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An analytical theory is developed that describes acoustic microstreaming produced by
the interaction of an oscillating gas bubble with a viscoelastic particle. The bubble is
assumed to undergo axisymmetric oscillation modes, which can include radial oscillation,
translation and shape modes. The oscillations of the particle are excited by the oscillations
of the bubble. No restrictions are imposed on the ratio of the bubble and the particle radii
to the viscous penetration depth and the separation distance, as well as on the ratio of the
viscous penetration depth to the separation distance. Capabilities of the developed theory
are illustrated by computational examples. The shear stress produced by the acoustic
microstreaming on the particle’s surface is calculated. It is shown that this stress is
much higher than the stress predicted by Nyborg’s formula (1958 J. Acoust. Soc. Am. 30,
329–339), which is commonly used to evaluate the time-averaged shear stress produced
by a bubble on a rigid wall.

Key words: Drops and Bubbles

1. Introduction
Studies on the acoustic interaction between an oscillating gas bubble and a solid
particle are motivated by biomedical and microfluidic applications such as haemolysis,
sonoporation and cell manipulation in microchannel devices (Tachibana et al. 1999; Wu,
Ross & Chiu 2002; Marmottant & Hilgenfeldt 2003; Deng et al. 2004; Mehier-Humbert
et al. 2005; van Wamel et al. 2006; Wu & Nyborg 2008; Zinin & Allen III 2009).
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This interaction is characterised by two main effects: the radiation interaction force,
also called the secondary acoustic radiation force (Saeidi et al. 2020), and acoustic
microstreaming (Nyborg 1965).

The acoustic microstreaming that occurs between a bubble and a particle produces shear
stress on the particle surface. It is assumed that this effect, depending on its strength,
can cause cell disruption or sonoporation (temporary ‘opening’ of the plasma membrane
of a cell for the incorporation of foreign macromolecules into the cell without serious
consequences for the cell viability) (Rooney 1972; Lewin & Bjørnø 1982; Wu 2002;
VanBavel 2007; Doinikov & Bouakaz 2010).

To evaluate theoretically the time-averaged shear stress produced by a bubble on a
particle (cell), the interaction between the bubble and the particle is commonly modelled
as the interaction of a bubble with a plane rigid wall. Nyborg (1958) has derived
an analytical formula for this model. However, his formula is not based on an exact
mathematical solution of the problem. It is based on an approximate solution that
assumes the viscous boundary layer thickness to be small compared with the scale of
the distribution of the oscillatory fluid velocity. This assumption implies that the acoustic
streaming exists only in the near-boundary region, i.e. within a thin sheet of fluid at
the solid boundary. The fluid motion outside this region is assumed potential and the
irrotational part of the oscillatory fluid velocity is only taken into account.

In the present paper, we develop an analytical theory that describes acoustic
microstreaming produced by the interaction of an oscillating gas bubble with a viscoelastic
particle at an arbitrary separation distance between them. The bubble is assumed to
undergo axisymmetric oscillation modes, which can include radial oscillation, translation
and shape modes. The oscillations of the particle are excited by the oscillations of the
bubble. No restrictions are imposed on the ratio of the bubble and the particle radii to the
viscous penetration depth and the separation distance, as well as on the ratio of the viscous
penetration depth to the separation distance. The developed theory is used to calculate the
shear stress produced by the acoustic microstreaming on the particle surface.

2. Theory
We consider a gas bubble and a viscoelastic particle surrounded by a viscous
incompressible liquid. Both the bubble and the particle are assumed to be spherical at rest.
We use two spherical coordinate systems, (r1, θ1, ε1) and (r2, θ2, ε2), which are originated
at the equilibrium centres of the bubble and the particle, respectively; see figure 1. The
direction θ1 = θ2 = 0 corresponds to the z axis. The distance between the equilibrium
centres of the bubble and the particle is denoted by d. Our calculation is based on the
theory developed by Doinikov et al. (2022) for acoustic microstreaming generated by two
interacting oscillating bubbles.

We assume that in the general case, the bubble undergoes N axisymmetric oscillation
modes with mode numbers M1, M2,. . ., MN . Then the disturbed surface of the bubble can
be represented by

rs = R10 + e−iωt
MN∑

n=M1

sn Pn (μ1) , (2.1)

where rs is the radial coordinate of the disturbed bubble surface, R10 is the equilibrium
radius of the bubble, ω is the angular oscillation frequency, Pn is the Legendre polynomial
of degree n, μ1 = cos θ1 and sn is the complex amplitude of the nth mode of the bubble.
The values of sn can be taken from experimental measurements or, in some cases, they

1008 A24-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.126


Journal of Fluid Mechanics

Input data:

Input data:

Results:

Results:
Results of DOINIKOV et al. (2002)

for two bubbles applied

to the case of a bubble

and a particle

Lagrangian streaming
velocity VL = VE + VS

Viscoelastic

particle (2)

Acoustic streaming

shear stress on 

the particle

Gas bubble

Linear liquid velocity

linear liquid velocity

v = v(1) + v(2)

amplitudes of

bubbles modes sn

Linearised N-S equations

Eq. of viscoelastic medium linear scattered field

in the liquid v =v(1) + v(2)

and in the particle u 
coordinate transformations 

Boundary conditions

v = v(1) + v(2)

r1

rs (θ1, t)

z1 z2

d = z2 − z1

z

r2

θ1

θ2

(1)

Shear
stress

1
st

-o
rd

er
 s

o
lu

ti
o
n

2
n
d
-o

rd
er

 s
o
lu

ti
o
n

σ r θ

Figure 1. Coordinate systems used in calculations and calculation flowcharts for the first-order solution (top)
and the second-order solution (bottom). Here, rs is the radial coordinate of the disturbed bubble surface,
v(1) and v(2) are the first-order liquid velocities generated by the oscillations of the bubble and the particle,
respectively, u is the displacement vector inside the particle, VE and VS are, respectively, the Eulerian streaming
velocity and the Stokes drift velocity in the liquid.

can be calculated analytically in terms of the amplitude of the driving acoustic pressure.
We assume that the oscillations of the bubble are excited by the driving acoustic pressure,
while the oscillations of the particle are excited by the oscillations of the bubble.

The process of the derivation of the second-order mean flow (acoustic streaming) around
the bubble–particle system, as well as the calculation of the time-averaged shear stress
on the particle surface, is summarised in figure 1 using a flowchart representation. The
supposedly known amplitudes of the bubble oscillations are used as input data when
deriving the first-order (linear) scattered field in the liquid (the top flowchart in figure 1).
In parallel, the first-order scattered field inside the particle is derived using the equation
of motion of a viscoelastic medium. The unknown constants of the first-order solution
are found using appropriate boundary conditions at the interfaces of the bubble and the
particle. At the next stage of the calculation (the bottom flowchart in figure 1), the time-
averaged second-order liquid velocity is derived. To this end, the results obtained by
Doinikov et al. (2022) for the case of two interacting non-sphericallyoscillating bubbles
are applied to the bubble–particle system under study, using the first-order liquid velocity
field obtained here at the first stage of the calculation. Doing so, the right bubble in the
derivation of Doinikov et al. (2022) is replaced by the viscoelastic particle. This approach
provides the Lagrangian streaming velocity field around the bubble–particle system, which
then allows one to calculate the time-averaged shear stress on the particle surface.
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2.1. First-order scattered field in the liquid
We begin with the calculation of the first-order scattered acoustic field in the liquid. To this
end, we use the linearised equations of a viscous incompressible liquid, which are given
by (Landau & Lifshitz 1987)

∇ · v = 0, (2.2)
∂v

∂t
= − 1

ρ
∇ p + ν�v, (2.3)

where v is the first-order liquid velocity, p is the first-order liquid pressure, ρ is the liquid
density, ν = η/ρ is the kinematic liquid viscosity and η is the dynamic liquid viscosity.

Since we have two sources of scattering, the bubble and the particle, the velocity v can
be written as

v= v(1) + v(2), (2.4)

where v(1) and v(2) are the first-order liquid velocities generated by the oscillations of the
bubble and the particle, respectively.

