B2) with j =1 can be represented as

e 0 1 M, (1 y (D
Ti(r1,01) = o Re {8—” |:r1v§ ) (Are y* - —rzsin291
1

0 | A am_ ¥

+—|v A - , (B4)

361 [ o ( oV rlsin®0;

where the operator Aije) is defined by
AY) 13<28>+ : a(s'n98> (BS)
=——\r— ———— | sinf— ).
2o \V o) r2sing; 06, 706
Here, ¥ obeys the equation Ay = —k%lﬁ(j), which gives
L VAl .
ADY O — S = iy 0. (B6)
risin 0;

Considering (B6), (B4) reduces to

€cl 2| 9 DA d ., a
T\ (r1,61) = Ti(r1, 01)ec) = 2o, Re {kv [8—r1(r1v§ Dy Dy 4 3—91(% AL

(B7)
Substitution of (2.5)—(2.7) into (B7) yields

1 > |
Ti(r1.00) = — | Y Pa(u)Ph,(u)K},, (1)
2vR|, e

m=1
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+J1=12 3 PPl k8D o | (B3)

n,m=1
where
(n+ DR} Rio (n+ DRy
K&n("l) — Re {b,(nl)*ulo “511) 2o P R0 (1)*(k ) — k:Rloh;('y})/*(kvrl)
r r r
—nb{ [kyRiohV (kyri)hGY* (kyr) + KiR10hY (kyr )R (kvrl)]] } : (B9)
IR iy (kyr1) Rip\""!
Ky (1) = Re {b(“*””rz” BV (ko) + kot B ()] - (7>
1

(B10)

In a similar way, T in the coordinates (71, 61) is written as

€el 2| 0 @), Q)% 3 @,
Ty(r1,01) = To(r1, 0 = Re \k + ,
2(r1,01) = Ta(r1, 01)ee o, e{ U[arl(rlvr ¥r) 891(U9 YT
(B11)

where 1/f(2) v(z) and véz) in the coordinates (r1, 61) are given by (A54)—(A56). Substitution
of these equations into (B11) yields

o0
To(r1.00) = — | Y Pa(u)Ph ()L}, (1)
ZVRIO et
1= 2 Z (PP () LS () | (BI12)
nm—
where
nk*R

Liifm(rl)—Re{ iy $ 6 H)” {(2) [ Rlojm<k*r1)+—Jm(k*ro]Za;)( DECrus™!

k=1 k=0

—(n+ DIkoR10f} (ko r)jim (K1) + K Riojn (o)l (K1) Zb,?)an} } , (B13)
k=1

K2R jim(Kiry)
LS () = Re {—0’;" > 6P Hw'
1 k=1

x [[inacvrl)+kvr1j,/,<kvr1>12b,?>an—(%)"Z (1) cnsk““

k=1 k=0
(B14)

Before representing (B3) in the coordinates (rq, 61), let us transform it to a more
convenient form.

931 A19-25


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.926

Downloaded from https://www.cambridge.org/core. Ecole Centrale de Lyon, on 26 Nov 2021 at 19:12:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.926

A.A. Doinikov and others
As g obeys the equation AypD) = —k%xlf(j), (B3) can be written as
T = %Re{kﬁV x (PP x v@D) £ 12V x (¥ @* x vV}, (B15)
With the help of the identity
Vx(@xb)y=®b:-Vya—(a-V)b+a(V:b)—b(V:a), (B16)
taking into account that V - v = 0and V - ¥ = 0, (B15) is transformed to

1
Ti = Re(lg[(@? - M)y — D7 V) 4 0 vyy @7 — @ v)pD]).

(B17)
Expressed in the coordinates (ry, 61), (B17) gives

T12(ry,01) = Tia(r1, 01)eq

1 2
B e IR AN LA L A M)
21) ary "oan ry  00; r 00y

w(l)*(vﬁz) sin 9 + véz) cosbq) + w(z)*(vﬁl) sinf; + vél) cosBy) (B18)
1 sin 6 ’

where w(l), vﬁl) and vél) are calculated by (2.5)-(2.7) while w(z)’ vﬁz) and véz) are
calculated by (A54)—(A56). Substitution of these equations into (B18) yields

Tia(r1, 61) = ZR?O ZPn(/m LM (r) + (/1= Z [PL(DPY ()] MSD () |

n 0 n,m=1

(B19)
where

yO k%R?O Ry nt . * % (1) (2)% gy
Mo () = Re 122510 1 1 52 [(n+ Dju(Kiry) — Kirijl,(kir)la Zb H,
1