The velocity v( j) is represented by

v( j) = ∇ϕ( j) + ∇ ×ψ ( j), (2.5)

where ϕ( j) and ψ ( j) are the scalar and the vector velocity potentials, respectively.
It is shown by Doinikov et al. (2022) that in the case of axial symmetry, ϕ( j)and ψ ( j)

are given by

ϕ( j) (r j , θ j , t
)= e−iωt

∞∑
n=0

a( j)
n

(
R j0

r j

)n+1

Pn
(
μ j
)
, (2.6)

ψ ( j) (r j , θ j , t
)= e−iωt eε j

∞∑
n=1

b( j)
n h(1)

n

(
kvr j

)
P1

n

(
μ j
)
, (2.7)

where h(1)
n is the spherical Hankel function of the first kind, kv = (1 + i)/δ is the viscous

wavenumber, δ = √
2ν/ω is the viscous penetration depth, P1

n is the associated Legendre
polynomial of the first order and degree n, μ j = cos θ j , R20 is the equilibrium radius of the
particle and eε j is the unit azimuth vector of the jth coordinate system. The axial symmetry
allows us to set ε1 = ε2 and eε1 = eε2. The constants a( j)

n and b( j)
n , called linear scattering

coefficients, are calculated by boundary conditions at the surfaces of the bubble and the
particle; see below.

Substitution of (2.6) and (2.7) into (2.5) gives the radial and tangential components
of v( j)

v
( j)
r
(
r j , θ j , t

)= −e−iωt

r j

∞∑
n=0

(n + 1)

[
a( j)

n

(
R j0

r j

)n+1

+ nb( j)
n h(1)

n

(
kvr j

)]
Pn
(
μ j
)
,

(2.8)

v
( j)
θ

(
r j , θ j , t

)= e−iωt

r j

∞∑
n=1

{
a( j)

n

(
R j0

r j

)n+1

−b( j)
n

[
h(1)

n

(
kvr j

)+ kvr j h
(1)/
n

(
kvr j

)]}
P1

n

(
μ j
)
, (2.9)

where the prime denotes the derivative with respect to the argument in brackets.
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The first-order liquid pressure p can also be written as

p = p(1) + p(2). (2.10)

Substituting (2.5) into (2.3) and taking into account that ψ ( j) obeys the equation
(� + k2

v)ψ
( j) = 0 (Doinikov et al. 2019), one obtains

p( j) = iωρϕ( j). (2.11)

2.2. First-order scattered field inside the particle
We assume that the motion of the viscoelastic medium inside the particle obeys the
following equation (Landau & Lifshitz 1970):

ρp
∂2u
∂t2 = μp∇2u + (

λp + μp
)∇∇∇ (∇∇∇ · u) + ηp∇2 ∂u

∂t
+
(

ζp + 1
3
ηp

)
∇∇∇
(
∇∇∇ · ∂u

∂t

)
,

(2.12)

where u is the displacement vector, ρp is the particle density, λp = Eσ/[(1 − 2σ)(1 + σ)]
and μp = E/[2(1 + σ)] are the Lamé coefficients, E is Young’s modulus, σ is Poisson’s
ratio, ζp is the bulk viscosity and ηp is the shear viscosity. The time dependence of u is
assumed to be exp(−iωt).

A solution to (2.12) is sought as

u =∇∇∇ϕp +∇∇∇ ×ψ p. (2.13)

Substitution of (2.13) into (2.12) yields

∇2ϕp + k2
l ϕp = 0, (2.14)

∇2ψ p + k2
t ψ p = 0, (2.15)

where kl and kt are the longitudinal and the transverse wavenumbers, respectively, which
are calculated by (Landau & Lifshitz 1970)

kl = ω

√
ρp

λp + 2μp − iω
(
ζp + 4ηp/3

) , (2.16)

kt = ω

√
ρp

μp − iωηp
. (2.17)

Axisymmetric solutions to (2.14) and (2.15) are given by

ϕp (r2, θ2, t) = e−iωt
∞∑

n=0

�a n jn (klr2) Pn (μ2) , (2.18)

ψ p (r2, θ2, t) = eε2e−iωt
∞∑

n=1

�
b n jn (ktr2) P1

n (μ2) , (2.19)

where jn is the spherical Bessel function of order n and �a n,
�
b n are constants to be

determined by boundary conditions.
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Substitution of (2.18) and (2.19) into (2.13) gives the radial and tangential components
of u

ur (r2, θ2, t) = e−iωt
∞∑

n=0

[
kl

�a n j /

n (klr2) − n (n + 1)
�
b n

jn (ktr2)

r2

]
Pn (μ2) , (2.20)

uθ (r2, θ2, t) = e−iωt

r2

∞∑
n=1

{�a n jn (klr2) − �
b n
[

jn (ktr2) + ktr2 j /

n (ktr2)
]}

P1
n (μ2) .

(2.21)

2.3. First-order boundary conditions

To calculate a( j)
n , b( j)

n ,
�a n and

�
b n , we use the following boundary conditions:

vr = ∂rs

∂t
at r1 = R10, (2.22)

σrθ = 0 at r1 = R10, (2.23)

vr = ∂ur

∂t
at r2 = R20, (2.24)

vθ = ∂uθ

∂t
at r2 = R20, (2.25)

σrr =�
σ rr at r2 = R20, (2.26)

σrθ =�
σ rθ at r2 = R20, (2.27)

where σrr and σrθ are the first-order normal and tangential stresses in the liquid and �
σ rr

and �
σ rθ are the normal and tangential stresses in the particle.

The physical meaning of (2.22)–(2.27) is as follows. Equation (2.22) requires that the
normal component of the liquid velocity at the bubble’s surface be equal to the normal
component of the surface velocity of the bubble. Equation (2.23) requires that the liquid
tangential stress vanishes at the bubble’s surface because the gas viscosity is much lower
than the liquid viscosity. Equations (2.24)–(2.27) require that the velocity and the stress
be continuous across the surface of the particle. Note that we do not use the boundary
condition for the normal stress at the bubble surface. The point is that this condition is
commonly used to calculate the amplitudes of the bubble oscillation modes in terms of the
amplitude of the imposed acoustic pressure. We assume, however, that the amplitudes of
the bubble oscillation modes are known (measured experimentally). This approach allows
one to cover the case that shape modes are excited parametrically. Therefore, the boundary
condition for the normal stress at the bubble’s surface is redundant in our derivation.

The stress components are calculated by (Landau & Lifshitz 1970, 1987)

σrr = −p + 2η
∂vr

∂r j
, (2.28)

σrθ = η

(
1
r j

∂vr

∂θ j
+ ∂vθ

∂r j
− vθ

r j

)
, (2.29)

�
σ rr = λp∇ · u + 2μp

∂ur

∂r2
+ 2ηp

∂2ur

∂t∂r2
+
(

ζp − 2
3
ηp

)
∇ · ∂u

∂t
, (2.30)

�
σ rθ = μp

(
1
r2

∂ur

∂θ2
+ ∂uθ

∂r2
− uθ

r2

)
+ ηp

∂

∂t

(
1
r2

∂ur

∂θ2
+ ∂uθ

∂r2
− uθ

r2

)
. (2.31)
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2.4. Calculation of the linear scattering coefficients

In order to apply (2.22)–(2.27), we need expressions for ϕ(1), v
(1)
r and v

(1)
θ in the

coordinates (r2, θ2, ε2) and expressions for ϕ(2), v
(2)
r and v

(2)
θ in the coordinates

(r1, θ1, ε1). These expressions are given by (A5), (A6), (A11), (A13), (A15) and (A16)
of Doinikov et al. (2022)

ϕ(1) (r2, θ2, t) = e−iωt
∞∑

n,m=0

a(1)
n ξn+1

1 (−1)m Cnm

(r2

d

)m
Pm (μ2) , (2.32)

v(1)
r (r2, θ2, t) = e−iωt

∞∑
n,m=0

Pm (μ2)

{
(−1)m m

d
Cnmξn+1

1 a(1)
n

(r2

d

)m−1

− jm (kvr2)

r2

√
n (n + 1)

(2n + 1) in (2m + 1) im
√

m (m + 1)b(1)
n

×
∞∑

l=0

(−1)l i l (2l + 1) Cn0
m0l0Cn1

m1l0h(1)
l (kvd)

}
, (2.33)

v
(1)
θ (r2, θ2, t) = e−iωt

r2

∞∑
n,m=0

P1
m (μ2)

{
(−1)m Cnmξn+1

1 a(1)
n

(r2

d

)m

− [
jm (kvr2) + kvr2 j /

m (kvr2)
] √

n (n + 1)

(2n + 1) in

(2m + 1) im

√
m (m + 1)

b(1)
n

×
∞∑

l=0

(−1)l i l (2l + 1) Cn0
m0l0Cn1

m1l0h(1)
l (kvd)

}
, (2.34)

ϕ(2) (r1, θ1, t) = e−iωt
∞∑

n,m=0

(−1)n a(2)
n ξn+1

2 Cnm

(r1

d

)m
Pm (μ1) , (2.35)

v(2)
r (r1, θ1, t) = e−iωt

∞∑
n,m=0

Pm (μ1)

{
(−1)n m

d
Cnmξn+1

2 a(2)
n

(r1

d

)m−1

− jm (kvr1)

r1

√
n (n + 1)

(2n + 1) in (2m + 1) im
√

m (m + 1)b(2)
n

×
∞∑

l=0

i l (2l + 1) Cn0
m0l0Cn1

m1l0h(1)
l (kvd)

}
, (2.36)

v
(2)
θ (r1, θ1, t) = e−iωt

r1

∞∑
n,m=0

P1
m (μ1)

{
(−1)n Cnmξn+1

2 a(2)
n

(r1

d

)m

− [
jm (kvr1) + kvr1 j /

m (kvr1)
] √

n (n + 1)

(2n + 1) in

(2m + 1) im

√
m (m + 1)

b(2)
n

×
∞∑

l=0

i l (2l + 1) Cn0
m0l0Cn1

m1l0h(1)
l (kvd)

}
, (2.37)
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where ξ j = R j0/d, Cnm = (n + m)!/(n!m!) and Clm
l1m1l2m2

are the Clebsch–Gordan
coefficients (Abramowitz & Stegun 1972; Varshalovich, Moskalev & Khersonskii 1988;
Zwillinger 2003).

Substituting (2.1), (2.8) at j = 1 and (2.36) into (2.22), one obtains

(n + 1) a(1)
n + n (n + 1) h(1)

n (x1) b(1)
n − nξn

1

∞∑
m=0

(−1)m Cnmξm+1
2 a(2)

m

+ in (2n + 1)
√

n (n + 1) jn (x1)

∞∑
m=1

κ(2)
nm b(2)

m = iωR10

MN∑
m=M1

δnmsm, n ≥ 0, (2.38)

where x j = kv R j0, δnm is the Kronecker delta and κ
( j)
nm is defined by

κ
( j)
nm =

√
m (m + 1)

(2m + 1) im

n+m∑
l=|n−m|

(−1) jl i l (2l + 1) Cm0
n0l0Cm1

n1l0h(1)
l (kvd) . (2.39)

Note that in (2.39), the triangle inequality has been used, which requires that the indices
of Clm

l1m1l2m2
satisfy the following conditions: l1 + l2 − l ≥ 0, l1 − l2 + l ≥ 0, −l1 + l2 +

l ≥ 0 (Zwillinger 2003).
To apply the boundary condition for the tangential stress (2.23), we calculate (2.29) at

j = 1 using (2.8) and (2.9) at j = 1, (2.36) and (2.37). As a result, (2.23) gives

2 (n + 2) a(1)
n +

[(
n2 + n − 2

)
h(1)

n (x1) + x2
1 h(1)//

n (x1)
]

b(1)
n

+ 2 (n − 1) ξn
1

∞∑
m=0

(−1)m+1 Cnmξm+1
2 a(2)

m

+ in (2n + 1)√
n (n + 1)

[(
n2 + n − 2

)
jn (x1) + x2

1 j //

n (x1)
] ∞∑

m=1

κ(2)
nm b(2)

m = 0, n ≥ 1. (2.40)

Substitution of (2.8) at j = 2, (2.20) and (2.33) into (2.24) yields

(n + 1) a(2)
n + n (n + 1) h(1)

n (x2) b(2)
n − (−1)n nξn

2

∞∑
m=0

Cnmξm+1
1 a(1)

m

+ in (2n + 1)
√

n (n + 1) jn (x2)

∞∑
m=1

κ(1)
nm b(1)

m − iωxl j /

n (xl)
�a n

+ iωn (n + 1) jn (xt )
�
b n= 0, n ≥ 0, (2.41)

where xl = kl R20 and xt = kt R20.
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Substitution of (2.9) at j = 2, (2.21) and (2.34) into (2.25) yields

a(2)
n −

[
h(1)

n (x2) + x2h(1)/
n (x2)

]
b(2)

n + (−1)n ξn
2

∞∑
m=0

Cnmξm+1
1 a(1)

m

− in (2n + 1)√
n (n + 1)

[
jn (x2) + x2 j /

n (x2)
] ∞∑

m=1

κ(1)
nm b(1)

m + iω jn (xl)
�a n

− iω
[

jn (xt ) + xt j /

n (xt )
]�

b n= 0, n ≥ 1. (2.42)

To apply the boundary condition for the normal stress (2.26), we first calculate (2.28) at
j = 2 using (2.6) and (2.8) at j = 2, (2.11), (2.32) and (2.33). We then calculate (2.30)
using (2.20), the fact that ∇ · u=∇2ϕp = −k2

l ϕp and (2.18). Substituting the resulting
expressions for σrr and �

σ rr into (2.26), we obtain[
iωρR2

20 − 2 (n + 1) (n + 2) η
]

a(2)
n + 2n (n + 1) η

[
x2h(1)/

n (x2) − h(1)
n (x2)

]
b(2)

n

+ (−1)n ξn
2

[
iωρR2

20 − 2n (n − 1) η
] ∞∑

m=0

Cnmξm+1
1 a(1)

m

+ 2ηin (2n + 1)
√

n (n + 1)
[
x2 j/n (x2) − jn (x2)

] ∞∑
m=1

κ(1)
nm b(1)

m

+
[(

iωζp − 2
3

iωηp − λp

)
jn (xl) + 2

(
μp − iωηp

)
j //

n (xl)

]
x2

l
�a n

+ 2n (n + 1)
(
μp − iωηp

) [
jn (xt ) − xt j /

n (xt )
]�

b n= 0, n ≥ 0. (2.43)

To apply the boundary condition for the tangential stress (2.27), we first calculate (2.29)
at j = 2 using (2.8) and (2.9) at j = 2, (2.33) and (2.34). We then calculate (2.31) using
(2.20) and (2.21). Substituting the resulting expressions for σrθ and �

σ rθ into (2.27), we
obtain

2 (n + 2) a(2)
n +

[(
n2 + n − 2

)
h(1)

n (x2) + x2
2 h(1)//

n (x2)
]

b(2)
n

− 2 (−1)n (n − 1) ξn
2

∞∑
m=0

Cnmξm+1
1 a(1)

m

+ in (2n + 1)√
n (n + 1)

[(
n2 + n − 2

)
jn (x2) + x2

2 j //

n (x2)
] ∞∑

m=1

κ(1)
nm b(1)

m

+ iωηp − μp

η

{
2
[

jn (xl) − xl j /

n (xl)
] �a n +

[(
n2 + n − 2

)
jn (xt ) + x2

t j //

n (xt )
]

�
b n

}
= 0, n ≥ 1. (2.44)

Setting n = 0 in (2.38), one obtains

a(1)
0 = iωR10s0. (2.45)
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This equation shows that a(1)
0 is determined by the amplitude of the bubble radial mode.

a(1)
0 �= 0 only if s0 �= 0. Equation (2.45) means that a(1)

0 can be considered as a known
quantity when the other scattering coefficients are calculated.