(5 ) b ko) + Ko Gur )60 D (1) o™
k=0

o0
— n(n A+ DlkyrjmrORY (yr) + Kyl ()RS )16 Y~ b iy

—n(n + DK riju (ko r) D (or1) + korij) (ke r) B () 10 Zb,EZ)an“ :

(B20)

0 KRy | Rio\""! (s o . (2) m IN™ (1) — ) k k+1
Mg ) = Re {250 o) (2 ) a2 32 b2 Hus 1D o) () 050 3 (<1 Cint
1 k=1 k=0

o0
ko 17}, (o DR (kort) = K i Gy i) RSO () 16D Zb,(f)Hmk”. (B21)
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It follows from the above derivation that ¥ can be represented as

W (r,60h) =Y (r,01es, (B22)

where ¥ (rq, 1) obeys the following equation:
Y 1 >
(1 _ 1 (1 (H
(A,G - m) Vo) = an(um(m)[Klnm(rl) + Lip, (r1)
m=1

M, )]+ 1= 1} Z PL )P (uIKSD (1)

n,m=1
1 1 1 1
+KD )+ LD )+ LD )+ MY oy + MY 1Y (B23)

To express (B1)—(B3) in the coordinates (rz, 65), the following manipulations are
performed.
Interchanging indices 1 and 2 in (B11), one obtains

€s2 2| 9 ).y (D)x PO (Dx
T ,0)=T ,0 = Re k| — — .
1(r2, 62) 1(r2, 02)es> 0rs 6{ v[arz(rzvr Y )+302(U9 Y
(B24)

Substitution of (A51)—(A53) into (B24) yields

Ti(r2,67) = [Z Pu(2) Pl (u2)K o, (r2) + /1 = 13 > [Py (12)P), (112)] Kgf,;m)},

n,m=1 n,m=1
(B25)

where

K{i;<r2>=Re{ iR 5 o) G {(—1)"(’) [k*Rzul (k*rz>+—Jm(k*rz)]Za?cknsk*‘

k=1 k=0

—(n+ DlkyRoojy (kor2)jim (K r2) + K Rojn (ko 12}, (kira)1 Y bi”Gnk} } : (B26)
k=1

K2R i (k5ry) & *

2 2 1

Kénin(rz):Re{—” 20’:; U b G
2 k=1

><{Un(kvrz)+kvrz;,,<kvr2>]2b2“0nk—< n(3)' Y “)Cné"“”

k=1 k=0
(B27)
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Replacing index 1 in (B7) with index 2, one obtains

€s2 2| 0 (). (2)% d @, @«
T ,0) =T ,0 = Re {ki | — —
2(r2, 02) = Ta(r2, 02)ee2 ors e{ ) [8r2 (rv,7 ") + 302(119 Yvr)

(B28)
Substitution of (2.5)—(2.7) into (B28) yields

o0
T2, 602) = ZP RDPL (DL (1) + /1 =13 3 [Ph )Pl (u)) LS, () |
r?l_({ n,m=1
(B29)
where
@ @)% (’H'l)k%R%o el Rao "M (n+ DR ()« " (D/+
LY (ry) = Re { pP* —— 20 S 0 D% (ke ry) — KERaoh D (k)
r r r
—nb{P [kyRaohY (kyr2) BV (eyr2) + K RaohD (hey r2) BV () 1)), (B30)
K2R} i (ky2) Ry \""!
LY () = Re {b@)*”or B TRD (keyra) + kyrah Y (kyra)] —a;2><ri2°) .
2
(B31)

Interchanging indices 1 and 2 in (B18), one obtains

2 @ s Do
RN L L A M\ A ML

€s2 2
T12(r2, 02) = Tho(r2, 02)ess = —2Re § k £ -
12(r2, 62) 12(r2, 62)ee 5, Re [ [ o " an r 90, 06

(B32)

w(z)*(vﬁl) sinf, + vé cos B) + (D= (v(z) sinf, + véz) cos 0r)
72 sin 6 ’

where w(z)’ vﬁz) and véz) are calculated by (2.5)—(2.7) while w(l), vﬁl) and vél) are
calculated by (A51)—-(AS53). Substitution of these equations into (B32) yields