Setting n = 0 in (2.41) and (2.43), one obtains

a(2)
0 + iωxl j1 (xl)

�a 0= 0, (2.46)

(
iωρR2

20 − 4η
)

a(2)
0 + iωρR2

20

∞∑
m=0

ξm+1
1 a(1)

m

+ x2
l

[(
iωζp − 2

3
iωηp − λp

)
j0 (xl) + 2

(
μp − iωηp

)
j //

0 (xl)

]
�a 0= 0. (2.47)

It follows from these equations that

a(2)
0 = c1

(
ξ1a(1)

0 +
∞∑

n=1

ξn+1
1 a(1)

n

)
, (2.48)

�a 0 = c2a(2)
0 , (2.49)

where

c1 =
{

xl

ρω2 R2
20 j1 (xl)

[(
λp − iωζp + 2iωηp

3

)
j0 (xl) + 2

(
μp − iωηp

)
j /

1 (xl)

]

+ 4η

iωρR2
20

− 1

}−1

, (2.50)

c2 = i

ωxl j1 (xl)
. (2.51)

Equations (2.48) and (2.49) show that a(2)
0 and �a 0 are expressed in terms of a(1)

0 and
a(1)

n with n ≥ 1. This means that a(2)
0 and �a 0 can be eliminated from the calculation of the

coefficients with n ≥ 1.
For n ≥ 1, combining (2.38) and (2.40)–(2.44) with (2.45), (2.48) and (2.49), one

obtains

∞∑
m=1

[
δmn (n + 1) − nξn+m+1

1 ξ2c1

]
a(1)

m + δmnn (n + 1) h(1)
n (x1) b(1)

m

+ (−1)m+1 nCnmξn
1 ξm+1

2 a(2)
m + in (2n + 1)

√
n (n + 1) jn (x1) κ(2)

nm b(2)
m

= iωR10

(
nξn+1

1 ξ2c1s0 + sn

)
, (2.52)
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∞∑
m=1

2
[
δmn (n + 2) − (n − 1) ξn+m+1

1 ξ2c1

]
a(1)

m

+ δmn

[(
n2 + n − 2

)
h(1)

n (x1) + x2
1 h(1)//

n (x1)
]

b(1)
m

+ 2 (−1)m+1 (n − 1) Cnmξn
1 ξm+1

2 a(2)
m

+ in (2n + 1)√
n (n + 1)

[(
n2 + n − 2

)
jn (x1) + x2

1 j //

n (x1)
]
κ(2)

nm b(2)
m

= 2i (n − 1) ωR10ξ
n+1
1 ξ2c1s0, (2.53)

∞∑
m=1

(−1)n+1 nCnmξm+1
1 ξn

2 a(1)
m + in (2n + 1)

√
n (n + 1) jn (x2) κ(1)

nm b(1)
m + (n + 1) a(2)

n

+ n (n + 1) h(1)
n (x2) b(2)

n − iωxl j /

n (xl)
�a n +iωn (n + 1) jn (xt )

�
b n

= i (−1)n nωR10ξ1ξ
n
2 s0, (2.54)

∞∑
m=1

(−1)n Cnmξm+1
1 ξn

2 a(1)
m − in (2n + 1)√

n (n + 1)

[
jn (x2) + x2 j /

n (x2)
]
κ(1)

nm b(1)
m + a(2)

n

−
[
h(1)

n (x2) + x2h(1)/
n (x2)

]
b(2)

n + iω jn (xl)
�a n −iω

[
jn (xt ) + xt j /

n (xt )
]�

b n

= i (−1)n+1 ωR10ξ1ξ
n
2 s0, (2.55)

∞∑
m=1

(−1)n Cnmξm+1
1 ξn

2 γ1na(1)
m + 2in (2n + 1)

√
n (n + 1)

[
x2 j /

n (x2) − jn (x2)
]
κ(1)

nm b(1)
m

+ γ2na(2)
n + 2n (n + 1)

[
x2h(1)/

n (x2) − h(1)
n (x2)

]
b(2)

n + γ3n
�a n +γ4n

�
b n

= i (−1)n+1 ωR10ξ1ξ
n
2 γ1ns0, (2.56)

∞∑
m=1

2 (−1)n+1 (n − 1) Cnmξm+1
1 ξn

2 a(1)
m

+ in (2n + 1)√
n (n + 1)

[(
n2 + n − 2

)
jn (x2) + x2

2 j //

n (x2)
]
κ(1)

nm b(1)
m 2 (n + 2) a(2)

n

+
[(

n2 + n − 2
)

h(1)
n (x2) + x2

2 h(1)//
n (x2)

]
b(2)

n + γ5n
�a n +γ6n

�
b n

= 2i (−1)n (n − 1) ωR10ξ1ξ
n
2 s0, (2.57)
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where sn is non-zero only if (2.1) contains a mode with number n, and γ1n – γ6n are defined
by

γ1n = x2
2 − 2n (n − 1) , (2.58)

γ2n = x2
2 − 2 (n + 1) (n + 2) , (2.59)

γ3n = x2
l

η

[(
iωζp − λp − 2iωηp

3

)
jn (xl) + 2

(
μp − iωηp

)
j //

n (xl)

]
, (2.60)

γ4n = 2n (n + 1)
μp − iωηp

η

[
jn (xt ) − xt j /

n (xt )
]
, (2.61)

γ5n = 2
(
iωηp − μp

)
η

[
jn (xl) − xl j /

n (xl)
]
, (2.62)

γ6n = iωηp − μp

η

[(
n2 + n − 2

)
jn (xt ) + x2

t j //

n (xt )
]
. (2.63)

Equations (2.54) and (2.55) allow one to express �a n and
�
b n in terms of a( j)

n and b( j)
n

�a n = αn

{ ∞∑
m=1

(−1)n nCnmξm+1
1 ξn

2 γ7na(1)
m + inn (n + 1) (2n + 1)√

n (n + 1)
γ8nκ

(1)
nm b(1)

m + γ9na(2)
n

+γ10nb(2)
n + i (−1)n nωR10ξ1ξ

n
2 γ7ns0

}
, (2.64)

�
b n = βn

{ ∞∑
m=1

(−1)n Cnmξm+1
1 ξn

2
[
1 + inω jn (xl) αnγ7n

]
a(1)

m

+ in (2n + 1)√
n (n + 1)

[
in (n + 1) ω jn (xl) αnγ8n − jn (x2) − x2 j /

n (x2)
]
κ(1)

nm b(1)
m

+ [
1 + iω jn (xl) αnγ9n

]
a(2)

n +
[
iω jn (xl) αnγ10n − h(1)

n (x2) − x2h(1)/
n (x2)

]
b(2)

n

+i (−1)n ωR10ξ1ξ
n
2
[
1 + inω jn (xl) αnγ7n

]
s0

}
, (2.65)

where

αn = 1
iω
{

xl xt j /
n (xl) j /

n (xt ) + jn (xt )
[
xl j /

n (xl) − n (n + 1) jn (xl)
]} , (2.66)

βn = 1
iω
[

jn (xt ) + xt j /
n (xt )

] , (2.67)

γ7n = njn (xt ) − xt j /

n (xt ) , (2.68)
γ8n = xt j /

n (xt ) jn (x2) − x2 j /

n (x2) jn (xt ) , (2.69)

γ9n = (n + 1)
[
(n + 1) jn (xt ) + xt j /

n (xt )
]
, (2.70)

γ10n = n (n + 1)
[
xt j /

n (xt ) h(1)
n (x2) − x2h(1)/

n (x2) jn (xt )
]
. (2.71)

Substituting (2.64) and (2.65) into (2.56) and (2.57) and combining the resulting
equations with (2.52) and (2.53), one obtains the following system of equations:

∞∑
m=1

A(1)
knma(1)

m + B(1)
knmb(1)

m + A(2)
knma(2)

m + B(2)
knmb(2)

m = Dkn, k = 1, 2, 3, 4, (2.72)
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where

A(1)
1nm = (n + 1) δnm − nξn+m+1

1 ξ2c1, (2.73)