> Pu(p2) Pl ()M, (r2) + /1 = 113 Z [P ()Pl (u) M2, () |

Ti2(r2, 00) =
21)R§0 n=0 n,m=1
m=1
(B33)
where
@ kiR Ry \"*! - 1 3 p0 G
Mi(r2) = Re § =32 e D 2 ) 10+ Djm(kr2) = Kiraiy, (k) Zb G
2 k=1
+ (1) n( 2) 0% Geor) + Kbk, rz)]b@)*za,i“ckns{f“
— n(n + Dlkyrajm(k5r)hY (kyra) + Kirajl, (ks r)h) (kyr) 162 Z b Gy
—n(n + DK ko r2) DT (kyra) + koraj, (kyr2) D (ko) 162 Zb% k“
(B34)
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) k2R4 R2() n+1 o] a ra\m o] 1
Mg,,mm):Re{ S [jm(kurz)(rz) 0" 3 b G + (<"1 ar) (3) 6P Y af" Cunt
2 k=1 —
o0
ey raf, (kyr2) B (yra) = Ko (ky r) RO (e r) 1657 ) bi”cmk} } : (B35)
k=1
Representing ¥ as
W (ry, 62) = ¥ (r2, 02)e, (B36)

and using (B24)—(B35), one obtains

2 o0

1 1

2 1 (2 (2 (2)

A — VU(r, 6h) = —— E P, P K. (rn)+L )+ M, (r

< 0 r%sin292) (r2, 62) ZVRgO Z O (12) P, (n2)[ 1nm( 2) lnm( 2) lnm( 2)]
el

o0
=13 D Pau2)Py] () Ko, (r2) + Ko, (r2) + L5, (12) + L, (r2) + M5 (r2) + M5 (12)]
n,m=1

(B37)

Appendix C. Solution of (2.13) and (2.15)
Equations (2.13) and (2.15) can be represented as

2
A0 ! U@L 0) =EVr ), j=1,2 Cl
ro . (r:]’ j) - (r:]’ I‘Lj)v J_ )~ ( )
jzsmzéj

where

oo

3 Paup) P I, () + L), () + M), ()]

n=0
m=1

EW i () =
(j H’j) v R4

o0
T =12 3 PY )P )IK S, (1) + K () + LS, () + LS (1) + M3, () + M3, ()]

" (C2)
The function E?) (r, uj) can be expanded as follows:
ED (17, py) = i EP ()P} (1), (C3)
=1
where the expansion coefficients El(") (r) are calculated by
e e

With the help of (D5), (D9) and (D10), the calculation of E{’ (r}) yields

! 0
20+ 1 i i m(m + D Cr

EV0p) = S
2vRj I+ 1) 2m+1

ol {K]nm( J) + Llnm(rf) +M1nm(rj)

n=0 m=|n—I|
m>1

+ 2Ky, (1) + K3 () + LY, (1) + LY, () + M3, (1) + My, ()]}
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o 2 2l on — dm + 1)V F T Cl(cr? 2m)000 I(cn 2m)011

DY 2k + 1

n=2 m=1 k=|n—2m—I|
k>1

X LK) () + K3 (r) + L (1) ++ LY, (1) + M3 (1) + M3, ()1}, (C5)

where [ | means the integer part of an expression in brackets.
Considering (C3), a solution to (C1) is sought as

W ) =Y 9 )Pl (wy). (C6)
=1

Substituting (C3) and (C6) into (C1) gives the following equation for lI/l(j) (ry):

2
ov 4 gy 20+ 1) Wi I+ D= +1- 2)
VT T - 7
Ty rj rj

=E (), (€7

where the prime denotes the derivative with respect to ;.
Equation (C7) is solved by the method of variation of constants (Boyce & DiPrima
2001). As a result, one obtains

c/ep €3
d—l é+1

() = V) + ) oy, (C8)

where the functions C (rj) Cf(? (r) are calculated by

€l ) = Cl + 200— DI+ 1) /R/; B 0 ds ©)
€3/ () = Cop - 200+ 1;(21 +3) R,r; S 00 o
Py =cy) - TeTp 11(21+ 5 STED () ds, (C11)
cy ) = CYy + : s'EY (5) ds. (C12)

21+ DI+ 3)

Here, C % - Cf(l)o are constants to be determined by boundary conditions.