B(1)
1nm = δnmn (n + 1) h(1)

n (x1) , (2.74)

A(2)
1nm = (−1)m+1 nCnmξn

1 ξm+1
2 , (2.75)

B(2)
1nm = in (2n + 1)

√
n (n + 1) jn (x1) κ(2)

nm , (2.76)

D1n = iωR10

(
nξn+1

1 ξ2c1s0 + sn

)
, (2.77)

A(1)
2nm = 2

[
δnm (n + 2) − (n − 1) ξn+m+1

1 ξ2c1

]
, (2.78)

B(1)
2nm = δnm

[(
n2 + n − 2

)
h(1)

n (x1) + x2
1 h(1)//

n (x1)
]
, (2.79)

A(2)
2nm = 2 (−1)m+1 (n − 1) Cnmξn

1 ξm+1
2 , (2.80)

B(2)
2nm = in (2n + 1)√

n (n + 1)
κ(2)

nm

[(
n2 + n − 2

)
jn (x1) + x2

1 j //

n (x1)
]
, (2.81)

D2n = 2i (n − 1) ξn+1
1 ξ2ωR10c1s0, (2.82)

A(1)
3nm = (−1)n Cnmξm+1

1 ξn
2
{
γ1n + βnγ4n + nαnγ7n

[
γ3n + iω jn (xl) βnγ4n

]}
, (2.83)

B(1)
3nm = in (2n + 1)√

n (n + 1)
κ(1)

nm

{
2n (n + 1)

[
x2 j /

n (x2) − jn (x2)
]

+n (n + 1) αnγ8n
[
γ3n + iω jn (xl) βnγ4n

]− βnγ4n
[

jn (x2) + x2 j /

n (x2)
]}

,

(2.84)

A(2)
3nm = δnm

{
βnγ4n + γ2n + αnγ9n

[
γ3n + iω jn(xl)βnγ4n

]}
, (2.85)

B(2)
3nm = δnm

{
αnγ3nγ10n + 2n (n + 1)

[
x2h(1)/

n (x2) − h(1)
n (x2)

]
+βnγ4n

[
iω jn (xl) αnγ10n − h(1)

n (x2) − x2h(1)/
n (x2)

]}
, (2.86)

D3n = i (−1)n+1 ωR10ξ1ξ
n
2 s0

{
γ1n + nαnγ3nγ7n + βnγ4n

[
1 + inω jn (xl) αnγ7n

]}
,

(2.87)

A(1)
4nm = (−1)n Cnmξm+1

1 ξn
2
{
βnγ6n − 2 (n − 1) + nαnγ7n

[
γ5n + iω jn (xl) βnγ6n

]}
,

(2.88)

B(1)
4nm = in (2n + 1)√

n (n + 1)
κ(1)

nm

{
(n2 + n − 2) jn (x2) + x2

2 j //

n (x2)

+n (n + 1) αnγ8n
[
γ5n + iω jn (xl) βnγ6n

]− βnγ6n
[

jn (x2) + x2 j /

n (x2)
]}

,

(2.89)

A(2)
4nm = δnm

{
2 (n + 2) + αnγ5nγ9n + βnγ6n

[
1 + iω jn (xl) αnγ9n

]}
, (2.90)

B(2)
4nm = δnm

{(
n2 + n − 2

)
h(1)

n (x2) + x2
2 h(1)//

n (x2) + αnγ10n
[
γ5n + iω jn (xl) βnγ6n

]
−βnγ6n

[
h(1)

n (x2) + x2h(1)/
n (x2)

]}
, (2.91)

D4n = i (−1)n ωR10ξ1ξ
n
2 s0

{
2 (n − 1) − βnγ6n − nαnγ7n

[
γ5n + iω jn (xl) βnγ6n

]}
.

(2.92)
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Equation (2.72) is a system with an infinite number of equations, which contain
an infinite number of terms. However, since the scattering coefficients decrease with
increasing scattering order, (2.72) can be truncated at n = m = N . Doing so in (2.72), we
obtain 4N equations in 4N unknowns a(1)

n , b(1)
n , a(2)

n and b(2)
n with 1 ≤ n ≤ N . This system

can be solved numerically. Changing N , the scattering coefficients can be calculated with
any desired accuracy.

2.5. Acoustic streaming
To model acoustic streaming in the case of a bubble and a particle, we can use equations
derived by Doinikov et al. (2022) for the case of two bubbles, substituting the linear
scattering coefficients calculated in the present study. However, we need to re-calculate
constants that appear in those equations. They are denoted by C ( j)

1l0, C ( j)
2l0, C ( j)

3l0, C ( j)
4l0 with

j = 1,2. These constants are calculated by boundary conditions at the surfaces of two
bubbles, which require that the normal velocity and the tangential stress of the Lagrangian
streaming vanish at the equilibrium bubble surfaces. In the case of a bubble and a
particle, we keep the same conditions for the bubble but we change one condition for
the particle. The condition of zero tangential stress should be replaced by the condition
of zero tangential velocity of the Lagrangian streaming at the equilibrium surface of the
particle. This condition is given by

vLθ (r2, θ2) = 0 at r2 = R20, (2.93)

where vLθ (r2, θ2) = vEθ (r2, θ2) + vSθ (r2, θ2) is the tangential component of the
Lagrangian streaming velocity, vEθ (r2, θ2) is the tangential component of the Eulerian
streaming velocity and vSθ (r2, θ2) is the tangential component of the Stokes drift velocity
(Doinikov et al. 2022).

The velocities vEθ (r2, θ2) and vSθ (r2, θ2) are given by (C16) and (E16) of Doinikov
et al. (2022). Substitution of these equations into (2.93) yields

�
(2)
l (R20) + R20�

(2)/
l (R20) = R20V (2)

Sθl (R20) , (2.94)

where �
(2)
l , �

(2)/
l and V (2)

Sθl are defined by (C8), (C17) and (E20) of Doinikov et al. (2022).
Here, �(2)

l and �
(2)/
l contain the desired constants C ( j)

1l0 – C ( j)
4l0, while V (2)

Sθl (R20) is a known
function that is expressed in terms of a( j)

n and b( j)
n .

Substitution of �
(2)
l and �

(2)/
l into (2.94) yields

(l − 2) C (2)
1l0 + lC (2)

2l0

R2
20

− (l + 1) R2l−1
20 C (2)

3l0 − (l + 3) R2l+1
20 C (2)

4l0 = X (p)
2l , (2.95)

where

X (p)
2l = −Rl

20V (2)
Sθl (R20) . (2.96)

Equation (2.95) replaces (C20) of Doinikov et al. (2022) at j = 2.
We also need to replace (C28) of Doinikov et al. (2022) at j = 1, using the condition of

zero tangential velocity at the particle’s surface instead of the condition of zero tangential
stress. This condition requires that

vLθ (r1, θ1) = vEθ (r1, θ1) + vSθ (r1, θ1) = 0 at θ1 = 0, r1 = d − R20. (2.97)
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Substituting vEθ (r1, θ1) and vSθ (r1, θ1), given by (C16) and (E16) of Doinikov et al.
(2022), into (2.97), one obtains

(l − 2) C (1)
1l0 + lC (1)

2l0

(d − R20)
2

− (l + 1) (d − R20)
2l−1 C (1)

3l0 − (l + 3) (d − R20)
2l+1 C (1)

4l0 = X (p)
4l , (2.98)

where

X (p)
4l = − (d − R20)

l V (1)
Sθl (d − R20)

− 1
2 (2l − 1) (2l + 1)

∫ d−R20

R10

[
(l − 2) sl+2 + (l + 1) (d − R20)

2l−1 s3−l
]

E (1)
l (s) ds

+ 1
2 (2l + 1) (2l + 3)

∫ d−R20

R10

[
lsl+4

(d − R20)
2 + (l + 3) (d − R20)

2l+1

sl−1

]
E (1)

l (s) ds

(2.99)

and E (1)
l (s) is given by (C5) of Doinikov et al. (2022). Equation (2.98) replaces (C28) of

Doinikov et al. (2022) at j = 1.
Combining (2.95) and (2.98) with the following equations of Doinikov et al. (2022):