We apply the boundary conditions at the bubble surfaces, which require that the normal
velocity and the tangential stress of the Lagrangian streaming vanish at the equilibrium
bubble surfaces,

v (rj, 6j) = 0 at rj = Rjo, (C13)
13 , 0 0 6 0
(5, 6) = 1 v (7 ) vre (1, 0))  via (1, 6)) —Oatri=Rg. (Cld)
! o 0 o7 rj S

Here, er(rj, 91') = vE,(rj, Qj) + vSr(rj, Qj) and vy (rj, Qj) = VEp (}’j, Qj) + vsp (rj, Qj) are
the components of the Lagrangian streaming velocity, vg,(rj, ;) and vgg(rj, 0;) are the
components of the Eulerian streaming velocity vg, vsy(rj, 6;) and vse(rj, 6;) are the
components of the Stokes drift velocity vg and 77(rj, 6;) is the Lagrangian tangential stress.
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The components of vg are calculated in Appendix E and given by (E15) and (E16). The
components of vg are calculated by substituting (C6) into (2.8), which gives

o0

1 .
vmmwz—;iﬂHﬁwﬁwﬁwm (C15)
7 =1
1 . .
oo (17, 0) = —— 3 197 () + 0 (1P} G, (C16)

J =1

where, as follows from (C8) and the properties of the functions C E’? (rj) — Cf(l) (), \I'l(i )/ (rj)
is calculated by

(=1 A+ DY)
[ r{+2

o () = +I Y ) + (L + 2P ) ().

r.
J J

(C17)

Substituting (C15), (C16), (E15) and (E16) into (C13) and (C14), and using (C8), (C17)
and (C18),

1(-1CcPr)  d+1a+2cY o)

W/
w1 (r) =
1 J [+1 I+3
j j
+ 10— DAT2CY) () + U+ DU+ 2rCY (o), (C18)

one obtains equations for CYI)O - Cz(t?()’

O, LG 2140 2t ) )
Cip + R_2C210 + Ry Ca TRy Capp = X5 (C19)
0
2 o L A+2) ¢ | e 21 () 21 () 0
(% - 1CYy + = Coo + (P = DRY™'Coy + 1+ DRG Cly = X5, (C20)
0
where
o Ro o
J
X = qa 1 VonRio): (C21)
o Ro o 0 0/
J
X = T[VSrl(RJ'O) = Ve (Rjo) + Rjo Vg, (Rjo)]. (C22)

Since j=1,2, we have four equations. We need four more equations to find all the
constants. The wanting equations can be obtained as follows.

Let us consider the solution in the coordinates (r1, 61). Let us take a point with the
coordinates 61 = 0 and r; = d — Ryo. This point is located on the surface of bubble 2
and hence vy, (r1, 1) must vanish at this point. This requirement leads to the following
equation:

)

c
Cip + @R s Rl Ra)? 71 C) + (d — Rop)?™ iy = X)), (€23)
— K20
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where
/
a1y (d—=Rx0) )
=——V./(d—-R
3/ I(1+ 1) Srl( 20)
1 d=Rao 21 3=1 _ I+2qp(D)
d — Ryp)? =153~ — ED (5)d
+2(21—1)(21—|—1) s [( 20077 s sTOIE;  (s) ds
d— I+4 241
+ ! Bl I ) ED(s)ds. (C24)
220+ 1DQ2I+3) Jry | (d—Rao)? st !

For the solution in the coordinates (2, 6>), we take a point with the coordinates 6, =
mt and r» = d — Ryg, which is located on the surface of bubble 1. The requirement that
vrr(r2, 62) = 0 at this points, yields

(2

C
CB 4 —20 4 (@~ Ri0)*7'C5) + (d — Rip* il = x4, (C25)
(d — Ryp)
where
)
@ _ [d=Ri)
== " yDg_Rr
ki l(l—|— 1) Srl( 10)
1 4=Ruo 2131 _ 42752
d — Rip)? 13 — sHEP (5)d
+2(2l—1)(21+1) o [( 1077 s sTOIE; T (s) ds
1 d—Ro 1+4 d—R 2141
N s o - ( 11‘:) EP(s)ds. (C26)
220+ D@ +3) Jryy | @—R10) s~

Let now us consider the Lagrangian tangential stress 7z (7, 6;), which is defined by

1 9v,(r;, 0)) n dure (1, 6)  vre (7). 6))
rj 20, orj rj

T(rj, 0) = n [

0 2
2(0-15) ) 200+2) ) 2y 12 ()
=7 Z |:—rl+1 Cy (rj) — e Co; (rj) +2(1 = I)r;C3) (1)
=1 J J

) )
Vgrz(rj) - Vgez(rj)

T

—20(1 + 2)riCY) (1) + + v (rj)} Plu. (C27)

As one can see, t7.(r;,601) =0at 6 =0 as Pll (1) = 0 at 87 = 0. However, t7(r1, 61)
must also be equal to zero in a small neighbourhood of the point with the coordinates
01 =0 and r| =d — Ryo as this area is located on the surface of bubble 2. To satisfy
this condition, the expression in the square brackets in the sum of (C27) must vanish

at r1 = d — Ryo. Similar considerations are also valid for 77 (r;, 62) at the point (6, =
mt, rp =d — Ryp). As aresult, we obtain two last equations,

I(1+2) )
(d — Ri—j0)? 20
+ (= 1)(d = Ri_j0)*1CO + 1 +2)(d — Rs_jo)?'Ch =X, (C28)
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where

(d — Ra—j0)"

()
X =
41 2

(VI d = R3—jyo) — Vey(d — Ria—jpo) + (d — R3—jo) Vet (d — R3—j0)]

4=Ra-po 21 31 J+2750)
[(d —Rp3—; T — E d
+2(21—1>(2z+1>/ [(d = Ra—po)™ 5™ = s IE () ds

& d=R@a-jpo g4 B d— R(3—j)0)21+l E(i) (545 €29
2004+ 121 +3) Jx (d — Ri3—0)? -1 I :
Combining (C19), (C20), (C23), (C25) and (C28), one finds

(d — Ra—p0)*~'1XY) — 10+ 2)X{)1 = Ry ' XY) — 10+ 2)x3))
Q@I+ DIRG ™ — (d = Ra-po)*']

c\

10 — , (C30)

R2(d — Ri3—j0)*{(d — Ris— o) T '[(2 = DX}) — X1 — Ry T[22 — DXY) — X1}

0 _
210 (21 + 1)[R12(§+3 _ (d—R(3 —j)0)21+3] 5
(C31)
o _ 1200 —x8) X9 + X0 )
O @+ DIRY = @ = Ra_po)? T
) 2 ) ) 2 0
RAIXy) — (2 = DX})1— (d — Ri—j0) Xy —(l—)X]

QL+ DIRYT = (d — Rg—jo)*+)

Appendix D. Mathematical formulas used in calculations

Here, auxiliary mathematical formulas are provided that are used in the principal
calculations. In equations that follow, the prime denotes the derivative with respect to
an argument in brackets, [ ] means the integer part of an expression in brackets, C 11%1 Iy
are the Clebsch—Gordan coefficients, and §,,, is the Kronecker delta.

We use the following formulas for P,(w) and P,ll(u,):

V1= 12P) (1) = n(n+ DPy(1) — 1wl (), (D1)

WPl (1) = nPy(10) + P _ (), (D2)
2Pl = Mt D _

(1= uHPLGW) = = =P Pae1 () = Pat (), (D3)

[(n+1)/2]
Pl = Y (n—4k+3)Pu i1 (). (D4)
k=1
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With the help of these formulas, the following identities are derived:

[n/2]

V1= 2Py P, () = n*Pu(w)Py, (1) — Y (2n — 4k + DPy_ak ()P, (1), (D5)
k=1
mm + 1) [(n+1)/2]
Py, () = = === D @n— 4k 4 3)Pu i (OPa 21 (1) = Pt (OPa2e1 ()],
k=1

(D6)

To calculate integrals with products of P, (1t) and P,L (w), we use the following identity:

L+
(l +m)!(l +my)! (I —m —my)! /
Pml P Cl() C (ml+rm)Pm1+m2
i (WP () = \/(11 St —m)! \/Z/ “,—(1+m1 )1 100 Climtm, ().
=l

(D7)
This identity follows from (9) of § 5.6 of the book by Varshalovich et al. (1988).
From (D7) and the orthogonality condition for P,ll(p,),
1
2n(n+1)
PLw)PL () di = =8, D8
| Phorh an = D5, (D8)
one obtains the following integrals:
S m(m+ D
/ Pu(i)Py, ()P () dpe = 210+ 1) ) o ™9
- m=|n—I| m
m>1
1 n—2k+lI m(m + l)CmO cml
—2k)010"™ (n—2k)011
/ Puak()P (P} () dp =210+ 1) Y o
-1 m=|n—2k—I| "
m>1
(D10)
From (D7) and the orthogonality condition for P,(u),
! 2
P P du = ——8,m,» DI1
/_1 n () P (1) de 1 nm ( )
one obtains
1 I+n )
/ PP OPA W i = Y S ()’ (d12)
- m=|l—n|
1 [+n—2k+1 ) P )
m—
| PGPasPs ot =Y S0 ©1)
—1 -

m—1=|l—(n—2k+1)|
I+n—2k+1

1
f PIOOPo1 (P2t (W) dpe = >

m+1=|l—(n—2k+1)|

2 2
(m+1)0
2m_|_3(ClO(n—2k+1)0) . (D14)
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Appendix E. Calculation of the Stokes drift velocity
The Stokes drift velocity is calculated by (Doinikov et al. 2019a)