(C19) at j = 1,2, (C20) at j = 1, (C23), (C25) and (C28) at j = 2, one obtains the following
expressions for the desired constants:

C (1)
1l0 = l (l + 2) X (1)

1l

2l + 1
− X (1)

2l

2l + 1
− R2l−1

10 C (1)
3l0, (2.100)

C (1)
2l0 =

(
1 − l2) R2

10 X (1)
1l

2l + 1
+ R2

10 X (1)
2l

2l + 1
− R2l+3

10 C (1)
4l0, (2.101)

C (1)
3l0 = 1

(d − R20)
2l−1 − R2l−1

10

{
X (1)

1l

[(
l2 − 1

)
R2

10 − l (l + 2) (d − R20)
2]

(2l + 1) (d − R20)
2

+ X (1)
2l

[
(d − R20)

2 − R2
10
]

(2l + 1) (d − R20)
2 + X (1)

3l + R2l+3
10 − (d − R20)

2l+3

(d − R20)
2 C (1)

4l0

}
, (2.102)

C (1)
4l0 = (d − R20)

2

2 (d − R20)
4l+2 − 2R4l+2

10 + (2l + 1) R2l−1
10 (d − R20)

2l−1 [R4
10 − (d − R20)

4]
×
⎧⎨
⎩

X (1)
1l

[
l(l+2)(2l−1)(d−R20)

2l+1−(l2−1
)
(2l+1)R2

10 (d−R20)
2l−1+2

(
l2−1

)
R2l+1

10

]
(2l + 1) (d − R20)

2

+
X (1)

2l

[
(2l + 1) R2

10 (d − R20)
2l−1 − (2l − 1) (d − R20)

2l+1 − 2R2l+1
10

]
(2l + 1) (d − R20)

2

−X (1)
3l

[
(l − 2) R2l−1

10 + (l + 1) (d − R20)
2l−1

]
− X (p)

4l

[
(d − R20)

2l−1 − R2l−1
10

]}
,

(2.103)
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C (2)
1l0 = 1

2

[
l X (2)

1l − X (p)
2l − (2l + 1) R2l−1

20 C (2)
3l0 − (2l + 3) R2l+1

20 C (2)
4l0

]
, (2.104)

C (2)
2l0 = 1

2

[
(2 − l) R2

20 X (2)
1l + R2

20 X (p)
2l + (2l − 1) R2l+1

20 C (2)
3l0 + (2l + 1) R2l+3

20 C (2)
4l0

]
,

(2.105)

C (2)
3l0 =

[
2 (d − R10)

2l+1 − (2l + 1) R2l−1
20 (d − R10)

2 + (2l − 1) R2l+1
20

]−1

×
{

X (2)
1l

[
(l − 2) R2

20 − l (d − R10)
2
]
+ X (p)

2l

[
(d − R10)

2 − R2
20

]
+ 2 (d − R10)

2 X (2)
3l

+
[
(2l + 3) R2l+1

20 (d − R10)
2 − 2 (d − R10)

2l+3 − (2l + 1) R2l+3
20

]
C (2)

4l0

}
, (2.106)

C (2)
4l0 =

{(
l2 + 2l − ql

) [
2 (d − R10)

2l+3 + (2l + 1) R2l+3
20

]
+ (2l + 3)

(
ql − l2 + 1

)
R2l+1

20 (d − R10)
2
}−1

×
{

X (2)
1l

{[
l
(

l2 − 4
)

− (l − 2) ql

]
R2

20 + l
(

ql − l2 + 1
)

(d − R10)
2
}

+ X (p)
2l

[(
l2 − 1 − ql

)
(d − R10)

2 +
(

ql − l2 − 2l
)

R2
20

]
−2ql (d − R10)

2 X (2)
3l + 2 (d − R10)

2 X (2)
4l

}
, (2.107)

where

ql =
2
(
l2 − 1

)
(d − R10)

2l+1 − (
l2 − 1

)
(2l + 1) R2l−1

20 (d − R10)
2 + l (l + 2) (2l − 1) R2l+1

20

2 (d − R10)
2l+1 − (2l + 1) R2l−1

20 (d − R10)
2 + (2l − 1) R2l+1

20
(2.108)

and X ( j)
1l , X (1)

2l , X ( j)
3l and X (2)

4l are defined by (C21), (C22), (C24), (C26) and (C29) of
Doinikov et al. (2022).

Equations (2.100)–(2.107) replace (C30)–(C33) of Doinikov et al. (2022). All the other
solutions obtained by Doinikov et al. (2022) for acoustic streaming remain the same.

2.6. Shear stress around the particle
The time-averaged shear stress in the liquid around the particle is given by

σLrθ (r2, θ2) = η

[
1
r2

∂vLr (r2, θ2)

∂θ2
+ ∂vLθ (r2, θ2)

∂r2
− vLθ (r2, θ2)

r2

]
, (2.109)

where vLr (r2, θ2) = vEr (r2, θ2) + vSr (r2, θ2) and vLθ (r2, θ2) = vEθ (r2, θ2) +
vSθ (r2, θ2) are calculated by (C15), (C16), (E15) and (E16) of Doinikov
et al. (2022). Substitution of these equations into (2.109) yields

σLrθ (r2, θ2) =

η

∞∑
l=1

P1
l (μ2)

[(
2 − l2 − l

)
�

(2)
l (r2)

r2
2

− �
(2)//
l (r2) + V (2)

Srl (r2) − V (2)
Sθl (r2)

r2
+ V (2)/

Sθl (r2)

]
,

(2.110)

where �
(2)
l (r2), �

(2)//
l (r2), V (2)

Srl (r2), V (2)
Sθl (r2) and V (2)/

Sθl (r2) are calculated by (C8), (C18),
(E19), (E20) and (E21) of Doinikov et al. (2022). Substitution of these equations into
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(2.110) yields

σLrθ (r2, θ2) = η

∞∑
l=1

P1
l (μ2)

{
2
(

1 − l2
) [C (2)

1l (r2)

rl+1
2

+ rl−2
2 C (2)

3l (r2)

]

−l (l + 2)

[
2C (2)

2l (r2)

rl+3
2

+ rl
2C (2)

4l (r2)

]
+V (2)

Srl (r2) − V (2)
Sθl (r2)

r2
+ V (2)/

Sθl (r2)

}
,

(2.111)

where the functions C (2)
1l (r2) – C (2)

4l (r2) are calculated by (C9)–(C12) of Doinikov et al.
(2022).

On the particle surface, the shear stress is given by

σLrθ (R20, θ2) = η

∞∑
l=1

P1
l (μ2)

[
2
(

1 − l2
) ( C (2)

1l0

Rl+1
20

+ Rl−2
20 C (2)

3l0

)

−l (l + 2)

(
2C (2)

2l0

Rl+3
20

+ Rl
20C (2)

4l0

)
+V (2)

Srl (R20) − V (2)
Sθl (R20)

R20
+ V (2)/

Sθl (R20)

]
, (2.112)

where the constants C (2)
1l0 – C (2)

4l0 are calculated by (2.104)–(2.107).

3. Numerical examples
Figure 2 illustrates acoustic streaming produced by different oscillation modes, which are
experienced by the bubble, and the time-averaged shear stress produced by these modes
on the particle surface. The liquid surrounding the bubble and the particle is assumed to
be water with ρ = 1000 kg m−3 and η = 0.001 Pa s. The particle material is steel with the
following parameters: ρp = 7800 kg m−3, E = 206 GPa, σ = 0.28, ηp = 0 and ζP = 0.
The bubble and the particle radii are R10 = R20 = 5 µm and the distance between the
centres of the bubble and the particle is d = 20 µm, which means that the distance between
the bubble’s surface and the particle’s surface is 2R10. Figures 2(a,b), 2(c,d) and 2(e,f )
show the acoustic streaming and the stress in the cases that the bubble undergoes the
radial pulsation (mode 0), the translational oscillation (mode 1) and both of the above
modes (modes 0 + 1). The inset in figure 2(b) illustrates the distribution and the direction
of the stress on the particle surface. Note that the red line in the inset tries to reflect
the fact that the stress curve in the range π ≤ θ2 ≤ 2π is the inverted image of the stress
curve in the range 0 ≤ θ2 ≤ π , i.e. that the stress for θ2 ≥ π has the same magnitude as the
stress for θ2 ≤ π but the opposite sign. The oscillation frequency is f = 500 kHz and the
mode amplitudes are s0 = s1 = 1 µm. This choice of the mode amplitudes, which we will
also follow in other examples, is convenient for the following reason: if the modes have
amplitudes of a µm and b µm, it is enough to multiply our results by the product ab.