1
vs = —Reli(v - V)v*}. (ED)
2w
Substitution of v = v + v® into (E1) yields
1
vs = 2—Re{i(v(1) cV)oD* 1 iw® vy e@* i V) v@* 4 i@ . v)uDH)
w
(E2)

To represent vy in the coordinates (rq, 61), V is taken in the coordinates (r, 0y), v(D
is calculated by (2.6) and (2.7) and v@ is calculated by (AS5) and (A56). As a result, we
obtain the following equations for the components of vg:

(1)* (2)* 1) ) (1)* (2)>(<
! 3 (vr i(vg’ +vy")0
vs(r1, 01) = Z_Re {l(v(l) + U(Z)) ( ) n 9 (vy 91 ) }

31’1 r 0

1 o0 o0
=—— | D S GOPu)Pu() + > S (r)PA ()P (1) |

26()7‘1 n,m=0 n,m=1

(E3)

D" + o) iy + ) 004 + u

1
v ,01) = —ReJi e + @
s0(r1. 01) = >~ Re 1 i(v; 7 o " 30,

i + 0P " + o) }
+ r
1

1
= %o ZQEL)mm)P (u)Ph () + /1 — i} Z Q5 FOPLDPY (1) |

n_({ n,m=1
(E4)
where
) b R\ D, d
St (r) =Im 1 | (n+ Da' )<r_1) +n(n + l)bfl )hil ) (kyr1)
r > >
—n(5)" Y a? (1 k! + -+ Djlr) Zbﬁ”ﬂnk}
k=0 k=1
R1o m+1
x | (m 4 1) (m 4+ 2)aD* (T) + m(m + DbV* D (k)
1
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—kvrlh,(,p/(kvrl)]*+m(m—1)<r) Z 4 (— 1) Ol

0
Am(m + Dljmkor1) = korijly (kor)1™ Y (b,i”Hmk)*“ . nm=0,
k=1

R n+1
Sy (r1) = Im { [m + 1>az”*(¥) + o+ DB (ko)
1

[e o] o0
ri\”" *
—n(5) 2 a (D Cus ™ 4 4 Djntirn) Y (67 H) }

k=0 k=1

Ry
x [a;§><rl) — V[ (keyry) + kyri A (kyrp)]

+(5)" 5 1A o™~ i) + o] 35 >Hmk“ mom =1,

k=0 k=1

Rio n+1
Ol () = Im { [% + Dalh (T) + nn+ DB A (k)

U

—n(r—l) Z a? (1) cknsk“+n(n+1>jn(kvrl>2b§>an}

k=1

m—+1
[ <m+3)a“>*< ) + bR (kyr1) — (kor1)? R ()]

+on=2(5)" 2 a1 Cunbl ! + i)
k=0

— (ko)) o) 1" Z<b<2>Hmk> ” n=0 mx1, (E7)

k=1

Qo (1) =T { {aff’ (r—l) — BV teyr) + her A ()]

+ <%) Z 2(-1) KCint T = lin(kyr1) + ko1l (ky rl)]zbliaan}

k=0 k=1
R m+1
x {aﬁ*(ﬁ) — B TRD (k1) + k1A (k)]
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(1) 3 a2 1) ol

k=0

~limkor1) + korij, (kor)] Z<b<2’Hmk) ” nom> 1. (ES)

k=1

To represent (E2) in the coordinates (12, 6»), V is taken in the coordinates (12, 62), v(D
is calculated by (A52) and (A53) and v@ is calculated by (2.6) and (2.7). As a result, we
obtain

(1)* (2)* (1) 2 (1)* (2)*
1 . vy 4+ v vy +vy7) 0(vy )
v (12, 02) = _ZwRe {t(vﬁl) + (2)) + 0

dar 1) 892
1
= Z S (1)Pu(12)Pr(pt2) + Z S ()P ()P (o) |
a)r2 n,m=0 n,m=1
(E9)
| 3 +v@%) i 4+ v®) s + v @)
0) = —Re LiwD 4@ 0 0
vsg (12, 62) o e{z(vr +v,.7) or + s 90,
iV 4+ (2)*)(v(1)+v92))}
+
r
1 @) |
= 2r] ; ) (1) Pu(2) P (12)
o0
H/1=p3 Y 0% (r)PY ()P (1) | . (E10)
n,m=1
where
$2,2) = m { [(n + 1 <2>( OV b DA
o0
mn .
—(—1)”n(g) 0" Cun !+ 4+ Dju o) 3 bg”Gnk}
k=0 k=1
R2() m+1
X (m+1)(m+2)a,(,f)*(r—>
2
Fm(m A+ DBZ*[AD (kyry) — kyrah(D (kyr2)]”
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2
0 (r) =Im

05, (r2) =
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+m(m + Dljm(kyr2) — kyrajl, (kyr2)] Z by G “ n.m =0,

k=1
(E11)
{ |:(n + DalP* (ﬂ) + n(n + DBP*hD* (kyrp)
)
n (T2\" . 1)* k+1 . 7% = (D *
—=1"n(Z) Y Cut ! 4+ Dju i) Y 6 G
k=0 k=1
x 5,?( ) — DDA (kyra) + kyrahl)! (kyra)]
m(T2\" () k1
+=0"(2)" Y 4" Cun]
k=0
(0.¢]
~lim(kor2) + kurajl (ko rz)]Zb“)Gmk} } nom=>1, (E12)
k=1

o (R )" @)
(n+ Da, (Z) +nm+ 1)b,”h, " (kyra)

~1m(3) Za;”ckns"“+n(n+1)jn<kurz)2b$)6nk}

k=1

Rao m+1
x [—(m +3)a)* (7) + b 120y (kor2) = (kor2) By (kyra)T”

+(=1)"(m _2)< ) Z (D% 1

H2jim(kyr2) — (kyr2) i} (k)] Z(b,i”Gmk>*“ . on=0m=1,
k=1

r2

o (R0 o 1/
m a,” \ — _bn [hn (kvr2)+kv72hn (kyra)]

9] o0
7\" . .
+-1"(2) Yo Cunkl ™! = linthora) + korai ur)] Y jb,i”Gnk}
k=0

k=1
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Ry \"*! *
" (2)*( rz ) — b [HP (kyra) + kurahD! (kyr2)]

+="(3)" Z " Cuné (! = Uintkor)

Hhyrajl (ko) 1* Y (b,ﬁ“Gmk)*} } . nmom> 1. (E14)
k=1
Equations (E3), (E4), (E9) and (E10) can be represented as

<X) -

vs (7. 6) = Y VP, (E15)
=0

OO -

vse (17, ) = Y Ve ()P} (), (E16)

I=1
where Vgr)l(rj) is calculated by

o0

; 2041 (!
Vi) = S / > ST P P (1)
dor? J-1
J n,m=0
+ Z S DPL ) PL () | Pi) duy, (E17)
nm—

while Vgg ,(r) is calculated by
21+ 1
41l + l)a)r].3

591( 1) =
1
. / | 3 00 P P
- n=0

m=1

\/7 Z QY (r)PLL)PY () t Pl () dps. (E18)

n,m=1

With the help of (D5), (D6), (D9) (D10), (D12) (D14), the integration of (E17) and
(E18) yields final expressions for Vsrl(r]) and VS@ (i),

[e'e) l+n m0
0) 20+1 1 (Cio o) g0
Vg (rj) = Z Z m i 1 Stam (77

n=0 m=|l—n|

oo [(n+1)/2] [+n—2m+1 (2n_4m+3)(C[0(n 2m+1)0)

L2 2 T

m=1  k=|l—(n—2m+1)|
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[(k—l— 1) (k + 2)5(,)

k(k—1)
2k + 3 (k+1)( 1) — —S(l)(k 1)("])1“ (E19)

2k —1

+1 0 1
o2+ i nX: Vm(m+1D)C,0Con

V() =
2./l(l—|—1 a)r 2m + 1

[anm( J) —-n Q2nm(r])]

n=0 m=[n—I|
m>1

(/2] n—2m+l X0
o 2L w2 2 — dm+ 1) VRE T )Cl—2my0i0 (n 2m)011

+Z Z Z 2k +1 Qan( j)

n=2 m=1 k=|n—2m—I|
k>1

(E20)

When calculating the Lagrangian streaming velocity, the term with / = 0 in (E15) should
be omitted as this term is a function of r; alone and hence does not contribute to acoustic

streaming.