In the case shown in figure 2(a), where the bubble undergoes the radial pulsation alone,
the spatial structure of the streaming is constituted of four recirculation loops surrounding
the bubble and of four small vortices around the particle that are located on the side
facing the bubble. It is worth reminding that a single (i.e. located in an unbounded
liquid) radially pulsating bubble does not generate acoustic streaming (Doinikov et al.
2019). Therefore, the presence of a (here rigid) particle is sufficient to significantly
modify the structure of the flow motion. The case shown in figure 2(c), where the
bubble undergoes the translational oscillation alone, demonstrates a typical quadrupole-
like streaming pattern investigated by Longuet-Higgins (1998). The same recirculation

1008 A24-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.126


A.A. Doinikov, C. Mauger, P. Blanc-Benon and C. Inserra

z/R10

z/R10

z/R10

z/R10

2

1

0

−1

−2

2

1

0

−1

−2

2

1

0

−1

−2

2

1

0

−1

−2

−4 −3

−1

1

2

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

−2

−4

−3

−2

−6

−4

−0.2

−0.4

−0.6

0.3

0.4

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.1

−2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

θ2 z
Particle

ParticleBubble

Bubble

Bubble

Bubble

Particle

Particle

Particle

Mode 0

Mode 1

Mode 0 + 1

Mode 2

(a) (b)

(d)

( f )

(h)

(c)

(e)

(g)

x/
R 1

0
x/

R 1
0

x/
R 1

0
x/

R 1
0

S
h
ea

r 
st

re
ss

 (
P

a)
S

h
ea

r 
st

re
ss

 (
P

a)
S

h
ea

r 
st

re
ss

 (
P

a)
S

h
ea

r 
st

re
ss

 (
P

a)

θ2(rad)

θ2(rad)

θ2(rad)

θ2(rad)

Figure 2. Acoustic streaming (left) and shear stress on the particle’s surface (right) produced by different
oscillation modes experienced by the bubble. The surrounding liquid is water, the particle material is
steel, R10 = R20 = 5µm, d = 20µm, s0 = s1 = s2 = 1µm, the oscillation frequency is (a)–(f ) 500 kHz,
(g), (h) 250 kHz. Possible places of rupture are shown by small full circles on the stress curves. The inset
in (b) displays the evolution of the shear stress along the particle interface, as well as the locations of the
stretching and compression points on the particle surface.
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loops structure is observed around the particle. In view of the symmetry of the vortices
around the bubble from the left-to-right side, it is clear that the particle does not influence
strongly the flow motion in the case of a bubble experiencing a translation oscillation
alone. Figure 2(e) shows the streaming pattern that results from combining the radial
and translational oscillations. The streaming around the bubble strongly differs from the
dipole-like structure predicted for a single bubble undergoing modes 0 and 1 (Longuet-
Higgins 1998; Doinikov et al. 2019). The streaming around the bubble shown in figure 2(e),
with the four asymmetric vortices along the z direction, highlights a strong influence of
the neighbouring particle.

Figures 2(b,d,f ) show that the maximal stress magnitude is reached on the particle
side that faces the bubble, near the point with θ2 = π . Note that, in view of the radial
symmetry, the stress is zero at the point θ2 = π . However, if we take a circle around
the above point, we will see that the stress along the perimeter of this circle is directed
away from the centre. This means that the particle’s surface inside the circle undergoes
stretching forces directed away from the centre, which tear up the particle’s surface
(see the inset in figure 2(b)). Considering the associated microstreaming pattern, this
stretching is related to the existence of two small counter-rotating vortices at θ2 = π .As
a result, the surface rupture (hole) can appear at θ2 = π . Therefore, the point θ2 = π is a
possible point of rupture.

Figures 2(g,h) show the streaming and the stress in the case that the bubble undergoes
mode 2 assuming that f = 250 kHz and s2 = 1µm. This choice of the frequency implies
that mode 2 is excited parametrically by the radial 500 kHz mode. The streaming pattern
around the bubble is constituted of eight recirculation loops and resembles that for a
single bubble undergoing mode 2 (Inserra et al. 2020). It is interesting to note that small
counter-rotating vortices near the particle’s surface at θ2 = π are not visible. The particle
interface is, however, teared at this location but, as one can see, the shear stress gradient
is small. One can therefore hypothesise that the rupture probability at θ2 = π is small.
The maximum shear stress now occurs near the location θ2 = 0, which becomes the most
probable location for rupture. The comparison of the stress curves in figures 2(b,d,f ,h)
shows that the stress magnitude in the case of a single translational or non-spherical
oscillation is the smallest. The highest stress magnitudes are observed when the bubble
oscillation contains mode 0. This fact is well known for a single bubble (Longuet-Higgins
1998) and here it is also valid for the shear stress on the particle surface.

One comment on the numerical calculation of the stress should be made. As one can
see, the upper limit of the sum in (2.112) is infinite. In the numerical calculation, we set
a finite upper limit and increase it as long as the stress curve does not change any more.
In figures 2(b,d,f ,h), the stress curves do not change any more when the upper limit of the
sum in (2.112) reaches 11, 10, 9 and 7, respectively. The process of the convergence of the
stress curve to the final result can be characterised by the following quantity:

sl =
∑

k

[
σ

(l)
Lrθ (R20, θ2k) − σ

(∞)
Lrθ (R20, θ2k)

]2
, (3.1)

where 0 ≤ θ2k ≤ π, σ
(l)
Lrθ (R20, θ2k) is calculated by (2.112) setting the upper limit of the

sum equal to l and σ
(∞)
Lrθ (R20, θ2k) is the value of the stress when the stress curve does

not change any more. As an example, figure 3 shows sl for the stress curve presented in
figure 2(b).

Figure 4 illustrates cases where the particle material is different from steel. Figure 4(a)
shows the acoustic streaming assuming that the particle material is copolymer with
ρp = 900 kg m−3, E = 1.1 GPa, σ = 0.42, ηp = 0 and ζP = 0. Figure 4(b) shows the
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Figure 3. Calculation of the convergence sl for the stress curve shown in figure 2(b).

streaming assuming that the particle material is polystyrene with ρp = 1050 kg m−3,
E = 3.4 GPa, σ = 0.34, ηp = 0 and ζP = 0. These materials are of interest because they
are widely used in microfluidics (Nilsson et al. 2009; Leibacher, Hahn & Dual 2015).
Figure 4(c) illustrates the case where the material parameters of the particle correspond to
erythrocytes with ρp = 1125 kg m−3, E = 26 kPa, σ = 0.49, ηp = 0.006 Pa s and ζP = 0
(Dulińska et al. 2006). In all these cases, the bubble is assumed to undergo modes 0 and
1. For this excitation, the shear stress is shown in figure 2 to be the highest. The other
parameters are as in figure 2. The stress curves for the above cases are shown in figure 4(d).
They were obtained setting the upper limit of the sum in (2.112) equal to 9, 9 and 8,
respectively. For comparison, the stress curve for the steel particle, shown in figure 2(f ), is
also included in figure 4(d).

For copolymer and polystyrene (materials with high rigidity), the overall streaming
pattern is similar to that for the steel particle, shown in figure 2(e). The counter-rotating
vortices are observed near the particle at θ2 = π and result in the rupture point on the
particle’s surface at this location. The second possible rupture location is around the
equator at θ2 = π/2, where another recirculation loop is clearly visible. A significant
change occurs when a softer particle (erythrocyte) is considered. The direction of the
streaming flow reverses around the location θ2 = 0 in comparison with the other stiff
materials, and the recirculation vortices around the point facing the bubble almost
disappear. In addition, while the distribution of the shear stress along the interface of
the erythrocyte-like particle is similar to that for the stiffer particles, the stress magnitude
for the erythrocyte-like particle is much smaller. Also, while the two poles of the particle
are the places where rupture can occur in the case of a steel particle, softer materials
(copolymer, polystyrene or erythrocyte) can only be ruptured near the equator or at the
point facing the bubble. These findings differ from available results on bubble-induced
mechanical effects (for instance, in the context of bubble-induced cell poration), where
the cell is considered as an infinite elastic wall in front of which a single, infinitely small
bubble is oscillating. For such a configuration, a single location of rupture is found at
the point of the cell (wall) interface facing the bubble. When a finite-sized particle rather
than an infinite wall is considered, the results of figures 2,4,5 display new findings, with
the possibility of new points of rupture on the particle interface. When the bubble is
experiencing the radial mode 0, the combination of radial and translational oscillations
0 –1 or the translational interaction 1–1 (figure 2a,b,c) near a steel particle, the point of
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Figure 4. Acoustic streaming in the case that the particle material is (a) copolymer, (b) polystyrene and
(c) the material parameters of the particle correspond to erythrocytes. The bubble undergoes modes 0 and
1. The other parameters are as in figure 2. (d) The stress curves for the cases shown in figures 4(a,c) and for the
steel particle shown in figures 2(e,f ).
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the particle interface facing the bubble is always the most probable location for rupture
(with the highest stress and stress gradient magnitudes). For the same bubble driving, this
behaviour does not change for stiff particles (copolymer and polystyrene, (figure 4d)), but
a change occurs for the erythrocyte-like particle. The shear stress gradient near the equator
(θ = π/2) becomes similar in amplitude to that at the point facing the bubble (θ = π), so
the equator becomes another location where rupture can be predominant.

Figure 5 illustrates the effect of the particle viscoelasticity. The parameters used,
except the particle shear viscosity ηp, are as in figure 4(c) for the erythrocyte-like
particle. Figures 5(a,b) show acoustic streaming for ηp = 0.006 Pa s and ηp = 0.06 Pa
s, respectively. Figure 5(c) shows the shear stress on the particle’s surface for increasing
values of ηp: 0.006 Pa s, 0.012 Pa s, 0.03 Pa s and 0.06 Pa s. As one can see, while the
microstreaming pattern around the bubble remains almost unchanged whatever the particle
shear viscosity (cf. figures 5a,b), additional recirculation vortices appear near the particle
for the higher shear viscosity. The distribution of the shear stress on the particle’s surface
follows the same trend when ηp increases (figure 5c) but the maximal shear stress increases
as the viscoelastic properties of the particle increase. Furthermore, the location of possible
rupture at the particle equator and at the pole facing the bubble remains unchanged when
the cell viscoelasticity is modified. The stress gradient at the point facing the bubble
significantly increases, suggesting that high-viscosity particles may be more subjected to
rupture under similar acoustic conditions.

Figure 6(b) shows a stress curve that was calculated for a radially oscillating bubble near
a big particle at R10 = 5µm, R20 = 50µm, d = 65µm, f = 500 kHz and s0 = 1−µm, the
other parameters being as in figure 2. The curve does not change any more when the upper
limit of the sum in (2.112) reaches 35. Figure 6(a) shows the system under consideration,
keeping the real ratio of all sizes. Since R10 � R20, this case can be considered as an
approximation of the behaviour of a bubble near a plane rigid wall. Note that, mathemati-
cally, ‘rigid wall’ means that Young’s modulus and the density of the wall tend to infinity.
Numerical simulations do not allow infinite parameters. Therefore, for definiteness, we
take the Young’s modulus and the density of steel. They are quite high, which allows one
to consider that the behaviour of a steel wall is close to that of a rigid wall.

The time-averaged shear stress produced by an oscillating bubble on a plane rigid
wall is commonly evaluated by using an approximation proposed by Nyborg (1958) for
calculating acoustic streaming near a boundary. Based on this approximation, Doinikov &
Bouakaz (2014) have derived the following formula:

στ = ρδ

8
∂

∂τ

(
vτ0v

∗
τ0
)
, (3.2)

where στ is the time-averaged shear stress produced by a radially oscillating bubble on a
plane rigid wall, τ is the distance from the z axis along the wall and vτ0 is the first-order ve-
locity component directed along the wall (along τ ), which corresponds to the potential liq-
uid flow and is taken at z = dw, where dw is the distance between the bubble centre and the
wall; see figure 7(a). In the designations used in the present paper, vτ0 is represented by

vτ0 = −e−iωt 2iωR2
10s0τ(

d2
w + τ 2

)3/2

[
1 + R3

10χ

dw

(
d2
w + τ 2

)
]

, (3.3)

where

χ = 3
(
x3

1 + 3i x2
1 − 6x1 − 6i

)
4
(
18i + 18x1 − 3i x2

1 − x3
1
) . (3.4)
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Figure 5. The effect of the particle viscoelasticity. The parameters, except the particle shear viscosity ηp , are
as in figure 4(c). Panels (a) and (b) show acoustic streaming for ηp = 0.006 Pa s and ηp = 0.06 Pa s. Panel
(c) shows the stress curves for increasing values of ηp .

Substitution of (3.3) into (3.2) yields

στ = ω2ρδR4
10|s0|2τ(

d2
w + τ 2

)4
[

d2
w − 2τ 2 + 2R3

10Re {χ} (d2
w − 3τ 2)

dw

(
d2
w + τ 2

) + R6
10|χ |2 (d2

w − 4τ 2)
d2
w

(
d2
w + τ 2

)2
]

.

(3.5)
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Figure 6. (a) A radially oscillating bubble near a big particle.Here, R10 = 5µm, R20 = 50µm, d = 65µm,
f = 500 kHz, s0 = 1µm. (b) Shear stress produced by the bubble on the particle surface.
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Figure 7. (a) A radially oscillating bubble near a plane rigid wall. Here, R10 = 5µm, dw = 15µm, f = 500
kHz, s0 = 1µm. (b) Shear stress produced by the bubble on the wall, calculated by (3.5).

For the same parameters as in figure 6, (3.5) gives the stress curve shown in figure 7(b).
Comparing figures 6(b) and 7(b), one can see that the maximal stress magnitude predicted
by our theory is 25.2 Pa, whereas (3.5) gives 1.1 Pa. This comparison suggests that
the evaluation of the shear stress based on Nyborg’s approximation may considerably
underestimate the stress magnitude.

In figures 6 and 7, the distance between the bubble’s surface and the particle’s surface
(wall) is 2R10 = 10µm. We have also made calculations for smaller distances between
the bubble’s surface and the particle’s surface (wall): 5 µm and 1 µm. For these cases, the
maximal stress magnitudes predicted by our theory are 155.4 Pa and 534.5 Pa, respectively,
whereas (3.5) gives 7.4 Pa and 49.7 Pa, respectively. These results confirm that the
calculation based on Nyborg’s approximation predicts a much lower stress than our model,
which is based on a more rigourous calculation of acoustic streaming. It should be noted,
however, that the difference between the results given by (3.5) and our model decreases
with decreasing distance between the bubble and the particle.

4. Conclusion
We have developed an analytical theory that describes acoustic microstreaming produced
by the interaction of an oscillating gas bubble with a viscoelastic particle at an arbitrary
separation distance between them. The bubble was assumed to undergo axisymmetric
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oscillation modes. The oscillations of the particle were assumed to be excited by the
oscillations of the bubble. In order to demonstrate the capabilities of the developed theory,
we have presented numerical examples, which show acoustic streaming produced by
different oscillation modes experienced by the bubble and the time-averaged shear stress
produced by this streaming on the particle surface. In particular, it has been shown that
the stress predicted by our theory is much higher than the stress predicted by Nyborg’s
approximation (Nyborg 1958), which is commonly used to evaluate the time-averaged
shear stress produced by a bubble on a rigid wall.
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