In our calculations, the derivative Vb(]@) l/ () is used; see (C22) and (C29). It is calculated

by
3Vge)z(”j)

o/ _
Vsel (r j) - r;

20+ 1 i nZH m(m + D ChiCoty

W/ 0/
+ —— Zer 2m+ 1 [Q1 (]) n Q2 (rj)]

n=0 m=|n—I|
m=>1

oo [n/2] n—2m+l 2n — 4m+1)Vk(k + I)Cko ck
(n—2m)0I0 ™~ (n—2m)0I1 ~(j)/
2.2 2 2%k+1 o) -

n=2 m=1 k=|n—2m—I|

k>1
(E21)
where
n+1 R\
o\ () = {[ Ghab)i (])(r—llo> + n(n + )b Pk, BV (keyry)
2 0
2
—3(3) > a7 (=D Cny ™+ n(n 4 D) (ko r1>2b< >an}
k=0 k=1
R m+1
x [—(m + 3)“'511)*<T110> + b 12R) (kyr1) — (kor1)* R ()]
(2)= k+1
+m-2(5)" Za (=1 Crnt}
s *
*
+H2fmkor1) — Geor) 27 Gor)]™ > (b Hyt) }
k=1
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+ | (n+ Dal" (T) + n(n 4 DbV (kyry)
1

_n<’”_1> Z a?(—1fkC ng"“+n(n+1)jn(kvr1)Zb,(€2)an:|

d
k=0 k=1

[(m+ D +3) (1), <Rlo)’"”
X |——a," | —

Ry r

+b 2R (kyr) = 2k h (eurt) = Geyr) RS0 ey

m(m —2) (r| (2)*
P Y S gt

+k*[2] (kyr1) — 2k rL] (k r)

— G0 )Ty (b,(f)Hmk)*“ L on=0, m>1, (E22)
k=1

1)/ n+l1 (1) Rio . (1) 1/ my//
05 (1) =1Im _Tma" 7 — b, ky[2h, (kyr1) + kyrih, ' (kyr1)]

ri\n—1 &
+= (%) 5 a1 - [2j,é<kur1>+kvr1j,é/(kvr1>12bf>an}

k=0 k=1

n
d
Rio m+1
x {a,,P*() — BHIRSY (k1) + ko5 (yr)]

r
o0
r1 ) . y
) 3 DR Cunl — lintlor) + ko eorl” S 62 H) }
=0 k=1

k=0 k=1

1 R m+2
x i_’" 1w (10) — b KE2RD (kyry) + kot BV ()]

m rpym-l D%, vk gkt
O S
k=0
—K3 127}, (kry) + korijl) (ko) Z(b(2>Hmk)*”, nom= 1, (E23)

5 (n+1)? Rao\"*?
Qion(2) =1 { [_R—zoaff) o) e DBk kura)
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rp\n—1 0
(5) X ai Cutl™ +ntn+ Diyhur) > >Gnk}
k=0

k=1

=

R m+1
X [—(m +3)a?* (r_220> + 6P 21D (kyr2) — hyr2) B (yr)]”
1)
+=1"m—-2)(5)" 5 a0 Con 4 Rt
k=0

—(kor2)%j] (kyr2)] Z(bmamk) }

k=1

+ |+ Dal® (;»_) +n(n 4+ DD 1D (kyry)
2

~1(3)" Z (“ckns"“+n(n+1)jn<kvrz>2b$)6nk}

k=0 k=1

5 |:(m + )(m + 3)#)*(@

m+2
+ b K12k (kyr2)
Ry p)

~2kyrahy, (kora) = (kor2)* i) (ko))

(=D)"m(m —2) (r2 (1)*
+ T(E> % CrmtEH!

K121, (kyra) — 2keyrafl! (kyra)

—(kyr2) J///(kvi’z)]* Z (bl(cl)G’"k)*i| } , o n>0m>1, (E24)
k=1
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Acoustic microstreaming
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Figure 14. (a) View of the geometry. A quarter of fluid volume containing two bubbles at the separation
distance d is considered. (b) View of the mesh resolution in a plane containing the bubble centres. The inlet
shows the mesh sizes in the vicinity of the bubble interface.
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Appendix F. Geometry and mesh of StarCCM+ simulations

The computational domain (figure 14) consists of a quarter of a millimetre sphere
(liquid medium) containing two quarters of sub-millimetre spheres (i.e. two bubbles). The
axisymmetric assumption is used to model only a quarter of the entire fluid problem. The
axes of each quarter of the sphere are aligned together. The mesh size is sampled from
1 pm at the bubble interface to 2 pm at the edge of a sphere of radius 500 wm around the
bubble centres. The initial condition is chosen in such a way that each bubble interface is
deformed as follows:

(’) Rjo + s cos(Zchot) + sz)Pz(cos 0) cos(2mfot). (F1)

With Rjp = 50 pm, so = 10 pm, s2 =10 wm and fy =30 kHz. The initially
deformed bubble interface is visible in figure 14(b).
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